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ABSTRACT

Despite serious threats as to their soundness, the adoption of composite indicators is constantly
growing alongside their popularity, especially when it comes to their adoption in policy-making
exercises. This study presents a robust non-compensatory approach to construct composite indicators
mainly based, at least with respect to the basic ideas, on the classic Borda scoring procedure. The non-
compensatory indicators we are proposing can be seen as aggregation of ordinal non-compensatory
preferences between considered units supplying a numerical cardinal comprehensive evaluation.
For this reason we define our methodology, the ordinal input for cardinal output non-compensatory
approach for composite indicators. To take into account hesitation, imprecision and ill-determination
in defining preference relations with respect to the elementary indices, we adopt the PROMETHEE
methods, whose net flow score can be seen as an extension to the fuzzy preferences of the Borda
score. Moreover, we systematically deal with robustness of the results with respect to weighting and
parameters such as indifference and preference thresholds, permitting to define preference relations
of elementary indices. In this regard, we couple PROMETHEE methods with the recently proposed
σ − µ approach, which permits to explore the whole domain of feasible preference parameters
mentioned above, giving a synthetic representation of the distribution of the values assumed by the
composite indicators in terms of mean, µ, and standard deviation, σ. µ and σ are also used to define
a comprehensive overall composite indicator. Finally, we enrich the results of this analysis with a
set of graphical visualizations based on principal component analysis applied to the PROMETHEE
methods with the GAIA technique, providing better understanding of the outcomes of our approach.
To illustrate its assets, we provide a case study of inclusive development evaluation, based on the
data of the homonymous report produced by the World Economic Forum.
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1 Introduction

The adoption of composite indicators in policy analysis and public communication is constantly growing
in popularity (OECD, 2008). Their use by global institutions (e.g. the OECD, World Bank, EU, etc.)
and the interest shown by the media and policy-makers around the globe gave rise to their adoption
in several domains of academic research, as witnessed by the exponential increase of studies in
the literature (Greco et al., 2019a). As their name suggests, these measures provide a value that
encompasses in itself the information of a set of underlying sub-indicators. Understandably, these
synthetic and opaque measures could sweep methodological issues in their underlying framework under
the carpet that can nonetheless largely distort the outcome. This could result in sending “misleading,

non-robust policy messages” if they are poorly constructed (Saisana et al., 2005, p.308), while there is
considerable room in their framework for “manipulation” (Grupp and Schubert, 2010, p.69). This is
detrimental for an analysis based on such measures, and it comes naturally given the plethora of steps
needed to be meticulously followed in their construction (see ‘checklist’ in the construction handbook
provided by the OECD, 2008, p.20). Nonetheless, two steps in this checklist are arguably of utmost
importance when it comes to the development process of a composite index, and these are namely the
weighting (and, more in general, selection of the parameters required by the composite index) and
aggregation of the sub-indicators.

These two steps are intrinsically related under some aggregation settings, and choices as to their
methodological aspects may radically alter the results. The reason is that composite indicators are
ultimately sole values, produced under a type of aggregation, the form of which deems which Decision
Making Unit (DMU) evaluated could be ‘under’, or ‘over’-represented (always subject to the hypotheses
of the type of aggregation chosen). When it comes to choosing the type of aggregation, the difference
between (compensatory and non-compensatory, (Fishburn 1974; 1975; 1976, Plott 1975, Bouyssou
and Vansnick 1986, Bouyssou 1986) simply boils down to whether one permits compensation among
attributes, i.e. a unit can ‘offset’ a loss in a sub-indicator with a gain in another. Despite the so many
proposals of “non-compensatory” composite indices (see e.g. Munda and Nardo 2009, Mazziotta and
Pareto 2016, Attardi et al., 2018) in the literature, we believe that this point is rather delicate and
deserves an accurate discussion.

Munda (2012, p.338) considers an example of a hypothetical sustainability index, in which a classic
composite indicator setting (i.e. that of a weighted additive model) could permit trade-offs among
economic growth and environmental destruction, or a more ‘extreme’ case within the latter dimension,
he adds: ‘clean air’ could compensate for a loss in ‘potable water’. Understandably, and as the author
acknowledges, these situations are not desirable, and this takes a developer of an index to another
route: considering a non-compensatory aggregation model. Despite the prior urge of several advocates
in the literature (see Munda, 2007; 2009; 2012; Billaut et al., 2010; Paruolo et al., 2013), the domain
of composite indicators remained resilient, holding onto the typical weighted average (see Bandura,
2011 for an inventory of over 400 documented composite indicators evaluating a single or a group of
countries jointly or individually on a socio-economic, political or environmental aspect). Still, recent
proposals empoying composite indicators to assess urban planning (Attardi et al., 2018) and low-carbon
performance (Zhang and Zhou, 2018) offer a viable alternative to this classic setting. Both studies
use ELECTRE methods (Roy, 1990; Figueira et al., 2013; 2016) as a non-compensatory aggregation
method in their evaluation; though unless someone is interested in outranking relationships (as it is
indeed the case in the Multiple Criteria Decision Aiding (MCDA) environment), they do not provide a
sole value acting as an estimation -i.e. a literal meaning of a ‘composite index’-.

In this study, we introduce a novel definition of non-compensatory composite indicators based on
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the classic axiomatic foundations of non-compensatory preferences and in this perspective we propose
the use of an MCDA method that can be interpreted as an extension of the classic Borda score (Borda,
1781), that is the PROMETHEE family of methods (Brans and Vincke, 1985; Brans and De Smet, 2016;
see Marchant, 1998 for the identification of PROMETHEE net flow score in terms of Borda score) as
an effective option for constructing non-compensatory composite indicators. Let us point out that our
approach is based on the aggregation of basically ordinal preferences on elementary indices to get
basically cardinal numerical overall evaluations. The ordinal preferences in input permit to define
non-compensatory our approach, while the cardinal nature of the overall evaluations in output, in
agreement with the basic intuitive idea of composite indicators, permits to compare the difference in
the overall evaluations of considered units, going far beyond their merely ordinal final ranking. We
believe that these are essential characteristics of a genuine non-compensatory composite indicator
and, consequently, we define our proposal, the ordinal input for cardinal output approach.

We also advocate the adoption of the SMAA-PROMETHEE variant (Corrente et al., 2014) to take
into account any sources of uncertainty arising during the development of a composite index, some
conceptual issues regarding the representation of the population interested in the index (Greco et
al., 2018), or simply to further enhance the transparency of these opaque measures in general. In
addition, we present another SMAA variant of GAIA (Mareschal and Brans, 1988) delineating cardinal
information, which is well in line with the meaning of composite indicators (Booysen, 2002). To
illustrate the assets of the proposed method over its compensatory alternatives, we apply it to a case
study evaluating the inclusive growth and development of 108 economies based on the homonymous
index produced by the World Economic Forum (WEF) (Samans et al., 2017).

The remaining of this paper is structured as follows: Section 2 provides the necessary preliminaries
for this study with a discussion of the nature of non-compensatory composite indicators. Section
3 contains the proposal for a non-compensatory setting for composite indicators based on SMAA-
PROMETHEE as well as a modification of SMAA-GAIA for analytical visuals. Section 4 contains a
case study on the World Economic Forum’s ‘Inclusive Development Index’, and Section 5 contains a
discussion and some concluding remarks about the future direction of research.

2 Non-compensatory composite indicators

Consider a set of units A = {a1, . . . , an} to be evaluated according to a set of elementary indicators
G = {g1, . . . , gm}, where gj : A → Xj ⊆ R, j ∈ J = {1, . . . ,m}. Without loss of generality, one
can assume that criteria gj ∈ G are increasing with respect to preferences. Each unit a ∈ A is
associated with a vector g(a) of performances with respect to the elementary indicators, that is,
g(a) = [g1(a), . . . , gm(a)] ∈ X, with X denoting the set of all feasible vectors of evaluations, that is,
X = X1 × . . . × Xm. For each gj ∈ G a valued preference function is a function Pj : A × A → [0, 1],
such that, for all a, a′ ∈ A, Pj(a, a′) = fj(gj(a), gj(a′)) with fj : Xj ×Xj → [0, 1] being a function non-
decreasing in its first argument, non-increasing in its second argument and such that if f(xj , x′j) = 1,
then f(x′j , xj) = 0 for all xj , x

′
j ∈ Xj , so that, if Pj(a, a′) = 1, then Pj(a′, a) = 0, and such that

fj(xj , xj) = 0 for all xj ∈ Xj , that is P (a, a) = 0 for all a ∈ A. For all a, a′ ∈ A, Pj(a, a′) expresses the
credibility of the preference of a over a′ with respect to the elementary indicator gj . If function fj can
take only values 0 or 1, then Pj is a crisp preference relation, otherwise it is a valued or fuzzy preference
relation. An overall preference is a function P : A×A → [0, 1], such that there exist F : [0, 1]2m → [0, 1]

for which P (a, a′) = F (P1(a, a′), . . . , Pm(a, a′), P1(a′, a), . . . , Pm(a′, a)). It is reasonable to require the
following conditions to function F :
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• F is non-decreasing in its first m arguments, that is, for all a, a′ ∈ A and for all gj ∈ G, the
increase in the preferences Pj(a, a′) cannot decrease the overall preference P (a, a′),

• F is non-increasing in its second m arguments, that is, for all a, a′ ∈ A and for all gj ∈ G, the
increase in the preferences Pj(a′, a) cannot increase the overall preference P (a, a′),

• F (1, . . . , 1
︸ ︷︷ ︸

m

, 0, . . . , 0
︸ ︷︷ ︸

m

) = 1, so that, for all a, a′ ∈ A, ifP1(a, a′) = 1, . . . , Pm(a, a′) = 1, thenP (a, a′) = 1,

that is, if there is full preference for a over a′ with respect to all gj ∈ G, then there is also full
overall preference for a over a′,

• F (0, . . . , 0
︸ ︷︷ ︸

m

, α1, . . . , αm
︸ ︷︷ ︸

m

) = 0, for all [α1, . . . , αm] ∈ [0, 1]m, so that, for all a, a′ ∈ A, if P1(a, a′) =

0, . . . , Pm(a, a′) = 0, then P (a, a′) = 0, that is, if there is null preference for a over a′ with respect
to all gj ∈ G, then there is also null overall preference for a over a′,

• ifF (α1, . . . , αm
︸ ︷︷ ︸

m

, β1, . . . , βm
︸ ︷︷ ︸

m

) = 1, thenF (β1, . . . , βm
︸ ︷︷ ︸

m

, α1, . . . , αm
︸ ︷︷ ︸

m

) = 0, for all [α1, . . . , αm], [β1, . . . , βm] ∈

[0, 1]m, that is, if there is full preference for a over a′, there must be a null preference for a′ over a.

For all a, a′ ∈ A, P (a, a′) expresses the credibility of the comprehensive preference of a over a′.
According to the definition proposed independently by Fishburn (1974; 1975; 1976) and Plott

(1975) and further extensively discussed in Bouyssou (1986) and Bouyssou and Vansnick (1986), an
aggregation procedure is non-compensatory if in the overall final ranking % the comparison of the two
alternatives a and a′ depends only on the two sets of criteria P(a, a′) for which a is preferred to a′ and
P(a′, a) for which a′ is preferred to a. This amounts to the following assumptions:

• Pj(a, a′) ∈ {0, 1} for all gj ∈ G and all a, a′ ∈ A,

• P (a, a′) ∈ {0, 1} for all a, a′ ∈ A,

• a ≻ a′ if and only if P (a, a′) = 1 (with ≻ being the asymmetric part of %, that is, for all a, a′ ∈
A, a ≻ a′ if and ony if a % a′ and not a′ % a).

