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Abstract 
We discuss how differences in disposable time and money should be incorporated 
in discrete choice models. Starting from a general framework, we test several 
indirect utility functions in an application on mode choice, using data from the 
recent Swedish national travel survey.  
Incorporating differences in available income and time improves goodness-of-fit 
significantly. It also affects the forecasts obtained from the model. Both average 
elasticities and the implied average values of time depend not only on whether 
time and income enter the model, but also on the way this is done. 
The best results in terms of goodness-of-fit are obtained from a Taylor expansion 
of a Box-Cox function. We show that it is possible to make the Taylor expansion 
around different points, and that the choice of expansion point will affect both the 
goodness-of-fit, the average value of time and the elasticities of the model.  
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1 Introduction 
There are at least three reasons to include effects of differences in available 
income and time in demand models. The first is that this might improve the 
performance of the model in the sense of better data fit and improved predictions. 
The second is that there are questions that cannot be treated otherwise, for 
example effects of changes in the income distribution or prices on other goods. 
The third reason is that disregarding individual differences in available time and 
money and the resulting differences in marginal utilities of time and money can 
cause severe misjudgments in welfare evaluations, as discussed in for example 
Eliasson (2000).  
The reason that many demand models cannot capture these effects is that they 
assume a linear indirect utility function, i.e. the marginal utility of income and 
time is assumed to be constant. Apart from the problem that such functions are not 
able to reflect effects of differences in available income and time, there is 
sometimes the additional problem that we may want to evaluate proposed changes 
where the changes in time and income are so large that the assumption of constant 
marginal utility of time and money is untenable. Considering effects of available 
time and money and possible nonlinearities in the corresponding marginal utilities 
is especially important when a model is used not only to predict changes in future 
demand, but also to reveal a certain population’s preferences, for example their 
monetary value(s) of time. 
In this paper, we will discuss a special case of demand models, namely discrete 
choice models. The paper contains a theoretical part and an empirical part. In the 
former, we discuss how income and time enter a discrete choice model in a way 
that is consistent with microeconomic theory. The main points are the discussions 
about the necessity to assume working time restrictions ex ante, the possibility to 
include time or time components in a direct utility function and the implications 
of this for value of time measurements, and the possibility to map the inherently 
ordinal conditional indirect utility function to a cardinal utility scale in different 
ways. Further, we discuss Taylor expansion of the conditional indirect utility 
function, interpretations of this and the possibility to choose expansion point. Two 
natural expansion points to consider are the gross available income and time and 
the expected residual income and time. The latter is special in that it is an 
endogenously determined point, depending on the estimated parameter values. We 
briefly discuss the econometrics connected with this, and show in the empirical 
part that it is possible to estimate this type of model. 
In the empirical part of the paper, we compare a linear model to a Box-Cox utility 
function and several Taylor expansions of this function. The expansions perform 
consistently best. Including time and income in the model improves goodness-of-
fit in general. Elasticities and values of time are also affected. What may be 
surprising is that not only does it matter whether income and time are included or 
not; the exact way this is done has significant impact not only on the model’s 
goodness-of-fit, but also its implied elasticities and average value of time. Even 
the choice of point around which a Taylor expansion is made can make great 
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difference. We also investigate the effects of restricting the non-linear parameters 
of the Box-Cox function and its expansions. Restricting non-linear parameters is a 
common practice when one is not able to directly estimate a non-linear function. 
Becker (1965) seems to be the first to propose a general theory for the allocation 
of time and income. His framework was later refined by De Serpa (1971) and 
Evans (1972). Bruzelius (1979) provides a comprehensive treatment of these and 
other similar frameworks, with a particular focus on the value of time. González 
(1997) gives a theoretical review of the value of time literature and its foundations 
in microeconomics and household production theory. The connection from this 
theoretical stream of literature to applied discrete choice models is somewhat 
loose. An early and influential discrete choice application is Train and McFadden 
(1978), who study mode choice in connection with the choice of the optimal 
number of working hours. Jara-Díaz and Farah (1987) compare Train and 
McFadden’s model to a model with fixed working hours, and discuss implications 
for welfare measures. Bates and Roberts (1986) also propose a model with fixed 
working hours. Truong and Hensher (1985) compare the implications of using 
Becker’s or De Serpa’s framework for mode choice models. Bates (1987) corrects 
a flaw in this paper regarding the possibility to measure the “resource value of 
time” (which we will discuss at some length in section 5). 
The outline of the paper is as follows. Section 2 and 3 defines a general random 
utility framework for discrete choices, and section 4 discusses the possibility of 
transforming the conditional indirect utility. Section 5 discusses the inclusion of 
(travel) times in the direct utility of an alternative, and shows the implications for 
the value of time. In section 6, we discuss consequences and interpretations of 
Taylor expansions of the indirect utility function, and show that it is possible to 
choose expansion point freely. The empirical part of the paper starts in section 7 
with presenting the data. In section 8, we define the indirect utility functions we 
will compare, and the indicators we will compare between the different models 
(elasticities and values of time). Section 9 presents estimation results, and section 
10 concludes. 

2 Discrete choice models 
Consider the choice of one alternative out of a finite, unordered set of mutually 
exclusive alternatives. We can think of the choice of travel mode for a given trip, 
for example. Assume that each individual n gets a utility Uin from choosing 
alternative i (i{1, …, I}), and that this utility can be separated into an observable 
part Vin and a non-observable part in. The vectors n = {1n, …, In} are stochastic 
variables, with independent draws for each individual n1. This results in an 
additive random utility (ARU) model: 

 
1 It is not evident how we should treat the stochastic vector in the case when the same 
individual makes repeated choices in similar situations, say mode choice before and after 
a fuel price change. Should we assume that the stochastic vector n is the same at each 
choice occasion, i.e. is drawn only once for each individual? Or should we assume 
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Uin = Vin + in (1) 

The non-observable in:s are assumed to be known to the individual but not to the 
modeler. Vin, the measurable part of the utility function, is called the conditional 
indirect utility function. It is assumed to be a function of the (observable) 
characteristics of alternative i and other variables such as socioeconomic 
characteristics of individual n. The individual is assumed to be utility-maximizing, 
and thus chooses the alternative with the highest utility Uin. Since the modeler by 
assumption cannot measure the in terms, the best we can hope to predict is Pin, 
the probability that individual n chooses alternative i. To do this, the modeler 
must measure Vin as accurately as possible, and then assume something about the 
distribution of in. If the in:s are assumed to be independent and identically 
Gumbel distributed, we obtain the multinomial logit (MNL) model, the most 
commonly used discrete choice model. 
The restrictive assumption that the error terms are both independent and 
identically distributed can be relaxed in several ways. The most widely applied is 
the family of generalized extreme value (GEV) models, and in particular the 
nested logit model. Ben-Akiva and Lerman (1985) provides a comprehensive 
treatment of MNL and GEV models. Recently, even more flexible error 
distributions have been proposed and successfully estimated, notably the mixed 
multinomial logit (MMNL) model (see Train and McFadden, 1996, for its 
theoretical foundations, and Bhat (1998) for an application to mode and departure 
time choices). We will not apply any of these more flexible error specifications. 
However, the theoretical framework does not depend on the choice of error 
distribution, and most of the empirical findings can be expected to carry over to 
the more general models. 

