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Abstract

Prior research finds the presence of diversification-driven cost savings from the joint provision of
credit and deposits in microfinance institutions (MFIs) and thus provides supportive evidence
for policies aimed at promoting the transformation of credit-only MFIs into diversified loans-
and-savings entities. However, these studies usually ignore the multi-way heterogeneity across
MFIs which vary substantially in size, business model, target clientele and operate in diverse
environments. We use a quantile panel data model with correlated effects that accommodates (i)
technological heterogeneity across specialized credit-only and diversified loans-and-savings MFIs,
(ii) distributional heterogeneity in the cost structure of MFIs along the scale of their costs and
(iii) unobserved heterogeneity correlated with covariates in the cost function. Our results show
that the typical measurement of economies of diversification at the conditional mean provides an
incomplete and distorted picture of the magnitude and prevalence of diversification economies in
the industry. While we find statistically significant diversification economies, they are modest for
the majority of small-size MFIs but are quite substantial for large-scale institutions suggesting
that the degree of diversification economies increases with the scale of operations. Thus, policy
makers and donors should be cautious when encouraging smaller credit-only MFIs into the
provision of savings deposits with the expectations of diversification-driven cost savings, since
the latter seem to be more relevant and economically substantive mainly for the very large MFIs.
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1 Introduction

The microfinance industry is comprised of heterogeneous institutions providing credit and savings

to a variety of clients around the globe who are without access to other formal financial services.

Varying in size, target clientele as well as business and regulatory environment in which they oper-

ate, these microfinance institutions (MFIs) include small-scale local operations as well as industry

giants with millions of clients. Yet, most prior studies attempting to measure the degree of scope-

driven cost savings ensuing from the joint provision of lending and deposits by diversified MFIs

(e.g., Hartarska et al., 2010, 2011; Delgado et al., 2015) ignore potential technological heterogeneity

and use a common multi-output cost function for both the integrated and specialized institutions.

The focus has also been exclusively on the estimation of MFIs’ cost structure at the conditional

mean leaving open questions about distributional heterogeneity across MFIs with varying scales of

operations.1

In this paper, we contribute to the literature by pursuing a more robust measurement of

economies of diversification/scope and their prevalence in the microfinance industry by explicitly

allowing for a multi-way heterogeneity amongst MFIs. Specifically, we estimate the microfinance

cost structure using a quantile panel data model with correlated effects that accommodates the

following kinds of heterogeneity: (i) technological heterogeneity across specialized credit-only and

diversified loans-and-savings MFIs, (ii) distributional heterogeneity in the cost structure of MFIs

along the scale of their costs, and (iii) unobserved heterogeneity correlated with covariates in the

cost function (e.g., latent management quality or efficiency).

First, by allowing specialized loans-only and diversified loans-and-savings MFIs to have techno-

logically heterogeneous cost structures, we improve upon the common approach pursued in most

studies whereby all MFIs are presumed to have the same microfinance cost structure regardless of

different mixes of financial services they offer to customers. Second, it is reasonable to expect that

large- and small-scale MFIs exhibit different degrees of scope-driven potential for cost saving (if

any), with the institution’s cost of operation being a good direct measure of the scale of its opera-

tions. Estimates of the cost functions at the conditional mean can be uninformative from a policy

perspective even after controlling for MFI-specific characteristics because an “average” may not be

representative of actual MFIs, especially in the presence of thick tails of the cost distribution.2 To

accommodate this heterogeneity, we assess the degree of economies of diversification at different

conditional quantiles of the microfinance cost distribution. Our quantile model, besides being more

robust to the error distributions including the presence of outliers, also allows for distributional

heterogeneity in the cost structure of MFIs. Third, the cost performance of MFIs naturally de-

pends on many unobserved factors that are unique to an institution. For instance, an MFIs run

by a skilled experienced manager is likely to operate at a lower cost than an MFIs managed by a

novice, ceteris paribus. Ignoring this unobserved heterogeneity may produce inconsistent estimates

1The prior papers have instead focused more on minimizing the functional form misspecification by adopting a
semiparametric approach to modeling the cost function thereby being able to better accommodate nonlinearities.