Observe, however, that both Fishburn (1975) and Plott et al. (1975) proved that, under some mild
assumptions, the only aggregation procedure providing a weak order, that is, a strongly complete and
transitive binary preference relation, on the set of alternatives is the lexicographic order. This seems
a rather restrictive result which would definitely close the discussion on interesting non-compensatory
scoring procedures, especially if they should be used to define a composite indicator. Indeed, giving such
a great importance to the most important criterion seems to be contradicting the general philosophy of
composite indicators that instead aim to give a comprehensive synthesis of the evaluations the units of
interest get on all the elementary indicators. In this perspective, with the aim of constructing composite
indicators maintaining the initial idea of non-compensatory preferences, we propose a definition of
non-compensatory composite indicator U(a), a ∈ A, as aggregation for all a′ ∈ A− {a} of the overall
non-compensatory preferences P (a, a′) and P (a′, a). As definition of non-compensatory preference we
assume only the essential point that Π(a, a′) = V (P1(a, a

′), . . . , Pm(a, a′), P1(a
′, a), . . . , Pm(a′, a)) with V

being non-decreasing in its first m arguments and non-increasing in its second m arguments, with
V : [0, 1]2m → R such that Π(a, a′) = −Π(aprime, a), with Π(a, a′) measuring the overall preference of
a over a′ if Π(a, a′) > 0, and |Π(a, a′)| = Π(aprime, a) measuring the overall preference of a′ over a if
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Π(a, a′) < 0. On this basis, a non-compensatory composite indicator is a function U : A → R for which
there is a function H : [0, 1]n−1 → R such that, for all a ∈ A

U(a) = H
(
Π(a, a′)a′ 6=a

)

with H satisfying the following conditions:

• H is non-decreasing in its arguments, so that, for all a, the increase of Π(a, a′), a′ 6=, a cannot
decrease the overall evaluation U(a),

• for any permutation π on {1, . . . , n} and for all [α1, . . . , αn−1] ∈ R
n−1,

H
(
απ(1), . . . , απ(n−1)

)
= H (α1, . . . , αn−1)

so that for any permutation σ on A, putting Πσ(σ(a), σ(a′)) = Π(a, a′) for all a, a′ ∈ A, we have

Uσ(σ(a)) = H
(
Πσ(σ(a), σ(a′))a′ 6=a

)
= H

(
Π(a, a′)a′ 6=a

)
= U(a).

The last condition expresses a neutrality condition according to which the overall evaluation supplied
by the composite indicator U does not discriminate between units just because of their labels.

Observe that the above definition of non-compensatory composite indicator can be extended consid-
ering fuzzy preferences Pj(a, a′) as well as fuzzy overall preferences P (a, a′), a, a′ ∈ A, in which case
we can speak of generalized non-compensatory composite indicators.

To illustrate the idea of the non-compensatory composite indicator we are proposing, let us consider
the Borda rule (Borda, 1781) according to which each alternative a ∈ A is assigned the following
evaluation (Nitzan and Rubinstein, 1981) called Borda score:

UBorda(a) =
∑

gj∈G

∣
∣
{

a′ ∈ A : gj(a) > gj(a
′)
}∣
∣ , (1.1)

which, in case there are no ex-aequo in the order established by gj , j = 1, . . . ,m, that is, there is no
a, a′ ∈ A for which gj(a) = gj(a′) for all j = 1, . . . ,m, can be rewritten as (Black, 1976)

UBorda(a) =

∑

a′∈A\{a}Π(a, a
′)

2
+

n(m− 1)

2
, (1.2)

with
Π(ai, ai′) =

∑

gj∈G

Pj(ai, ai′)−
∑

gj∈G

Pj(ai′ , ai)

and Pj(ai, ai′) = 1 if gj(ai) > gj(ai′), and Pj(ai, ai′) = 0 otherwise.
In fact (1.2) holds also in case there are ex-aequo in the order established by gj , j = 1, . . . ,m,

provided UBorda be opportunely extended (Black 1976). Therefore, since it gives the same ranking; in
the following, when considering the Borda rule we shall refer to the following formulation of the Borda
score:

U∗
Borda(a) =

∑

a′∈A\{a}

Π(a, a′), (1.3)

Observe that, according to the above definition, the Borda score U∗
Borda(a) is a non-compensatory
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composite indicator and, in particular, we have

H
(
Π(a, a′)a′ 6=a

)
=

∑

a′∈A\{a}

Π(a, a′).

Some remarks are now in order:

• Borda score has been already used in the domain of composite indicators since the work of Das-
gupta and Weale (1992), which clearly explains the reason to prefer such aggregation procedure
as follows:

“The nature of the data being what it is for a great many of the countries, it is unwise to rely on
their cardinal magnitudes. We will therefore base our comparison on ordinal measures. This way,
systematic biases in claims about achievement across countries will not affect the international
comparison. But first, we need an ordinal aggregator. Of the many we may devise, the one most
well known and most studied is the Borda Rule.”

• One can imagine to generalize the concept of non-compensatory composite indicators taking into
account imprecision and inaccurate determination in the decision model, so that it is reasonable
to define fuzzy preference relations Pj : A×A → [0, 1], gj ∈ G on considered criteria, so that for
(a, a′) ∈ A × A,Pj(a, a′) gives the credibility that a is preferred over a′ on criterion gj . In this
context, we can extend the concept of non-compensatory aggregation procedure admitting that
the overall preference of a over a′ depends on the values Pj(a, a′) and Pj(a′, a) for all gj ∈ G. In
this perspective the Borda score can be reformulated as follows:

Ũ∗
Borda(a) =

∑

a′∈A\{a}




∑

gi∈G

Pi(a, a
′)−

∑

gi∈G

Pi(a
′, a)



 . (1.6)

• In the domain of social choice, where the Borda procedure has been mainly studied, anonymity is
a basic assumption, so that all the “criteria” -that is, all the voters- have the same importance.
Of course, this is not the case in multiple criteria decision-making situations, such as the case of
definition of composite indicators. In this context, to give a specific weight to each criterion seems
definitely appropriate, so that, supposing one gives the weights wj ≥ 0, j = 1, . . . ,m,w1+ . . . wm =

1, to the criteria g1, . . . , gm, we can redefine the Borda score U∗
Borda as follows:

U∗
Borda(a) =

∑

a′∈A\{a}




∑

gj∈P (a,a′)

wj −
∑

gj∈P (a′,a)

wj



 , (1.7)

and, also taking into account valued preferences,

Ũ∗
Borda(a) =

∑

a′∈A\{a}




∑

gj∈G

wjPj(a, a
′)−

∑

gj∈G

wjPj(a
′, a)



 , (1.8)

Since formulation 1.7 is a particular case of formulation 1.8 when Pj(a, a′) can only take values 0
or 1 for all gj ∈ G and for all (a, a′) ∈ A×A, in the following we shall refer only to 1.8.

• Considering some psychological aspects of decision making such as regret (Bell, 1982; Loomes and
Sugden, 1982), the specific formulation of the Borda score suggests to split the value ŨBorda(a) in
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the two components

Ũ+
Borda(a) =

∑

a′∈A\{a}

∑

gj∈G

wjPj(a, a
′) and Ũ−

Borda(a) = −
∑

a′∈A\{a}

∑

gj∈G

wjPj(a
′, a), (1.9)

and interpret Ũ+
Borda(a) and Ũ−

Borda(a) as levels of rejoice and regret derived from preferring
alternative a to other alternatives (see, respectively Özerol and Karasakal, 2008).

• In fact, ŨBorda(a), Ũ
+
Borda(a) and Ũ−

Borda(a) are the net flow score, the outflow and the inflow of
the PROMETHEE methods (Brans and Vincke (1985); Brans and De Smet (2016)), being a very
well-known and appreciated family of methods for Multiple Criteria Decision Aiding (MCDA; see
Ishizaka and Nemery (2013); Greco et al. (2016)). In fact, the identification of the net flow score
of PROMETHEE methods with the Borda score is proposed for the first time in Marchant (1998),
where a discussion on the cardinal nature of the Borda score is proposed. In this perspective the
Borda score can be seen as a function returning a real valued evaluation of considered alternatives
on an interval scale, so that, if for alternatives a, b, c,d ∈ A one has

ŨBorda(a)− ŨBorda(b) = ζ
(

ŨBorda(c)− ŨBorda(d)
)

it is meaningful (in the sense of measurement theory Roberts (1985)) to say that the preference
of a over b is ζ times, ζ ∈ R

+, greater than the preference of c over d. This cardinal property of
the net flow score of PROMETHEE methods seems quite important for composite indicators that
aim to give a numerical evaluations and not only an ordinal ranking to the alternatives under
analysis (for a further discussion on the cardinal properties of net flow score of PROMETHEE see
also Marchant, 2000). In this perspective the approach we are proposing seems quite appealing
because it conjugates the basic ordinality of the inputs (that can be mitigated with fuzzy prefer-
ences to take into account imprecision) with basic cardinality of the output, which seems quite
relevant because of the evaluations on a numerical scale expected from composite indicators. For
this reason we shall refer to our definition of non-compensatory composite indicators with the
expression “ordinal input for cardinal output approach”, which in our opinion expresses well the
basic idea and the main advantages of the proposed methodology.

On the basis of the above remarks, we propose to use PROMETHEE methods to construct non-
compensatory composite indicators as detailed in the following section.

3 Basic concepts of PROMETHEE

3.1 The PROMETHEE methods

Let us briefly describe the PROMETHEE methods I & II (Brans and Vincke, 1985; Brans et al.,
1986) that consist the base of our proposal and, as such, preliminaries for the upcoming sections.
Consider a set of alternatives A = {a1, . . . , an} to be evaluated according to criteria G = {g1, . . . , gm},
where gj : A → R, j ∈ J = {1, . . . ,m}. For each criterion gj ∈ G, PROMETHEE methods use a
function Pj(ai, ai′), i 6= i′ that represents the degree of preference of ai over ai′ on criterion gj being
a non-decreasing function of dj(ai, ai′) = gj(ai)− gj(ai′). There are six different functions that could
be chosen for each criterion by the decision-maker (hereafter, ‘DM’) (see Brans and De Smet, 2016,
for a recent review of the PROMETHEE methods), but for the sake of simplicity we will only use the
commonly-used piecewise linear function defined as follows:
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Pj(ai, ai′) =






0 if dj(ai, ai′) 6 qj
dj(ai,ai′ )−qj

pj−qj
if qj < dj(ai, ai′) < pj

1 if dj(ai, ai′) > qj




 , (3.1.1)

where qj and pj the indifference and preference thresholds accordingly, as these are set by the DM for
each criterion gj ∈ G. Given that each criterion gj is assigned a weight wj (reflecting its importance
instead of a trade-off in this exercise), with wj > 0 and

∑m
j=1wj = 1; for each pair of alternatives

(ai, ai′) ∈ A×A, PROMETHEE methods compute how much ai is preferred over ai′ taking into account
all criteria g ∈ G as follows:

π(ai, ai′) =
m∑

j=1

wjPj(ai, ai′),

with values of π(ai, ai′) ranging between 0 and 1. Moreover, higher values denote higher preference of
ai over ai′ and vice versa. To compare an alternative, say ai, with all other alternatives ai′ , i 6= i′ 6= i,
PROMETHEE methods compute the positive and negative flows as follows:

φ−(ai) =
1

n− 1

∑

ai′∈A−{ai}

π(ai′ , ai) and φ+(ai) =
1

n− 1

∑

ai′∈A−{ai}

π(ai, ai′),

where φ−(ai) (negative flow) shows how much all the other alternatives, ai′ ∈ A−{ai}, are preferred over
ai, and φ+(ai) (positive flow) shows how much ai is preferred over the others instead. Understandably,
the smaller an alternative’s, say ai, φ−(ai) and the larger its φ+(ai), the better is its performance over
all other alternatives ai′ ∈ A − {ai} and vice versa. Understandably, PROMETHEE I gives us two
bipolar scores that show the dominating and dominated status of each alternative. Ordinal inferences
can be made on the basis of these two scores through the PROMETHEE I partial ranking (P I ,II ,RI ).
For instance, suppose that we would like to infer some ordinal information about two alternatives, say
ai and ai′ on the basis of the PROMETHEE I partial ranking. That could be accomplished as follows:







aiP
Iai′ iff







φ+(ai) > φ+(ai′) and φ−(ai) < φ−(ai′), or
φ+(ai) = φ+(ai′) and φ−(ai) < φ−(ai′), or
φ+(ai) > φ+(ai′) and φ−(ai) = φ−(ai′)

aiI
Iai′ iff φ+(ai) = φ+(ai′) and φ−(ai) = φ−(ai′)

aiR
Iai′ iff

{

φ+(ai) > φ+(ai′) and φ−(ai) > φ−(ai′)

φ+(ai) < φ+(ai′) and φ−(ai) < φ−(ai′)

, (3.1.2)

where P I , II and RI denote preference, indifference and incomparability respectively. When incompa-
rabilities among alternatives (see aRIb above) exist, the use of PROMETHEE II alleviates this issue
by providing a unipolar scoring. More detailed, PROMETHEE II method computes the net-flow of
bipolar (PROMETHEE I) scores for each alternative ai as follows:

φ(ai) = φ+(ai)− φ−(ai), (3.1.3)

which permits the ranking of alternatives in a complete pre-order based on the preference and indiffer-
ence (P I ,II ) among them as follows:

8
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{

aiP
IIai′ iff φ(ai) > φ(ai′)

aiI
IIai′ iff φ(ai) = φ(ai′)

. (3.1.4)

PROMETHEE II score (net-flow) is defined in the range [−1, 1], and essentially shows how much an
alternative ai is preferred over all other the others ai′ , taking into account how much it is dominated
at the same time. This offers a score that can be used as ordinal information (i.e. to provide a ranking)
showing a complete pre-order of each alternative. Obviously, the higher the score the greater an
alternative is performing and thus preferred over the rest.