3 A general discrete choice framework 
In order to use the additive random utility framework, we need to specify how the 
conditional indirect utility Vi should be measured (we will suppress the individual 
index n for a while). Typically, this is carried out by assuming some parametric 
function of the characteristics of the alternative, and the parameters are then 
estimated using observed or stated choices between alternatives. In this and the 
following sections, we will show what restrictions must be placed on this 
parametric function. We will do this by deriving it from a general microeconomic 
choice framework. 
Assume that each alternative is associated with a cost ci, a time ti and a direct 
utility Qi. This direct utility depends on the attributes of the alternative, which we 

 
completely independent draws before and after the change? The answer has deep 
implications for estimation of and welfare evaluation with random utility models. In 
welfare economics, the standard answer is “yes” to the first question (see Karlström, 
1999, for a discussion); in stated choice experiments, the standard answer is instead “yes” 
to the second one. In the present paper, we will not deal with observations of repeated 
choices. 
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collect in a vector qi. In the case of choice of travel mode, these attributes will 
include such things as waiting times, the number of changes, availability of seats 
and so on.  
Then, a fairly general framework for this choice is the optimization problem P1 
below. We assume that the utility function is separable in the direct utility Qi and 
an indirect utility function u(y,t), where y and t are the money and time devoted to 
other things than travel. 

[P1.]    
i

iiiWty
Qtyu

i

q


,max
}{,,,

 (2) 

such that 
y + i ici  Y0 + wW  (3) 
t + i iti   T0 - W (4) 
Wmin  W (5) 

W  Wmax (6) 

y, t  0 (7) 

i  {0,1}  i (8) 

i i = 1 (9)  

i is 1 if and only if alternative i is chosen. T0 and Y0 are the available amount of 
time and unearned income (from savings, pensions or investments, e.g.)2. W is 
working time, and w is the wage rate. Wmin and Wmax are the minimum and 
maximum working hours. We assume that working hours can be chosen freely 
within these bounds. Including such bounds has important implications for the 
model specification. We will explore this in some detail. 

3.1 Assuming constraints on working hours 

Consider the problem P1 above. If we fix one i = 1 and j = 0 if ji, we get a sub-
problem consisting of choosing the optimal working hours W conditional on this 
choice of i. Call this sub-problem P2(i). If we assume that u(y,t) is strictly 
increasing in y and t and that time and money are essential goods3, we can write 
the first-order optimality conditions for P2(i) as  

 
2 It is not evident how “available” time and income should be defined. It is reasonable to 
subtract times and costs for “fixed” or “compulsory” activities, but for many activities 
and goods, it is not evident to what extent they are “fixed” or “compulsory”; it depends 
on what time scale we consider. We will return to this in the empirical section of this 
paper. For the moment, it is enough to keep in mind that both Y0 and T0 will in general be 
different for each individual. 
3 The first assumption ensures that the income and time constraint will be binding and 
that  and  will be strictly positive, while the second one allows us to drop the 
nonnegativity constraint. We will assume this throughout the paper. 
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0
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 
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u  (10) 

0

 

t
u  (11) 

021  w  (12) 

plus the constraints (3)-(6) above. , , 1 and 2 are the Lagrange parameters 
corresponding to constraints (3)-(6). From (10)-(12) it follows that 

 21
1 







 w

y
u

t
u  (13) 

The left-hand side of (13) is called the resource value of time. Now, it follows 
from standard optimization theory (the Karush-Kuhn-Tucker conditions for P2(i)) 
that 1 and 2 are always nonnegative, and that if and only if they are strictly 
positive, the corresponding constraint is binding4. That is, if and only if 1 is zero, 
the individual would not choose to work less even if we relaxed the minimum 
work hours constraint. Similarly, if 2 is zero, the individual would not choose to 
work more even if we relaxed the maximum working hours constraint. Hence, if 
the number of working hours has indeed been chosen without any (binding) 
constraints, the value of time will be equal to the wage rate w. If we have reasons 
to believe that the constraints on the number of working hours are indeed not 
binding, then we must restrict the model such that the value of time will be equal 
to the wage rate. 
Since many models estimate the marginal utilities of time and money either 
directly or implicitly, this may suggest that we could test whether there are 
binding working hours constraints simply by checking whether the value of time 
is in fact equal to the wage rate. If the value of time is lower than the wage rate, 
then the individual works less than she would without the maximum work hours 
constraints. Conversely, if the value of time is higher than the wage rate, the 
individual works more than she would without the minimum working hours 
constraints. It may come as a surprise to realize that such a test is difficult or 
impossible to construct, for reasons we will explain in a moment. 
In the previous literature, it appears that the necessity of either obtaining or 
assuming explicit information about the bounds Wmin and Wmax before the model is 
estimated has not been sufficiently stressed. Various authors have different 
assumptions of working hours constraints. In the theoretical literature, Becker 
(1965) and Evans (1972) do not incorporate these constraints in their model at all. 
De Serpa (1971) introduces a minimum working hours constraint. Turning to the 

 
4 “Binding” here means a somewhat stronger condition than only that the corresponding 
constraint is fulfilled with equality. When we say that a constraint is binding, we mean 
that the solution to the relaxed problem, the problem without this constraint, is different 
from the solution to the original problem. This distinction only matters when the solution 
to the relaxed problem happens to satisfy the constraint with equality. 
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more empirically oriented literature, Train and McFadden (1978) (tacitly) assume 
that working hours are unconstrained. Bates and Roberts (1986) and Jara-Díaz and 
Farah (1987) assume that working hours are fixed, i.e. Wmin = Wmax = the observed 
number of working hours. The point we wish to make here is that these 
assumptions must be made beforehand, before the model is estimated, and we 
cannot use the model to directly reject or confirm these assumptions. This is clear 
from the following argument. 
Let W*(i) be the solution to P2(i), the optimal number of working hours given that 
alternative i is chosen. We define the conditional indirect utility Vi as 

   iiiii QtiWTciwWYuV q )(,)( *0*0  (14) 

The chosen alternative i* will be the one with highest value of (Vi + i), as 
described above. Assuming utility-maximizing individuals, the observed working 
hours and chosen alternative reveals i* and W*(i*). However, in order to estimate 
a discrete choice model, we need information about W*(i) also for the non-chosen 
alternatives. Clearly, this is impossible without assumptions about Wmin and Wmax. 
Thus, we must assume something about Wmin and Wmax before estimating the 
model, for example that the constraints will not be binding (like Train and 
McFadden, 1978) or that Wmin = Wmax (like Jara-Díaz and Farah, 1987). These 
assumptions cannot be falsified within the model framework, since we, if we 
misspecify the model, will come up with biased parameter estimates which cannot 
be used for formal statistical tests. This is the reason that the condition that the 
value of time should be equal to the wage rate is complicated to test. It is simply 
because our inability to observe working hours for non-chosen alternatives forces 
us to assume what these would be before the model is estimated. 
There is also another problem with testing if the value of time is equal to the wage 
rate, namely that the value of time is inherently confounded with its quality 
adjustment. We will discuss this in detail later. 
In what follows, we will assume that working hours are fixed, i.e. constrained to 
be equal to the observed amount of working hours. This is because we will use a 
Swedish travel survey consisting of regional private trips, and there seems to be 
ample evidence from other sources that the value of time for such trips is not 
equal to the wage rate; in most cases, it seems to be lower. This fits with the 
general impression that Swedish working hours are seldom chosen freely to any 
large extent. It will be convenient to introduce available income and time adjusted 
for working time and income: 