2Appendix provides some empirical evidence of “fatness” in the tails of conditional (log) cost distribution.
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since unobserved heterogeneity is likely to be correlated with covariates present in the estimated

equation. We address this issue by modeling unobservable MFI-specific heterogeneity in the form

of correlated effects,3 in addition to conditioning the cost relationships on observable controls.

Among prior studies of the revenue-diversification-driven cost savings in microfinance, Malikov

& Hartarska (2018) is the most closely related to our paper. It is the only other study that explores

technological heterogeneity between credit-only and credit-and-savings MFIs but, like all other

papers, they focus on the conditional mean of cost, leaving important distributional heterogeneity

unexplored.4 More generally, our paper also contributes to a broader literature on MFIs and their

performance; see Caudill et al. (2009), Mersland & Strøm (2009), Cull et al. (2011), Hermes et al.

(2011), Hartarska et al. (2013), Delgado et al. (2015), D’Espallier et al. (2017), among many others.

Using the data on 344 MFIs operating in 65 countries during 1998–2013, we show that the

typical measurement of economies of diversification at the conditional mean provides an incom-

plete and distorted picture of the magnitude and prevalence of diversification economies in the

industry. While we find statistically significant diversification economies, they are modest for the

majority of small-size MFIs but are quite substantial for large-scale institutions suggesting that

the degree of diversification economies increases with the scale of operations. These differences are

statistically significant distribution-wise. Thus, policy makers and donors should be cautious when

encouraging smaller credit-only MFIs into the provision of savings deposits with the expectations

of diversification-driven cost savings, since the latter seem to be more relevant and economically

substantive primarily for the very large MFIs.

2 Measuring Economies of Diversification

Economies of diversification are said to exist if the firm’s average cost declines with the increase

in the scope of outputs it produces reflective of revenue diversification (see Panzar & Willig, 1981;

Chavas & Kim, 2010). In the context of microfinance industry whereby MFIs are conceptual-

ized as producing two outputs—(micro)loans and (micro)deposits—a financial institution exhibits

economies of diversification if the cost of producing credit/loans (y1) and savings/deposits (y2) sep-

arately exceeds the cost of their joint production, i.e., C(y1, 0)+C(0, y2) > C(y1, y2), where we have

suppressed all other arguments of the cost function besides outputs. This definition requires compu-

tation of counterfactual costs of producing each of the two outputs (loans and deposits) separately

with the counterfactuals defined as fully specialized single-output MFIs. In practice, while there

are credit-only MFIs, there are rarely savings-only institutions.5 Although the projection of multi-

3We opt for the correlated-effects treatment of unobservable heterogeneity over admittedly less restrictive fixed-effects
approach because the consistency of the latter estimator in the quantile setting requires both large N and T . Our
data however are such that N >> T .

4However, in contrast to Malikov & Hartarska (2018), we abstract away from the issues concerning endogenous
product-mix selection which, admittedly, is a shortcoming of our analysis. Extending our model to also controlling
for selectivity may provide an avenue for fruitful future research.

5While there are government-owned institutions that only collect savings in Kenya and South Africa, these are not
a part of our dataset.
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product cost functions to the boundary single-output cases is a popular solution in such instances,

it is notoriously known to suffer from “excessive extrapolation” (Evans & Heckman, 1984; Hughes

& Mester, 1993). Therefore, we instead adopt Malikov et al.’s (2016) approach, whereby we (i)

use observable specialized loans-only MFIs to identify their single-output cost relationship and thus

decrease the number of counterfactuals necessary for the evaluation of diversification economies in

the industry from two to one and (ii) replace the remaining non-existent counterfactual case of a

full savings-only specialization with the closely related case of an MFI highly specialized in savings

within the observable output-mix configuration in the data. A diversified loans-and-savings MFI

is then said to exhibit economies of diversification if

C1
(

̟y1
)

+ C2

(

(1−̟)y1, y2

)

> C2
(

y1, y2
)