3.2 The SMAA-PROMETHEE method

The SMAA-PROMETHEE method, developed by Corrente et al. (2014) is a fusion of the classic
PROMETHEE and the SMAA (see Lahdelma and Salminen, 1998; 2001) methods that deals with
uncertainty and imprecisions in real world decision-making problems. SMAA considers a probability
distribution fw over the space of all possible weight vectors, and two probability distributions fq and
fp over the space of potential dominance d ⊂ R in the elementary set of indicators (i.e. d comprised
of: dj(ai, ai′) = gj(ai)− gj(ai′), i 6= i′, j ∈ J). Of course, imprecisions in the criteria could be modelled
accordingly considering a probability distribution fχ over the space χ ⊂ R

m×n of the alternatives’
evaluations gj(ai), with j ∈ J and ai ∈ A, though in this paper we are engrossed with the former three
sources of uncertainty, and as such, we leave this case outside the scope of this analysis.

The above-mentioned sources of uncertainty could be handled in two distinct ways. First, in
the lack of information regarding the preferences of the DM, all three sources could be declared as
uncertain, and thereby randomly estimated (uniformly, in the lack of information from the DM to
suggest otherwise) in a Monte Carlo simulation environment. This would imply the creation of the
following three m × s matrices to be used as inputs1, where m the number of criteria gj ∈ G, and
mc = 1, . . . , s the number of Monte Carlo simulations2:

• an m× s matrix W containing the weight vectors

W =






w = [w1, . . . , wm] : wj > 0, j = 1, . . . ,m,

m∑

j=1

wj = 1






, (3.2.1)

• an m× s matrix P containing the vectors of the preference thresholds

P = {p = [p1, . . . , pm] : min dj ≤ pj ≤ max dj , j = 1, . . . ,m} , (3.2.2)

• an m× s vector Q containing the vectors of the indifference thresholds

Q = {q = [q1, . . . , qm] : qj ≤ pj , j = 1, . . . ,m} . (3.2.3)

The second case regards a DM that is able to provide some information about the sources of
uncertainty. This information could then be used to adjust the above-mentioned inputs, and could

1Understandably, if one considers more sources of uncertainty (e.g. functions, imprecisions in the data etc.), the number
of matrices grows accordingly.

2While there is no standard practice to choosing the number of simulations, i.e. parameter s, Tervonen and Lahdelma
(2007) suggest a value of 10,000 simulations to be adequate for robust results.

9



The Ordinal Input for Cardinal Output Approach of Non-compensatory Composite Indicators S. Greco et al.

regard anything from the distribution to be chosen, to restrictions in the space of possible outcomes. For
instance, the DM could provide information regarding the weighting preferences among the criteria at
hand. This could happen e.g. in the form of linear inequalities (e.g. w1 > w2 > . . . > wm), or assurance
regions (e.g. a 6 wj 6 β, where a, β ∈ [0, 1], a < b) etc.3 Of course, this would adjust the space of
weights accordingly. For instance, in the case of the DM providing information in the form of linear
inequalities, as in the example above, the space of weights would be transformed and thus matrix W

would be adjusted as follows:

W =






w = [w1, . . . , wm] : wg1 > ... > wgm , wj ≥ 0, j = 1, . . . ,m,

m∑

j=1

wj = 1






. (3.2.4)

Turning to the output of the SMAA-PROMETHEE method, because φ+(ai) and φ−(ai) (in the case
of PROMETHEE I) or φ(ai) (in the case of PROMETHEE II), ai ∈ A, provide a ranking for each w in W ,
q in Q and p in P , SMAA gives the ranking of each alternative ai for every mc = 1, . . . , s. This permits
computing the rank acceptability index, the central weight vector and the pairwise winning index. We
give a brief description of their use below, though for a detailed analysis and their computation process,
we refer the reader to the studies of Lahdelma and Salminen (1998; 2001) for the SMAA, and Corrente
et al. (2014) for the SMAA-PROMETHEE method in particular.

• Rank acceptability index

The rank acceptability index (RAI) essentially shows the shares of parameters (in this case qj , pj
and wj , j ∈ J) that give an alternative, ai, the rth place. Suppose that we symbolize RAI with bri ;
then b1i shows the shares of parameters giving the alternative ai the 1st place. The RAIs of all
alternatives are typically presented in an n× n table, where each row is an alternative and each
column is the probability of it attaining a given rank, r = 1, . . . , n, in the s simulations.

• Central weight vector

The central weight vector (CWV) illustrates the weight preferences of a typical DM (w) that
makes an alternative, ai, the most preferred. The CWVs of all alternatives are typically disclosed
in an n×m table, where rows point to the alternative ai, i = 1, . . . , n and columns illustrate the
weight of criterion j = 1, . . . ,m.

• Pairwise winning index

The pairwise winning index (PWI) is used to compare an alternative ai to another one, say ai′ ,
showing the probability the former is preferred to the latter. It is typically disclosed in an n× n

table, where each row shows the probability that this alternative beats its counterpart in a given
column.

To better understand the above three SMAA outputs, we give three visuals (Figs. 1, 2, 3) reflecting the
outputs of SMAA in the case of the G-10 countries’ evaluation in the WEF’s Inclusive Development
Index that will be formally discussed in Section 4 where we introduce the case study. For reasons of
simplicity, the only source of uncertainty remains the criteria weights, while the preference function is
the piecewise linear, described in eq.(3.1.1), with indifference thresholds set to 0, and preference ones
set to max dj(ai, ai′) for each criterion gj .

3Obviously, the other two sources of uncertainty, namely the indifference and preference thresholds, could be treated
similarly.
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Figure 1. Central Weight Vector (CWV) for Switzerland and Sweden.

This figure shows the preferences of a typical DM as to the choices that will make Switzerland or
Sweden the best-performing country (i.e. ranked 1st). Vertical axis shows the typical weight (%) of
each criterion gj . Indicators are coloured based on the higher dimension in which they belong (See
Table 4 for more details).

3.3 GAIA

GAIA, developed by Mareschal and Brans (1988), is a visual interactive module often implemented
alongside PROMETHEE methods, whilst recently migrated to the AHP family of methods (Ishizaka
et al., 2016). It provides DMs with a clear view of how each alternative performs in each of the
considered criteria. Essentially, GAIA is an implementation of Principal Component Analysis (PCA) on
the unicriterion net-flow matrix4. In particular, the two eigenvectors with the two largest values are
selected and plotted on a 2-dimensional (most common) or a 3-dimensional (3D) plot, thus collapsing
the m-dimensional space in a plot that is visually clearer to make inferences from. The 3D plot is
usually preferred in cases that one may wish to explore the m-dimensional space in three coordinates
(x, y, z) and get a better grip of the dynamics from the inclusion of the z-th dimension, or when the
explained variance of the two eigenvectors alone is not enough by the standards of PCA to explain the
original m-dimensional space; that is, the explained variance is less than 60%. We give an example of
the GAIA plane in the case of the G-10 evaluation on WEF’s IDI in Fig.4.

Dashed lines show the direction of each criterion gj . If an alternative is close to or towards the
same direction of a criterion, it means that it performs well on it. On the contrary, if it is plotted the
opposite way (180 degrees), it means that its performance is poor on this criterion. Criteria extending
in an orthogonal way between them seem to be simply unrelated to each other. The solid plotted line

4As it is briefly introduced in Section 4.3, this is a n×m matrix showing the non-weighted net flows of each alternative
with respect to the remaining n − 1 alternatives (diagonal of this matrix equals 0), in each criterion gj . Essentially, it
represents how an alternative outranks (u(a) > 0; eq.4.3.1) or is outranked (u(a) < 0; eq.4.3.1) by the remaining n − 1
alternatives in each criterion gj .
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Figure 2. Pairwise Winning Index (PWI) for the G-10 countries.

This figure shows the probability that an alternative (row) beats the rest of the alternatives
(in columns) (%).

with the square marker reflects the ‘decision stick’, and is essentially the weight vector (hereby set to
equal weights) of the criteria. To give an example, in Fig. 4, Switzerland (SWI) seems to perform well
on criterion ‘PD’, and adequately well on criteria towards the same direction (i.e. ‘GDP’, ‘MI’, ‘ANS’)5.
Last but not least, the variance explained with the 2D visualisation is 79.5% and just over 89.5% for
the 3D version.

Given that uncertainties may arise in the decision-making process, thus making SMAA-PROME-
THEE crucial in such respect, a GAIA variant dealing with uncertainty followed suit (see e.g. Hubinont,
2016; Arcidiacono et al., 2018, for extentions of GAIA to the SMAA variant of PROMETHEE and the
bipolar PROMETHEE methods accordingly). Hubinont (2016) applies a bivariate kernel density on
the stochastic net flows for each alternative, estimating the proportions of the projections around each
noodle with the Parzen method. Arcidiacono et al. (2018) shows how a cloud of points could be plotted
on the GAIA plane symbolizing the weight vectors taken into account in the SMAA evaluation. As the
latter version is the one we will build upon later on in Section 4.3, we show an example of its output
and a couple extensions of its reasoning in Fig. 5.

In detail, there are two versions provided in the Fig. 5 (left and right column sub-plots). The
left one shows the unconstrained weight space (matrix W - eq.3.2.1), whereas the right shows how
the same space is constrained as discussed in the same section (i.e. dimension 3 is more important
than dimension 2 which, in turn, is more important than dimension 1 - eq.3.2.4). The bottom part of
the figure (i.e. bottom sub-plots) show how ordinal information could enrich the SMAA-GAIA plane,
illustrating for instance the weight space for which Belgium (blue) or Switzerland (green) is 1st.

5For more insights of the GAIA plane, we refer the interested reader to the paper of Mareschal and Brans (1988).
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Figure 3. Rank Acceptability Index (RAI) for the G-10 countries.

This figure shows the probability (%) that an alternative (row) is positioned in
the r-th place.

Figure 4. GAIA plane for the G-10 countries’ evaluation on WEF’s IDI.
This figure shows the 2D (left) and 3D (right) version of the GAIA plane. Triangles reflect the alternatives (G-10
countries). Dotted lines reflect the attributes (see Table 4 for more information). The ‘decision stick’ is a vector
of equal weights (8.25% per criterion).
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Figure 5. SMAA-GAIA plane for the G-10 countries’ evaluation on WEF’s IDI.