Y = Y0 + wW (15) 
T = T0 - W (16) 

4 Transforming the conditional indirect utility 
When specifying an ARU model (1), there are two choices that must be made. 
The first is what the distribution of the stochastic term should be. Considerable 
amounts of theoretical and empirical work have been spent on this issue, often 
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with the intent to relax the restrictive assumptions of the multinomial logit model 
that the error terms are independent and identically distributed. The other choice, 
which seems to have received less attention, is the choice of cardinal utility scale, 
or put it differently, the mapping from an ordinal utility measure to a cardinal one. 
As stated before, we assume that the individual will choose the alternative with 
the highest conditional indirect utility. But choosing the “highest” utility means 
that only the ordinality of Ui matters. Since the ordinality of Ui is preserved under 
any strictly increasing transformation of the Ui:s, we may perform any such 
transformation. But we can evidently also transform the Vi:s holding the ARU 
structure (1) during this transformation, which means that we will obtain different 
choice probabilities for different transformations of Vi. Although the magnitudal 
ordering of the choice probabilities will not change, the absolute magnitude of the 
choice probabilities will change, and so will in general the model’s elasticities. 
This is often a good way to improve the fit of the model. 
It is in general a good idea to try various transformations of Vi. For example, 
problems with heteroskedasticity may be overcome or lessened with such an 
approach. We will not pursue this idea systematically in this paper, but there is 
one particular reason that we bring it up, namely that we will be interested in 
making Taylor expansions of Vi. It can be argued that such Taylor expansions are 
more reasonably viewed as transformations of Vi than approximations of it (even 
if this “transformation” is not always guaranteed to preserve the relative ordering 
of the alternatives). While it is not intuitively obvious that this might sometimes 
improve a model, we will see in an application below that this is in fact often the 
case. We will return to this issue below. 
One last note on transformations: the transformation does not need to be the same 
for all individuals. In their influential paper, Train and McFadden (1978) propose 
three different indirect utiliy functions, which together with the assumption of 
freely chosen working hours result in three different conditional indirect utility 
functions. All of them are on the general form 

Vi = w-ci + w1-ti (17) 
The first utility function results in a conditional indirect utility function with 
 = 1, the second in one with  = 0, and in the third  is a free parameter between 
0 and 1. What we wish to suggest here is that these three conditional indrect utility 
functions might just as well be viewed as transformations of one single 
conditional indrect utility function. Starting with the first suggestion, where  = 0, 
the other two are obtained by dividing by w or w. In the latter case, the 
transformation is controlled by estimated parameter . Interpreting the three 
variants of conditional indirect utility functions as stemming from different 
underlying utility functions is equivalent to interpreting them as transformations 
of a joint underlying conditional indirect utility function. It is thus meaningless to 
ask what is the “correct” interpretation. In many cases, though, the 
“transformation” approach is helpful in order to come up with new, creative 
transformations, in a way the approach with different underlying utility functions 
is not. 
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5 The direct utility function and the value of time 
As stated above, we assume that the direct utility of an alternative is measured by 
a function Qi(qi), where qi is a vector of attributes of alternative i. In the case of 
mode choice, qi can include such things as the number of changes (for public 
transit), the presence of steep climbs along the route (for bicycle) and the risk for 
accidents (for car). In many cases, it is advisable to include an alternative-specific 
constant in the function, which can be interpreted as the fixed direct utility of the 
alternative. 
What will prove to be important from the point of model specification is the 
possibility to include travel times components in qi. With a “travel time 
component” (or simply “time component”), we will mean the time of some 
particular part of the trip, such as waiting time at the first bus stop, the time spent 
in car queues or the time spent on board the train. In a more general setting, 
turning from just travel to general time allocation theory, we can think of the time 
spent at some particular activity, such as at a cinema or doing the dishes. 
In contrast, we normally do not believe that costs can be introduced in qi, since in 
standard microeconomics, we do not assume that there is any direct disutility 
associated with paying for something. It only constitutes a disutility to the extent 
that it reduces the possibility of other consumption. This means that if we can 
estimate the conditional indirect utility Vi, we can obtain the marginal utility of 
money through 

 ii
i

i tTcY
c
V

y
u







 ,  (18) 

Thus, we can in principle directly measure the marginal indirect utility of money 
(up to a positive multiplicative constant5). In passing, we may also note that it 
follows from (18) that when we specify the Vi:s, the derivatives Vi/ci must have 
the same functional form for all i (even if they may be evaluated in different 
points (Y-ci,T-ti)). Consequently, if Vi is linear in the travel cost ci, Vi/ci must be 
equal for all alternatives. We also note that different components of the travel 
cost, say fuel cost and car tolls, must have the same marginal disutility (the same 
parameter if we have a linear specification). 
Contrary to travel costs, travel time components like waiting times or walking 
times may very well be a source of direct utility or disutility. For many people, 
standing in a crowded bus or trying to find a parking space may well constitute a 
disutility beyond the mere “time loss”. Other parts of a trip may not cause a 
complete loss of time, for example train in-vehicle time, during which other 
activities can possibly be carried out, or walking, which at least some people are 
reported to enjoy.  

 
5 As explained above, we may replace Vi with some monotone transformation f(Vi). Doing 
this will change the right-hand side of  (18) with the positive multiplicative constant 
df/dVi.  
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This means that the marginal utility of a reduction of a certain time component in 
general consists of two parts, one stemming from the indirect utility function 
u(y,t) and one from the direct utility function Qi(qi) Formally, assume that the 
travel time ti consists of components tk

i such that k tk
i = ti. Then, using the 

definition of the conditional indirect utility from (14), 

  k
i

ii
iik

i

i

t
Q

tTcY
t
u

t
V










 )(, q  (19) 

This shows that the marginal utilities of time components do not have to be equal 
across modes or time components. For example, if Vi is linear in each time 
component tk

i, they could all have different parameters.  
Combining (18) and (19), we obtain an expression for the value of time 
component (k,i) k

i: 

y
u

t
Q

y
u

t
u

c
V

t
V

k
i

ii

i

i
k
i

ik
i 





















)(q

  (20) 

