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Abstract

This work considers optimization problems under Rawls and maximin with mul-

tiple discount factors criteria. It proves that though these criteria are different,

they have the same optimal value and solution.
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1 Introduction

Consider the following classical question: given a stock of a renewable resource,

what would be the best inter-temporal exploitation of it, considering the welfare

of both current and future generations?

The famous Ramsey criterion, which uses a constant discount rate and is used

largely in research into economic dynamics, is criticized for its weak weighting

parameters for generations in the distant future. The evaluation of each utilities

stream is quasi-determined by a finite number of generations. This raises the
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work.
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concerns that following the Ramsey criterion, the economy does not leave enough

resource for the future.

In the classical work "Theory of justice", Rawls [17] assumes that if one is hidden

behind a veil of ignorance, with total lack of information about the condition into

which she1 will be born, the economic agent should choose the maximization of

the least favoured generation. Specifically, given a inter-temporal consumption

streams, her evaluation criterion of inter-temporal utilities streams should be

U(c0, c1, c2, . . . ) = inf
s≥0

u(cs),

where u(ct) is the utility of the tth generation, given ct as the consumed resource.

We can consider the Rawls’s question in another way: the economic agent may

be ambiguous about what is the "good" discount factor to choose in evaluating

utilities streams. Her set of possible discount factors is (0, 1). Having total lack

of information, for a given consumption stream {cs}
∞
s=0, she should evaluate it as2

U(c0, c1, c2, . . . ) = inf
δ∈(0,1)

[

(1− δ)
∞
∑

s=0

δsu(cs)

]

.

This criterion can also be considered as an application of Rawls’s spirit in the

configuration where disagreements exists between people in the economy about

how to discount the future. The social planer choose a criterion that maximizes

the least favoured person.

Naturally, this raises the question of the behaviour of the economy under the Rawls

criteria. The first Rawls criterion is well studied in the seminar contributions of

Arrow [2], Solow [15] and Calvo [4]. The result is clear: the behaviour of the

economy depends strongly on the initial stock. If the stock of a renewable resource

is below the golden rule (the level of stock allowing a maximal level of constant

consumption), the optimal exploitation strategy is to ensure that the stock remains

1We use female pronouns as a convenient default.
2For the axiomatic foundation and discussion about the importance of the normalizing term

1 − δ, see Chambers & Echenique [5] and Drugeon & al [9]. Observe that for any 0<δ< 1, we
have (1− δ)

∑

∞

s=0
δs = 1.
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constant over time. In the case of abundant stock of a renewable resource, which

is higher than the golden rule, there is an infinite number of solutions and every

optimal path converges decreasingly to this level.

The purpose of this work is to study the same question under the second Rawls

criterion. We prove that for a low level of resource stock (under the golden rule),

the unique solution is to keep the stock constant through time. Moreover, the

solutions under the two criteria coincide. For the case where the resource is abun-

dant, the solution under the first criterion is the one under the second, and the

value functions are equal.

This work is organized as follows. Section 2 introduces the two Rawlsian problems

and the main properties of the first one and solves the second one. Section 3

discusses different criterion studied in the literature.

2 The two Rawlsian criteria

2.1 Fundamentals

Denote by u the instantaneous utility function and f the regeneration function of

the renewable resource. These two functions are supposed to be strictly increasing

and concave. The concavity of the utility function is strict. To simplify the

presentation, suppose that f ′(0)> 1
δ

and f ′(∞)< 1.

Denote by x the golden rule, the capital accumulation corresponding to the max-

imum level of constant consumption: this value x is solution to the equation

f ′(x) = 1.

For any given capital stock x0 ≥ 0, denote by Π(x0) the set of feasible paths of

stock {xs}
∞
s=0: for any s, 0 ≤ xs+1 ≤ f(xs).

For each discount rate 0<δ < 1, it is well known in dynamic programming litera-

ture3 that the optimal capital accumulation path corresponding to δ is monotonic

3See Stokey, Lucas with Prescott [16].
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and converges to xδ, the solution to the equation f ′(x) = 1
δ
.

For each feasible stock path x = {xs}
∞
s=0, the inter-temporal evaluation of the

corresponding consumption path {cs}
∞
s=0 with cs = f(xs)− xs+1 for any s ≥ 0, is

given as

ν(x) = inf
s≥0

u(cs).

