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The article is devoted to the synthesis of optimal control of conveyor belt with the 

accumulating input bunker. Much attention is given to the model of the conveyor belt with a 

constant speed of the belt. Simulation of the conveyor belt is carried out in the one-moment 

approximation using partial differential equations. The conveyor belt is represented as a 

distributed system. The used PDE-model of the conveyor belt allows to determine the state of the 

flow parameters for a given technological position as a function of time. We consider the optimal 

control problem for flow parameters of the conveyor belt. The problem consists in ensuring the 

minimum deviation of the output material flow from a given target amount. The control is carried 

out by the material flow amount, which comes from the accumulating bunker into the conveyor 

belt input. In the synthesis of optimal control, we take into account the limitations on the size of 

the accumulating bunker, as well as on both max and min amounts of control. We construct optimal 

control of the material flow amount coming from the accumulating bunker. Also, we determine 

the conditions to switch control modes, and estimate time period between the moments of the 

switching. 

Keywords: conveyor; production line; subject of labour; PDE-model of production; parameters 

of the state of the production line; technological position; transition period; production control 

systems; optimal control; Pontryagin function; Lagrange function; differential constraints; 

accumulating bunker; distributed system. 

Introduction 

There are two fundamentally different methods to control the output flow of the conveyor 

belt. The first method is to regulate the conveyor belt speed [1–5]. The second method is to use 

the accumulating bunker at the conveyor input [6–8]. Output flow control is performed with a 

certain delay by changing the amount of material at the conveyor input. As a rule, the second 

method is carried out for a constant speed of the belt. The method to regulate the conveyor 

belt speed is used to reduce consumption of the energy [9,10]. This is due to the fact that in 

most cases the conveyor systems function in modes significantly different from the normative 

ones. Time-varying flow amount at the conveyor input has significant influence on uneven load 

of the belt along the transport route in the case of unregulated drive conveyor [11]. Regulation 

of the belt speed gives the transport system an ability to function in the normative mode such 

that the electricity consumption for transporting the rock of a unit mass is minimum. According 

to DIN 22101 (Germany) [10], the energy consumption for the belt conveyor is expected to be 

reduced. At the same time, the potential risks of failure of the conveyor belt elements are 

significantly increased. Indeed, the frequent transition from one mode of the belt speed to 

another [12] leads to significant financial costs. In transition modes, a change in the speed of 

the conveyor belt leads to belt tension, which is the main reason for the belt breaking in the 

splicing region [12]. In order to design a transport system, it is necessary to take into account 



68  

other risks that arise as a result of the functioning of the conveyor belt in a transition mode: 

slip of the belt around the drive pulley, leakage of material away from the belt, engine 

overheating. Along with the potential risks of destroying the transport system, an important 

problem is the dynamic analysis of the transport systems both with a mode to regulate the belt 

speed and without such a mode [1]. The dynamic analysis is difficult, since a conveyor with a 

rock moving along the transport route is a distributed system with a number of limitations. The 

most important limitations are the maximum specific linear load of the conveyor belt and the 

maximum amount of the transported mass [13]. The conveyor system is statistically uncertain. 

Statistical uncertainty consists in the uncertainty of the value of material flow to the input of 

the conveyor (uncertainty of the boundary conditions) which requires using the probabilistic 

methods for calculating the conveyor line [14]. We focus on the construction of an optimal 

control of the material flow of the main conveyor belt equipped with an input accumulating 

bunker. In the transport system that moves a rock to the port terminal, the material flow at the 

conveyor output should vary depending on the loading capacities of vessels, as well as the 

schedule of dry cargo loading. This is achieved due to the fact that the material flow enters the 

accumulating input bunker. Control of the flow amount that enters the conveyor belt input 

allows to form the material flow required at the transport system output. In order to construct 

optimal control of the material flow on the main conveyor belt, we assume that the conveyor 

belt speed is constant. There is no ability to regulate the conveyor belt speed. The output 

material flow can be provided by the presence of an accumulating bunker and a system to 

control the material flow that enters the transport system input. A spiral belt conveyor can be 

used as an accumulating input equipment. The use of such accumulating types of equipment is 

justified for the organization of technological routes that require simultaneous accumulation 

and movement of products in the production process with vertical and horizontal directions. 

The material flow from the accumulating device to the input of the main conveyor is carried out 

by adjusting the belt speed in the spiral conveyor. 

1. Problem Statement 

We construct a distributed model of the main conveyor belt and determine optimal 

control of the material flow on the main conveyor belt equipped with an accumulating bunker. 