The first term is called the resource value of time; we encountered it previously in 
(13) when discussing constraints on working hours. The second is called the 
quality adjustment of the value of time. De Serpa (1971) seems to be the first to 
make this distinction and the first to propose a model where the value of time was 
different for different time components. Evans (1972) clarified the case where 
some time components can have negative values, i.e. they are desirable. This is 
hardly applicable in our case, where time components are merely components of 
travel time, but applies to the case when time is allocated to activities. 
Although it was certainly standard practice among modelers at the time to have 
different parameters for different time components (and different alternatives in 
particular), Train and McFadden (1978) did not explicitly consider the possibility 
of different values of time for different time components in their early and 
influential paper. This may have created some confusion as to whether it was 
“permissible” to include alternative-specific or component-specific time 
parameters. Since we can in principle include any time component in the direct 
utility Qi(qi), it is obvious from (20) that the resource value of time cannot be 
uniquely determined. Thus, we cannot speak about “the value of time” without 
specifying what “time” we mean - time waiting at a bus stop, driving a car or 
riding a bicycle. Truong and Hensher (1985) argued in their discussion of the 
implications on discrete choice econometrics of the frameworks of Becker (1965) 
and De Serpa (1971) that the resource value could be measured directly. This was 
corrected by Bates (1987), who clarified how including time components in the 
utility function causes the value of time to be different across time components 
(and/or alternatives). 
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6 Taylor expanding the conditional indirect utility 
We may sometimes want to approximate the conditional indirect utility of time 
and money with its first-order Taylor approximation. Recalling the definition of 
the conditional indirect utility (14), we have 

     iiiii QtTcYuV q,  

       iiii QtTY
t
ucTY

y
uTYu q








 ,,,  (21) 

The first term cancels out when comparing different alternatives, so it may be 
dropped from Vi. 
Choosing some parametric function u(y,t), we can differentiate it to obtain some 
parametric form for u/y and u/t, and then estimate the right-hand side of (21). 
But why would we want to do this? One reason could be same as when we argued 
that different monotone transformation of Vi should be tested. A Taylor expansion 
could be viewed as “almost” such a transformation, since it will mostly preserve 
the relative ordering of the alternatives. In the application presented here, it turns 
out that the Taylor expansions (there are several different variants, as will be 
explained below) consistently outperforms the underlying nonlinear utility 
function (a Box-Cox function). Not only are the goodness-of-fit better, but the 
results are also more robust towards misspecifications or restrictions of the model. 
We cannot present any conclusive evidence as to exactly why is the case, but our 
experiences suggest that it is because we estimate the marginal utilities directly 
when we estimate the Taylor-expanded form, rather than estimating the 
underlying utility function which then gives the marginal utilities through 
differentiation. The former approach seems to be more robust than the latter. This 
could be connected to the fact that the logit model’s (and most discrete choice 
models’) point elasticity with respect to cost and time is directly proportional to 
the marginal utilities of money and time, respectively. 
We should point out that if working hours are assumed to be chosen freely, then 

we should demand that    TY
t
uTY

y
uw ,,






 , where w is the wage rate. This is 

because the derivatives in (20) are approximations to the true marginal utilities, 
for which we know that this condition holds (see eq. 13). Jara-Díaz and Farah 
(1987) observe that if working hours are assumed to be fixed and the indirect 

utility function is   yttyu , , then the ratio    TY
t
uTY

y
u ,,





  is equal to Y/T 

= (Y0+wW)/(T0-W) (in our notation), which they call the expenditure rate. This can 
be contrasted to the wage rate w, which is by definition the working income 
divided by working hours. Note, though, that this only holds for the particular 
indirect utility function they suggest. 
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6.1 Choosing expansion point 
In (21), we expanded the indirect utility function around (Y,T). Looking at the left-
hand side, this is a natural suggestion. But we may in fact choose any arbitrary 
expansion point. This is easily shown by the following argument. Say that we 
believe that evaluating the derivatives u/y and u/t in another point, say (y0,t0), 
would be a better approximation of the true marginal utilities. Omitting the direct 
utility function, we have  

    iiiii tttTcyyYutTcYuV 0000 ,,

       ii ttTty
t
ucyYty

y
utyu 








 00000000 ,,,  (22) 

The approximation will be “good” if the terms (Y-y0-ci) and (T-t0-ti) are “small”. 
Comparing different alternatives, the term  

       00000000 ,,, tTty
t
uyYty

y
utyu 








  (23) 

cancels out, leaving only 

    iii tty
t
ucty

y
uV 0000 ,,








  (24) 

Apparently, we are free to choose any y0 and t0 that we believe will give the best 
approximation of the true marginal utilities.  
In some circumstances, a natural candidate would be the expected residual income 
and time, defined by 


i

iicPYy  (25) 


i

iitPTt  (26) 

One situation where this could be a natural choice is if the discrete choice is 
repeated regularly, and if each choice occasion is independent in the sense that we 
assume that the error vector  is redrawn each occasion. Another, more pragmatic 
argument is that the terms (ci - i Pici) and (ti - i Piti) can be expected to be 
smaller, on average, than the costs ci and times ti. 
What is interesting with this idea, but also presents a little problem, is that the 
choice probabilities in (25)-(26) depend on y and t, which also appear in the left-
hand side. We cannot obtain closed form expressions, but have to solve for y and t 
in the equation system (27)-(30): 


i

iicPYy  (27) 


i

iitPTt  (28) 
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     iiiii Qtty
t
ucty

y
uV q








 ,,  (29) 




i

V

V

i i

i

e
eP  (30) 

To evaluate the choice probabilities, the system has to be solved for each 
individual. If the data set is very large it can present a significant computational 
burden when the parameters of Vi are estimated. Apart from possibly long running 
times, however, there are no principal difficulties to estimate the model. For each 
evaluation of the log-likelihood function, the system is solved once for each 
individual, and the log-likelihood function can then be maximized using standard 
methods. Later in this paper, we will estimate a model of this type with 5761 
observations and 12 parameters, and this is by no means the limit with today’s 
computer power.  
If the data set or the number of parameters is very large, however, we can use the 
following  idea. Instead of solving for y and t from the equation system (27)-(30), 
we replace the choice probabilities in (27)-(28) with choice probabilities from 
another model - preferably one that in some sense resembles the one in (29)-(30). 
A natural suggestion is the Taylor expansion around (Y,T). In all, we get this 
model, where the equations are evaluated top-down: 

     iiiii QtTY
t
ucTY

y
uV q








 ,,0  (31) 




i

V

V

i
i

i

e
eP 0

0

0  (32) 


i

ii cPYy 0'  (33) 


i

ii tPTt 0'  (34) 

     iiiii Qtty
t
ucty

y
uV q








 ','',''  (35) 




i

V

V

i i

i

e
eP '

'

'  (36) 

We could expect Pi’ in (36) to be fairly close to Pi in (30). 

7 The data 
The data set was taken from the Swedish National Travel Survey 1994-1997, and 
consisted of 5761 observations once bad observations were dropped for various 
reasons such as missing income or missing travel characteristics. Six modes were 
available: car, car passenger, bus, train, walk and bicycle. Only interzonal trips 
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were considered, dropping intrazonal trips since we had no times or costs for these 
trips. Alternatives which would require more time or money than was available to 
the individual were set as unavailable. This mainly affected walk and bicycle. The 
data set is described in tables 1-5.  
Mode #Chosen #Available 
Car 3549 5740 
Car passenger  808 5740 
Bus  453 3749 
Train   84  686 
Walk   68 5088 
Bicycle   799 5558 

Table 1. Mode distribution 
 
Trip type # observations 
Work 2558 
School          148 
Service       144 
Healthcare       80 
Childcare     49 
Visit    1098 
Leisure     591 
Give a ride       226 
Daily shopping   449 
Other shopping   287 
Other        131 

Table 2. Trip types 
 
Day of week # observations 
Monday    911 
Tuesday  871 
Wednesday     922 
Thursday     898 
Friday  964 
Saturday      647 
Sunday    548 

