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Abstract: The relationship between CO2 emissions and economic growth is well-examined. 

However, there is a gap in the literature to examine the nexus by regime-switching models. 

For this purpose, this paper examines the interdependence relations between CO2 emissions 

and the industrial production index as a measure of business cycles at the monthly frequency 

in the United States. We use a new approach to modeling dependence between the underlying 

variables over time, combining the time-varying copula and the Markov switching models. 

We find that there is a significant dependence structure between business cycles and CO2 

emissions, which has a regime-switching feature, for the period from January 1973 to January 

2017. Specifically, during the recession episodes, we deduce that until 1982, the high 

dependence regime with the Gaussian copula is valid. Since the beginning of 1983, the low 

dependence structure regime becomes prominent.   
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1. Introduction  

Due to the rising problems of global warming and climate change in the early 2000s, 

researchers have intensified their interest in the determinants of the related issues. The 

empirical studies on the subject show that climate change has mainly been related to 

environmental degradation (generally measured by CO2 emissions) (Lopez-Menendez et al., 

2014).1 The recent empirical papers usually have focused on the economic growth-

environmental quality (CO2 emissions) nexus since the economic growth has been considered 

as a leading determinant of the environmental degradation (see, e.g., Shahbaz et al., 2017a). 

At this stage, the environmental Kuznets curve (EKC) hypothesis is proposed by 

Grossman and Kruger (1995) to analyze the association between the level of CO2 emissions 

and economic growth. According to the EKC hypothesis, CO2 emission increase as per capita 

income rises, but an economy country reaches a level of the upper-middle (or high) income, 

the level of CO2 emissions will fall (Gozgor and Can, 2016). However, it is essential to note 

that reaching the upper-middle (or high) income level does not necessarily mean that the level 

of CO2 emissions in a developed economy will reduce (Atasoy, 2017; Congregado et al., 

2016). At this point, policymakers must implement the necessary policy implications to 

decrease the level of CO2 emissions. In other words, policymakers should find out the details 

of the relationship between the dynamics of economic growth and the level of CO2 emissions. 

At this point, it is noteworthy to state that testing the EKC hypothesis does not put 

forward the detailed policy implications to understand the effects of economic growth on CO2 

emissions. Therefore, the researchers attempt to utilize new methods to understand the CO2 

emissions-growth nexus instead of the EKC hypothesis, since the long-run forecasts of CO2 

emissions assume that economic growth is constant over time (Sheldon, 2017). In other 

words, the empirical papers should take the business cycle into account, i.e., one of the most 

                                                             
1 Countries have recently attempted to take measures to tackle environmental degradation through the multi-
country agreements (e.g. see the Paris Agreement of the United Nations). 
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critical elements of the macroeconomic policy (Shahiduzzaman and Layton, 2015; Sheldon, 

2017). Besides, according to Bowen and Stern (2010), environmental policies should respond 

to the macroeconomic downturns, i.e., policymakers should take the business cycle phase into 

account. This issue is also not only crucial for environmental policies but also fiscal policies 

(i.e., government expenditures and optimal tax rates) during the times of the macroeconomic 

downturns (Fischer and Heutel, 2013; Fischer and Springborn, 2011). The recent idea in the 

empirical literature for paying regard to business cycles is related to the consequences of the 

global financial crisis of 2007–09 since gross domestic product (GDP) of the world economy 

shrank for the first time in 2009 after the Second World War (Cohen et al., 2017; Peters et al., 

2012). 