This figure shows the unconstrained (left) SMAA-PROMETHEE evaluation, in which all set of plausible weight
vectors are sampled randomly and unconditionally, the constrained (right) evaluation, in which dimension 3 is
weighted higher than dimension 2 and in turn dimension 1. Finally, the sub-figures at the bottom shows the
weight vectors for which Belgium is ranked 1st, in comparison to the weight vectors for which Switzerland is
ranked 1st.
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4 PROMETHEE methods for scoring

While PROMETHEE methods are often implemented to provide ordinal information, e.g. in the form of
a ranking of the considered alternatives, they could equally be used to provide cardinal information that
conveys more information about the magnitude of each alternative’s performance. Composite indicators
serve such purpose, as they are cardinal in nature (Booysen, 2002), and as such PROMETHEE methods
could be another tool in their toolbox. In particular, PROMETHEE methods have recently been used in
the field of composite indicators for robustness purposes, or to choose among alternatives of composite
indicators constructed with other methods (see, e.g., De Mare et al., 2015; Antanasijevic et al., 2017;
Rosic et al., 2017). Nonetheless, we would like to highlight in more detail first (subsection 4.1), how
PROMETHEE methods could be used for scoring in this domain and second (subsection 4.2), and most
importantly, to extend this to the case of the SMAA-PROMETHEE method that takes into account
crucial issues in the construction of composite indicators. Before we begin our analysis, let us give
some brief remarks/caveats that the DM should have in mind when designing composite indicators
with the PROMETHEE methods.

First and foremost, we should note that the PROMETHEE methods will ensure that weights will
act as ‘importance coefficients’ rather than trade-offs, contrary to other types of aggregation approaches
(e.g. the simple additive model). This essentially eliminates the conceptual issue apparent in the
development of composite indicators using additive utility aggregators, in which DMs are setting
the weights as importance coefficients, while they end up being used as trade-offs between pairs of
indicators. Moreover, the full compensation among criteria (apparent in the additive utility function)
is now moderated according to our definition of non-compensatory aggregation give in Section 2.
Nonetheless, such benefits come at a trade-off. In particular, the input required on behalf of the DM
in the construction of the index is enlarged as opposed to other aggregation approaches. The reason
being PROMETHEE methods require three additional choices besides the weights of the attributes;
these are namely the choice of a preference function and the indifference and preference thresholds6.
These shall be set individually for every attribute. Thus, the DM should be carefully choosing these
three inputs in the creation of the index and justify them accordingly.

4.1 Developing composite indicators with the PROMETHEE I & II methods

4.1.1 Bipolar Scoring

PROMETHEE I provides a bipolar type of scoring. In particular, two outputs namely, the positive

outranking flow or outflow (φ−(a)) and the negative outranking flow or inflow (φ+(a)) are obtained,
showing two distinct scores for each alternative a ∈ A for two different in principle, but essentially
complementary concepts. For instance, the negative flow (φ−(a)), expressed in a [0, 1] scale, exhibits
how much an alternative is dominated by the remaining n − 1 alternatives. A unity score in this
output would indicate complete domination by all alternatives in all criteria, whereas a zero value
would imply zero domination accordingly. This indicator would be in line with the theory of regret
aversion or anticipated regret (see e.g. Loomes and Sugden, 1982; Bell, 1982; Fishburn, 2013), in the
sense that the higher this output, the higher the regret of an individual choosing this alternative over
a different option. On the other hand, the positive flow (φ+(a)) shows the degree of preference of an

6We should note that these are only used in five out of the six preference functions. For instance, the ’Usual’ preference
function does not require any kind of threshold, though it is mainly used for qualitative attributes. Additionally, in the
‘Gaussian’ preference function an intermediate value between q and p (namely, ‘s’) has to be set as well to shape the curve of
the Gaussian function. For a more detailed analysis, we refer the interested reader to Brans and De Smet (2016).
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alternative over the remaining ones. Similarly to the inflow, outflow is expressed in a [0, 1] scale, with
higher values exhibiting higher preference and vice versa.

Understandably, it is not necessary that both types of flows will give the same results. If someone is
solely interested in insights from the one or the other, then one could observe either. Nonetheless, if the
desire is to make inferences based on these, e.g. to get an insight on the preference of an alternative
over another, the intersection of the two flows should be considered to provide a ‘unipolar’ scoring.
This is abridged in the following section.

4.1.2 Unipolar Scoring

Following on from the output of PROMETHEE I, the PROMETHEE II method provides the unipolar
scoring (eq.3.1.3). It essentially consists a global score that provides a balance between the positive
and the negative flows, in a sort of a net (unipolar) scoring that encapsulates both types of information
discussed above; namely, the “regret” factor of choosing an alternative (i.e. φ−(a)) and the benefit of
doing so without considering the regret factor (i.e. φ+(a)). The unipolar (PROMETHEE II) score bears
the following two properties:

{

−1 ≤ φ(a) ≤ 1, ∀ a ∈ A
∑

a∈A φ(a) = 0
. (4.1.2.2)

There is a trade-off inherent in using PROMETHEE II. That is one gains incomparability to cease,
but at the cost of loss of information. For instance, considering the PROMETHEE II score of two
alternatives, say ai and ai′ : is the former preferred to the latter due to its superior performance or its
lower regret? By looking at the two flows, one may infer such information (always in case of comparable
alternatives (see eq.3.1.2)). As Brans and De Smet (2016, p.174) argue: “In real-world applications,
we recommend to both the analysts and the decision-makers to consider both PROMETHEE I and
PROMETHEE II.” In fact, it is reasonable to use both types of information to get some inferences out of
how the global score was constructed. Such an example can be given by looking at the PROMETHEE I
& II results7 for the G-10 countries in Table 1.

Seemingly, United Kingdom performs better than the United States in terms of the unipolar score (that
is φ), though we can see that this comes from its lower regret factor (φ−(UK) < φ−(US)) rather than its
superior performance in the attributes (φ+(US) > φ+(UK)). Of course, in the case of PROMETHEE I,
we wouldn’t be able to make inferences about a preference relationship, as this is an example of an
incomparability situation (i.e. UK RI US ).

4.2 Developing composite indicators with the SMAA-PROMETHEE methods

The issue with using the classic PROMETHEE I and II methods to construct composite indicators is
that of using a precise set of parameters (i.e. w, p, q: eq. 3.1.1). The reason is twofold. First, it is very
difficult for a DM to come up with a very precise such set of parameters for every criterion. Second,
even if the DM does indeed come up with a set of parameters, this is supposed to be representative of
the whole population interested in the composite indicator being provided. In brief8, the considered set

7For reasons of simplicity, we have used equal weights across all dimensions, piecewise linear function with zero
indifference thresholds (q) for all criteria, and pgj = max(dgj (ai, ai′)). For an outline of the criteria (formally to be discussed
in Section 5) see Table 4.

8For a more detailed conversation about this issue, we refer the interested reader to the studies of Greco et al. (2018,
2019b).
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Table 1: PROMETHEE I & II scores for the G-10.

Country φ φ+ φ−

Switzerland 0.090 0.100 0.009
Netherlands 0.039 0.058 0.019

Sweden 0.034 0.067 0.033
Belgium 0.014 0.051 0.037
Canada 0.008 0.040 0.032

Germany 0.003 0.039 0.036
France -0.012 0.031 0.043

United Kingdom -0.028 0.023 0.051
United States -0.040 0.033 0.073

Japan -0.045 0.035 0.080
Italy -0.064 0.020 0.084

of parameters, even if it is fully justifiable by the DM setting it, remains subjective to its full extent. Of
course, we should note here that MCDA is in itself inherently subjective. We are not to argue against
subjectivity, rather the contrary; in exercises where it is needed, we want to make it transparent by
increasing that subjectivity to involve all potential parties interested in this evaluation. As the example
mentioned in Greco et al. (2019b), in an exercise involving the evaluation of a country’s performance in
a socio-economic aspect, the set of potential decision-makers could involve policy-makers, analysts and
practitioners, or even citizens to whom the evaluation is targeted at and concern. That said, we do
support, in this section and onward, that a multiplicity of viewpoints should be considered when it
comes to such evaluation practices.

Generally speaking, the utilization of the SMAA variant of PROMETHEE (Corrente et al., 2014)
permits the inclusion of a plethora of weight vectors, indifference and preference thresholds. In
particular, as many as the number of simulations. Understandably, at the same time this creates as
many outcomes and, of course, as many rankings accordingly for each unit evaluated. This is both
an advantage and a drawback of this method for the creation of composite indicators. On the one
hand, this increases the transparency of the evaluation process, by showing the larger picture, along
with which parameters give each alternative a specific place (probabilistic outcomes, see Section 4.2).
This is of utmost importance in the development of composite indicators, and in fact, it is a special
case of uncertainty analysis (Saisana et al., 2005) that should be accompanying the results of every
composite index (OECD, 2008; Greco et al., 2019a). Indeed, the use of SMAA in this case seems
alluring as it encapsulates a type of uncertainty analysis but -perhaps most importantly- it permits
dealing with the issue of the representative agent9 inherent in the development process of a composite
index. On the other hand, this creates an issue as to the consolidation of these results into a single
index that encompasses all this information accordingly. Towards the solution of this issue, Greco
et al. (2019b) propose another variant in the family of SMAA called “σ − µ−SMAA”. We abridge its
preliminaries in Subsection 4.2.1, though for a detailed analysis we refer the reader to the original
study. Subsections 4.2.2 and 4.2.3 build upon the preceded preliminaries, adjusting the σ−µ approach
to the PROMETHEE methods I & II respectively.

9See Greco et al. (2018, p.587).
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4.2.1 The Sigma-Mu approach: Preliminaries and intuition

Starting from the theoretical concept of this approach, the σ − µ variant of SMAA does not focus on
the probabilistic outcomes or shares of inputs leading to these outcomes like other variants of the
SMAA family do. Rather it takes into account the distribution of composite indicator values collected
within SMAA for each alternative considering its arithmetic average, µ, and its standard deviation,
σ. Essentially these two parameters illustrate the typical evaluation of an alternative taking into
account all potential decision-makers’ preferences (using µ) and the inverse robustness of that measure
(using σ), larger values of which denote greater instability as to the dominance of an alternative with
respect to the remaining ones and vice versa. To better understand the intuition behind these two
parameters, the authors give an example on how they could be conceptualised from a neo-Benthamite
perspective in a case of a socio-economic cross-country evaluation. In particular, given that the end
evaluation in their case study (see Greco et al., 2019b, Section 5) concerns the well-being of countries
in which citizens live in, one may consider each simulation mc = 1, . . . , s as an alternative set of
preferences that is expressed from different citizens. As such, s subjective evaluations occur from s

different preferences, with their average score per country (µ) illustrating its overall well-being and
the standard deviation (σ) denoting a measure of well-being inequality for that country. The higher
that is, the higher that country’s inequality as to its well-being, as there is huge dispersion to how
much its citizens are satisfied.

Turning to the computation aspects, these two parameters of interest (σ, µ) can be adjusted to
the SMAA-PROMETHEE outputs as follows. Assuming a piecewise linear preference PROMETHEE
function (although other preference functions can be used accordingly), and given the spaces of weights
W , preferences P and indifferences Q (see eqs.3.2.1 to 3.2.3), one may consider for each alternative
ai ∈ A the PROMETHEE’s positive, negative and net flows (i.e. φ+(ai), φ

−(ai), φ(ai)) in this space and
compute the respective arithmetic average, µ, to define an overall flow, as shown in equations 4.2.1.4a
to 4.2.1.4c) below:

µ
φ+

i =

∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)φ+(ai,p,q,w)dpdqdw, (4.2.1.4a)

µ
φ−

i =

∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)φ−(ai,p,q,w)dpdqdw, (4.2.1.4b)

µ
φ
i =

∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)φ(ai,p,q,w)dpdqdw, (4.2.1.4c)

and the standard deviation, σ, to measure the overall dispersion as in equations 4.2.1.5a to 4.2.1.5c
below:

σ
φ+

i =

√
∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)

[

φ(ai,p,q,w)− µ
φ+

i

]2
dpdqdw, (4.2.1.5a)

σ
φ−

i =

√
∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)

[

φ(ai,p,q,w)− µ
φ−

i

]2
dpdqdw, (4.2.1.5b)

σ
φ
i =

√
∫

p∈P
f(p)

∫

q∈Q
f(q)

∫

w∈W
f(w)

[

φ(ai,p,q,w)− µ
φ
i

]2
dpdqdw. (4.2.1.5c)
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Of course, in real-world situations, these integrals can be approximated via the use of a Monte-Carlo
simulation. Assuming complete lack of information from the decision-maker(s), three m× s matrices
RW, RP and RQ can be defined through unconditional random sampling, showing the attribute
weights, preference and indifference thresholds in the mc = 1, . . . , s simulations (according to eqs.3.2.1
to 3.2.3), with s being a relatively large number, as follows:

RW
m×s

=









w11 w12 · · · w1s

w21 w22 · · · w2s

...
... · · ·

...
wm1 wm2 · · · wms









,RP
m×s

=









p11 p12 · · · p1s

p21 p22 · · · p2s
...