Table 3. Observations per day of the week 
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Two different income concepts were tried. The first was gross income, i.e. total 
income after tax and various supports such as child and unemployment support. 
Individual income was taken to be half the available household income if the 
household consisted of two adults. The second was the net income after fixed, 
household-specific expenses. These expenses were taken from the Swedish 
Consumer Agency’s guidelines (Konsumentverket, 1997), and were based on the 
number of adults, the number of children and their ages, whether the members of 
the households had lunch at home, at school or at work and whether the adults 
were working, students or unemployed. The expenses included costs for food, 
clothing, newspapers, TV, furniture and so on, and were calculated to cover basic 
needs for a household, without any ”luxury” consumption.  
All of the models were estimated once using gross income and once using net 
income after fixed expenses. Surprisingly, the former income concept gave better 
goodness-of-fit in all cases, even if the differences were fairly small in most cases. 
We are a little reluctant to draw any definitive conclusions from this, since the 
income data was of a rather poor quality. At any rate, this testing convinced us to 
use the gross income concept in the models reported here. The income distribution 
is shown in table 4. 
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Table 4. Income distribution  (1000’s kr/month) 
Available time was based on job type (16 hours per day minus 9 hours for full-
time workers, 7 hours for students and 4.5 hours for part-time workers), with a 
minor adjustment for parents with children (minus 1 hour). These times were 
based on surveys on household time use, and in some cases direct tests. It turns 
out, for example, that the reduction of the available time due to children increases 
goodness-of-fit significantly.  

8 Comparing indirect utility functions 
In this section, we will estimate and compare several different specifications of 
the indirect utility function u(y,t). The outline of this section is as follows. First, 
we specify the functional form of the indirect utility function u(y,t) and the direct 
utility function Qi(qi). Then we discuss different measures that can be compared 
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across models, such as the implied value of time. Finally, we present estimation 
results for several specifications of u(y,t) and a discussion of the results. 

8.1 Specifications of the indirect utility function 
The most common specification in practical applications is the linear utility 
function. This is the first indirect utility function we will estimate. The estimated 
linear utility function will serve as a benchmark, against which we can compare 
the more general functional forms.  

       
 iiiii

iiiii

qQtcV
qQtTcYVtytyu






,

 (37) 

The last implication is because Y and T will cancel out when we compare different 
alternatives, so Y and T can be omitted from Vi. Although not without virtues 
(mainly its robustness to misspecifications and that it is guaranteed to render a 
well-behaved log-likelihood function), the linear indirect utility function 
obviously cannot capture effects of differences in time and income. 
The next functional form we will estimate is the Box-Cox function, which 
contains the linear utility function as a special case when 1 = 2 = 1. 

  tyu ,
21

11 21







 


 ty
  

     ii
ii

i QtTcYV q






21

11 21









 (38) 

If 1 or 2 is zero, the corresponding term is defined to be ln y and ln t, 
respectively. This makes u(y,t) a continuously differentiable function for (y,t) > 0 
for all 1 and 2. There are in principle no restrictions on the exponents 1 and 2 
(for example, 1 or 2 may be negative), although we would expect decreasing 
marginal utility of time and income, which we have if 1, 2  1. The marginal 
utility of money will be positive as long as  is positive, and conversely for the 
marginal utility of time. 
Note that it is the residual income and time y and t that enter the (indirect) utility 
function, rather than the cost or time directly. It is rather common to see times and 
costs being transformed rather than the residual time and income. While this of 
course would be perfectly correct if the costs and times are interpreted as quality 
variables, it is not consistent with standard microeconomic theory to do this if 
times and costs are interpreted as “loss of resources” rather than “inconvenience”, 
i.e. enter an indirect utility function rather than entering a direct utility function. 
Especially in the case of travel cost, transforming costs rather than residual 
income seems dubious. 
The last three models we will estimate are based on the first-order Taylor 
expansion of the Box-Cox function. We will expand the function around three 
points discussed in section 6.1. The first point is the gross available after-work 
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income Y and time T. Omitting terms independent of i, the Taylor expansion of 
(38) becomes 

 iiiii Qt
T

c
Y

V q  21 11 

  (39) 

The second point we will expand around is the expected residual income y and 
time t, defined by 


i

iicPYy  (40) 


i

iitPTt  (41) 

We remind that y and t are endogenously determined, since the choice 
probabilities in the right-hand side depend on y and t. The third point we will 
expand around is an approximation of the expected residual income and time 
(y’,t’), defined by 


i

ii cPYy 0'  (42) 


i

ii tPTt 0'  (43) 

The choice probabilities P0
i come from the model where we expand around (Y,T). 

There are still only a handful of reported applications of using Box-Cox 
transformations in logit models. A good example is Mandel et al. (1994), although 
in this application, the transformation is applied directly to the time and costs of 
each alternative. There appears to be no applications applying Box-Cox 
transformations of residual time or income in discrete choice models, and no 
estimations of the Taylor expansions of it. 
Turning to the direct utility function, we assume that it is linear in a number of 
quality variables and includes an alternative-specific constant: 

Qi(qi)  = 0
i + k k

iqk
i (44) 

Here, the qk
i:s are various characteristics of the mode. Several quality variables 

were tested for inclusion. In particular, we tried including all time components. 
By stepwise elimination in the linear model, the variables not significantly 
different from zero were eliminated. To achieve comparability between models, 
we will include the same quality variables in all models, even if some of them will 
not be significant in all models. This means that the other models are at a slight 
disadvantage when compared to the linear one, since this is the one we have 
“optimized” through our choice of quality variables. 

8.2 Comparing the different models 

The most interesting parameters to investigate are the exponents 1 and 2. If we 
cannot reject the hypothesis that one or both is equal to 1, then the differences in 
available income and/or time have no detectable effect. 
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Obviously, we will want to compare how well the different specifications perform 
in terms of data fit. Comparing log-likelihood values is the natural way to do this.  
However, comparing log-likelihood and parameter values does not reveal to what 
extent different models behave differently when it comes to predictions. To get a 
feeling for this, we will compare the average elasticity of the car choice 
probability with respect to car cost and car travel time. Individual n:s cost 
elasticity is 

 
y
uP

cP
c

c
P

in
inin

in

in

in






 11  (45) 

where the marginal utility of money u/y is evaluated conditional on alternative 
i. (In the current application, u/y only vary across alternatives in the Box-Cox 
model.) Setting i = “car”, i.e. studying the car share’s elasticity with respect to car 
cost, is rather arbitrary. What is interesting in this context is mainly that the 
average elasticity is a weighted average of the marginal utilities of money, since 
the cin:s and Pin:s will stay the same across models. We choose car largely because 
it has high choice probabilities and most individuals have this choice available 
(see table 1). The elasticity with respect to travel (in-vehicle) time is  

  
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 
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11  (46) 