, (2.1)

where C1(·) and C2(·) are respectively the single-output loans-only and multi-output loans-and-

savings cost functions, and 0 ≤ ̟ ≤ 1 is a distribution weight controlling the degree of specialization

of the second counterfactual firm. We further ensure that each counterfactual MFI does not produce

less of each output than MFIs actually do in the data. That is, we require that ̟y1 ≥ y
1
and

(1−̟)y1 ≥ y
1
, where y

1
denotes a sample minimum of y1. With this, we define our within-sample

measure of economies of diversification as

ED(̟) =
C1
(

̟y∗1 + y
1

)

+ C2

(

(1−̟)y∗1 + y
1
, y2

)

− C2
(

y1, y2
)

C2
(

y1, y2
) , (2.2)

where y∗1 = y1 − 2y
1
. Positive/negative values of ED(̟) correspond to economies/diseconomies

of diversification, whereas a zero value indicates the cost invariance to output diversification. We

choose ̟ (via a grid search) that yields the smallest value for ED(̟) to arrive at the measure of

“global” diversification economies (for each MFI):

GED = min
̟

ED(̟). (2.3)

If economies of diversification of the smallest value are still significantly positive, we can then

conclude that such economies are “globally” significant over the MFI’s output space in a given year.

3 Estimation Details

For a given quantile index τ ∈ (0, 1), we specify the τth output-mix-specific conditional quantile

function of the MFI’s cost distribution as a flexible second-order expansion in logs, where we also

allow for unobserved effects:

Qτ [log(Cr,it)| log(vr,it), µr,i] = αr,τ + log(vr,it)
′βr,τ +

1

2
log(vr,it)

′Br,τ log(vr,it) + µr,i, (3.1)
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for i = 1, . . . , N and t = 1, . . . , T , where the index r = {1, 2} differentiates between the loans-only

(r = 1) and loans-and-savings (r = 2) cost relationships. Here, vr,it ∀r = 1, 2 are the vectors of

relevant (strictly exogenous) arguments to the loans-only and loans-and-savings dual cost functions,

with the corresponding conformable first-order parameter vectors βr,τ and second-order symmetric

parameter matrices Br,τ . By our definition, v2,it includes y2,it while v1,it does not. Also, note that

all unknown parameters in model (3.1) are indexed by r indicating that they may vary with the

MFI type defined by their output mix. These parameters are also quantile-specific which allows

us to accommodate heterogeneity across MFIs belonging to different (conditional) quantiles of the

cost distribution.

Following Abrevaya & Dahl (2008), we let the unobserved heterogeneity correlate with regressors

by treating µr,i as correlated effects, which is a popular device for modeling unit-specific effects

in nonlinear models. More specifically, we can approximate unobserved effects µr,i conditional

on covariates in the spirit of Chamberlain (1980) by specifying the latter in the form of a linear

projection on lags and leads of observables: µr,i = log(vr,i1)
′δr,1 + · · · + log(vr,iT )

′δr,T . However,

given that in our case N >> T , we opt for a more parsimonious specification of correlated effects

à la Mundlak (1978) by restricting δr,1 = δr,t = δr,T which implies the following formulation:

µr,i = log(vr,i)
′

γr, (3.2)

where log(vr,i) ≡ T−1
∑

t log(vr,it) is a vector of time averages, and γr is a conformable vector of

auxiliary parameters.6

We estimate the quantile model in (3.1) subject to (3.2) for loans-only and loans-and-savings

MFIs separately. For each of these two MFI types, we estimate the model for six different (condi-

tional) cost quantiles, namely for τ = {0.10, 0.25, 0.50, 0.75, 0.90, 0.95}, with the last 0.95th quantile

corresponding to exceptionally large-scale giants in the industry.7 To investigate the consequences

of overlooking distributional heterogeneity across MFIs, we also re-estimate cost functions via a

more traditional conditional mean model.