2.2 The classical Rawls criterion

The famous Rawls criterion, embedded in the optimal growth context, can be

considered as the following optimization problem, which is well studied in Arrow

[2], Solow [15] and Calvo [4]. The economic agent solves:

max

[

inf
s≥0

u(cs)

]

,

under the constraint ct + xs+1 ≤ f(xs) for all s, with x0 > 0 given.

The Lemma 2.1 establishes the foundation for the existence of optimal solution

and fundamental properties of the value function.

Lemma 2.1. i) For any x0 ≥ 0, the set of feasible paths Π(x0) is compact in

product topology.

ii) The function ν is upper semi-continuous for the product topology.

iii) There exists x
∗ ∈ Π(x0) such that

ν
(

x
∗
)

= max
x∈Π(x0)

ν
(

x

)

.

Proposition 2.1 gives the behaviour of the optimal path, which depends strongly

on the initial condition, with the golden rule x as the critical threshold.

Proposition 2.1. i) Consider the case 0 ≤ x0 ≤ x. The problem has unique
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solution x
∗ = (x0, x0, . . .) and

max
x∈Π(x0)

ν(x) = ν(x∗)

= u (f(x0)− x0) .

ii) Consider x0 >x. The problem has an infinite number of solutions which all

converge to x. And

max
x∈Π(x0)

ν(x) = u (f(x)− x) .

For initial capital stock x0 smaller than x, the optimal choice is to remain in the

status quo. The unique solution x∗ satisfies x∗
s = x0 for any s ≥ 0. The optimal

value is u (f(x0)− x0). For x0 bigger than x, there exists an infinite number

of solution, every optimal stock path converges to x and the optimal value is

u (f(x)− x).

2.3 The second Rawlsian criterion and the equivalence

between the two criteria

In [9], Drugeon & al consider the optimization problem with multiple discount

factors under the maximin criteria. Let D= [δ, δ] representing the set of possible

discount factors, the economic agent solves:

maxmin
δ∈D

[

(1− δ)
∞
∑

s=0

δsu(cs)

]

s.c cs + xs+1 ≤ f(xs) for any s,

x0 is given.

For each feasible stock path x = {xs}
∞
s=0, let cs = f(xs)− xs+1 for any s ≥ 0 and

ν̂(x) = inf
0<δ< 1

[

(1− δ)
∞
∑

s=0

δsu(cs)

]

.
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As the functions u and f satisfy the standard conditions in growth theory, for

each discount factor δ, the optimal path of the Ramsey problem corresponding to

δ converges monotonically to xδ the solution to

f ′(x) =
1

δ
.

Moreover, it is easy to verify that

lim
δ→0

xδ = 0,

lim
δ→1

xδ = x.

Proposition 2.2 gives a detailed description of the optimal path under the multiple

discount factors and the second Rawlsian criterion.

Proposition 2.2. Assume that 0<δ ≤ δ < 1. Denote by χ∗ the unique optimal

path for the maximin problem.

i) For x0 ≤ xδ, χ∗ coincides with the optimal path of the Ramsey problem with

discount factor δ, is increasing and converges to xδ.

ii) For xδ ≤ x0 ≤ xδ, for any s, x∗
s = x0. The optimal path χ∗ coincides with the

optimal solution of Ramsey problem with discount factor δ satisfying xδ = x0.

iii) For x0 ≥ xδ, χ∗ coincides with the optimal path of the Ramsey problem with

discount factor δ, is decreasing and converges to xδ.

Figure 1, taken from Drugeon & al [9], provides an illustration of the dependence of

optimal paths in initial condition. The functions ϕδ and ϕδ represent respectively

the optimal policy functions for the Ramsey problems with the discount factors δ

et δ.

By technical difficulties relying with the fixed point arguments, Drugeon & al [9]

assume that D is a closed set belonging to (0, 1): 0<δ ≤ δ < 1. Intuitively, under

the result in Proposition 2.2 we can hope that for D= (0, 1): δ converges to zero,
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Figure 1: The optimal policy function in multiple discount factors configuration

and δ converges to 1, the two Ralwsian problems have the same value function:

for D= (0, 1), we get max
x∈Π(x0) ν(x) = max

x∈Π(x0) ν̂(x).