The mode subindex i is still “car”, and the time component superindex k refers to 
“in-vehicle time”. 
We will calculate the average elasticity, the elasticities for the 5% with the highest 
car choice probability and the 5% with the lowest car choice probability, 
excluding those with zero car choice probability. 
The next measure we will compare is the average value of time and its standard 
deviation. Since the value of time is in general different both across individuals, 
time components and modes, we must decide how the averaging should be carried 
out. 
We will do this by taking a weighted average, where the weight of each time 
component is equal to the relative length of the component, and the weight of 
each mode is equal to its choice probability. Let k

in be the marginal utility of a 
reduction of time component k for mode i and individual n (i.e. k

in = -u/tk
in), tk

in 
the corresponding time component (in the data set the model has been estimated 
on), in her marginal utility of money (i.e. in = -u/cin) conditional on choosing 
mode i and Pin the predicted probability that individual n chooses mode i. Then 
the average value of time  is calculated in this manner: 






k

k
in

k

k
in

k
in

in
in t

t


 1  (average over time components) (47) 
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
i

ininn P   (average over alternatives)  (48) 


n

nN
 1  (average over individuals)  (49) 

For the linear model (37) together with the linear direct utility function (44), it 
follows that in =  and that k

in =  - k
i. k

in will thus not vary across individuals 
for the linear model, but may do so across modes and time components in case 
k

i  0. For the Box-Cox model from (38), k
in and in becomes  

 
 

k
i

inn

k
iinninn

k
in tT

tTcY
t
u   







  21,  (50) 

 
  11, 

 






inn

inninnin cY
tTcY

y
u  (51) 

and will obviously vary across individuals, modes and time components. Finally, 
for the Taylor expansion models, (39) and its variants, k

in and in becomes 
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with obvious modifications for the expansions around (y,t) and (y’,t’). 
The Box-Cox model differs from the other models in that we estimate the 
marginal utilities k

in and in implicitly, in the sense that we need to differentiate 
the estimated conditional indirect utility Vi to obtain them. For the other models, 
k

in and in are present in Vi explicitly. 

9 Estimation results 
Table 5 presents estimation results. The following abbreviations are used for the 
models: 

linear linear indirect utility function (eq. 37) 
Box-Cox Box-Cox indirect utility function (eq. 38) 
TBC(Y,T) Taylor expansion of the Box-Cox indirect utility function around 

gross income and time (Y,T) (eq. 39) 
TBC(y,t) Taylor expansion of the Box-Cox indirect utility function around 

expected residual income and time (y,t) (eq. 40-41) 
TBC(y’,t’) Taylor expansion of the Box-Cox indirect utility function around 

an approximation of the expected residual income and time (y’,t’) 
(eq. 42-43) 
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 “Car const.”, “bus const.” etc. are the alternative-specific constants (0
i in eq. 44). 

The bicycle constant is normalized to 0. “car/bus/train in-veh.” are in-vehicle 
travel times, i.e. the travel time net of auxiliary trips (in the bus and train case) 
such as walking times to bus stop(s). “bus 1st wait” is the (average) waiting time at 
the first bus stop. “train aux.” is the trip made to get to the first train stop or from 
the last, which can include walking times or going by bus to the train station. All 
times are in minutes, and all costs are in Swedish crowns (SEK). (1 US$ is about 
8 SEK). “Log-likel.” is the final log-likelihood value. “Av. VoT” is the average 
value of time in SEK/h and “StdD VoT” its standard deviation (across the 
population, not its statistical standard error). “c high/aver/low” is the average car 
cost elasticity and the elasticity for the 5% with highest and lowest car choice 
probabilities (excluding zero choice probabilities). “t high/aver/low” are the car 
time elasticities. 
Most of the time components turn out to have the same marginal (dis)utility, since 
only a few of the time components have parameters significantly different from 
zero when tried for inclusion among the “quality” variables. It is interesting that 
the parameters for train and bus in-vehicle time are positive. This is natural if we 
assume that the time on-board one of these modes can be used for activities such 
as reading, and thus does not constitute a ”complete resource loss”.  

The income exponent 1 had convergence problems in all models. The log-
likelihood function appeared to be very flat in the range -0.8 < 1 < -0.7, causing 
the estimates for  and 1 to be unreliable, reflected in large estimated standard 
errors. To achieve stable values for the rest of the parameters, we fixed 1 = -0.7 
and estimated the rest of the parameters conditional on this 1 value. Fortunately 
but not surprisingly, the other parameter estimates (except for ) remained 
essentially the same regardless of what value we chose for 1 (in the indicated 
range). 

The exponent 2 is significantly different from 1 in all cases, showing that the 
differences in available time do indeed have a significant effect, as discussed 
above. Although the income exponent 1 was difficult to estimate, it was 
significantly different from 1. For example, the lowest log-likelihood value for the 
Box-Cox model was achieved for 1 = -0.84 with an estimated standard error of 
0.36. 
Consequently, the goodness of fit improves when we introduce income and time 
in the model, and a likelihood ratio test also shows that the log-likelihood 
improvement is significant. The best fit is achieved by the three Taylor-expasion 
models.  
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 linear t-stat Box-Cox t-stat6 TBC (Y,T) t-stat6 TBC (y,t) t-stat6 TBC (y’,t’) t-stat6 

alfa 0.00630 3.0 1.94594 3.7 4.13780 5.6 2.72831 4.7 3.80035 5.2 

beta 0.01874 31.4 5.00747 40.6 10.21840 29.4 8.65732 28.4 8.79058 28.3 

1 1  -0.7  -0.7  -0.7  - 0.7  

2 1  0.8822 0.040 0.5474 0.053 0.6261 0.051 0.6084 0.046 

car const. 0.82846 17.5 1.08295 23.8 0.88170 18.2 0.89701 18.8 0.93286 19.4 

pass. const. -0.85872 -14.8 -0.57913 -10.4 -0.81800 -14.0 -0.79044 -13.7 -0.76282 -13.2 

bus const. 0.14642 1.4 0.33879 3.5 0.39260 3.9 0.30198 3.1 0.39133 3.9 

train const. 0.08420 0.3 0.29438 1.2 0.41820 1.7 0.32921 1.4 0.64537 2.7 

walk const. -1.74637 -13.6 -1.94224 -15.3 -1.77090 -13.8 -1.82316 -14.3 -1.82773 -14.3 

car in-veh. -0.00311 -2.7 -0.00278 -2.6 -0.00200 -1.8 -0.00251 -2.3 -0.00219 -2.0 

bus in-veh. 0.01174 7.4 0.00641 4.1 0.00790 5.0 0.00941 5.8 0.00784 5.1 

train in-veh. 0.00708 2.0 0.00597 1.9 0.00530 1.6 0.00837 2.4 0.00297 0.9 

bus 1st wait. -0.00899 -3.0 -0.02132 -7.2 -0.01240 -4.0 -0.01538 -5.0 -0.01510 -5.0 

train aux. 0.01130 2.7 -0.00145 -0.4 0.00310 0.8 0.00226 0.5 0.00352 0.9 

           

Log-likel. -5788.3  -5770.6  -5736.6  -5746.19  -5737.2  

Av. VoT 193.23  209.85  130.55  191.55  122.81  

StdD VoT 9.0  138.2  82.9  127.19  82.1  

c high  -0.046  0.064  -0.111  -0.045  -0.141  

 c aver. -0.056  0.075  -0.109  -0.086  -0.136  

 c low   -0.157  0.175  -0.229  -0.371  -0.249  

t high  -0.221  0.165  -0.229  -0.236  -0.240  

 t aver. -0.252  0.189  -0.254  -0.258  -0.265  

 t low   -0.862  0.637  -0.873  -0.948  -0.899  

Table 5. Estimation results 
It is remarkable how different the values of time and the cost and time elasticities 
are between the different models. For example, the average car cost elasticity is 
twice as high for the TBC models than for the linear and Box-Cox model. Perhaps 
even more remarkable is that the different TBC models give so different results in 
terms of value of time and elasticities, considering that they only differ through 
the choice of expansion point. 
In order to provide some intuition for the elasticities, we plot how the car choice 
probability varies with varying car cost in table 9, and with car time in table 10, 
using sample enumeration. The car cost and car time for each individual is 
multiplied by a constant which varies from 0 to 3, i.e. from free/instantaneous car 

