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A Bivariate Forecasting Model For Russian GDP Under Structural Changes In 

Monetary Policy and Long-Term Growth 

Abstract 

This paper estimates a bivariate econometric model to describe Russia’s real GDP while 

taking account of the Russian economy’s high dependence on oil prices, monetary policy 

regime change, and economic growth slowdown. We follow the theory of long-run neutrality 

of monetary policy and assume that the Bank of Russia’s monetary policy regime change in 

late 2014 has influenced only the short-run relationship between Russia’s GDP and oil prices, 

but long-run multiplier is invariant to monetary policy. The paper also attempts to take 

account of the economic growth slowdown in last decade. The model has demonstrated good 

forecasting performance. 

Key words: monetary policy, Russian economy, terms of trade, ARX model, ECM model, 

structural breaks  

JEL: E32, E37, E52 

Introduction 

The paper presents a forecasting model for Russian GDP, incorporates the high 

dependence on terms of trade, slowdown of economic growth in Russia after the global 

financial crisis, and the change in the monetary policy regime in the fourth quarter of 2014. 

Forecasting macroeconomic indicators is essential in economic analysis. When developing 

measures of monetary and fiscal policies, regulators make decisions based on their own 

forecast models. This applies to the Bank of Russia and the Ministry of Economic 

Development of Russia, as well as other authorities in the economic and social areas. Besides, 

almost all Russian research centers and economic policy authorities have their own 

forecasting models. The Russian economic literature describes a considerable number of such 

forecasting models, including ARIMA models (Turuntseva et al., 2015), VAR models 

(Turuntseva et al., 2005), large macroeconometric models (Mikhailenko, 2005; Uzyakov et 
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al., 2009; Ayvazyan et al., 2013 ), factor models (Styrin, Potapova, 2009; Astafieva, 

Turuntseva, 2014; Porshakov et al., 2015), BVAR models (Demeshev, Malakhovskaya, 2015; 

Deryugina, Ponomarenko, 2015; Pestova, Mamonov, 2016b) and DSGE models (Ivaschenko, 

2013; Malakhovskaya, 2016; Kreptsev, Seleznev, 2018). Some authors as Turuntseva (2011), 

and Pestova, Mamonov (2016a) provide extensive reviews of the Russian forecast models. 

However, the implications of the transition to the inflation targeting regime for the Russian 

GDP have not yet been studied in depth. Therefore there is a need new type of forecasting 

model which take into account the changes that entails the transition to the new monetary 

policy regime. 

The paper has a following structure: In the first section, we briefly describe the 

overview of the Russian economy over the period under consideration, describe the 

importance of the terms of trade and monetary policy. In the section “Specification of the 

model” we construct the ARX and ECM models and take into account the factors mentioned 

in the section earlier. In the section “Estimation of the model”, we present the results of 

models estimation and analyze the influence of the oil prices on Russian GDP in different 

monetary policy regimes based on impulse response analysis. In the forecasting section, we 

test the ARX and ECM out of sample forecasting performance. 

Overview of the Russian economy 

Crude oil prices are the most important indicator of foreign economic conditions and a 

salient determinant of the key macroeconomic indicators in Russia’s economy. Exports of 

crude oil, natural gas, and refined petroleum products make up the majority of Russia’s 

exports; therefore, oil prices can be used as a proxy variable for terms of trade. Oil prices 

tumbled during the 2008–2009 and 2014–2015 financial crises. Russia lost 7.8% of its GDP 

(in constant prices) in 2009, compared with a 2.8% contraction in 2015. Oil prices were 

definitely not the only negative determinant of the 2009 drop in output. However, many 

experts predicted, based on historical data analysis, that Russia would plunge into a deep 
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economic recession in 2015 and face a 5–9% decline in GDP. A soft decline in production 

during the most recent financial crisis can be accounted for by the Bank of Russia’s monetary 

policy change from a managed float to a floating exchange rate and inflation targeting 

regimes.  