4 Data and Results

Our data come from several rating agencies reports compiled by the Center for Research on Social

Enterprise and Microfinance (CERSEM) at the University of Agder in Norway. Compared to the

Mixmarket data, which are used in most studies on the performance of MFIs, the CERSEM dataset

6Since the Chamberlain (1980) formulation nests (3.2), we can formally discriminate between the two specifications by
means of Koenker & Machado’s (1999) likelihood-ratio test for quantile regressions based on the difference between
the restricted (under the null) and unrestricted (under the alternative) sums of estimated check functions. We
consistently fail to reject the null of the Mundlak-type specification across the two types of MFIs.

7Unlike Malikov & Hartarska (2018) who employ a least-squares estimator with a closed-form solution which facilitates
an easy-to-implement restricted estimation, we do not impose regularity conditions onto the estimated cost functions
because our quantile estimation requires numerical search and the restrictions are observation-specific. We check for
violations of theoretical monotonicities after the estimation: they are only modestly prevalent across the estimated
quantiles, averaging at 2.9% and 9.1% of observations for loans-only and the integrated MFIs, respectively.
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Figure 1. Estimates of Diversification Economies across Cost Quantiles

has some advantages (see Randøy et al., 2015). First, the data are verified by professional external

rating agencies and is not self-reported as in the case of Mixmarket. Second, and of the particular

importance to our study, the dataset has less of a large-firm bias typical for the Mixmarket dataset.

This allows us to explore the economies of diversification with a sample that is more reflective of

the microfinance industry with the large number of small institutions, which are most likely to

benefit from learning about the cost consequences of offering savings together with loans. Lastly,

accurate information on more variables is available in the CERSEM dataset which lets us control

for important MFI characteristics such as the MFI’s main lending methodology.

Our dataset is an unbalanced panel of 1,467 annual observations for 344 MFIs in 65 countries

for the 1998–2013 period. Following the literature, the main cost function variables are as follows.

The outputs are total loans (y1) and, if offered, total savings (y2). The input prices are those

corresponding to physical capital, labor and total borrowed funds. The total cost is the sum of

these operating and financial expenditures. In addition to these standard variables, we also include

a risk proxy (a share of portfolio at risk for 30 days or more) as well as a fully interacted time

trend meant to accommodate temporal shifts in the cost frontiers. Besides allowing for the unob-

served heterogeneity being captured via correlated effects, we follow Caudill et al. (2009) in also

conditioning the estimated cost relationships on observable controls for the MFI’s lending method-

ology (village banking, individual lending, solidarity group) and legal status (non-governmental

organization, cooperative, non-banking financial institution, bank).

Figure 1 summarizes point estimates of economies of diversification (GED) across different

quantiles of the MFI cost distribution in the form of a box-plot. Comparing distributions of

observation-specific estimates of diversification economies for different cost quantiles τ as opposed
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Table 1. Statistically Significant Estimates of Diversification Economies

Model
Diseconomies of Diversification (GED<0) Economies of Diversification (GED>0)
% Obs. 25th Perc. Median 75th Perc. % Obs. 25th Perc. Median 75th Perc.

Q0.10 4.91 –0.607 –0.548 –0.464 8.04 0.041 0.090 0.155
Q0.25 0.67 –0.516 –0.465 –0.447 51.79 0.019 0.032 0.061
Q0.50 1.34 –0.590 –0.511 –0.474 37.95 0.029 0.046 0.099
Q0.75 3.35 –0.641 –0.520 –0.459 39.51 0.092 0.186 0.372
Q0.90 1.34 –0.715 –0.607 –0.556 47.10 0.135 0.295 0.644
Q0.95 0.67 –0.865 –0.749 –0.653 69.64 0.157 0.283 0.526
Mean 0.89 –0.462 –0.418 –0.374 31.92 0.050 0.106 0.165

The “economies of diversification” (GED>0) and “diseconomies of diversification” (GED<0) categories are
based on whether GED point estimates are statistically greater and less than zero, respectively. The remaining
observations exhibit diversification invariance of cost, i.e., their GED point estimates are not statistically
different from zero. For inference, we use wild residual block-bootstrap percentile confidence intervals estimated
using 500 bootstrap iterations.

