Modified Charged System Search Algorithm for Economic Optimal Scheduling of Microgrid in Grid-Connected Mode

Jamaledini, Ashkan and Soltani, Ali and Khazaei, Ehsan

Electrical and Computer Engineering Department, Sazeh Sazan Power Company, Iran, Electrical and Computer Engineering Department, Sazeh Sazan Power Company, Iran, Electrical and Computer Engineering Department, Sazeh Sazan Power Company, Iran

2019

Online at https://mpra.ub.uni-muenchen.de/95896/
MPRA Paper No. 95896, posted 11 Sep 2019 05:40 UTC
Modified Charged System Search Algorithm for Economic Optimal Scheduling of Microgrid in Grid-Connected Mode

Ashkan Jamaledini, Ali Soltani, Ehsan Khazaei,
Electrical and Computer Engineering Department, Sazeh Sazan Power Company, Iran

Abstract: This paper presents a new heuristic algorithm famous as charged system search algorithm for optimal operation of the microgrids (MGs) in the grid-connected mode. The algorithm is also being modified based on a mutation operator technique to speed up its convergence speed. Finally, the model is examined on IEEE 69 bus test system.

I. INTRODUCTION

Microgrids (MGs) has higher reliability and resiliency due to closeness to the consumers. Also, as the transmission lines are reduced in the MGs, the total power losses, as well as the investment and operational costs of the entire grid is decreased. However, the optimal scheduling of the MGs would be more complicated as the MG can be connected and disconnected to the main grid. To this end, develop a fast and accurate algorithm for the optimal energy management of the MG is essential. This is mainly due to any fault would be lead to system blackout. To this end, this paper developed and presents a new algorithm known as the charged system search algorithm (CSSA) to overcome the complexity of the problem. Also, this algorithm can provide a fast convergence speed for optimal energy management of the MG. It should be noted that many heuristics methods
are suggested for the optimal energy management of the MGs. However, the proposed technique is very fast along with high accuracy and lower operation cost, compared to the well-known techniques such as particle swarm optimization (PSO) and genetic algorithm (GA).

II. GRID-CONNECTED MICROGRID MATHEMATICS

The main goal is cost minimization, given by

\[\text{min} \sum_{i,t} [C_{it} I_{it} + SU_{it} + SD_{it}] \]

(1)

where \(I \) is a binary variable (0 or 1) that controls the status of unit \(i \) at time \(t \). Also, \(SU \) and \(SD \) are the startup and shutdown costs.

In this paper, the following nomenclature is used:

- \(UT \) and \(DT \) are minimum up and down
- \(T_{(on)} \) and \(T_{(off)} \) are the number of successive on and off hours
- \(RU \) and \(RD \) are the ramp up and down of the generators.

Moreover, the problem has some limitation, given by (2) - (6).

\[P_{it,\text{min}} \leq P_{it} \leq P_{it,\text{max}} \]

(2)

\[P_{it} - P_{it(t-1)} \leq RU_{i} \]

(3)

\[P_{it(t-1)} - P_{it} \leq RD_{i} \]

(4)

\[T_{(on)it} \geq UT_{i}(I_{it} - I_{i(t-1)}) \]

(5)

\[T_{(off)it} \geq DT_{i}(I_{i(t-1)} - I_{it}) \]

(6)

This paper proposed and adopted a new heuristic method known as the charged system search algorithm for the MG operation. This technique is taken from [12]. Also, a
mutation operator is considered to speed up the convergence speed of the algorithm. Results shows the higher speed of the algorithm compare to the PSO and GA.

III. SIMULATION RESULTS

Fig. 1 shows the IEEE 69 along with 4 DGs.

![Fig. 1. IEEE 69 bus test system diagram](image)

DGs feature are in Table I.

<table>
<thead>
<tr>
<th></th>
<th>Minimum output power</th>
<th>Maximum output power</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG1</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>DG2</td>
<td>40</td>
<td>450</td>
</tr>
<tr>
<td>DG3</td>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>DG4</td>
<td>10</td>
<td>250</td>
</tr>
</tbody>
</table>
Load demand of the network are presented in Fig. 2.

![Fig. 2. Load demand of the network](image)

DGs output power are mainly based on the economic perspective as shown in Fig. 4. The active DGs is the first DG where it has lower price.

![Fig. 3. Produced powers by DGs](image)

Table II compare the operation cost and convergence speed of the algorithm. The results prove the effectiveness of the proposed model.
Table II

Cost of operation for several methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost ($)</th>
<th>Convergence (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>637335</td>
<td>11.1</td>
</tr>
<tr>
<td>GA</td>
<td>623437</td>
<td>9.9</td>
</tr>
<tr>
<td>Proposed method</td>
<td>534534</td>
<td>7.3</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

Charged system search algorithm is one of the powerful heuristics techniques that has been used in this paper for optimal energy management of the grid-connected MG. Results shows that compare to the PSO and GA, this method has higher convergence speed, which is one of the key points in MG operation. In addition, it has lower operation cost for the MG operation compare to GA and PSO.

Reference