Our paper focuses on the U.S. economy since it is the second largest greenhouse gases 

emitted country in the globe in 2017 and has recently targeted a significant decline of 

greenhouse gas emissions by around 27% in 2025 compared to its level in 2005 (Khan et al., 

2016; Shahiduzzaman and Layton, 2017). Indeed, the U.S. economy is the ideal example for 

analyzing the relationship between business cycles and CO2 emissions since it is among the 

top countries not only for CO2 emissions but also for per capita income. The U.S. is the top 

country with the highest CO2 emissions per capita in the world for the period from 1965 to 

2016, and it is the second country (China is the first) in the world in 2016 (British Petroleum 

(BP), 2017; Shuai et al., 2018). In addition, according to the World Development Indicators 

(WDI) (2018) data, the share of nominal GDP of the U.S in the world’s total GDP is 24.6% in 

20162 and the U.S. is one of the wealthiest countries with its $57,467 GDP per capita in 2016 

(World Bank, 2018). In short, the U.S. economy has the significant capacity to change the 

pattern of the global climate change in terms of per capita income level and the level of CO2 

                                                             
2 According to the WDI data, nominal GDP of the U.S. and the World is 18.57 trillion US$ and 75.54 trillion 
US$ in 2016, respectively (World Bank, 2018). 
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emissions; and therefore, we should enhance our knowledge on the relationship between 

business cycles and CO2 emissions in the U.S.  

Although our paper analyzes the relationship between CO2 emissions and business 

cycle in the U.S. economy, various papers have focused on the EKC hypothesis for examining 

the relationship between per capita income (GDP) and CO2 emissions in the U.S (see, e.g., 

Congregado et al., 2016). However, there is still no paper that analyzes the related 

relationship in a business-cycle framework by using the Markov-Switching time-varying 

copula models. 

To this end, our paper aims to analyze the dependence structure between the level of 

CO2 emissions and economic performance in a business cycle framework in the U.S. for the 

period from January 1973 to January 2017 by using the Markov-Switching time-varying 

copula models. It is important to note that the Markov-Switching and the time-varying copula 

models take nonlinearity and asymmetry into account. They are also able to capture the 

different asymmetry characteristics of the time-series in the forms of the high-dependence, the 

normal-dependence, and the low-dependence. At this stage, it is interesting to consider tail 

dependence in the growth-CO2 emissions nexus since there could be various policy 

implications following the tail dependence. At this point, our paper aims to fill the related 

gaps in the empirical literature by analyzing the case of the U.S. Our empirical analysis 

captures the data spanning the period from January 1973 to January 2017, which covers the 

oil price shocks in the 1970s and the global financial crisis of 2007–09.  

To the best of our knowledge, our paper is the first to analyze the relationship between 

business cycles and CO2 emissions by utilizing the Markov-Switching the time-varying 

copula models; and actually, this is the novel contribution of our paper to the existing 

empirical literature. Specifically, we aim to analyze how macroeconomic shocks, which 

determine the business cycle fluctuations in industrial output, affect the pro-cyclicality of the 



5 
 

carbon dioxide emissions. Overall, our paper uses new and robust methods to analyze the 

relationship between business cycles and CO2 emissions. The empirical results show the 

importance of business cycles on the dependence structure. The empirical findings also 

illustrate that CO2 emissions in the U.S. are regime-dependent. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the 

previous literature on the relationship between CO2 emissions and economic performance in a 

business cycle framework. Section 3 explains the methodological issues of the estimation 

procedure as well as describing the estimation of the model and the data. Section 4 provides 

the empirical results and also discusses the policy implications. Section 5 concludes. 

 

2. Literature Review  

Previous studies that examine the relationship between the level of CO2 emissions and per 

capita income (or economic growth) both in the developing economies and the developed 

countries are mostly based on the EKC hypothesis (see e.g., Congregado et al., 2016; Pao and 

Tsai, 2010; Shahbaz et al., 2017b). At this stage, there are only a few papers that consider the 

role of the business cycle in CO2 emissions-growth nexus using the time-series data.3 For 

example, using the monthly frequency data for the period from 1973 to 2000 in the U.S., 

Thoma (2004) illustrates that there is the asymmetric response of electricity consumption to 

change of industrial production over a business cycle phases. Considering both the monthly 

and the quarterly frequency data for the period from 1981 to 2003, Heutel (2012) 

demonstrates that the level of CO2 emissions is pro-cyclical in the U.S., i.e., it increases 

during the expansion times and decreases during the contraction times. Also, Peters et al. 