Proposition 2.3. For any x0 ≥ 0,

i) We have

max
χ∈Π(x0)

inf
s≥0

u
(

f(xs)− xs+1

)

= max
χ∈Π(x0)

[

inf
0<δ<1

(1− δ)
∞
∑

s=0

u
(

f(xs)− xs+1

)

]

.

ii) For 0 ≤ x0 ≤ x, the two Rawlsian problems have the same solution x
∗ =

(x0, x0, x0, . . . ).

iii) For x0 >x, every solution under the first Rawlsian criterion is a solution

under the second one.

Proof. (i) To facilitate the exposition, for each 0<δ < 1, denote by {xs(δ)}
∞
s=0 the

optimal path of Ramsey problem corresponding to the discount factor δ.

Observe that for any feasible path of stock {xs}
∞
s=0 belonging to Π(x0):

inf
s≥0

u
(

f(xs)− xs+1

)

≤ inf
0<δ< 1

[

(1− δ)
∞
∑

s=0

δsu
(

f(xs)− xs+1

)

]

.
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This implies

max
χ∈Π(x0)

min
s≥0

u
(

f(xs)− xs+1

)

≤ max
χ∈Π(x0)

[

inf
0<δ<1

(1− δ)
∞
∑

s=0

δsu
(

f(xs)− xs+1

)

]

.

Now we will prove the converse inequality.

Consider first the case 0<x0 <x. Fix 0<δ < δ < 1 such that xδ <x0 <xδ.

Define χ∗ = (x0, x0, . . . ), which is the unique optimal path for the maximin cri-

terion with the set of discount rates D = [δ, δ]. For any feasible path χ 6= χ∗,

following Drugeon & al [9], we have

inf
0<δ<1

[

(1− δ)
∞
∑

s=0

u
(

f(xs)− xs+1

)

]

≤ inf
δ≤δ≤δ

[

(1− δ)
∞
∑

s=0

u
(

f(xs)− xs+1

)

]

< inf
δ≤δ≤δ

[

(1− δ)
∞
∑

s=0

u
(

f(x∗
s)− x∗

s+1

)

]

= u
(

f(x0)− x0

)

= max
χ∈Π(x0)

[

inf
s≥0

u
(

f(xs)− xs+1

)

]

.

This implies that the two Rawlsian problems have the same maximum value and

unique solution χ∗.

Now consider the case x0 > x. The idea of the proof is that for any δ, the sequence

{xs(δ)}
∞
s=0 converges to xδ with a speed that is sufficiently high and independent

with the choice of δ.

We prove that for any ǫ > 0, there exists T (ǫ) such that for any T ≥ T (ǫ), any

0 < δ < 1, we have

xδ < xT (δ)<x+ ǫ.

For each 0<δ < 1, consider a time s satisfying x0 ≥ x1(δ) ≥ · · · ≥ xs+1(δ) ≥ x+ ǫ.

Observe that f ′(x+ ǫ) < 1. Let f ′(x+ ǫ) = 1− ǫ1, with ǫ1 > 0.
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By Euler equations, we have

u′
(

f(xs(δ))− xs+1(δ)
)

= δu′
(

f(xs+1(δ))− xs+2(δ)
)

f ′(xs+1(δ))

≤ u′
(

f(xs+1(δ))− xs+2(δ)
)

f ′(xs+1(δ))

≤ u′
(

f(xs+1(δ))− xs+2(δ)
)

f ′(x+ ǫ)

≤ u′
(

f(xs+1(δ))− xs+2(δ)
)

− ǫ1u
′
(

f(xs+1(δ))− xs+2(δ)
)

≤ u′
(

f(xs+1(δ))− xs+2(δ)
)

− ǫ2,

for ǫ2 = ǫ1u
′
(

f(x0)
)

, since f(x0) ≥ f(xs+1(δ))−xs+2(δ). Observe that ǫ2 does not

depend on δ.

We then deduce

ǫ2 ≤ u′
(

f(xs+1(δ))− xs+2(δ)
)

− u′
(

f(xs(δ))− xs+1(δ)
)

= u′′(ξ)
[(

f(xs+1(δ))− xs+2(δ)
)

−
(

f(xs(δ))− xs+1(δ)
)]

= (−u′′(ξ))
[(

f(xs(δ))− xs+1(δ)
)

−
(

f(xs+1(δ))− xs+2(δ)
)]

,

with some f(xs+1(δ))− xs+2(δ) ≤ ξ ≤ f(xs(δ))− xs+1(δ). This implies

xs+1(δ)− xs+2(δ) ≤ f(xs(δ))− f(xs+1(δ))−
ǫ2

−u′′(ξ)
.