To this end, we consider the following individual problems. 

1. Construct a model of a distributed transport system with an input accumulating bunker. 

2. Construct a program of optimal control of flow at the conveyor belt input with an input 

accumulating bunker. 

3. Determine the optimal value of the capacity of an input accumulating bunker and the 

dependence of the optimal capacity value on the length of the transport system. 

4. Calculate the duration of the transition period during which the conveyor belt is ---------

filled with rock along the entire transportation route. Determine the delay time, which is 

fixed by the time interval between the time of arrival of the element on the conveyor belt 

input and the time of its exit from the conveyor belt output. 



2. Model of Conveyor 

Conveyor system is a type of production system with flow method of production 

organization. A distinctive feature of conveyor systems is that the elements move along the 

transport route with the same speed equal to the conveyor belt speed. The model of the 

production line in one-moment approximation can be represented as follows [15, p.67], [16, 

p.936]: 

 , (1) 

[χ]1 (t,S) = [χ]1ψ (t,S) 

with the initial condition 

(2) 

[χ]0 (0,S) = Ψ(S), 

and the boundary conditions at the input of the production line 

(3) 

[χ]1 (t,0) = λ(t), 
(4) 

where Sd is a coordinate of the technological position for the final operation; [χ]0 (t,S),[χ]1 (t,S) 

are a distribution density and a tempo of processing of labor subjects at the time t at the 

technological position, characterized by the coordinate S ∈ (0;Sd); Ψ(S) is an initial distribution 

of labor subjects along the technological route; [χ]1ψ (t,S) is a given normative tempo of 

processing labor subjects at technological positions as defined in the technological production 

documentation; λ(t) is a tempo of entry of labor subjects into the input of the production line. 

Conveyor is a type of production line. The main feature of a conveyor simulation for an 

industrial enterprise is that labor subjects move at the same speed along the conveyor belt. 

Therefore, we can write system of equations (1) – (4) in the following form [5]: 

 , (5) 

 [χ]1 (t,S) = a(t)[χ]0 (t,S), (6) 

 (7) 

The flow parameters [χ]0 (t,S) and [χ]1 (t,S) are related to each other by the factor 

, which determines the conveyor belt speed. The right-hand side of equation 

(5), i.e. δ (S)λ(t), takes into account the source of material entered for the first technological 

operation (S = 0), and δ (S) is the delta function. The intensity of the rock receipt to the 

conveyor belt is represented by the function  characterizing the line power. At the 

initial time t = 0 (hour) the material is distributed along the conveyor belt with a linear density 

. The function δ (S) determines the point of the material receipt to the conveyor 

belt: S = 0. System of equations (5), (6) is closed with respect to the flow parameters [χ]0 (t,S) 

and [χ]1 (t,S). Condition (6) reflects the functioning of the conveyor belt having condition (2) in 

system of equations (1) – (4). Note that condition (2) for the simulation of production lines is 

( 
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approximated in the one-moment description [17]. Precision of the approximation is 

determined by the number Nm of labor subjects that are 

 

 

Fig. 1. Schematic diagram of the conveyor belt [12] 

in inter-operational reserves before each of m technological operations [18]. For Nm → ∞ in an 

approximate equality, equation (2) becomes an exact equality. Therefore, condition (6) allows 

to construct an exact solution to system of equations (5) – (7) with respect to the flow 

parameters [χ]0 (t,S) and [χ]1 (t,S). Let us divide the technological route with a length Sd into M 

sections with lengths ∆Sm = Sm −Sm−1, S0 = 0, and integrate equation (5) within a section of length ∆Sm: 

 

Since 

 

 

   (10) 

 

equation (8) can be represented in the following form: 

 ,Sm-1)−[χ]1 (t,Sm), [χ]1 (t,0) = 0. (11) 

 



The condition [χ]1 (t,0) = 0 means that, if there is no source of material receipt, i.e. λ(t) = 

0, then the material flow at the conveyor belt input is zero. If the section ∆Sm corresponds to 

the m-th technological operation of the production line, then equations (10), (11) determine 

the state of the interoperational stocks before the m-th technological operation. System of 

equations (11) clearly demonstrates how the intensity λ(t) of the source of supply of materials 

and its location affect the state of interoperational stocks along the technological route of the 

production line. A schematic diagram of the main conveyor belt with an accumulating bunker 

at the input is shown in Fig. 1 [12]. The flow of the material (for example, a rock) should enter 

the conveyor belt from the accumulating bunker with the intensity necessary to provide the 

required specified flow at the output. We supply system of equations (5) – (7) with the following 

equation simulating work process of the accumulating bunker: 

, (12)  

 

where N0(t) is the current number of materials in the accumulating bunker with capacity Nb. 