(2012) use the annual data for the world economy, and they also split the data as the 

                                                             
3 There are also panel data studies to analyze the relationship between CO2 emissions and business cycles (see 
Burke et al., 2015; Doda, 2014; York, 2012). In addition, refer to Cohen et al. (2017 and 2018) and Zhao et al. 
(2016) for possible explanations of cross-country differences in the relationship between CO2 emissions and 
business cycles. 
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developing- and the developed economies for the period from 1960 to 2010. The evidence 

that the suppressing effect of the global financial crisis of 2007–09 on the level of CO2 

emissions is temporary and CO2 emissions rebounded in 2010. Using the decomposition 

analysis, Jotzo et al. (2012) also focus on the annual data for the world economy for the 

period from 1972 to 2010 and observe that the rising energy intensity caused to the rebound 

of CO2 emissions in 2010. Using the decoupling analysis, Wang et al. (2018) compare the 

decoupling strategies of economic growth from carbon dioxide emissions in China, and the 

U.S. Rodríguez et al. (2018) also provide different decoupling environmental strategies in 28 

European Union (EU) countries using the data from 1950 to 2012. 

Furthermore, Shahiduzzaman and Layton (2015) focus on the U.S. business cycles for 

the period from 1949 to 2011 with the annual data. They also use the monthly data for the 

period from 1973 to 2013. Using the decomposition analysis with the time-series techniques, 

they find that total CO2 emissions fall much faster during the contraction periods than they 

increase during the expansion periods. In their empirical paper, Shahiduzzaman and Layton 

(2017) enhance the related evidence (i.e., the reduction in CO2 emissions is higher in the 

contraction periods than the expansion periods) by using the data for the period from 1973 to 

2014. They also discuss the policy implications in the U.S. to achieve the 2025 target for 

reducing the greenhouse gas emissions; and thus, the slowing down the pattern of climate 

change in the world. The similar evidence for CO2 emissions-business cycles nexus is 

obtained by Eng and Wong (2017) using the nonlinear autoregressive-distributed lag 

(NARDL) model estimations in the USA. Finally, using the quarterly frequency data for the 

period from 1960 to 2011, Sheldon (2017) demonstrates that there is the asymmetric response 

of CO2 emissions to business cycles in the U.S. In other words, the level of CO2 emissions 

reduces much more when per capita income falls than they rise when per capita income 

increases. 



7 
 

To conclude the literature review, we observe that there are only a few studies for 

analyzing how business cycles affect CO2 emissions. Most of the studies have focused on the 

U.S. economy due to its pivotal role in terms of the world’s GDP and CO2 emissions. 

Following them, our paper also examines the case of the U.S. economy within the monthly 

dataset for the period from January 1973 to January 2017; thereby, aims to determine the 

exact specification of business cycle turning points in the U.S. economy. The monthly and the 

updated dataset shed additional lights to our knowledge of the association between business 

cycles and CO2 emissions in the U.S. Besides, most of the papers have used the traditional 

time-series techniques to analyze the relationship the related variables. Different from other 

studies in the literature, our paper is the first to analyze the dynamic dependence between 

business cycles (fluctuations in aggregate economic activity) and climate change (measured 

by CO2 emissions). For this purpose, we utilize the regime switching copula-based 

autoregressive (AR)–exponential generalized autoregressive conditional heteroskedasticity 

(EGARCH) approach, which takes into account the nonlinearity and the asymmetric 

characteristics of the time-series. In the empirical analysis, we also consider the Markov-

switching dynamic (autoregressive) copula approaches since they are flexible to capture the 

asymmetry in the forms of the high-dependence, the normal-dependence, and the low-

dependence. Indeed, the findings indicate the importance of business cycles on the 

dependence structure. Furthermore, the level of CO2 emissions in the U.S. is regime-

dependent.  