... · · ·
...

pm1 pm2 · · · pms









,RQ
m×s

=









q11 q12 · · · q1s

q21 q22 · · · q2s
...

... · · ·
...

qm1 qm2 · · · qms









.

Understandably, any information about the distribution or potential constraints among the attributes
can shape these matrices respectively. Following their computation, they will consist the inputs to the
creation of the following three n× s matrices that collect the results of PROMETHEE I & II methods
accordingly:

Φ+

n×s
=









φ+(a1,w1,p1,q1) φ+(a1,w1,p1,q1) · · · φ+(a1,ws,ps,qs)

φ+(a2,w1,p2,q2) φ+(a2,w2,p2,q2) . . . φ+(a2,ws,ps,qs)
...

... · · ·
...

φ+(an,w1,p1,q1) φ+(an,w2,p2,q2) · · · φ+(an,ws,ps,qs)









, (4.2.1.6a)

Φ−

n×s
=









φ−(a1,w1,p1,q1) φ−(a1,w1,p1,q1) · · · φ−(a1,ws,ps,qs)

φ−(a2,w1,p2,q2) φ−(a2,w2,p2,q2) . . . φ−(a2,ws,ps,qs)
...

... · · ·
...

φ−(an,w1,p1,q1) φ−(an,w2,p2,q2) · · · φ−(an,ws,ps,qs)









, (4.2.1.6b)

Φ
n×s

=









φ(a1,w1,p1,q1) φ(a1,w1,p1,q1) · · · φ(a1,ws,ps,qs)

φ(a2,w1,p2,q2) φ(a2,w2,p2,q2) . . . φ(a2,ws,ps,qs)
...

... · · ·
...

φ(an,w1,p1,q1) φ(an,w2,p2,q2) · · · φ(an,ws,ps,qs)









. (4.2.1.6c)

Essentially, these matrices collect a representative sample of all potential values (for all three types
of flows) based on all potential preferences (from weights to preference and indifference thresholds
where applicable) for every alternative a ∈ A. Then, one may simply approximate the integrals in
equations (4.2.1.4) and (4.2.1.5) for each alternative ai, i = 1, . . . , n computing the arithmetic mean (µ̃i)

and standard deviation (σ̃i) of each row of the matrices (4.2.1.6a) to (4.2.1.6c) accordingly (
˜
µ
φ
i ≈ µ

φ
i and

˜
σ
φ
i ≈ σ

φ
i ). For instance, for the case of φ,

˜
µ
φ
i and

˜
σ
φ
i would equal:

˜
µ
φ
i =

1

s

s∑

mc=1

φ(ai,wmc,pmc,qmc), ∀i = 1, . . . , n, (4.2.1.6d)

˜
σ
φ
i =

√
√
√
√

1

s

s∑

mc=1

(

φ(ai,wmc,pmc,qmc)−
˜
µ
φ
i

)2

, ∀i = 1, . . . , n. (4.2.1.6e)
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The next step builds on these two parameters to arrive at an overall score by considering a definition
of dominance. In particular, plotting each alternative on a 2-dimensional plane (called the σ−µ plane)
with coordinates (σi, µi), on the basis of the concept of Pareto-Koopmans efficiency and the objective
to maximize µ and minimize σ; through a set of linear programming (LP) formulations, Greco et al.
(2019b) provide two types of estimators, each denoting a different concept of efficiency. These are the
local and global efficiency scores, the intuition of which is explained on abstract grounds below, whilst
we adjust them to the PROMETHEE I & II methods shortly afterwards.

The local scores (δik) essentially consist vectors of efficiency measures (one vector for each unit).
In particular, by decomposing the σ − µ plane into a family of Pareto-Koopmans frontiers (PKF =

{PKF1, PKF2, . . . , PKFk}) it is straightforward to measure the efficiency of each unit i = 1, . . . , n with
respect to each PKFh, h = 1, . . . , k in the plane. This is based on the concept of ‘context-dependent
Data Envelopment Analysis’ originally developed by Seiford and Zhu (2003). Generally speaking, the
local σ − µ efficiency scores are found by solving the following LP formulation:

δik = Max
α,β

δ

s.t.






αµi − βσi ≥ αµi′ − βσi′ + δ, ∀i′ ∈ I \
⋃k−1

h=1 PKFh

α, β ≥ 0

α+ β = 1

. (4.2.1.7)

A positive value (i.e. δik > 0) denotes efficiency of a unit i with respect to PKFk, whilst negative values
(i.e. δik < 0) denote inefficiency respectively, the magnitude of which is |δik|. Of course, the larger
the positive (negative) value of δik is the greater its (in)efficiency. Solutions to the LP formulation in
eq.(4.2.1.7) consist the local efficiency scores δik. These help identify how each unit is benchmarked
against each frontier that is assumed to be a different context. One may think of each frontier as
a different level of competition around each unit, with closer frontiers being the nearest level of
competition and vice versa. Of course, on their own, local efficiencies do not give us an aggregate
picture of the overall performance of a unit. To this end, global efficiencies (smi) take into account the
spatial information in the plane by aggregating the local efficiencies. These are computed for each
unit i as follows:

smi =
k∑

h=1

δik. (4.2.1.8)

Essentially, smi is defined in the (−∞,+∞) space and illustrates the overall spatial dominance in the
σ − µ plane. A value of smi = 0 shows that unit i is equally dominated as it dominates the remaining
units i′. Of course, the larger the value of smi the greater its overall dominance and vice versa.

Having provided the general definitions of dominance and the intuition behind each step in the
σ − µ approach, we now tailor them accordingly to the PROMETHEE I & II methods in the following
subsections.
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4.2.2 Sigma-Mu applied to PROMETHEE I

In this subsection we detail two ways with which the PROMETHEE I outputs can be used in the σ − µ

approach. For both cases that we will forthwith discuss, we assume that matrices RW, RP and RQ,
as well as matrices Φ+ and Φ− that were discussed in Section 4.2.1 are already computed.

In the first case, σ−µ can be individually applied to the two flows computed with SMAA-PROMETHEE
I and collected in Φ+ and Φ−. In particular, for each alternative ai ∈ A, two pairs of coordinates can be
obtained, (σφ+

i , µ
φ+

i ) and (σφ−

i , µ
φ−

i ) accordingly, which summarize the distributions of the evaluations
of each alternative in the two matrices Φ+ and Φ− respectively. The case of the positive flow is
straightforward in the sense that it is in complete agreement with the LP formulation in eq. (4.2.1.7).
That is, µφ+

i should be maximised as it denotes the overall score of dominance for alternative ai (with
respect to the remaining n − 1 alternatives) taking into account all potential preferences declared
in the SMAA evaluation, i.e. w, p and q. On the contrary, σφ+

i shall be minimized, as it denotes an
inverse measure of robustness such that the larger it is the more disperse the alternative’s evaluations
(φ+(ai,wmc,pmc,qmc),mc = 1, . . . , s). The reason is that it relies on a particular set of preferences to
exhibit a great performance, with slight deviations from this set radically altering this alternative’s
score. That said, formulation (4.2.1.7) can be simply adjusted to the current mathematical notation
written below, with everything else (concept-wise) remaining the same.

δ+ik = Max
α+,β+

δ+

s.t.






α+µ
φ+

i − β+σ
φ+

i ≥ α+µ
φ+

i′ − β+σ
φ+

i′ + δ+, ∀i′ ∈ A \
⋃k−1

h=1 PKFh

α+, β+ ≥ 0

α+ + β+ = 1

. (4.2.2.1)

Solutions to (3.2.2.1) provide the local efficiencies for Φ+ (i.e. δ+ik) for every PKFh, h = 1, . . . , k. Of
course, these can be then aggregated to compute the SMAA-PROMETHEE I global positive flow
efficiencies, sm+

i , as in eq.4.2.1.8, i.e.:

sm+
i =

k∑

h=1

δ+ik. (4.2.2.2)

These global positive flow efficiencies provide a more holistic score that encapsulates the SMAA-
PROMETHEE I positive flow scores, as well as the spatial information of the σ − µ plane into a single
value. As they are defined in the (−∞,+∞) space, one may re-scale them to vary in the [0, 1] range (e.g.
through ‘min-max’ normalization) to better resemble the classic PROMETHEE I scale of outflows φ+.

Turning to the negative flow of PROMETHEE I, as discussed in Section 4.1.1, it is in line with
the theory of regret aversion (or anticipated regret). For instance, a score of φ−(a) = 1 means that an
alternative is dominated by all remaining ones and in all criteria, so this would certainly be a regretful
decision over other, better alternatives. In particular, defined in the [0, 1] space, one may think of φ−(a)
as a number a high value of which means the regret factor (for not choosing a different alternative
with a lower φ−(a) value) is increasing. As σ − µ analysis provides efficiency scores, its intuition in the
case of the negative flow is that of a ‘regret’ measure. Thus, the LP formulation as described in eq.
(4.2.1.7) -adjusted for the notation of the inflow- is the following:
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δ−ik = Max
α−,β−

δ−

s.t.






α−µ
φ−

i − β−σ
φ−

i ≥ α−µ
φ−

i′ − β−σ
φ−

i′ + δ−, ∀i′ ∈ A \
⋃k−1

h=1 PKFh

α−, β− ≥ 0

α− + β− = 1

, (4.2.2.3)

the solutions of which provide the PKFh and the individual local efficiencies for every unit. We should
note here that higher local “efficiencies” mean higher regret and vice versa. That said, the global
efficiencies are computed accordingly as follows:

sm−
i =

k∑

h=1

δ−ik. (4.2.2.4)

Observe that in this interpretation we are considering the standard deviation σφ−

(ai) as a measure
of dispersion of the negative flow score φ−(a) that it is preferable to be increased, which is in agreement
with experimental evidence of prospect theory (Kahneman and Tversky, 1979, 1984; Tversky and
Kahneman, 1981) for which people are risk averse in case of gains and risk-seeking in case of losses.
Indeed, φ+(ai) can be considered as a gain so that the greater σ

φ+

i , the smaller the global score sm+
i

which is undesirable, while φ−(ai) can be considered as a loss so that the greater σ
φ−

i , the smaller the
global score sm−

i which is desirable. Observe however, that while there is definitely a natural tendency

to be risk averse for the gains and, consequently, in our context, to reduce σ
φ+

i , this is not the case

for the risk seeking in case of losses, because also to reduce the variability, in our context σφ−

i , could
be reasonable as limitation of greater losses, as it is the case in finance when measures of risk are
minimized (see, for example Jorion, 2000; Artzner et al., 1999). In this case the constraints comparing
unit i with all other units i′ should be reformulated as follows:

α−µ
φ−

i + β−σ
φ−

i ≥ α−µ
φ−

i′ + β−σ
φ−

i′ + δ−, ∀i′ ∈ A \

k−1⋃

h=1

PKFh.

We shall adopt this second perspective in this same section when we shall define of an overall efficiency
index taking into account both positive flows φ+

i and negative flows φ−
i .

In Fig. 6 we show a side-by-side evaluation of the G-10 countries as to their positive (φ+(a)) and
negative (φ−(a)) flows, the (normalised using ‘min-max’) global scores of which are given in Table
2. Essentially, these two scores (sm+

i and sm−
i ) are the more holistic equivalent of the φ+(ai) and

φ−(ai) outputs in the PROMETHEE I method, in the sense that they encapsulate the whole space of
preferences, as this is proxied by the defined criteria weights and respective preference and indifference
thresholds accounted for within SMAA.