From a theoretical point of view, a floating exchange rate regime is more conducive 

than is a managed float to stabilizing business activity in emerging economies (Devereux et 

al. 2006; Friedmanm 1953; Gertler et al. 2007). If foreign economic conditions change under 

the floating exchange rate regime, the real exchange rate can quickly adjust to its long-run 

equilibrium through change in the nominal exchange rate. Under the managed float regime, 

by contrast, the real exchange rate adjustment would require prices of goods to be changed; 

therefore, when price flexibility is not absolute, extended periods of time may elapse before 

the adjustment to the equilibrium takes place. Consequently, long periods of real exchange 

rate misalignment and a wide gap between domestic goods’ demand and the effective level of 

demand can be seen under a managed ruble exchange rate. Broda (2004) and Edwards and 

Yeyati (2005) provided empirical evidence suggesting that a floating exchange rate has a 

stabilizing effect on output under the influence of terms-of-trade shocks. Figure 1 presents the 

Russian real GDP in 2011 constant prices from Rosstat and the real Brent oil prices, which we 

get by deflating nominal oil prices (U.S. Energy Information Administration) by the dollar 

CPI (FRED Economic Data). Quarterly oil prices are getting by averaging of monthly 

nominal prices. At final, we have all data in quarterly expression from 1999Q1 to 2018Q4. 

[Figure 1 near here] 

The Bank of Russia’s move to the inflation targeting and floating exchange rate regimes 

can, therefore, be regarded as a positive economic policy aimed at stabilizing business 

activity. However, a change in the MP (monetary policy) regime leads to a change in the 

cross-correlation relationship between macroeconomic indicators, meaning that a structural 

change in the parameters of regression equations can be seen due to the MP regime change. 
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The presence of structural changes, in turn, can substantially impair the forecasting 

performance of macroeconomic models as a result of misspecification (Clements and Hendry 

2006; Pesaran et al. 2006). 

The Bank of Russia shifted to the floating exchange rate regime late in 2014; therefore, 

the number of observations for estimating the model parameters under this new regime is very 

small. Making use of the preceding monetary policy regime’s information about system 

parameters, which are stable in time, is a promising approach in this context. The key 

underlying premise of the model developed in this paper rests on the hypothesis that monetary 

policy is neutral in the long term and that monetary policy regimes influence only the short-

run dynamics of the economic system adjustment to the long-run equilibrium. The MP regime 

change is assumed to involve only a change in the nature of adjustment of real 

macroeconomic indicators to the long-run equilibrium, while the long-run multipliers of the 

real macroeconomic indicators with respect to fundamental shocks remain invariant to the 

MP regime. 

We built econometric models—based on the works of (Beck et al., 2007; 

Kuboniwa, 2014; Rautava, 2004)—under the premise of long-run relationship between 

Russian real GDP and oil prices (a proxy for terms of trade). Accordingly, we assumed that 

the long-run elasticity of GDP with respect to oil prices is invariant to the MP regime. We 

decided upon pair regressions between GDP and oil prices, given the small number of 

observations at hand. We considered two specifications—either with or without cointegration 

between them—to ensure robust results. The second specification allows for no cointegration, 

because other skipped nonstationary factors of Russian GDP could possibly be at play. 

The long-run dependence of an oil producing economy on oil prices can be explained 

through the capital formation channel. Esfahani et al. (2014) relied on an extended Solow 

model (Solow, 1956) to substantiate the cointegration relation for some oil producing 

economies by supposing that some oil export earnings are saved in the form of fixed 



  

5 
 

investment. Positive dependence of the oil producing economy’s output level on the level of 

oil prices is substantiated within the context of the premises laid out by the authors: a 

permanent rise in oil prices implies an increase in investment and, therefore, in the volume of 

physical capital, which represents the factor of production of goods and services, thereby 

resulting in a permanent increase in output in the long term. In Ramsey’s multisector models 

of optimal growth, a rise in oil prices and an improvement in terms of trade brings about 

higher returns on investment in both the export-led sectors and the nontradable sectors (prices 

of nontradables increase due to higher demand), thereby boosting the volume of capital in the 

economy, output, fixed capital per worker, and worker’s labor productivity (Idrisov et al., 

2015). 

We also assume that the long-run growth rate of Russia’s economy remained unchanged 

when the floating exchange rate regime was established. Figure 1, however, shows a distinct 

break in the long-run growth trend around the 2008–2009 crisis. Russian GDP demonstrated 

very high growth rates until 2008–2009, which can be interpreted through recovery growth 

after the transformation downturn. However, the growth rate slowed considerably afterwards, 

possibly because the rapid growth via the channel of imitation of technologies had lost its 

potential against the backdrop of a considerably narrowing labor productivity gap between 

domestic and foreign economies. Based on a cointegrated regression model, Polbin and 

Skrobotov (2016) provided formal statistical evidence supporting this change in the trend 

slope, and identified a change in 2007Q3, shortly before the 2008–2009 financial crisis. In 

this paper, we also consider this structural change. 