As xs+1(δ) ≥ x+ ǫ, it is easy to verify that

f(x+ ǫ)− xǫ ≤ f(xs+1(δ))− xs+2(δ)

≤ ξ

≤ f(xs(δ))− xs+1(δ)

≤ f(x0).

Let

a = sup
f(x+ǫ)−xǫ≤ξ≤f(x0)

(−u′′(ξ)),

9



and

ǫ3 =
ǫ2

a
.

The value ǫ3 is strictly positive and is independent with respect to δ. Moreover,

xs+1(δ)− xs+2(δ) ≤ f(xs(δ))− f(xs+1(δ))− ǫ3

≤ f ′(xs+1(δ))(xs(δ)− xs+1(δ))− ǫ3

≤ xs(δ)− xs+1(δ)− ǫ3.

Hence for T (ǫ) big enough such that x0 − T (ǫ)ǫ3 < 0, we have xT (δ) < x + ǫ for

any T ≥ T (ǫ) and for any 0<δ < 1. Otherwise we will have xT (δ)− xT+1(δ) ≤ 0

for some T ≥ T (ǫ): a contradiction4.

By the independence of T (ǫ) in respect to δ, combining with result that for s ≥

T (ǫ), we have xδ ≤ xs(δ) ≤ x+ ǫ, we get the following inequality:

lim
δ→1

[

(1− δ)
∞
∑

s=0

δsu
(

f(xs(δ))− xs+1(δ)
)

]

= lim
δ→1



(1− δ)

T (ǫ)
∑

s=0

δsu
(

f(xs(δ))− xs+1(δ)
)





+ lim
δ→1



δT (ǫ)+1(1− δ)
∞
∑

s=T (ǫ)+1

δs−T (ǫ)−1u
(

f(xs(δ))− xs+1(δ)
)





= lim
δ→1



δT (ǫ)+1(1− δ)
∞
∑

s=T (ǫ)+1

δs−T (ǫ)−1u
(

f(xs(δ))− xs+1(δ)
)





≤ lim
δ→1

u
(

f(x+ ǫ)− xδ
)

= u
(

f(x+ ǫ)− x
)

.

4It is well known that the solution of Ramsey problem converges monotonically to the steady
state.
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For any feasible path χ ∈ Π(x0),

inf
0<δ<1

[

(1− δ)
∞
∑

s=0

u
(

f(xs)− xs+1

)

]

≤ inf
0≤δ≤1

[

(1− δ)
∞
∑

s=0

δsu
(

f(xs(δ))− xs+1(δ)
)

]

≤ lim
δ→1

[

(1− δ)
∞
∑

s=0

δsu
(

f(xs(δ))− xs+1(δ)
)

]

≤ u
(

f(x+ ǫ)− x
)

.

Since ǫ > 0 is chosen arbitrarily, this implies

inf
0<δ<1

[

(1− δ)
∞
∑

s=0

u
(

f(xs)− xs+1

)

]

≤ u
(

f(x)− x
)

.

We then have

max
x∈Π(x0)

ν(x) = max
x∈Π(x0)

ν̂(x) = u
(

f(x)− x
)

.

For a solution of the problem with the second Rawlsian criterion, take for example

the sequence χ̂ ∈ Π(x0) such that x̂s = x for any s ≥ 1. For each δ,

(1− δ)
∞
∑

s=0

u
(

f(x̂s)− x̂s+1

)

= (1− δ)u
(

f(x0)− x
)

+ δu
(

f(x)− x
)

.

Since x0 >x, the function (1− δ)u
(

f(x0)−x
)

+ δu
(

f(x)−x
)

is strictly decreasing

in respect to δ. This implies

inf
0<δ<1

[

(1− δ)
∞
∑

s=0

δsu
(

f(x̂s)− x̂s+1

)

]

= lim
δ→1

[

(1− δ)
∞
∑

s=0

δsu
(

f(x̂s)− x̂s+1

)

]

= u
(

f(x)− x
)

.

(ii) This property is proven using the same the arguments as part (i).

(iii) Consider some feasible path x∗ which is a solution of the problem under first

Rawls criterion. Since u
(

f(x∗
s) − x∗

s+1) ≥ u
(

f(x) − x) for any s ≥ 0, for any

11



0<δ < 1,

(1− δ)
∞
∑

s=0

δsu
(

f(x∗
s)− x∗

s+1

)

≥ u
(

f(x)− x
)

.