According to the output in Fig. 6, there exist four PKF in the left plane (i.e. Sigma-Mu φ+), and five
PKF in the right one (i.e. φ−). Global efficiencies as to each flow are provided in Table 2. As previously
discussed, the σ − µ positive flow global score (i.e. sm+) is a mere measure of performance evaluation
that takes into account three key objectives: (i) the overall performance of a DMU (i.e. µ), (ii) how
balanced its performance is to satisfy all potential viewpoints taken into account in the evaluation
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Figure 6. The σ − µ plane for each flow.

This figure shows how the G-10 countries are evaluated in the σ − µ plane based on their positive (left)
and negative (right) flows. Note: Efficiency in the negative flows means more regret. Both axes are
standardized using the Z-scores.

phase (i.e. σ), as well as (iii) how (in)efficient it is with respect to its inner (closer) and outer (further)
competition (i.e. δik, not reported in Table 2 to conserve space) as proxied by the PKFs. In that regard,
according to the sm+ metric, Switzerland is seemingly the best performing G-10 Country, followed by
France, UK and Sweden. Japan is placed last, and is preceded by Belgium and Germany. What is
noteworthy, global scores (sm+) show that top-performer (i.e. Switzerland) aside, most countries are
very close performance-wise. For instance, the difference between France and UK (ranked 2nd and
3rd accordingly) is just a mere 1% (sm+

France = 0.403, sm+
UK = 0.399), with more or less similar score

differences for the remaining countries.
Turning to the negative flow evaluations, we are now seeing the opposite picture of performance,

i.e. that of regret. As discussed in this section, the σ − µ global score of the negative flow (sm−) differs
from the above-discussed output in two ways. First, its first component (µ) shows an evaluation of
regret instead of performance, which is essentially the other side of the coin in that an alternative
is dominated by all remaining ones. Yet, its second component (σ) shows the variability in how this
regret changes taking into account all potential viewpoints in the evaluation. In particular, how
slight deviations in the preferences of a DM may vastly increase or decrease the regret factor, proving
this alternative as highly sensitive and imbalanced. Here, the scores (sm−, Table 2) show a higher
variability compared to the positive flow previously discussed. Seemingly, the most regretful alternative
from the G-10 countries seem to be Italy, followed by the US and Japan. On the other side of this
ranking lies Sweden, which is seemingly the least regretful country.

Although both above outputs are greatly informative on their own to obtain a better insight about
the sheer performance or regret of each alternative compared to the remaining ones; one thing worth
noting is the following. These two rankings or magnitudes presented in Table 2 closely follow the
partial rankings denoted in (3.1.2). That is, in order for an alternative to be preferred to another one,
it has to dominate in at least one flow, and weakly dominate in the other one. However, this means
that a lot of inconsistencies could arise, making real-world scenarios (involving a large number of
alternatives) difficult to process. For this reason, a unipolar scoring taking into account the two flows’
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Table 2: Global efficiencies for the G-10 countries.

Positive Flow (φ+) Negative Flow (φ−)

Country sm+ Rank sm− Rank

Belgium 0.249 10 0.409 9
Canada 0.377 5 0.614 6
France 0.403 2 0.469 8

Germany 0.306 9 0.376 10
Italy 0.331 7 1.000 1

Japan 0.000 11 0.855 3
Netherlands 0.343 6 0.700 5

Sweden 0.392 4 0.000 11
Switzerland 1.000 1 0.777 4

United Kingdom 0.399 3 0.597 7
United States 0.324 8 0.888 2

distributions simultaneously could be computed. This can be accomplished by combining equations
(4.2.2.1) and (4.2.2.3), forming a different LP formulation that could take into account both previous
formulations as follows:

δPI
ik = Max

α−,α+,β−,β+
δPI

s.t.






α+µ
φ+

i − α−µ
φ−

i − β+σ
φ+

i − β−σ
φ−

i ≥ α+µ
φ+

i′ − α−µ
φ−

i′ − β+σ
φ+

i′ − β−σ
φ−

i′ + δPI , ∀i′ ∈ A \
⋃k−1

h=1 PKFh

α−, α+, β+, β− ≥ 0

α− + β− = 1

α+ + β+ = 1

,

(4.2.2.5)

where µφ+

is the overall dominance score that is supposed to be maximised, whilst its dispersion, σφ+

,
should be minimised as larger values denote instability due to the change of preferences. Likewise,
µφ−

shall be minimised as it denotes the overall regret in the whole space of preferences and so is its
dispersion, i.e. σφ−

. The reason is that if one wants to minimize the regret factor of an alternative, both
its average regret and its dispersion need to be minimized to achieve a more balanced and non-regretful
performance.

This LP formulation does indeed take into account both flows and allows some flexibility on the
trade-offs between each flow’s µ and σ parameters. The global scores (smPI

i ; arising from the summation
of δPI

ik ) are a ‘loose’ global evaluation in the sense that they permit some flexibility on how each flow is
taken into account, as do note that in the absence of further constraints, α or β of a particular flow
could be zero. If one does not wish to permit such a possibility, and in accordance to the ability to give
a complete pre-order inherent in PROMETHEE II, we provide a stricter, though more straightforward
formulation in the following section where we show how the σ − µ−SMAA approach can be applied
to PROMETHEE II directly, which takes both flows implicitly into account. Let us observe that we
defined the global scores smPI

i in the perspective of risk aversion both for gains, φ+(ai), and for losses,

φ−(ai). Indeed, the greater σ
φ+

i and σ
φ−

i , the smaller the global score smPI
i which is not desirable. Of
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course, the same index could be computed (obtaining other results) in the perspective of the prospect
theory with risk aversion in case of gains and risk-seeking in case of losses, so that the greater σ

φ+

i

and the smaller σ
φ−

i , the smaller the global score smPI
i . In this case the constraints comparing unit i

with all other units i′ should be reformulated as follows:

α+µ
φ+

i − α−µ
φ−

i − β+σ
φ+

i + β−σ
φ−

i ≥ α+µ
φ+

i′ − α−µ
φ−

i′ − β+σ
φ+

i′ + β−σ
φ−

i′ + δPI , ∀i′ ∈ A \

k−1⋃

h=1

PKFh

4.2.3 Sigma-Mu applied to PROMETHEE II

Assuming all necessary steps to apply SMAA-PROMETHEE II to a dataset are accomplished -that
is: matrices RW, RP and RQ are constructed to compute matrices Φ+, Φ− and eventually Φ-,
it is straightforward to compute the two parameters of interest, µφ and σφ for every alternative
a ∈ A as in equations (4.2.1.6d) and (4.2.1.6e) accordingly. These two parameters are based on
the net flows, hence the regret factor is implicitly already taken into account in the intrinsic values -
φ(ai,wmc,pmc,qmc), ∀i = 1, . . . , n,mc = 1, . . . , s- and thus in the parameters proxying their distribution,
i.e. µ

φ
i , σ

φ
i . This is the fundamental difference with LP formulation (4.2.2.5) which includes all

components and thus the possibility to a more ‘loose’ trade-off among the two flows. That said, the LP
formulation for the σ − µ− SMAA-PROMETHEE is the following:

δPII
ik = Max

α,β
δPII

s.t.






αµ
φ
i − βσ

φ
i ≥ αµ

φ
i′ − βσ

φ
i′ + δPII , ∀i′ ∈ A \

⋃k−1
h=1 PKFh

α, β ≥ 0

α+ β = 1

. (4.2.3.1)

with the global net flow efficiencies (smPII
i ) arising naturally as the sum of the local efficiencies (i.e.

δPII
ik ) for every alternative i = 1, . . . , n.

Considering again the G-10 data presented up to this point as an illustrative example, five PKF
were found solving (4.2.3.1), illustrated in Fig. 7. Global efficiencies (smPII ) are given in Table 3.
A comparison with the more ‘loose’ formulation (smPI , eq. 4.2.2.5) is provided, with both rankings
being fairly similar. Furthermore, for reasons of comparability, we provide two outputs of the SMAA-
PROMETHEE II method (Corrente et al., 2014), the expected rank (see ‘holistic acceptability index’
in Lahdelma and Salminen, 2001, p.449) and the rank with the highest probability (i.e. highest
‘rank acceptability index’ - or modal rank). As far as the ranking of G-10 countries is concerned,
SMAA-PROMETHEE II provides a probabilistic one (as also visualised in Fig. 3), yet at this case it is
fairly inconclusive. The reason is that the highest ranking acceptability index is that of Switzerland
attaining the first rank with a 59.05% probability, with all the remaining alternatives achieving
probabilistic ranking with a certainty between 12.21% and 38.34% (Table 3). This is admittedly a very
low probability to be acceptable evidence of a country being ranked at that place.

However, this also highlights how the σ − µ efficiency analysis method complements the SMAA
variant of PROMETHEE by permitting encapsulation of the vagueness associated with a ranking
(for ordinal outcomes) or the magnitude (for cardinal outcomes) of an alternative into a single value.
Of course, that is not to say that uncertainty analysis should be neglected, rather the contrary. One
might obtain the single estimators, but can always go back to the SMAA-PROMETHEE II outputs
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to obtain more interesting insights of how this single value was obtained, as well as comparative
benchmarks (such as the pairwise winning index or ranking acceptability indices) that give the DM a
more evident overview of what lies underneath these values, as well as comparative insights between
the alternatives being evaluated, particularly when it comes to their visual exploration through the
SMAA-GAIA method that is introduced in the following section.

Figure 7. The σ − µ plane for net flow.

This figure shows how the G-10 Countries are evaluated in the σ − µ plane
based on their net flows. Both axes are standardized using the Z-scores.
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Table 3: Global efficiencies for the G-10 Countries

σ − µ PII σ − µ PI SMAA-PROMETHEE II

Country smPII Rank smPI Rank
Expected

Rank

Rank with
Highest

Probability
Probability

Belgium 0.489 5 0.421 8 5 7 12.21%
Canada 0.512 4 0.516 4 5 6 17.04%
France 0.462 7 0.456 5 6 7 17.90%

Germany 0.441 8 0.442 7 6 4 28.18%
Italy 0.181 9 0.159 10 9 11 31.39%

Japan 0.000 11 0.000 11 8 11 31.63%
Netherlands 0.601 2 0.615 2 4 3 38.34%

Sweden 0.518 3 0.524 3 4 2 29.38%
Switzerland 1.000 1 1.000 1 2 1 59.05%

United Kingdom 0.467 6 0.455 6 8 9 24.75%
United States 0.128 10 0.172 9 8 11 31.29%

Note: σ − µ PII refers to the global efficiencies of LP formulation (4.2.3.1), whilst σ − µ PI refers to
the global efficiencies from LP formulation (4.2.2.5). Expected rank is the rank taking into account
all probabilistic outcomes (i.e. for each i = 1, . . . , n: Expected Rank =

∑n

r=1
p(i = r)× r), rounded to

no decimals. Rank with the highest probability is, as its name suggests, the rank for which RAI is
the max for each Country, i.e. the modal rank a country achieves in the SMAA. For more details on
the outputs of this method, see the original paper by Corrente et al. (2014).
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4.3 A cardinal version of SMAA-GAIA

In Section 3.3 we briefly discussed the concepts of GAIA and its SMAA variant as given in Arcidiacono
et al. (2018). In this section, we complement the latter study in two ways. First, we introduce an
alternative visualisation of GAIA for SMAA-PROMETHEE that displays cardinal information for a
unit of interest on the plane. Second, we embed the two inputs (µ and σ) and the global output (sm) of
our above proposed approach in the plane, in order to provide analytical insights of their relation to
the rest of the criteria that formed them. Before we begin introducing these concepts, let us briefly
give a few necessary preliminaries.

Consider the following n×m unicriterion flow matrix U :

U
n×m

=









ua1,g1 ua1,g12 · · · ua1,gm

ua2,g1 ua2,g12 · · · ua2,gm
...