to merely focusing on their marginal moments, we are able to take a more holistic look at differences

in the scope-driven cost saving potential across MFIs with different scales of operation. (We caution

readers to not confuse quantiles of the cost distribution τ , for which our model is estimated, with

quantiles of the fitted GED distribution across individual observations for each τ .) Here, we also

include the results from the conditional mean model. In addition, Table 1 reports the results

for statistically significant diversification economies estimates from all estimated models broken-

down in two categories: positive economies and negative diseconomies of diversification. This

classification is based on the GED point estimate being statistically less or greater than zero

at the conventional 5% significance level (using bootstrap percentile confidence intervals), with

the remaining statistically insignificant point estimates corresponding to the invariance to output

diversification. For inference, we employ Feng et al.’s (2011) wild bootstrap algorithm modified to

suit the asymmetric loss function used in the quantile estimation. During implementation, we draw

cross-sectional blocks to preserve the panel structure of data. We use 500 bootstrap iterations.

Our empirical results show that the measurement of economies of diversification at the condi-

tional mean of MFI costs provides an incomplete and rather distorted picture of the magnitude

of diversification economies and the prevalence thereof in the microfinance industry. The inability

of the conditional mean model, which focuses on the microfinance cost structure “on average,” to

capture heterogeneity across small- and large-cost MFIs is vividly illustrated in Figure 1. More con-

cretely, the results from the quantile estimation indicate that the primary beneficiaries of economies

of diversification in the industry appear to be large-scale MFIs lying in the upper quartile of the

cost distribution (τ ≥ 0.75), whereas the MFIs in the bottom three quartiles mainly have near-zero

GED estimates. In contrast, the results from the least-squares conditional mean model are largely

dominated by near-zero estimates.

When accounting for the sampling error in the diversification economies estimates, based the

conditional mean model we find that only 31.9% of MFIs exhibit positive (and statistically signifi-

cant) economies of diversification. The quantile results however provide a much stronger evidence

7



Table 2. p-Values for the Stochastic Dominance Tests of
Diversification Economies across Cost Quantiles

Single Prospect Multiple Prospects
Q0.90 Q0.75 Q0.50 Q0.25 Q0.10 {Q0.90,Q0.75, . . . } {Q0.75,Q0.50, . . . } {Q0.50,Q0.25, . . . } {Q0.25,Q0.10}

Q0.95 0.939 0.472 0.552 0.105 0.698 0.130 0.105 0.105 0.105
Q0.90 0.331 0.507 0.050 0.763 0.050 0.050 0.050
Q0.75 0.000 0.000 0.482 0.000 0.000
Q0.50 0.000 0.427 0.000
Q0.25 0.341

in support of the large prevalence of significantly positive economies of diversification in the indus-

try, with up to 69.6% of MFIs in the upper three quartiles of cost distribution (τ ≥ 0.25) enjoying

diversification economies. These results also differ magnitude-wise. The median value of significant

diversification economies across individual MFIs from the conditional mean model is estimated at

about 10.6%. However, based on the conditional quantile estimation, we find the median magni-

tudes to lie in a noticeably higher 18.6–29.5% range for the large-scale MFIs from the top cost

quartile (τ ≥ 0.75) and to be only in single digits for MFIs of a more modest scale from the rest of

the cost distribution. Thus, the quantile regression results indicate that, despite being statistically

significant, diversification economies are very timid for the majority of MFIs but are quite material

for larger MFIs suggesting that the degree of scope-driven economies of diversification increases

with the scale of operations (also see Figure 1). Having said that, the mean and quantile models

consistently point to little evidence of diseconomies of diversification in microfinance.

We formally test for the existence of systemically higher diversification economies among larger-

scale MFIs by testing for the (first-order) stochastic dominance of diversification economies exhib-

ited by MFIs in the upper quantiles of the cost distribution over those exhibited in lower quantiles.