 

3. Methodological Issues 

The analysis is performed in two steps: (i) the marginal distribution for each random variable 

is obtained through the AR-EGARCH models with a skewed t-distribution and (ii) the regime 

switching copula models are used to model the dependence. To measure the dynamic 
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dependence between fluctuations in the measures of economic activity and climate change, 

we use the regime switching copula based on the AR-EGARCH approach, which takes into 

account the asymmetry and the nonlinearity. The Markov-switching dynamic (autoregressive) 

copula approach is flexible to capture the asymmetry in the form of high dependence and the 

low (or normal) dependence. Firstly, the AR(p)-EGARCH(1,1) model is adopted to identify 

the marginal distributions of each data series, 𝐹 , 𝑖 = 1,2, which is used as input data for the 

regime-switching copula model. Secondly, the dependence between the two marginal 

distributions, which deduce from the AR(p)-EGARCH(1,1) model, can be estimated by a 

regime switching copula model. We explain the related procedure as follows. 

 

3.1. AR-EGARCH Model  

The marginal distributions of CO2 emissions and industrial production are characterized by an 

AR (p)-EGARCH (1,1) with the student's t-distribution innovation model that accounts for the 

time-varying volatility. The EGARCH model also has added the benefit to take into account 

the asymmetric effect of positive and negative shocks, so that the EGARCH model allows for 

testing of asymmetries. The AR (p)-EGARCH (1,1) with the skewed student's t-distribution 

innovation can then be written as follows: 

 𝑟௧ = 𝜙 + ∑ 𝜙𝑟௧ି + 𝜀௧ୀଵ       (1) 

 

where 𝜙 is the autoregressive parameter of 𝑟௧, 𝜀௧ is an error term, p is a non-negative 

integer. The time-varying volatility can be specified by the t-EGARCH (1, 1) process, which 

can be characterized by the following equations (Nelson, 1991): 

 𝜀௧ = 𝜎௧𝑧௧        (2) 
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𝑙𝑛(𝜎௧ଶ) = 𝜔 + 𝛽𝑙𝑛(𝜎௧ିଵଶ ) + 𝛾  ఌషభටఙషభమ  + 𝛼  |ఌషభ|ටఙషభమ − ටଶగ  (3) 

 

where 𝜀௧ , 𝑖 = 1, . . . , 𝑇 are i.i.d random variables, 𝜎௧ଶ is the conditional variance given 

past information, 𝜔, 𝛽, 𝛼> 0 and  𝛼 + 𝛽 < 1 assuring 𝜎௧ଶ > 0. 𝑧௧ is the standardized residual. 

α parameter illustrates the “GARCH” effect (the symmetric effect of the model). β measures 

the persistence in conditional volatility (the lagged conditional variance) (Engle, 1982). γ 

parameter captures the asymmetric or the leverage effect. If γ = 0, then the model is 

symmetric. When γ < 0, then positive shocks produce less volatility than negative shocks. 

When γ > 0, it implies that positive innovations are more fluctuating than negative ones. We 

also assume that 𝜀௧ follows a skewed-t distribution (with 𝑣 and 𝛾 degrees of freedom and 

asymmetry, respectively), which has the following density: 

 

𝑔(𝑧|𝜈, 𝛾) = ⎩⎪⎨
⎪⎧𝑏𝑐 ൬1 + ଵఔିଶ ቀ௭ାଵିఊ ቁଶ൰ି(ఔାଵ) ଶ⁄      𝑧 < −𝑎 𝑏⁄𝑏𝑐 ൬1 + ଵఔିଶ ቀ௭ାଵାఊ ቁଶ൰ି(ఔାଵ) ଶ⁄      𝑧 ≥ −𝑎 𝑏⁄                              (4a) 