The flow of materials at the accumulating bunker input λb (t) is known. Also, assume that the 

required flow σ(t) is set at the output of the transport system. The required flow is determined 

by the shipping schedule of the rock to the consumer. Let us represent system of equations (5) 

– (7), (11) in the dimensionless form. In this case, the states of the conveyor parameters are 

described by dimensionless variables [5]: 

 
If the control program allows the conveyor to stop (a(t) = 0), then Θ = max{Ψ(S),[χ]0max}, 

where [χ]0max is a maximum permissible running load per belt. Note that at the dimensionless 

value n0(τ) = 1,0, Θ = [χ]0max, the accumulating bunker contains amount of material that allow 

to fill the conveyor belt with the maximum permissible load N0(t) = SdΘ along the entire length 

of the belt. Taking into account the introduced notation, we write balance equation (13) – (14) 

in the dimensionless form [5]: 

  (16) 

 θ0 (τ0,ξ) = H(ξ)ψ (ξ), (17) 

 . (18) 

The solution to system of equations (16) – (17) is as follows [5]: 

, 
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For the conveyor belt speed g(τ) = g0, we have G(τ) = g0τ, therefore 

 . (19) 

Expression (19) determines the state of the density of the material θ0 (τ,ξ) distribution 

along the transport route ξ at an arbitrary time τ. Let us consider the functioning of the 

transport system for time . Speed switching modes of the conveyor belt are not taken 

into account. Using equation (19), we reduce system of equations (16) – (18) to the form: 

 

(20) 

(21) 

In order to determine the linear density θ0 (τ,ξ) at a time τ at an arbitrary point ξ of the route, 

it is necessary to know the value of the input material flow λ(t) on the conveyor belt at the time 

τξ = τ − ξ/g0 that is fixed by the measuring-weighing equipment of the conveyor belt. The 

relationship between the values of the linear density θ0 (τ,ξ) at arbitrary points of the transport 

route ξ1 and ξ2 at a constant speed of the conveyor belt was studied in detail in [19]. The flow 

of material at the input and output of the conveyor belt can be determined from (20) 

 . (22) 

3. Optimal Control Problem for Material Flow Coming from 

Accumulating Bunker 

We consider the conveyor as an object of the control whose motion is described by system 

of differential equations (16), (20): 

 (23) 

(24) 

Control u(τ) is carried out by regulating the intensity γ (τ) of the supply of materials from the 

accumulating bunker (Fig. 1). We select the control quality criterion from the condition of a 

minimum of the integral at the time interval τ ∈ [0,τk] 

  (25) 

Taking into account (22), we write equation (23) in the form 

  (26) 

and use the result in quality criterion (25) 

 



The presence of the constant A in the quality criterion indicates that the output parameters of 

the conveyor are uncontrollable in the time interval τ ∈ [0,1/g0]. In the general form, the 

optimal control problem for the output flow of the conveyor belt can be formulated as follows 

[20,21]: determine the optimal control of the intensity of the material supply at the input of 

the conveyor belt from the accumulating bunker, that is a minimum of the integral 

(27) 

 

in the time interval τ ∈ [0,τk] with the differential connections 

 , (28) 

under constraints on the phase variable (21)   

  (29) 

under constraints on the control, and with initial conditions 

 (30) 

The Pontryagin function, Lagrange function, and the conjugate system have the form [20]: 

 

4. Synthesis of the Optimal Control 

We assume that the materials enter the accumulating bunker with a constant intensity γb 

(τ) = 1,0. The form of the function ϑ(τ) is defined as [22] ϑ(τ) = 1,0 + sin(πτ). 

In the absence of phase constraints (29), taking into account (32), it should be  

ψ1(τ) = const = 0, and the Pontryagin function has the form 

 . (33) 

Therefore, we assume that the solution takes the following form: 

 . (34) 

For the obtained control, we can write dynamics of the change in the state of the stock of 

materials in the accumulating bunker 

 . (35) 

Using Laplace transform 

 , (36) 

we obtain equation (35) in the form 
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 . (37) 

Hence, we can write solution (35) as 

 . (38) 

Expression (38) determines the solution to optimal control problem (27) – (30) in the absence 

of phase constraints (29), Fig. 2. It is obvious that if condition (29) satisfies 

 , (39) 

then the solution with phase constraints (29) coincides with (38). Now, consider the case for 

which condition (39) at time t is not satisfied at time τ. The maximum of Pontryagin function 

(31) can be reached at finite values (see Table 1). This table shows the control values for which 

the Pontryagin function takes the maximum value. Let us consider in details the possible cases. 