We use Linton et al.’s (2005) generalization of the Kolmogorov-Smirnov test which permits testing

dominance over multiple variables/prospects and allows these variables to be the estimated latent

quantities as opposed to observables from the data (as in our case). We formulate the null hy-

potheses as corresponding to the stochastic dominance8 and, to perform these tests, we employ the

sub-sampling procedure suggested by Linton et al. (2005).9 The left panel of Table 2 reports p-

values for the tests of pair-wise dominance of GED from the “row” quantile model over GED from

the “column” quantile model, whereas the right panel reports p-values for the tests of dominance of

GED from the “row” quantile over a joint multi-dimensional set of GED from “column” quantiles.

Consistent with the visual evidence in Figure 1, the data suggest that economies of diversification

among the largest MFIs in the top cost distribution decile (τ ≥ 0.9) are overall statistically larger

than those among smaller-scale MFIs in the rest of the cost distribution.

We conclude our analysis by also testing for the underlying technological and distributional

heterogeneity across MFIs, which has served as the principal motivation for our analysis. More

8Thus, the failure to reject (when p ≥ 0.05) implies that one variable stochastically dominates the other(s).
9We use dN = 199 equidistant sub-sample sizes Bn = {b1, . . . , bdN }, where b1 = [log logN ] and bdN = [N/ log logN ]
with N being the sample size, each of which produces a p-value. The reported are the means of these dN p-values.
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concretely, we use the bootstrap Wald statistic to test if (i) for each cost quantile τ , the common

cost function parameters are the same for loans-only (r = 1) and loans-and-savings (r = 2) MFIs,

and (ii) for each MFI type r, the cost function parameters are the same across all and any pair

of the estimated cost quantiles τ . The former nulls are consistently rejected with p-values at least

as small as 10−5, and the latter nulls are rejected with p < 10−6, thereby strongly indicating the

presence of non-negligible heterogeneity among MFIs.

5 Concluding Remarks

Our findings lend strong support in favor of a more flexible approach to modeling cost relationships

in microfinance that is capable of accommodating distributional and other types of heterogene-

ity. Our quantile panel data estimates of economies of diversification reveal important differences

across individual MFIs that remain unmasked in the more traditional conditional-mean results. In

particular, we find that, despite being statistically significant, diversification economies are very

modest for the majority of MFIs, which tend to be small in size, but are quite substantial for

larger-scale institutions suggesting that the degree of diversification economies increases with the

scale of operations. These differences are statistically significant distribution-wise. Therefore, it is

imperative that that policy makers and donors be cautious when pushing smaller credit-only MFIs

into the provision of savings deposits with the expectations of diversification-driven cost savings,

since the latter seem to be more relevant and economically substantive primarily for the very large

MFIs.

Appendix

This appendix reports some empirical evidence that the cost distribution of MFIs exhibits fat tails

as opposed to what one would have expected of the log-normally distributed variable.

Given the non-negativity of cost and the convention to model cost relationships in logs (like we

do in this paper as well), in what follows, we work with the logged cost of MFIs. To partial out

influence of the cost determinants, we examine the (conditional) distribution of the log-cost net of

its linear projection on the cost-function regressors. Essentially, we work with the residuals from

a mean-regression counterpart of our quantile model in (3.1). We contrast this log-cost residual

distribution with the normal distribution to see if it is fat-tailed.

We first consider the so-called Q-Q plot of the MFI log-cost (Figure A.1) where we plot empirical

quantiles of the standardized log-cost residuals against theoretical quantiles of a standard normal

variable. From the figure, we see that, while the cost data fall along a straight line in the middle of

the plot, they curve off in the tails. This suggests that, after partialling out, the log-cost variable

takes more extreme values than expected, had it been normally distributed. Next, we test for a

positive excess kurtosis of the conditional log-cost. The unbiased measure of excess kurtosis (Joanes

& Gill, 1998) is estimated at 0.39, with the one-sided p-value of 0.044. This kurtosis estimate is

9



Figure A.1. The Q-Q Plot of the Standardized Log-Cost against the Normal Distribution

significantly positive at the conventional level, rejecting a zero-value null under normality, and

suggests “heavy tails” of the conditional log-cost distribution.
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