 

where the constants a, b and c are obtained from: 

𝑎 = 4𝜆𝑐 ቀఔିଶఔିଵቁ, 𝑏ଶ = 1 + 3𝜆ଶ − 𝑎ଶ, 𝑐 = ቀഌశభమ ቁඥగ(ఔିଶ)ቀഌమቁ                           (4b) 

 

3.2. Copula Models 

3.2.1. Basic Concepts 

An n-dimensional copula 𝐶(𝑢ଵ, 𝑢ଶ, . . . , 𝑢) is a multivariate distribution function in [0,1]; 

and therefore, each marginal distribution is uniform on the interval [0,1] (Schweizer and 
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Sklar, 1983). Given n random variables 𝑥ଵ, 𝑥ଶ, . . . , 𝑥 with joint distribution, 𝐻(𝑥ଵ, 𝑥ଶ, . . . , 𝑥) 

moreover, with marginal functions 𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), . . . , 𝐹(𝑥) : 
 𝐻(𝑥ଵ, 𝑥ଶ, . . . , 𝑥) = 𝐶(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), . . . , 𝐹(𝑥) )                      (5) 

 

There exists a unique copula function 𝐶 implied by the continuity of  𝐹ଵ, 𝐹ଶ, . . . , 𝐹: 𝐶(𝑢ଵ, 𝑢ଶ, . . . , 𝑢) = 𝐻 ቀ𝐹ଵ(ିଵ)(𝑢ଵ), . . . , 𝐹(ିଵ)(𝑢)ቁ                      (6) 

Where𝑢ଵ = 𝐹ଵ(𝑥ଵ), . . . , 𝑢 = 𝐹(𝑥). 

 𝐹ଵ, 𝐹ଶ, . . . , 𝐹 and 𝐶 are n-differentiable, then the joint density function can be obtained as 

follows: ℎ(𝑥ଵ, 𝑥ଶ, . . . , 𝑥) = 𝑐(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), . . . , 𝐹(𝑥) ) ∏ 𝑓(𝑥)ୀଵ        (7) 

 

where ℎ is the density function of the joint distribution 𝐻, 𝑓 is the marginal density function 

and 𝑐 is copula density, which is obtained by differentiating equation-5: 

 

𝑐(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), . . . , 𝐹(𝑥) ) = ൬ிభ(షభ)(௨భ),...,ி(షభ)(௨)൰∏ (ி(షభ)(௨))సభ                    (8) 

 

Copula functions often used in finance literature are associated with a quadratic form of 

correlation between the marginal (elliptical forms) as the Gaussian and the Student's t copula 

models. The distribution functions of this copula family allow for asymmetric left- and right-

tail dependence. Other copula approaches that have been used, allowing for asymmetric 

dependence as Clayton and the Gumbel type copula models, which allow for the upper tail 

and lower dependence respectively. Hence, there is a variety of copula functions with specific 
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dependence structure, making a comparison between the different functional forms of copula 

impossible. For that reason, we turn to the tail dependence as a dependence measure to make 

this comparison possible. We define the copula models as follows: 

 

Definition (Nelsen, 2006): Let 𝑋ଵ and 𝑋ଶ be continuous random variables with 

distribution functions F and G, respectively. The upper-tail dependence parameter𝜆 is the 

limit (if it exists) of the conditional probability that 𝑋ଶ  is greater than 100t-th percentile of G 

given that 𝑋ଵ is greater than the 100t-th percentile of F as 𝑡 approaches 1, i.e. 

 𝜆 = Lim௧→ଵష 𝑃൫𝑋ଶ > 𝐺(ିଵ)(𝑡)ห𝑋ଵ > 𝐹(ିଵ)(𝑡)൯                              (9) 

 

Similarly, the lower tail dependence parameter𝜆 is the limit (if it exists) of the conditional 

probability that 𝑋ଶ is less than or equal to the 100t-th percentile of G given that 𝑋ଵ is less than 

or equal to the 100t-th percentile of F as t approaches 0, i.e.  