 

Specification of the model 

We assume that a stochastic process for the Russian real GDP 𝑦𝑡 is given by the 

equation ln𝑦𝑡  = 𝜏𝑡 + 𝛽ln𝑝𝑜𝑖𝑙𝑡 + 𝜈𝑡 , (1) 
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where 𝜏𝑡 is the trend component representing growth factors orthogonal to oil prices, 𝑝𝑜𝑖𝑙𝑡  is 

real oil prices, 𝛽 is the long-run elasticity of Russian GDP with respect to oil prices, and 𝜈𝑡 is 

a zero mean reverting stochastic process that can correlate with oil prices. 

We assume that the logarithm of oil prices follow a random walk, which is consistent 

with poor predictability of oil prices (Alquist et al., 2013). In this context, the current value of ln𝑝𝑜𝑖𝑙𝑡 can be defined as a permanent level of this variable, while the value ln𝑦𝑡𝑝   = 𝜏𝑡 +𝛽ln𝑝𝑜𝑖𝑙𝑡 can be defined as a permanent level of GDP. We also assume that the MP regime 

change has no effect whatsoever on the component ln𝑦𝑡𝑝 but, rather, alters only the cross-

correlation properties of the process 𝜈𝑡. 
We also allow for breaks in the long-term growth of the component 𝜏𝑡. Given the small 

number of observations at hand, we assume that there was a single structural change in the 

long-term growth rates of the variable 𝜏𝑡 at the point of time 𝑇1, which we suppose to have 

occurred around the time of the 2008–2009 crisis. This paper considers two specifications. 

The first assumes that the variable 𝜏𝑡 is described by a random walk with drift and with 

structural changes in the drift parameter. Then, output and oil prices are not cointegrated time 

series, in which case we build a ARX model. In the second specification, we assume that 𝜏𝑡 is 

the segmented linear deterministic trend. Then, Russian GDP is cointegrated with real oil 

prices in a model with this deterministic trend, and an error correction model is а proper 

model for real GDP. 

 For the first case, the model is given as 

{  
  (∆ln𝑦𝑡 − 𝜇𝑡) =∑𝛼𝑖1 (∆ln𝑦𝑡−𝑖 − 𝜇𝑡−𝑖)+∑𝑏𝑗1∆ ln(𝑝𝑜𝑖𝑙𝑡−𝑗) + 𝜀𝑡1, 𝑡 < 𝑇2𝑞1

𝑗=0
𝑝1
𝑖=1(∆ln𝑦𝑡 − 𝜇𝑡) =∑𝛼𝑖2 (∆ln𝑦𝑡−𝑖 − 𝜇𝑡−𝑖)+∑𝑏𝑗2∆ ln(𝑝𝑜𝑖𝑙𝑡−𝑗) + 𝜀𝑡2𝑞2

𝑗=0
𝑝2
𝑖=1 , 𝑡 ≥ 𝑇2, (2) 

where 𝑇2 is the date of the MP regime change, namely, in the fourth quarter of 2014, 𝜀𝑡1~𝑁(0, 𝜎12), 𝜀𝑡2~𝑁(0, 𝜎22), and the long-term growth rate 𝜇𝑡  is given as 
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𝜇𝑡 = {𝜇0, 𝑡 < 𝑇1𝜇1, 𝑡 ≥ 𝑇1, (3) 

The assumption that the long-run elasticity of output with respect to oil prices is 

invariant to the MP regime places the following restriction on the parameters under various 

regimes: ∑ 𝑏𝑗1𝑞1𝑗=01 − ∑ 𝛼𝑖1𝑝1𝑖=1 = ∑ 𝑏𝑗2𝑞2𝑗=01 − ∑ 𝛼𝑖2𝑝2𝑖=1 ≡ 𝛽, (4) 

Juselius (2006) classifies this structural change as mean shift, which implies by itself 

that the first difference of time series over the period under review fluctuates around several 

mean levels (see Fig. 6.2, left-side panels), and the time series in the levels follows several 

trends with different slopes. 