... · · ·
...

uan,g1 uan,g12 · · · uan,gm









, (4.3.1)

where: uai,gj =
1

n−1

∑n
i=1 [Pj(ai, ai′)− Pj(ai′ , ai)], i′ 6= i. GAIA is essentially an application of PCA on

U, reducing the m-dimensional space to just a two or three-dimensional plane that is visually clear to
the keen eye. In particular, consider that we want to construct a two-dimensional GAIA plane, with
λ1, λ2 the two largest eigenvalues and e1, e2 the corresponding eigenvectors, all arised from applying
PCA to (4.3.1). Considering that the explained variance (i.e. δ = λ1+λ2∑m

r=1
λr

) is at least 60% (Brans and
Mareschal, 1995), the GAIA visual consists of a two-dimensional plane on which:

• Each criterion gj is plotted with coordinates (e1(j), e2(j)), with a line linking it to the origin of the
plane, i.e. (0,0).

• Each alternative is plotted using its principal component scores as coordinates.

• The ‘decision stick’ is plotted using the following coordinates (w⊺e1,w⊺e2), with w the weight
vector chosen. Again, a line connects these coordinates to the origin of the plane, i.e. (0,0).

Arcidiacono et al. (2018) propose a SMAA variant of GAIA where instead of one ‘decision stick’ -as
in regular PROMETHEE methods-, we have one for each weight vector, all of which can be plotted on
the plane (see upper two plots of Fig. 5). This shows how the preferences taken into account in the
SMAA are dispersed along the criteria. Moreover, in line with the ranking acceptability indices, the
authors propose highlighting those weight vectors for which an alternative is ranked at a given place
(e.g. 1st, 2nd and so on place) (see lower two plots of Fig. 5) which showcases ordinal information on
the plane. Building upon their contribution, we give cardinal meaning to the SMAA-GAIA plane by
highlighting each weight vector with a particular color corresponding to a rich gradient that is linked
to an alternative’s net flow (φ). We forthwith explain how this is attainable and give a brief example
with the G-10 countries’ evaluations discussed thus far.

Consider a SMAA-GAIA representation of an alternative say ai. The GAIA plane is defined exactly
as mentioned in the list above. Now, each weight vector w ∈ W is plotted with coordinates (w⊺e1,w⊺e2)
and a color in the RGB gamut of preference that depends on the alternative’s net flow score for that
particular vector. For instance, consider that alternative ai takes net flow scores between 0.5 and 1 (in
a normalized [0, 1] scale for simplicity). One could visualize this in a gradient of one’s choice, e.g. black
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color equals 0.5, white equals 1, and every value in-between takes a linear combination of these RGB
codes’ values10.

To give an example of our proposal, Fig. 8 delineates the SMAA-GAIA plane for the G-10 evaluation
using SMAA-PROMETHEE, depicting the space of weight vectors included in our analysis and, based
on each vector, the net flow scores that Switzerland achieves in this evaluation. According to the plot,
Switzerland takes net flow values (normalized in the [0, 1] range) between just under 0.5 and up to
1, with the latter value being the norm. Particularly, as it is clear from the plot, it is consistently
achieving a unity (top) score (yellow areas) in a vast part of the included weight vectors. Unless
the preferences lean significantly more towards the ‘WG’, ‘NIG’ or ‘LP’ criteria (blue-cyan areas), it
achieves a top, or near the top performance compared to the rest of the G-10 countries. Of course, in
the software, one could use this figure in a more interactive way, e.g. by zooming in and exploring the
relationships accordingly. For instance, the right subplot of Fig. 8 shows a 40% zoomed frame of the
original figure. Looking at it, its clear that no matter which linear combination of weights among ‘CI’,
‘PR’, ‘CR’, ‘MI’, ‘GDP’ or ‘PD’ criteria this country is weighted more in, it still achieves a top score (pure
yellow highlighted area).

Figure 8. The SMAA-GAIA plane.

This figure shows how the G-10 countries are evaluated in the GAIA plane. The SMAA-PROMETHEE
weight vectors are plotted, colored according to the net flows Switzerland achieves based on these prefer-
ences. The right subplot is a 40% zoomed-in version of the left one.

While not shown here due to space constraints, other variants of Fig. 8 could provide further
insights. For instance, one could be interested in visualising e.g. which preference combinations would
yield a score of between 0.80 and 1 for Switzerland. This would require plotting fewer weight vectors,
whilst highlighting more important areas for the DM. On a similar note, the DM could be interested

10For instance, consider a value of 0.5 would be linked to a pure black color with an RGB code of [0, 0, 0], whereas a value
of 1 would correspond to a pure white color, with a code of [255, 255, 255]. A value of 0.75 would be linearly interpolated
to the RGB code of [128, 128, 128] which is the grey color standing right in the middle of this grayscale chart. MATLAB
automatically applies a color gradient of preference (see e.g. ‘colormap’ function) easily implemented through its ‘scatter’
function.
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in those preferences that put Switzerland’s score in at least the top 10th percentile, or the other way
around; that is, which preferences make Switzerland performing poorly, putting its performance in
the bottom 10%. Last, but not least, should the DM like to benchmark how changes in preferences
affect the scores between a unit of interest (say one country) and another (say a close-performing peer
of that country) this could be feasible as well (for an example see Fig. 13). What is more, it could be
combined with the classic outputs of the SMAA-PROMETHEE, such as the central weight vectors,
permitting the DM to see the typical preference for that space.

A second interesting use of GAIA could involve visualising the relationships between the elementary
criteria and the inputs (σ, µ) and global output (sm) of our proposed method. In particular, one could
be interested in how the very basic ‘raw material’ forming the subsequent part of the analysis that we
presented relate to it. Put simply, we’re looking to delineate the relationships between these two sets.
This does not involve any modification of GAIA at all. In particular, we can do this by horizontally
concatenating a matrix containing the unicriteria net flows of the three measures (µ, σ, sm) with the
matrix U (4.3.1). Then, as we are not interested in projecting any cloud of weight vectors, the procedure
described in the beginning of this section runs with the newly formed n×(m+3) matrix being projected
(through PCA) in a two-dimensional plane exactly as in the regular GAIA procedure we described at
the beginning of this section. In the case of the G-10 countries’ evaluation, this would produce Fig. 9.

Figure 9. Sigma-Mu and the GAIA plane.

This figure shows how the sigma-mu analysis inputs (σ, µ) and global output (sm) can be embedded
in the GAIA plane, providing the DM with further insights on the relationships between elementary
criteria that formed those, as well as between them.

There are a few key observations to be made from this figure. First, µ and sm seem to be driven
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towards the same direction, whilst σ is located exactly opposite to sm. This, of course, is expected as µ

is supposed to maximize an alternative’s score, and σ to penalize it. Second, with the exception of ‘LP’,
‘HLE’ and ‘WG’, which are orthogonal to σ (thereby not relating to it), two criteria are completely in
the opposite direction to σ (i.e. ‘PR’ and ‘NIG’). This implies that the former two criteria are reducing σ

in the majority of alternatives, while there’s a mixed case for the remaining ones not mentioned above.
Of course, similar notes can be inferred from the relationship of µ (or even sm) and the remaining
criteria, though we avoid it to conserve space.

Last, but not least, embedding the three key measures outlined in this study into the GAIA plane
lets us directly and plainly observe the performance (though in terms of dominance as to the remaining
alternatives) of the evaluated alternatives as to both the inputs (σ, µ) of sigma-mu and the global
output (sm). For instance, the further a G-10 country is located towards the same direction with σ,
the bigger its dispersion is compared to other G-10 countries located closer to σ. For instance, Japan
(JAP), Italy (ITA) and USA (USA) have a noticeably higher dispersion to other alternatives (e.g. than
UK, CAN, FRA etc.), whilst at the same time, the Netherlands (NET) and Switzerland (SWI) seem to
dominate other G-10 countries both in terms of µ and of global scores (sm).

Essentially, one could think of these two outputs above (i.e. Figs. 8 and 9) as a visual aid tool in
the hands of the DM in the following way. Consider that the DM is interested in evaluating the set of
G10 countries, with her main interest lying in the case of Switzerland (SWI). Fig. 9 straightforwardly
gives the DM the information that SWI is dominating the remaining alternatives by a great deal in
terms of global output (sm). SWI has the highest µ as well, whilst should the DM wants to see how
this score is achieved (e.g. is it consistent with the majority of preferences, or is it due to outliers - i.e.
a good performance due to preferences concentrated in some criteria for which a unit is performing
very good), one may look at Fig. 8. Of course, the same could happen for a different country, and with
different variations of this plot. To give an example, Fig. 8 could be highlighting the net flow scores
of a different country, or the dimensions on which SWI performs poorly (e.g. maybe the bottom 10%
of percentile performance), so that the policy-maker could focus on improving those dimensions that
have the greater effect lifting an alternative’s performance ceteris paribus.

5 Case Study: The Inclusive Development Index

The need against a solely economic-oriented measure of growth, such as as the GDP, is well-advocated
in the literature (e.g. see, among other influential studies, Stiglitz et al., 2009; Costanza et al., 2009;
Kubiszewski et al., 2013). Their advocates do not protest the use of GDP to measure economic growth,
rather its association with the measurenent of a nation’s welfare; something that is noted even during
its very conception by Simon Kuznets (1934) dated in the far 1934. Several attempts have been
made by global organizations and institutions to measure welfare individually (e.g. UNDP’s ‘World
Happiness’ report), or jointly with GDP in a more socio-economic inclusive growth index (e.g. OECD’s
‘Better Life Index’ (BLI), WEF’s ‘Inclusive Development Index’ (IDI)). The former is carried out in
the form of surveys, while the latter two are presented as composite indicators that rank the OECD
and 108 economies respectively, on the basis of 12 and 3 dimensions accordingly. Being composites
of an additive type and no decisive judgement on a differential weighting, means both the BLI and
IDI indicators bear the issues discussed in the introduction of this study. Interestingly, while both
start from equal weighting to form their baseline results, they leave the choice of a different weight
vector to the end user through their interactive platforms on their official websites. The BLI has
been extensively discussed before (for a comprehensive review of the literature and a methodological
proposal see Greco et al., 2017). Thus, in this study we are engrossed with WEF’s IDI that we briefly
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describe in the following (for an extensive description, see the full report from Samans et al., 2017).
The Inclusive Development Index is hierarchical in that it consists of three dimensions, each of

which contains four sub-indicators (see Table 4). According to the authors (Samans et al., 2017, p.9)
this set of indicators, namely ‘National Key Performance Indicators’ provides “[...] a more complete

picture of national economic performance than that provided by GDP alone, particularly if the ultimate

objective of development is understood to be sustained, broad-based advancement of living standards

rather than increased production of goods and services, per se”. The authors claim that this index
is overall useful for governments and stakeholders to determine the effect of changes in policy and
conditions within a typical political cycle. Taken into consideration along with the report’s policy
framework and metrics, which consists of seven pillars - and it offers a relative demonstration of
institutional strength enabling environment conditions in fifteen of the most relevant policy domains
for inclusive growth (see Samans et al., 2017, Fig.1) - one could monitor both the output (that is the
inclusive growth index hereby studied) and the input (that is the environment laying the foundations
to inclusive growth as witnessed by the seven pillars) of each of the 108 economies analysed in the
report. Of course, in this study we are interested in the analysis of the output measure, that is the
inclusive development index (hereafter referred to as ‘IDI’).

Table 4: Inclusive Development Index (IDI)

Dimensions Sub-Indicators

GDP per capita (GDP)
Growth and
Development

Labor Productivity (LP)
Employment (E)

Healthy Life Expectancy (HL)

Net Income GINI (NIG)

Inclusion
Poverty Rate (PR)
Wealth GINI (WG)

Median Income (MI)

Adjusted Net Savings (ANS)
Intergenerational Equity

and Sustainability
Carbon Intensity (CI)

Public Debt (PD)
Dependency Ratio (DR)

For an extensive description of the sub-indicators and their sources, we
refer the reader to the original report (Samans et al., 2017), or the official
website of the WEF at: https://goo.gl/2wrF7K.

The report’s ‘scoreboards’ are based on equal weighting, dimension and sub-indicators-wise, which
means that each dimension is given 33.3% of weight and each sub-indicator 8.25% weight accordingly.
We originally construct the IDI using the PROMETHEE II method using equal weights to be consistent
with the report as to the preferences on criteria importance11. This index will act as a comparative
metric against which we will compare the results of our proposed approach. We annotate the obtained
index as IDIP .