Pontryagin function (31) has the form 

 u(τ) − ϑ(τ + τ0) > 0, H = ψ1 γb (τ)+ϑ(τ + τ0) − u(τ) ψ1 + 1) → max, 

 

Table 1   Variants of controls 

 u(τ) < ϑ(τ + τ0) u(τ) = ϑ(τ + τ0) u(τ) > ϑ(τ + τ0) 

ψ1 < −1 – – umax 

ψ1 = −1 – u(τ) = ϑ(τ + τ0) u(τ) > ϑ(τ + τ0) −1 < ψ1 < 0 – u(τ) = ϑ(τ + τ0) – 

ψ1 = 0 – u(τ) = ϑ(τ + τ0) – 

0 < ψ1 < 1 – u(τ) = ϑ(τ + τ0) – 

ψ1 = 1 u(τ) < ϑ(τ + τ0) u(τ) = ϑ(τ + τ0) – 

ψ1 > 1 umin – – 

 

Fig. 2. Dynamics of the change in the amount of material in the bunker n0(τ) (a – for initial states 

n0st = 0,65 + 0,15i, i = 0...10; b – for τ0 = {0,5, 1,0, 1,5, 2,0}; τ0 = 1/g0) 



 

Fig. 3. Dynamics of the change in the amount of material in the bunker for the case ψ1 ∈ [−∞;−1,0] 

u(τ) − ϑ(τ + τ0) = 0, H = ψ1(γb (τ)−ϑ(τ + τ0)) → max, u(τ) − ϑ(τ + τ0) < 0,

 H = ψ1 γb (τ)−ϑ(τ + τ0) − u(τ) ψ1 − 1) → max. 

1) ψ1 < −1 → u(τ) = umax. Movement begins with the size of the control u(τ) = umax (Table 

1), and parameters ψ1(0) = ψ10, n0(0) = n0st, γb (τ) = 1,0: 

 
 

 

 

Fig. 4. Dynamics of the change in the amount of material in the bunker n0(τ) when switching 

control {u(τ) = ϑ(τ + τ0); u(τ) = 1,0} at phase constraints 

Solution to the system of equations is given by 

 n0(τ) = n0st = 0, ψ1(t) = ψ10 − µ1τ, 

if the value of stocks in the bunker is the lower limit, and 

 

otherwise. For τ > τ1, the value of the phase variable n0(τ) reaches the lower  
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limit n0(τ1) =0 and remains n0(τ) = n0st = 0, ψ1(τ) = ψ10 − µ1(τ − τ1). 

Condition ψ1(τk − τ0) = 0 (32) is not met (Fig. 3). It contradicts the assumption of the existence 

of a solution and the maximum principle [20,21]. 

2) ψ1 > 1 → u(τ) = umin. Similarly to the previous case, condition ψ1(τk − τ0) = 0 (32) is not 

met (Fig. 3). 

3) −1 < ψ1 < 0 and 0 < ψ1 < 1. It contains a valid solution for u(τ) = ϑ(τ + τ0). In fact, for 

u(τ) > ϑ(τ + τ0) we have u(τ) = umin, but u(τ) = umin < ϑ(τ + τ0). We obtain a contradiction with 

the initial condition. The case ψ1 = 1 also leads to optimal control u(τ) = ϑ(τ + τ0). 

4) ψ1 = −1. The initial control u(0) must be such that the lower limit is not reached first. 

Otherwise, the phase coordinate n0(τ) remains at the lower limit. This gives the following 

condition on the control: u < γb (τ) = 1. 

5) ψ1 = 1. In this case, for the same reasons, the initial control u(0) must be such that the 

upper limit is not reached first. Otherwise, the phase coordinate n0(τ) remains at the upper 

limit. This gives the following condition on the control: u > γb (τ) = 1. A family of phase 

trajectories is shown in (Fig. 4 – 6). The family of phase trajectories meets criterion of the 

control quality (27). Fig. 4 demonstrates the control algorithm. The control u(τ) = ϑ(τ + τ0) is 

used at the start of the conveyor belt. Then, u(τ) = 1,0. It makes possible to ensure a constant 

amount of materials in the bunker n0(τ) = nb. The bunker is completely filled. The excess 

amount of materials is fed to the input of the conveyor belt. The supply of materials exceeds 

requirements, u(τ) > ϑ(τ + τ0). A further increase in the demand for the input flow results in 

the phase variable n0(τ) coming off the phase constraint n0(τ) = nb. The amount of material in 

the bunker is reduced. The control 

 