In the second case, the relation (1) takes the form 

ln𝑦𝑡 = 𝑐 + 𝜇0𝑡 ∗ (1 − 𝑑𝑡𝑡) + 𝜇1𝑡 ∗ 𝑑𝑡𝑡 + 𝛾𝑑𝑡𝑡 + 𝛽ln𝑝𝑜𝑖𝑙𝑡 + 𝜈𝑡 , 
(5) 

where 𝑐 is the constant, 𝑡 is the linear trend, and the variable 𝑑𝑡𝑡 is a dummy variable of the 

form: 

𝑑𝑡𝑡 = {0, 𝑡 < 𝑇11, 𝑡 ≥ 𝑇1. (6) 

In this model setup, the parameter 𝜇0 is the long-term growth rate of GDP under the 

regime preceding the structural change, and the parameter 𝜇0 denotes the long-term growth 

rate of output under the regime following the structural change at the point of time 𝑇1. The 

parameter 𝛾 corresponds to the magnitude of the output jump at the point of structural change. 

Before the structural change in 2007q3 deterministic trend change with rate equal to 𝜇0, 

after structural change with rate equal to 𝜇1. However, the rate of change of the deterministic 

component at the time of the break is not equal to (𝜇1 + 𝛾 ∗ ∆𝑑𝑡𝑡). At time 𝑡 = 𝑇1 − 1, the 

value of the determined trend is 𝑐 + 𝜇0(𝑇1 − 1 ), and at time 𝑡 = 𝑇1, the value of the 
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determined trend is 𝑐 + 𝜇0𝑇1 + (𝜇1 − 𝜇0)𝑇1 + 𝛾. Then the first trend difference at the 

moment 𝑇1 is equal to 𝜇1𝑇1 − 𝜇0(𝑇1 − 1 ) + 𝛾.  

Then, an error correction model takes the form: 

{  
  (∆ln𝑦𝑡 − �̃�𝑡) = 𝜃1𝜈𝑡−1 +∑𝛼𝑖1(∆ ln𝑦𝑡−𝑖 − �̃�𝑡−𝑖)+∑𝑏𝑗1∆ ln(𝑝𝑜𝑖𝑙𝑡−𝑗) + 𝜀𝑡1 , 𝑡 < 𝑇2𝑞1

𝑗=0
𝑝1
𝑖=1(∆ln𝑦𝑡 − �̃�𝑡) = 𝜃2𝜈𝑡−1 +∑𝛼𝑖2(∆ ln𝑦𝑡−𝑖 − �̃�𝑡−𝑖)+∑𝑏𝑗2∆ ln(𝑝𝑜𝑖𝑙𝑡−𝑗) + 𝜀𝑡2, 𝑡 ≥ 𝑇2𝑞2

𝑗=0
𝑝2
𝑖=1

 (7) 

Where: 

𝜇�̃� = { 𝜇0, 𝑡 < 𝑇1𝜇1𝑇1 − 𝜇0(𝑇1 − 1 ) + 𝛾, 𝑡 = 𝑇1𝜇1, 𝑡 > 𝑇1 , (8) 

а 𝜈𝑡−1 is the corrective component lag.  

Thus, the ECM model has an extra parameter of the jump in the output trend at the 

time of structural change 𝑇1. In light of the above, the reader may ask why the ARX model 

does not include this parameter at the time of structural change. The answer is: We do not do 

this because we rely on the ARX model’s assumption that the structural component is a 

stochastic trend. In this specification, all changes in the trend level are realized through 

stochastic trend shocks, and the analyzed changes are indistinguishable from deterministic 

jumps in the level. 

Estimation of the model 

The model was econometrically estimated using data for the period between 1999Q1 

and 2018Q4. The multiplicative seasonal component was removed from the time series of real 

GDP using ARIMA-X-12 in Eviews. Given a number of lags and dates of structural changes, 

the model was estimated by a maximum likelihood method. In the ARX model, the likelihood 

function was maximized using the fmincon function in Matlab. The problem was thus reduced 

to maximizing a nonlinear function with no restrictions. OLS estimates of unrestricted models 

in sub-periods were used as starting values for searching the maximum. 
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For ECM estimation, we use a concentrated maximum likelihood approach where short-

run parameters are estimated by the OLS method within fixed parameters of the long-run 

cointegrated relationship. The likelihood function with respect to the parameters of the 

cointegration relationship was also optimized using the fmincon function in Matlab, in which 

DOLS (Saikkonen, 1991; Stock and Watson, 1993) estimates of the cointegration relationship 

(5) were used as the starting value. 