Using the σ−µ SMAA-PROMETHEE methods discussed in section 4, we construct another version of
IDI, taking into account the whole space of weight vectors this time. This permits the developer extend

11For reasons of simplicity, we use the linear function, and for each criterion we set a zero indifference threshold (q) and
the max of the differences among alternatives as the preference thresholds (pgj ) accordingly.
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the analysis above and beyond the issue of the representative agent inherent in the classic analysis
of composite indicators (see Greco et al., 2018, p.587 for a discussion), whilst it also encapsulates a
basic form of uncertainty and sensitivity analysis (see Saisana et al., 2005) that is frequently found
to be missing from the development of composite indicators, despite its importance (Burgass et al.,
2017). Using 10,000 randomly (uniformly) simulated weight vectors as potential preferences in the
SMAA-PROMETHEE approach, we apply the σ − µ PROMETHEE I (eq.4.2.2.5, Section 4.2.2) and
PROMETHEE II (eq. 4.2.3.1, Section 4.2.3) approaches to this set of data. We do remind that these
two approaches are similar in the sense that they take into account incomparability in the evaluation,
though the former is more flexible than the latter as it does so with such a way giving the benefit of
the doubt to the unit being evaluated as to the balance between performance and regret. Instead,
the latter takes these aspects implicitly into account for all units and with the same rate (hence, no
flexibility -e.g. through weights α+,β+ and α−, β−- in that regard).

Carrying out the above analysis, we find that the 108 countries are scattered in 27 PKF, visualised
in Fig. 10. The global scores obtained through the σ − µ PROMETHEE II (smPII ) are delineated in a
world heat-map in Fig. 11. Very similar results were obtained with the σ−µ PROMETHEE I approach
(Spearman’s correlation: 99.7%, Kendal’s Tau: 98.09%) thus we do not differentiate between the two
approaches, but we only report and discuss the former one. Given the fact that analysing and reporting
table results for 108 countries would need a fair amount of space, we only focus on those countries
that made the top 15 list, providing the full set of results in an online supplementary appendix. The
top 15 countries’ results are provided in Table 5.

According to the results in Table 5, the rankings of the two variants of σ − µ applied to SMAA-
PROMETHEE (i.e. IDISMPI and IDISMPII ) are identical (which is reasonably expected given their
very high correlation). The top country according to its socio-economic inclusive development is
Norway, something that is confirmed through all models, as well as probabilistic outcomes (i.e. SMAA-
PROMETHEE II output - unreported here for brevity). In fact, the countries making it to the Top-8 list
are consistently ranked at that place even with equal weights (i.e. IDIP ), while there’s a small reshuffle
experienced in the remaining seven positions. Out of the top fifteen countries, ten central and northern
European countries made it to this list, another four countries from the southern hemisphere (Asia,
Australia & Oceania) and one from North America (Canada). Whilst unreported in this list, United
States was ranked 35th according to both variants of our proposed approach, and 30th according to
the WEF’s preferences (i.e. equal weights).

Understandably, providing a series of rankings as we do here raises the question of which one
an interested party needs to take into account. Admittedly, there is no such thing as a ‘correct’ or
‘false’ ranking, but rather a different underlying assumption inherent in it. We do believe that the
one we provide here under the ‘IDISMPII ’ label is more holistic in the sense that it implicitly takes a
few important things into account: a multiplicity of viewpoints in the evaluation exercise, and spatial
information about the competition surrounding each alternative in the σ−µ plane. Moreover, compared
to a set of estimators obtained through a single weight vector, both our estimators and the rankings
based on these are ‘corrected’ for uncertainty, as imbalanced units are being penalized more in their
final global scores.

Turning to the utilization of the cardinal version of GAIA we provided in Section 4, Fig. 12
delineates how consistently Norway (ranked 1st through all specification) obtains a top score. It is
apparent that almost no matter which linear combination between ‘PR’, ‘HLE’, ‘NIG’, ‘LP’, ‘MI’, ‘GDP’
and ‘CI’ (a staggering seven out of twelve criteria) is the choice of preferences, it achieves a top (unity)
score. Its dominance over the ‘PD’ criterion is outstanding as well, whilst crucial improvement could be
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Figure 10. The Sigma-Mu plane.

This figure shows how the 108 countries in our sample are evaluated in the sigma-mu
plane. 27 PKF are found. Axes are normalized according to their Z-scores.

made with respect to ‘E’ and ‘WG’, criteria in which it is considerably dominated in by the remaining
countries (Norway’s score could even reach a low of 40%).

An interesting insight that can be made from the cardinal information presented in the GAIA
plane is that delinated in Fig. 13. Consider that a policy-maker in Luxembourg (consistently ranked
just below Norway) would like to see areas of improvement having Norway as a benchmark. Of course,
one could argue that this could be made by looking at the elementary indicators. The difference is
that these do not provide any information about dominance, whereas a plotted preference (i.e. a
weight vector) can show the evaluation of a country of interest (e.g. by highlighting this preference
in a given colour) taking into account the underlying dominance (i.e. through the uni-criterion net
flows). This can be done by highlighting a weight vector with a colour according to the difference in the
net flow scores of the two alternatives achieved with that weight vector (i.e. (φ(Nor)

φ(Lux) − 1)× 100). This
would show the overall performance difference Norway attains against Luxembourg (%) according
to that preference. As we are not interested in all the differences but only in areas of improvements
for Luxembourg, we only show those vectors (and highlighted accordingly) for which Norway’s score
is better than Luxembourg and for at least a 10% difference. As it seems from Fig. 13, Norway is
between at least 10% and 25% better than Luxembourg in criteria plotted towards the bottom half of
the figure, with an extreme case scenario of the former being superior than the latter by 50% when the
weight of preferences is solely focused around employment (i.e. criterion ‘E’). Of course, the threshold
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Figure 11. Inclusive Development - Global scores.

This figure shows how the 108 countries in our sample are evaluated according to their inclusive development.
Both size and colour delineated in the heatmap shows the global score a country achieves according to the 12
criteria (see Table 4) the WEF provides as indicators to inclusive development.

of 10% could be removed/adjusted according to what the DM considers a difference big enough to take
respective action to reduce the gap.
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Table 5: Inclusive Development Index (IDI) for the Top 15

IDISMPI IDISMPII IDIP

Country sm+ Ranking sm Ranking φ Ranking

Norway 1.00 1 1.00 1 1.00 1
Luxembourg 0.97 2 0.97 2 0.97 2
Switzerland 0.91 3 0.90 3 0.93 3

Iceland 0.75 4 0.75 4 0.83 4
Australia 0.74 5 0.73 5 0.81 5

Netherlands 0.73 6 0.72 6 0.81 6
Sweden 0.70 7 0.70 7 0.80 7

Singapore 0.66 8 0.66 8 0.78 8
Korea, Rep. 0.66 9 0.65 9 0.73 13

New Zealand 0.64 10 0.63 10 0.70 15
Denmark 0.63 11 0.63 11 0.76 9
Belgium 0.62 12 0.62 12 0.75 10
Austria 0.62 13 0.62 13 0.74 11
Canada 0.61 14 0.61 14 0.73 12

Germany 0.61 15 0.60 15 0.72 14

This table shows the estimators and the rankings of the Top-15 coun-
tries, achieved with equal weights (i.e. IDIP , similarly to the WEF’s index
though with an MCDA technique instead of an additive utility setting),
and taking into account the whole space of weight vectors using the σ − µ

SMAA-PROMETHEE I (i.e. IDISMPI , allowing for some flexibility between
performance and regret) and σ − µ PROMETHEE II (i.e. IDISMPI ).
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Figure 12. The SMAA-GAIA plane: the case of Norway.

This figure shows the space of weight vectors highlighted according to the evaluation of
Norway’s net flows.
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Figure 13. The SMAA-GAIA plane: Norway’s superiority over Luxembourg.

This figure shows the space of weight vectors highlighted according to the superiority
of Norway’s evaluation over Luxembourg’s (%). The space of weight vectors plotted is
constrained to only those for which Norway is at least 10% overall better than Luxembourg.
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6 Conclusion

Composite indicators are still far from a perfect metric. The reason is that by involving a series of
several steps -the most important being weighting and aggregation- means that they are fairly prone
to error judgements, mistakes, uncertainty or even manipulation. Whilst it is a generally acceptable
notion that no perfect aggregation will ever exist (Arrow and Raynaud, 1986), these composite and often
opaque scores are, at the moment, the best and most popular metrics we may provide to summarise
the multidimensionality of a phenomenon being evaluated.

An important issue in the construction of composite indicators is their compensatory nature
for which some serious deficiency on one or more elementary indicators is counterbalanced by the
performances of other elementary indicators, which can be questionable in several domains. In this
perspective we proposed a novel definition of non-compensatory composite indicator as aggregation
of non-compensatory preferences of the considered units. In this context, we have seen that Borda
count and its extensions, i.e. the PROMETHEE methods, constitute a valuable basis for constructing
non-compensatory composite indicators. In particular, the approach we are proposing is characterized
by

• the basic ordinal nature of preferences on elementary indices (possibly mitigated by means of
fuzzy preferences to take into account inaccurate determination, uncertainty and imprecision of
original data),

• the basic cardinal nature of composite indicators which is required to give the compared units an
evaluation on a numerical scale and not simply an ordinal ranking.

We defined our methodology, the ordinal input for cardinal output approach to non-compensatory
composite indicators, and we believe that it presents quite interesting properties and has a promising
potential.

On this basis we proposed a comprehensive methodology based on well-known operations research
methodologies to construct non-compensatory composite indicators that offer the following advantages:

• Based on the SMAA methods, we enhance the transparency in an evaluation process. This is
crucial as it shows how prone an alternative could be to changes in the parameters used to
evaluate it. Moreover, SMAA permits going above and beyond the issue of the representative
agent inherent in an evaluation exercise that concerns a population which is often unknown and
thus almost impossible to guess the preferences of.

• Based on the PROMETHEE methods, which are based on a generalization of the classic Borda
score, we construct our basic non-compensatory indices based on our approach of ordinal input for
cardinal output, and, moreover, in the step of aggregation, we disentangle and take into account
both the performance and the regret factors of an alternative being evaluated. In this context
of non-compensatory aggregation, normalization of elementary indicators is not needed, and
weights act now as ‘importance coefficients’ instead of ‘trade-offs’ between pairs of indicators.

• Based on the ‘Sigma-Mu efficiency analysis’ approach, we are able to consolidate the breadth
of information provided with the SMAA methods that, whilst greatly informative on its own,
was not consolidating the output into a single value that acts as a performance metric. This
approach takes into account the distribution of evaluations, essentially proxying for the whole
population interested in the evaluation process. Furthermore, it takes into account the spatial
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information on the ‘Sigma-Mu’ plane, which adjusts the classic efficiency measurement to that of
taking into account the distances from every single level of competition (as proxied by the many
Pareto-Koopmans frontiers in the plane).

• Last, but certainly not least, based on the GAIA visual aid, we provide another SMAA-variant of
this important tool in the hands of a decision-maker that is able to showcase cardinal information
from the SMAA evaluation. In particular, it shows how an alternative’s evaluation can change as
a function of the preferences taken into account in that evaluation. Moreover, as showcased in an
illustrative example in this paper, it could display areas of improvement for an alternative of
interest compared to its closer competitive.

Closing this study, we would like to mention an important area of improvement in the construction
of composite indicators. That is interactions among criteria. In particular, in this process we assume
no externalities and interdependencies among criteria. In real world situations though, it is very
probable that criteria (particularly those within the same dimension) can be mutually strengthening
(or conflicting) the final score (for the basic theory on which this approach can be construct see Angilella
et al. (2015) and Angilella et al. (2016) for the compensatory approach and Arcidiacono et al. (2018) for
the non-compensatory approach, while for some first applications in this direction see Angilella et al.
(2018) and Corrente et al. (2019)). This is, to our belief, an important and fruitful area of improvement
that needs to be treated with caution.
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