 𝜆 = Lim௧→శ 𝑃൫𝑋ଶ ≤ 𝐺(ିଵ)(𝑡)ห𝑋ଵ ≤ 𝐹(ିଵ)(𝑡)൯                                 (10) 

 

These parameters are nonparametric and depend only on the copula of 𝑋ଵ and 𝑋ଶ, as the 

following theorem demonstrates.4 

 

Theorem: Let 𝑋ଵ, 𝑋ଶ, F, G,𝜆  and 𝜆 be as in precedent Definition, and let C be the copula of 𝑋ଵ and 𝑋ଶ, with the diagonal section 𝛿. If 𝜆  and 𝜆 exist, then 

 𝜆 = 2 − Lim௧→ଵష ଵି(௧;௧)ଵି௧ = 2 − 𝛿ᇱ (1ି)                                      (11a) 

                                                             
4 For proof, see Nelsen (2006). 
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𝜆 = Lim௧→శ (௧;௧)௧ = 𝛿ᇱ (0ା)                                                            (11b) 

 

If 𝜆 is in (0,1], we say C has the upper tail dependence; if 𝜆 = 0, we say C has no upper tail 

dependencies; and similarly for𝜆. 

 

Hence, the tail dependence is entirely defined by the related copula and is not affected by the 

marginal distribution variation. The use of tail dependence measures makes it possible to 

examine, which model is capable of reproducing stylized facts about the relationship between 

CO2 emissions and industrial production. Moreover, the tail dependence can be defined as the 

probability that a pro-cyclicality or counter-cyclicality happens, given CO2 emissions during 

economic booms and recessions. Different functional forms for copula that can be used 

(Nelsen, 2006). Our study test five copula functions, and their details are provided in Table-

1.5 

Table-1. Details of the Time-varying Markov Switching Copula Models 
Copula Model Type Parameters Tail Dependence 

Gumbel (G) Archimedean Correlation 𝜃 Only Upper 
Rotated Gumbel (RG) Archimedean Correlation 𝜃 Lower 

Symmetrized Joe-Clayton (SJC) Archimedean The Dependence Parameters 𝜏 
and 𝜏 are the Measures of 

Dependence of the Upper- and  
Lower Tail, respectively. 

Both Upper 
 and Lower 

Normal (N) Elliptical The Linear Correlation 𝜌 None 
Student's t (S) Elliptical The Linear Correlation 𝜌 Symmetric 

Note: For the relevant technical details of the procedures to obtain Markov switching copula parameter 
estimates, refer to Nelsen (2006). 

 

3.2.2. Regime-Switching Copula Models 

We observe the evidence that dependency between CO2 emissions and industrial production 

does not stay constant over time. Hence, the dependence between CO2 emissions, 𝑟ଵ௧, and 

industrial production, 𝑟ଶ௧, is allowed to vary over time. Following Patton (2006), we let the 

                                                             
5The details of the copula functions employed in our study are defined in Table-1.  
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dependency parameter evolve according to an AR (p) process, for the copula function 

dependency parameters. We assume that the functional form of copula remains constant, but 

copula parameters can evolve over the period under concern. Considering 𝑅௧ = (𝑅ଵ௧ , 𝑅ଶ௧) 𝑡 =1,2, … the copula-based EGARCH model can be represented as follows: 

 𝐻(𝑅௧|𝜇, 𝒉𝒕) = 𝐶థ൫𝐹ଵ(𝑅ଵ௧|𝜇, ℎଵ௧), 𝐹ଶ(𝑅ଶ௧|𝜇, ℎଶ௧)൯                        (12) 

 

where 𝐹(𝑅௧|𝜇, ℎ௧), 𝑖 = 1,2 the marginal distributions are specified as standard univariate 