As noted above, the monetary policy regime change date 𝑇2 is set in 2014Q4, when the 

Bank of Russia moved to the floating exchange rate and inflation-targeting regimes. For the 

purpose of simplicity, a consistent estimator from Polbin and Skrobotov (2016), which 

corresponds to 2007Q3 and was obtained by minimizing squared residuals in the 

cointegrating regression between GDP and real oil prices, was used as the date 𝑇1 of the 

structural change in long-term growth rates. The results obtained in this paper appear stable, 

with a minor variance of the date of structural change in the long-term growth rates. 

The number of lags was selected according to the Akaike information criterion (Akaike 

1974): 𝐴𝐼𝐶(𝑝) = 2𝑝 − 2 ln(𝐿), (9) 

where 𝑝 is the total number of parameters under both regimes, which, in the ЕСМ model, also 

includes 5 parameters of the cointegration relationship. 

When estimating information criterion values in the ECM model, the number of GDP 

and oil price lags is selected up to 6 under the first regime and up to 2 under the second 

regime, due to a short sample length under the inflation targeting regime. Under the second 

regime, the sample comprises only 17 points for estimation. As we conduct pseudo out of 

sample forecasts under the second regime we need a wide and representative horizon to 

demonstrate forecasting performance. We also need a sufficient number of observation to 

estimate the parameters of the second regime. To achieve this goals we estimate long run 

elasticities in both models under the first regime sample (1999Q1-2014Q3) and use these 
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estimates as restrictions for long run elasticities when estimate the ARX and ECM model in 

the full sample. 

 Long-run parameters in the ECM model are derived from the cointegration 

relationship, while long-run elasticities in the ARX model are a function of all the lag 

polynomial parameters. Therefore, long-run multipliers may be highly underestimated if there 

is a small number of lags in the ARX model. For example, when estimating a VAR on 

monthly data, Bernanke et al.(1997) selected 7 lags, corresponding to a lag length of 

approximately half a year, according to the AIC information criterion. Hamilton and Herrera 

(2004) believe that Bernanke et al. (1997) obtained highly underestimated values of the 

impact of oil price shocks on the U.S. output because of the small number of lags in the 

econometric model compared with the standard specification (with a lag length of one year) in 

the literature and that the model poorly approximates the data generation process. In this 

paper, to ensure a better estimation of long-run multipliers, the number of lags is set to four 

with respect to GDP under the first regime, whilst the other lags are chosen according to the 

Akaike information criterion. Setting a fixed lag length is quite a standard procedure in the 

literature (Stock and Watson 1998; Stock and Watson 2002). The results of choosing models 

according to the Akaike information criterion are presented in Table 1. 

[Table 1 near here] 

After choosing the number of lags, we implemented the residual bootstrap to obtain 

confidence intervals of estimates of model parameters. Table 2 presents the estimates of long-

run parameters, namely, the estimates of output elasticity with respect to oil prices and the 

estimates of long-term growth rates of the structural component of output in both models. 

Table 2 shows that the obtained growth rates of the structural component of real GDP are very 

close to each other. The structural component of long-term growth before and after 𝑇1 is 

estimated at 5.3-5.5% and 1.2-1.5% per year, respectively. The point estimates of the models’ 
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parameters show that, if oil prices rise by 10%, then Russia’s GDP would increase in the long 

term by 0.95% in the ARX model and by 1.06% in the ECM model.  

[Table 2 near here] 

In this paper, we do not show the coefficients corresponding to short-run dynamics in 

autoregressive models because they are difficult to interpret, but, for ease of visualization, we 

build impulse response functions of Russia’s real GDP adjustment to oil shock according to a 

particular regime. Figures 2 and 3 present the point estimates of impulse responses of real 

GDP to a 10% permanent real oil price shock in the ARX and ECM models, along with 16% 

and 84% quantiles. 