 

Fig. 5. Dynamics of the change in the amount of material in the bunker n0(τ) for the controls 

{u(τ) = 1,5; u(τ) = ϑ(τ + τ0); u(τ) = 0; u(τ) = ϑ(τ + τ0)} 

u(τ) = ϑ(τ +τ0) is supported until the lower limit n0(τ) = 0 is reached. Then, the control u(τ) = 

1,0) is used. All material entering the bunker is fed to the input of the conveyor belt, u(τ) < 

ϑ(τ+τ0). Such control is maintained until the demand for the material reaches the exit point 

from the constraint. The cycle is repeated. Finally, the control algorithm can be formulated as 

follows. For constraints u(τ) = 1,0 and u(τ) = ϑ(τ +τ0) beyond the constraints. Note that the 

phase constraints change the conjugate variable . Fig. 4 demonstrates the 



control algorithm when the switching points of the control are such that allow to avoid reaching 

the upper and lower limits for the phase variable n0(τ). The initial movement is carried out 

from points n0(τ) = {0,1; 0,2; 0,3} with the constant initial intensity u(τ) = 1,5 of the input of 

materials to the conveyor input. It provides an output for n0(τ) onto the phase trajectory, which 

touches the constraint at the top point. The control u(τ) = ϑ(τ +τ0) is maintained until it is 

advisable to make a transition to the phase trajectory, which touches the constraint at its lowest 

point. The transition to the phase trajectory is performed with control u(τ) = 0. The new phase 

path u(τ) = ϑ(τ +τ0) is controlled by the next switching point. The control algorithm can be 

formulated as follows. We use u(τ) = 1,5 to go to the phase trajectory, which touches the upper 

limit, and u(τ) = 0,0) for the transition to the phase trajectory, which touches the lower limit. 

Control between transitions is supported by u(τ) = ϑ(τ + τ0). We draw attention to the fact 

that for ψ1(0) = 0 the phase trajectory is also sustained ψ1(t) = 0. The control algorithm that 

determines the behavior of the phase variable n0(τ) in Fig. 6 is similar to the algorithm that 

determines the behavior of the phase variable n0(τ) in Fig. 5. The difference is that all 

transitions are performed under optimal control u(τ) = 1). The control algorithm {u(τ) = ϑ(τ + 

τ0);u(τ = 1,0)}is similar to the algorithm in Fig. 4. With the same control chosen for phase 

trajectories u(τ) = ϑ(τ + τ0) and transitions u(τ = 1), the control switching points are arranged 

such that to avoid reaching the upper and lower limits. Let us define the costs that characterize 

the transition from a phase trajectory that touches the upper limit to a phase trajectory that 

touches the lower limit. Let us define the equation of the trajectory we want to go: 

 
 

 

 

Fig. 6. Dynamics of the change in the amount of material in the bunker n0(τ) at the controls 

{u(τ) = ϑ(τ + τ0); u(τ) = 1,0}  

 

The transition is carried out along the trajectory 
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which is determined by the control u(τ). At any instant in time, these trajectories are valid 

n02(τ1) − n01(τ1) = ∆n0(τ1) = const. This allows us to write 

, 

= const, 

 

 

since the transition is carried out both in the forward and reverse direction. The last expression 

is a consequence of the given quality criterion (27). The arbitrariness of the choice of the 

moment of time determines the arbitrariness of the choice of control switching points, which 

determines the set of solutions to the problem. 

Conclusions and Recommendations 

The article analyzes the PDE-model of the conveyor transport system and synthesizes a 

family of optimal control of the flow of materials coming from the accumulating bunker to the 

input of the conveyor transport system. The criterion of the quality of the control of the output 

flow from the conveyor belt is determined, and the optimal control problem for the transport 

system is formulated. The analysis of admissible solutions to the control problem is carried out. 

The results presented in the paper allows to make the following conclusions: 

– a system to control the output flow on the conveyor belt from an accumulating bunker 

at the input can have a large number of algorithms; 

– the switching points of the optimal control are determined from a large set of feasible 

solutions; 

– the set of admissible optimal controls is determined by the size of the accumulating 

bunker. 

Prospect for further research is the synthesis of optimal control for the conveyor system 

with input and output accumulating bunker. 
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