 
6 For 2, the standard error is reported instead of the t-statistic. 
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travel to three times today’s car cost/travel time. The upper curve is the average 
choice probability for the 5% with highest car choice probability. The middle 
curve is the average choice probability. The lower curve is the car choice 
probability for  the 5% with the lowest car choice probability. Individuals with no 
car availability are excluded. 
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Table 6. Car choice probability with increasing car cost 
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Table 7. Car choice probability with increasing car time 
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All models except the linear imply that the resource value of time is different 
across individuals. The average value of time (including quality adjustments) is 
slightly different across individuals also for the linear model, since it depends on 
the mode choice probabilities, which are different for different individuals. Table 
8 and 9 shows the implied value of time distribution for the Box-Cox model and 
the Taylor expansion around (Y,T).  
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Table 8. Value of time distribution implied by the Box-Cox model (kr/h) 
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Table 9. Value of time distribution implied by TBC(Y,T) (kr/h) 

9.1 Restricting the exponents 

The preferable estimation approach is of course to estimate 1 and 2 together 
with the other parameters. However, not all estimation programs are able to 
estimate non-linear parameters. In this case, a few different fixed ’s can be tested 
to obtain some rough estimate. One disadvantage is that we will not be able to 
estimate the standard errors of the estimates. On the other hand, if some particular 
 values prove to increase the log-likelihood value, using these values is certainly 
better than using the standard linear model, that is, setting 1 = 2 = 1 - which is 
just as arbitrary as any other  values. 
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Sometimes, there may be other reasons to avoid estimating non-linear parameters, 
and instead choose some particular functional form in advance. This may be due 
to very large data sets or time constraints, or that there are theoretical or empirical 
results from other sources that suggests some particular functional form. With a 
judicious choice of function, one can obtain an indirect utility function that is able 
to capture effects of income and time constraints but is still reasonably easy to 
estimate. Common choices are logarithms and square roots. These happen to be 
special cases of the Box-Cox function, corresponding to 1 = 2 = 0 and 1 = 2 = 
0.5. 
With this background, it is interesting to study how much the models change in 
terms of data fit, elasticities and values of time if we restrict the exponents to 
these values. If the change is negligible, then this indicates that it might not be 
worth the extra work to go from logarithms or square roots to the general Box-
Cox functions.  
Just as above, we will study both the underlying indirect utility function and its 
first-order Taylor expansion around three points: the gross income and time (Y,T), 
the expected residual income and time (y,t) = (Y-i Pici,T-i Piti) and an 
approximation to this (y’,t’) = (Y-i P0

ici,T-i P0
iti), where the choice probabilities 

P0
i come from the first Taylor expansion. 

Table 10 presents estimation results for a logarithmic indirect utility function 

 
    


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k
iiiii qtTcYV

tytyu
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0lnln

lnln,
 (54) 

and its first order Taylor expansions. The one around (Y,T) becomes, dropping 
terms independent of i, 


k

k
i

k
iiiii qt

T
c

Y
V  0  (55) 

and the others are obtained by replacing (Y,T) with (y,t) and (y’,t’). Table 12 also 
repeats the linear model for comparison. 
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 linear t-stat Box-Cox t-stat TBC (Y,T) t-stat TBC (y,t) t-stat TBC (y’,t’) t-stat 

alfa 0.0063 3.0 1.94594 3.7 4.1378 5.6 2.72831 4.7 3.80035 5.2 

beta 0.01874 31.4 5.00747 40.6 10.2184 29.4 8.65732 28.4 8.79058 28.3 

car const. 0.82846 17.5 1.08295 23.8 0.8817 18.2 0.89701 18.8 0.93286 19.4 

pass. const. -0.85872 -14.8 -0.57913 -10.4 -0.818 -14 -0.79044 -13.7 -0.76282 -13.2 

bus const. 0.14642 1.4 0.33879 3.5 0.3926 3.9 0.30198 3.1 0.39133 3.9 

train const. 0.0842 0.3 0.29438 1.2 0.4182 1.7 0.32921 1.4 0.64537 2.7 

walk const. -1.74637 -13.6 -1.94224 -15.3 -1.7709 -13.8 -1.82316 -14.3 -1.82773 -14.3 

car in-veh. -0.00311 -2.7 -0.00278 -2.6 -0.002 -1.8 -0.00251 -2.3 -0.00219 -2 

bus in-veh. 0.01174 7.4 0.00641 4.1 0.0079 5 0.00941 5.8 0.00784 5.1 

train in-veh. 0.00708 2.0 0.00597 1.9 0.0053 1.6 0.00837 2.4 0.00297 0.9 

bus 1st wait. -0.00899 -3.0 -0.02132 -7.2 -0.0124 -4 -0.01538 -5 -0.01510 -5.0 

train aux. 0.0113 2.7 -0.00145 -0.4 0.0031 0.8 0.00226 0.5 0.00352 0.9 

           

Log-likel. -5788.30  -5897.90  -5772.60  -5790.40  -5789.60  

Av. VoT 193.23  114.84  130.19  179.82  130.24  

StdD VoT 8.98  77.19  66.47  102.74  74.80  

c high  -0.046  -0.047  -0.076  -0.042  -0.079  

 c aver. -0.056  -0.056  -0.087  -0.069  -0.091  

 c low   -0.157  -0.150  -0.226  -0.227  -0.233  

t high  -0.221  -0.221  -0.223  -0.253  -0.227  

 t aver. -0.252  -0.246  -0.253  -0.263  -0.266  

 t low   -0.862  -0.811  -0.874  -0.806  -0.956  

Table 10. Estimation results for the logarithmic indirect utility function 
Table 11 presents estimation results for a square-root indirect utility function 
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



k

k
i

k
iiiii qtTcYV

tytyu




022

22,
 (56) 

and its first order Taylor expansions. The factor 2 is to make the function directly 
comparable to the Box-Cox function. The expansion around (Y,T) becomes 


k

k
i

k
iiiii qt

T
c

Y
V  0  (57) 

and the others are obtained by replacing (Y,T) with (y,t) and (y’,t’). Table 11 also 
repeats the linear model for comparison. 
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 linear t-stat Box-Cox t-stat TBC (Y,T) t-stat TBC (y,t) t-stat TBC (y’,t’) t-stat 

alfa 0.0063 3.0 0.14225 4.1 0.20209 4.9 0.16715 4.6 0.19528 4.7 

beta 0.01874 31.4 0.36093 33.7 0.47573 30.7 0.43900 30.3 0.44876 29.8 

car const. 0.82846 17.5 0.90691 19.4 0.81825 17.0 0.82710 17.3 0.83802 17.4 

pass. const. -0.85872 -14.8 -0.77876 -13.5 -0.88154 -15.1 -0.86734 -14.9 -0.86078 -14.7 