[Figure 2 near here] 

[Figure 3 near here] 

Both models identify different short-run dynamics of GDP adjustment to the long-run 

equilibrium, as shown in the diagrams. GDP exhibits a hump-shaped response under the 

managed exchange rate regime. Against the backdrop of a permanent increase in global oil 

prices, the real GDP exhibits accelerated growth rates for 3–4 quarters, after which the oil 

shock effect on GDP begins to wear off gradually. In response to a 10% increase in oil prices, 

GDP at its highest turns out to be 0.06% higher than its long-run level in ARX and ECM 

models. Thus, the econometric estimation reveals that the permanent rise of global oil prices 

positively contributes to output growth rates over 3–4 quarters, after which the contribution of 

growth rates turns negative in the medium term and zero in the long term. The obtained 

estimates show, however, that the inflation targeting regime is best for stabilizing the business 

cycle, and, if there is a change in terms of trade, GDP adjusts gradually to its new long-run 

equilibrium under this regime. 

The obtained results can be interpreted as follows. Under the first MP regime, the 

Central Bank of Russia dampened appreciation of the real exchange rate by keeping a lid on 

the nominal exchange rate against the backdrop of rising global oil prices. And, the increase 
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in aggregate demand on the back of improved terms of trade translated into expanded demand 

for both imported and domestic goods. However, as the real exchange rate firmed up on the 

back of inflation, the domestic production lost its competitive position, and aggregate demand 

moved towards consumption of imported goods. Under the inflation targeting regime, 

however, under a positive terms-of-trade shock, the Russian ruble rapidly appreciated in 

response to a strengthening nominal exchange rate, and higher aggregate demand instantly 

moved toward imported goods. Russian GDP gradually rose on account of gradual expansion 

of production possibilities and capital formation. 

 

Forecasting 

We now turn to real GDP forecasting. We test the forecasting performance of the ARX 

and the ECM models in two pseudo out of sample experiments on the last two years of 

available sample. To predict GDP we also need oil price forecasts. Log oil prices are assumed 

follow a random walk, and we take 0 as the forecast for growth in the log of oil prices. This 

assumption about the expected oil price in the ARX and the ECM models allows us to 

construct us 4-step ahead forecasts for GDP growth rate in the first experiment. In the second 

experiment, we follow Porshakov et al. (2016), who show the applicability of main export 

prices (include oil prices) to nowcasting and forecasting in the context of the dynamic factor 

model for the Russian GDP. We follow their outcomes in experiment 2 to test nowcasting 

performance of the models. Thus in the first forecast period of the second experiment we use 

actual oil prices, and zero oil prices growth for remaining thee period of the forecast. We 

follow the standard practice in the literature of using a classical ARIMA model as the 

benchmark for comparing forecasts (Stock and Watson, 1998; Angelini et al., 2011). We 

apply the Akaike information criterion to select the optimal order of the ARIMA model; 

ARIMA(1,0,1) for the first differences of log of GDP is selected. 
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Figures 4-6 present a comparison between the forecasts and the actual dynamics of the 

time series obtained by the ARX, ECM, and ARIMA models in first experiment, respectively.  

 [Figure 4 near here] 

[Figure 5 near here] 

[Figure 6 near here] 

In Tables 3 and 4 we present the results of first and second experiments, respectively. 

Table 5 presents systematization of the two experiments and estimates the relative RMSE of 

the forecasts by the ECM model to the forecasts by the ARX and ARIMA models. 

[Table 3 near here] 

[Table 4 near here] 

[Table 5 near here] 

It follows from the Tables that the ARX and ECM models greatly outperform the 

ARIMA model in terms of forecasting performance. However, the ARIMA shows the best 

forecasting performance in forecasting for the fourth period and worst on the rest. 

 In the first experiment the ECM model outperforms the ARX model by 6% and 13% 

respectively, and outperforms the ARIMA model by 9% and 16% respectively in terms of 

forecasting for the whole period on average. According to Tables 3 and 4, the usage of 

realized oil prices in the ARX and the ECM model is not helpful in nowcasting, but really 

helpful in improving forecasting accuracy on average for the whole forecast period. For 

instance, the ECM model first step forecast in the first experiment (RMSE=0.0078) is more 

accurate than first step forecast in the second experiment (RMSE=0.0076). However, this 

outcome is only characteristic of the first step of forecast. If we concern average RMSE 

values during the whole forecast period, they decrease from 0.0088 to 0.0085. This situation 

is similar to ARX model. 