This implies

inf
0<δ< 1

[

(1− δ)
∞
∑

s=0

δsu
(

f(x∗
s)− x∗

s+1

)

]

≥ u
(

f(x)− x
)

= max
x∈Π(x0)

inf
0<δ< 1

[

(1− δ)
∞
∑

s=0

δsu
(

f(xs)− xs+1

)

]

.

Hence x∗ is a solution of the problem under second Rawls criterion. The proof is

completed. QED

3 Discussions

3.1 Rawls criteria and ambiguity aversion

In recent decades, a large body of literature has risen in decision theory, enlarging

the world of Savage [18], where the famous sure-thing princple is not satisfied. The

seminar contribution of Gilboa & Schmeidler [11] considers the behaviour under

which the economic agent maximizes the worst scenario. This allows us to make

a link to the Rawlsian criteria. Assume that the economic agent must choose a

time discounting system to evaluate the inter-temporal consumption streams. The

set of possible time discounting is ∆ = (π0, π1, π2, . . . ) such that πs > 0 for any s

and
∑∞

s=0 πs = 1. Behind the veil of ignorance, every time discounting system is

possible. Hence, the criterion under ambiguity aversion is

U(c0, c1, c2, . . . ) = inf
π∈∆

[

∞
∑

s=0

πsu(cs)

]

= inf
s≥0

u(cs),
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which is the first Ralws criterion.

Now assume that the economic agent is just ambiguous about the set of time

discounting systems satisfying the usual properties as impatience, and stability.

Let D be that set. In Chambers & Echenique [5], we found that:

D= {π ∈ ∆ such that ∃δ ∈ (0, 1) : πs = (1− δ)δs for all s ≥ 0} .

The criterion is then the second Rawlsian one.

3.2 Disussion about some criteria

The Ramsey criterion is criticized about putting privileges for the generations in

present and close future. In another way, other criteria, for example the lim inf

take into account only the distant future. As a way to reconcile these to extremes,

Chichilnisky in [6], [7] proposes a criterion satisfying her No-dictatorship of present

and of future. Her criterion is a convex combination of a Ramsey part and a lim inf

part5. The weakness of this criterion is that, being the convex sum of two parts

which are continuous in respect to different topologies, the optimization problem

under this criterion generally has no solution. It is always difficult taking into

account at the same time the efficiency and the equality.

As a response for this challenge, Alvarez-Cuadrado & Van Long [1] consider the

convex combination between a Ramsey part and a Rawlsian part, in the contin-

uous time configuration. They give a detailed description of the behaviour of the

economy 6. Another approach belongs to Asheim & Ekeland [3], who consider the

markovian solutions of the problem under Chichilnisky’s criterion, and prove that

the lim inf part has no effect on the optimal choice.

The overtaking criterion of Gale satisfies the two non-dictatorship properties of

Chichilnisky, but this criterion is not complete. If we focus only on the good

programs, as in Dana & Le Van [8], the optimal path converges to the golden rule.

5For a discussion about Chichilnisky’s criterion, see Alvarez-Cuadrado & Van Long [1].
6For the discrete time configuration, see Ha-Huy & Nguyen [12].
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As an attempt to avoid the non-completeness problem, Le Van & Morhaim [14]

consider the Ramsey problem and study the properties of the solution when the

discount rate converges to 1. They prove that the sequence of solutions converge

to the solution of problem under Gale’s criterion.

3.3 Technical concerns

The result for the first Rawlsian criterion is based only on the concavity of the

function f , and does not impose any condition on the utility function u. However,

in order to apply results in dynamic programming literature, for solving the prob-

lem under the second Rawlsian criterion, we must assume the concavity property

for utility function.

And, consider the case where f ′(∞) ≥ 1. Under this assumption, x = ∞. For

the two Rawlsian criteria, for any initial stock of resource, the only solution is to

remains constant. The only remark is that since the feasible paths could be un-

bounded, we must assume conditions ensuring the determination of value function

and its continuity. For the details, curious readers can refer to the article of Le

Van & Morhaim [13], with the most important condition being tail insensitivity

property.

And if f ′(0) ≤ 1, every feasible path converges to zero, the two problems become

trivial.
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