bus const. 0.14642 1.4 0.20625 2.1 0.25489 2.5 0.20057 2.0 0.24772 2.4 

train const. 0.0842 0.3 0.15298 0.6 0.24375 1.0 0.18832 0.8 0.37156 1.5 

walk const. -1.74637 -13.6 -1.80304 -14.1 -1.72302 -13.4 -1.75199 -13.7 -1.74884 -13.6 

car in-veh. -0.00311 -2.7 -0.00259 -2.3 -0.00201 -1.8 -0.00224 -2.0 -0.00211 -1.9 

bus in-veh. 0.01174 7.4 0.01065 6.7 0.01090 6.8 0.01214 7.4 0.01120 7.0 

train in-veh. 0.00708 2.0 0.00802 2.4 0.00675 2.0 0.00930 2.6 0.00538 1.6 

bus 1st wait. -0.00899 -3.0 -0.01220 -4.0 -0.00791 -2.6 -0.00957 -3.1 -0.00918 -3.0 

train aux. 0.0113 2.7 0.00737 1.8 0.00927 2.3 0.00900 2.1 0.01005 2.5 

           

Log-likel. -5788.3  -5805.81  -5756.00  -5761.30  -5757.91  

Av. VoT 193.23  126.39  129.97  149.12  130.18  

StdD VoT 8.98  39.85  34.08  42.64  37.26  

c high  -0.046  -0.052  -0.088  -0.054  -0.093  

 c aver. -0.056  -0.057  -0.090  -0.078  -0.096  

 c low   -0.157  -0.142  -0.211  -0.227  -0.217  

t high  -0.221  -0.246  -0.221  -0.240  -0.225  

 t aver. -0.252  -0.251  -0.238  -0.262  -0.264  

 t low   -0.862  -0.774  -0.817  -0.845  -0.970  

Table 11. Estimation results for the square-root indirect utility function 
Restricting the exponents in this way will obviously decrease the log-likelihood 
values. The interesting question is first how much worse the fit of the models 
become, and second how the elasticities are affected. After all, these indicate how 
much the model forecasts will differ.  
We see that once again, the Taylor expansions outperform the underlying indirect 
utility function. This was true when the indirect utility function was a Box-Cox 
function, and it still holds when we switch to a logarithmic or square root 
function. Moreover, the restricted versions of the Taylor-expansion models give, 
on the whole, similar results in terms of elasticities and values of time as their 
non-restricted counterparts. This is definitely not true when we compare the 
restricted versions of the Box-Cox function to its general version; the results 
change substantially. 
The logarithmic model family in table 10 perform on the whole worse than the 
square-root model in table 11. Especially the logarithmic model (eq. 54) gives a 
poor fit and seemingly unreliable (or at least atypical) values of time and 
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elasticities. Compared to the linear model, the Taylor expansions of the 
logarithmic indirect utility function achieve similar goodness-of-fit in two cases 
and a bit better in one, while the expansions of the square-root function clearly 
outperforms the linear model in all three cases. 
The unimpressive result of the Taylor-expanded logarithmic function is 
interesting since this is arguably the most common way in applications to 
incorporate effects of time and income. Our results here indicate that dividing by 
the square root of Y and T gives better results than dividing by Y and T. Of 
course, the preferable way is to divide by Y1 and T2 and then estimate 1 and 2, 
if this is possible.  
We will provide an illustration of how much all these models differ from each 
other by plotting their estimated average time and cost elasticities. On the x-axis is 
the time elasticity and on the y-axis is the cost elasticity. Each model is 
represented by a point in the diagram in table 12. 
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Table 12. Time and cost elasticities scatter plot. 
This diagram strengthens the general impression that which model we choose has 
relatively large impact on the conclusions and the forecasts. Although all the 
models have similar or at least related functional forms, are estimated on the same 
data and use the same variables, values of time and elasticities are fairly different. 
Of course, “fairly different” is a relative measure; there is no doubt that different 
samples could give elasticities that differed from each other at least to the extent 
we see here. What may be a little surprising is that one single data set estimated 
with, after all, very similar methodologies exhibit this scattered pattern. 
It is difficult to draw any general conclusions about the performance of the 
different models. However, it seems fair to say that the Box-Cox models, to which 
we count the logarithmic and square-root models, generally give smaller average 
elasticities than the other ones, while the linear tends to give higher time 
elasticities.  
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Turning to the values of time, these are much more different than the elasticities. 
This is expected, since this measure involves a quotients between parameter 
estimates. In table 13, the values of time are depicted. It is clear that they are 
scattered without any clear concentration. Even though several models give 
estimates around 130 kr/h, other models estimate the value of time to be around 
200 kr/h.  
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Table 13. Average values of time. 
In summary, then, our main conclusions are  

 including time and income effects will in general improve the goodness-of-fit 
of the model 

 elasticities and values of time are likely to change, and especially the latter is 
likely to change dramatically  

 the model is affected by exactly in what way time and income is included; 
even the choice of Taylor expansion point matters 

 models which are linear in time and cost for each model, i.e. Taylor 
expansions of the underlying indirect utility function, tend to give more robust 
results.  

10 Conclusions 
There are at least three reasons to use utility functions able to capture income and 
time budget effects in demand models. The first is that this might improve the 
performance of the model in the sense of better likelihood values and improved 
predictions. The second reason is that it enables us to explicitly analyze questions 
such as changes in the distribution of time or income, or changes in prices on 
other goods. The third reason is that it improves welfare evaluations: it enables us 
to assess the impacts of a proposed change on different income groups, and it also 
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enables us to evaluate proposed changes where non-constant marginal utilities of 
income and/or time are discernible also on the individual level.  
In this paper, we have discussed how income and time can enter a discrete choice 
model in a microeconomically consistent way, emphasizing the necessity of 
assuming working time restrictions ex ante, that the possibility of including time 
components in a direct utility function causes the value of time for different time 
components to be different, and the possibility to transform the conditional 
indirect utility function. We have also discussed Taylor expanding the conditional 
indirect utility function and shown that the expansion point can be chosen freely. 
In an application, we have shown that including time and income in the model 
improves the goodness-of-fit, and that elasticities and values of time can differ 
significantly depending on the way time and income is introduced. In particular, 
the choice of Taylor expansion point matters. In general, we found that models 
that were linear in travel cost and travel time, such as Taylor expansions of the 
conditional indirect utility function, gave better fit and were more robust.  
Overall, the way that differences in available incomes and time is taken into 
account can make a large difference, whether the purpose is to make forecasts or 
to calculate cost-benefit measures. Omitting such differences is likely to yield 
biased parameter estimates, elasticities and values of time. The method of choice 
seems to be a Taylor expansion of a Box-Cox indirect utility function, but it is 
wise to estimate several models for comparison. In case one does not have access 
to software able to estimate functions that are non-linear in the parameters, or the 
size of the data set is prohibitive, choosing exponents ex ante yields acceptable 
results.  
Even in cases when average elasticities or values of time change only slightly, the 
elasticities for different sub-groups with respect to income or time can change 
drastically. The results in this paper should be enough to show that it is 
worthwhile to take such differences into account. 
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