Next, we present scenario-based forecasts for the (quarter on previous year's quarter and 

year-on-year) output growth rate in 2019 in Table 6 based on the best model - ECM. Three 
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alternative nominal oil price scenarios for 2019 are considered: basic scenario of the Ministry 

of the Economic Development of the Russian Federation - $63.4/bbl (Ministry of Economic 

Development of the Russian Federation. October, 2018), Wolrd Bank scenario -$68.6/bbl 

(International Monetary Fund World Economic Outlook. October, 2018), and International 

Monetary Fund scenario -$69.4/bbl (International Monetary Fund World Economic Outlook. 

October, 2018). Real oil prices are calculated on the assumption that dollar inflation changes 

by 0.5% per quarter. Table 6 presents our forecasts. 

[Table 6 near here] 

We believe that the ЕСМ-based forecasts are the most relevant because in all the 

experiments the ЕСМ shows a higher out of sample forecasting performance. Note that all of 

our 2019 YoY forecasts are slightly lower than World Bank, which is 1.5%, International 

Monetary Fund forecast, which is 1.6% and the Ministry of Economic Development of the 

Russian Federation – 1.3%.  

There are two reasons why the forecasts obtained in Table 6 are lower than the forecasts 

of the IMF, WB and MED. The first reason for such low forecasts is that in 2018 the Russian 

economy experienced an increase of 2.3% year-on-year, which was much higher than 

mentioned institutions forecasts. Because of this, both models give a forecast for the 2019 

year in relation to the larger growth in 2018, due to which the forecast for 2019 is low. The 

second reason is that in 2018 average oil prices amounted to $71 per barrel. Thus, in all the 

scenarios, oil prices in 2019 are expected to fall, which also reduces the forecast for the 2019 

year. 

We also admit that IMF world GDP growth forecast for 2018 is equal to 3.3%. This fact 

means that even our most optimistic forecast for growth of the Russian economy much lower 

than the forecasted global growth rate by IMF. Thus, in the coming years, the Russian 

government will have to solve a rather difficult task, given the slowdown in the long-term 
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growth demonstrated in this paper, in that, to keep up with the rest of the world, Russia — a 

developing country — needs to grow at least twice as fast as it is doing.  
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Conclusion 

This paper provides empirical evidence — based on the bivariate ARX and ECM 

econometric models — of the hump-shaped response of the Russian real GDP to the 

permanent oil price shock under the managed float exchange rate regime. That is, the 

managed float exchange rate regime induced more volatile fluctuations in the Russian 

economy’s output in response to oil shocks. The inflation targeting regime was conducive to 

smooth adjustment of output to a new long-run equilibrium. The proposed ARX and 

ECM models attempt to factor in the structural changes in both the monetary policy and long-

run economic growth rates. The out of sample forecasting experiments have shown a major 

improvement in the quality of forecasting by the ARX and ECM models over the baseline 

ARIMA model. The proposed modeling approach may be of practical value in describing 

economies that are highly dependent on terms of trade and countries in which monetary 

policy regime changes have occurred. 
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Tables 

Model 

Lags in ln 
real GDP 

differences 
under the 

first regime 𝑝1 

Lags in ln 
real GDP 

differences 
under the 

first regime 𝑞1 

Lags in real 
GDP ln 

differences 
under the 
second 
regime 𝑝2 

Lags in ln 
real GDP 

differences 
under the 
second 
regime 𝑞2 

Real GDP 
long-run 
elasticity 

value with 
respect to 

real oil price 

ARX 4 1 2 1 0.0951 

ECM 1 1 1 1 0.1059 

Table 1. Results of choosing lags according to the AIC criterion in ARX and ECM models 
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Parameter 
interpretation 

ARX model ECM model 

Parameter Estimate Parameter Estimate 
Long-term 

growth rates of 
output under the 
regime before 

2007q3 

𝜇0 
0.0138 

[0.0089;0.0152] 
𝜇0 

0.0132 

[0.0112;0.0219] 

Long-term 
growth rates of 

output under the 
regime after 

2007q3  

𝜇1 
0.0030 

[0.0001;0.0065] 
𝜇1 

0.0037 
[0.0015;0.0055] 

Long-run 
elasticity value 
with respect to 

oil prices 

∑ 𝑏𝑗1𝑞1𝑗=01 − ∑ 𝛼𝑖1𝑝1𝑖=1 = ∑ 𝑏𝑗2𝑞2𝑗=01 − ∑ 𝛼𝑖2𝑝2𝑖=1  
0.0951 

[0.0585;0.138] 
𝛽 

0.1059 
[0.0515;0.1538] 

Note: 95% bootstrap confidence intervals in brackets 

Table 2. Resulting estimates of long-run parameters in ARX and ECM models 
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 ARX  ECM  ARIMA 

RMSE 
one step ahead forecast 

0.0093 0.0076 0.0105 

RMSE 
two steps ahead 

forecast 
0.0099 0.0086 0.0114 

RMSE 
three steps ahead 

forecast 
0.0098 0.0096 0.0109 

RMSE 
four steps ahead 

forecast 
0.0081 0.0092 0.0075 

Average RSME for 1-4 
periods 

0.0093 0.0088 0.0101 

Note: the best model at each forecasting step is shown in bold 

Table 3. Each step’s out of sample RMSE values for the models, first experiment 
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Step ARX ECM ARIMA 

RMSE  
one step ahead 

forecast (nowcasting) 

0.0095 0.0078 0.0105 

RMSE 
one step ahead 

forecast 
0.0092 0.0074 0.0114 

RMSE 

two steps ahead 
forecast 

0.0094 0.0094 0.0109 

RMSE 

three steps ahead 
forecast 

0.0086 0.0094 0.0075 

Average RSME for 1-
4 periods 

0.0092 0.0085 0.0101 

Note: the best model at each forecasting step is shown in bold 

Table 4. Each step’s out of sample RMSE values for the models, second experiment 
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ECM to ARX 
Experiment 1 

ECM to ARIMA 
Experiment 1 

ECM to ARX 
Experiment 2 

ECM to ARIMA 
Experiment 2 

RMSE 
one step ahead 

forecast 

0.82 0.72 0.81 0.74 

RMSE 
two steps 

ahead forecast 

0.86 0.75 0.79 0.65 

RMSE 
three steps 

ahead forecast 

0.97 0.88 0.99 0.86 

RMSE 
four steps 

ahead forecast 

1.11 1.23 1.06 1.25 

Average 
RSME for 1-4 

periods 

0.94 0.87 0.91 0.84 

Table 5. Relative RMSE ECM to ARX/ARIMA for all experiments 
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ARX 

$63.4/bbl 
ECM 

$63.4/bbl 
ARX 

$68.6/bbl 
ECM 

$68.6/bbl 
ARX 

$69.4/bbl 
ECM 

$69.4/bbl 

2019Q1, 
QoQ 

0.56% 0.82% 0.73% 0.95% 0.75% 0.97% 

2019Q2, 
QoQ 

-0.54% 0.01% -0.06% 0.39% 0.01% 0.45% 

2019Q3, 
QoQ 

-0.68% 0.11% -0.09% 0.52% -0.01% 0.58% 

2019Q4, 
QoQ 

-0.37% 0.57% 0.30% 1.01% 0.39% 1.07% 

2019, 
YoY 

-0.26% 0.38% 0.22% 0.72% 0.29% 0.77% 

Table 6. Models-based forecasts for 2019 
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Figures 

 

Figure 1. Logarithm of the real GDP and Logarithm of the real Brent crude price 

 

Figure 2. Impulse responses of real GDP to a 10% permanent real oil price shock under 

MP regimes, ARX model 
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Figure 3. Impulse responses of real GDP to a 10% permanent real oil price shock under 

MP regimes, ECM model 

Note: blue line — real GDP growth rate, red lines—4-step ahead forecasts 

Figure 4. Out-of-sample 4-step ARX-based forecasts, first experiment. 
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Note: blue line — real GDP growth rate, red lines — 4-step ahead forecasts 

Figure 5. Out-of-sample 4-step ECM-based forecasts, first experiment. 

 

Note: blue line — real GDP growth rate, red lines — 4-step ahead forecasts 

Figure 6. Out-of-sample 4-step ARIMA-based forecasts, first experiment. 
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