EGARCH processes and 𝐶థ  is the copula function with time-varying dependence parameter 𝜙௧, which switching according to a first-order Markov Chain: 

 𝜙௧,ௌ = Λ൫𝜔ௌ + 𝛽௧ିଵ𝜙௧ିଵ + 𝜓௧൯                                               (13) 

 

where Λ is a logistic transformation of each copula isa function to constrain the dependence 

parameter in a fixed interval6, 𝑆௧ are the Markov states which assumed to be two states of the 

economy, namely expansion and recession regimes. Then, the transition probability 𝜋 is 

defined as a 2x2 matrix of 𝑝   𝑖, 𝑗 = 1,2 where 𝑝  is the probability of moving from state 𝑖 to 

state 𝑗: 

𝜋 = ൬ 𝑝ଵଵ 1 − 𝑝ଵଵ1 − 𝑝ଶଶ 𝑝ଶଶ ൰ = ൬ 𝑝 1 − 𝑝1 − 𝑞 𝑞 ൰                                   (14) 

 𝜓௧ represents a “forcing variable,” defined as the mean absolute difference between 𝑢ଵ =𝐹ଵ(𝑥ଵ) and 𝑢ଶ = 𝐹ଶ(𝑥ଶ) for the Gumbel (G), the Rotated Gumbel (RG), and the Symmetrized 

                                                             
6 For example, the logistic transformation keeps the upper- and lower tails of the SJC copula bounded to (0,1). 
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Joe–Clayton (SJC) copula models, and the mean of product between 𝑢ଵ and 𝑢ଶ for the Normal 

(N) and Student's t (S) (Patton, 2006).7 

 

3.3. Estimation Procedure 

The maximization of the log-likelihood function can estimate the copula and the marginal 

density parameters:  𝑙(𝜽|𝑹𝒕) = ∑ 𝑙𝑜𝑔 ቀ൫𝐶థ൫𝐹ଵ(𝑅ଵ௧|𝜇, ℎଵ௧), 𝐹ଶ(𝑅ଶ௧|𝜇, ℎଶ௧)൯ห𝜙 , 𝑆௧൯ × ∏ 𝑓௧(𝑅௧|𝜃)ଶୀଵ ቁ௧்ୀଵ (15) 

Where𝜃 = 𝜇 , ℎ௧ , 𝑖 = 1,2 and 𝜽 is a vector with all model parameters. The log-

likelihood is a separable function; then we can use the two-step maximum likelihood 

estimation the procedure called the inference function for margins (IFM) technique proposed 

by Joe and Xu (1996). This two-step procedure consists of estimating the parameters of the 

univariate marginal distributions modeled as the univariate EGARCH process in a first step 

and then using these estimates to estimate copula parameters by maximizing the log-

likelihood function in a second step. However, the dependence parameter estimation via 

copula depends on a non-observable state (𝑆௧), which follows a Markov chain. Accordingly, 

the estimation of the regime-switching copula parameters requires inferences on the 

probabilistic evolution of the state variable (𝑆௧), and that’s why we build our estimation 

approach on the smoothing algorithm of Kim (1994). 

 

3.4. Data Description and Preliminary Analysis 

In our study, climate change is measured by the level of carbon dioxide emissions, and the 

data are obtained from the U.S. Energy Information Administration. The output level has been 

                                                             
7 For the RG and the SJC copula models, the forcing variable is the mean absolute difference between 𝑢ଵ and 𝑢ଶ  
given by  𝛼 . ଵ ∑ ห𝑢ଵ,௧ି − 𝑢ଶ,௧ିหୀଵ , while it is defined as the mean of the products between 𝛼 . ଵ ∑ Φିଵ൫𝑢ଵ,௧ି൯.ୀଵ Φିଵ൫𝑢ଶ,௧ି൯ and  𝛼 . ଵ ∑ 𝑇௩ି ଵ൫𝑢ଵ,௧ି൯ୀଵ . 𝑇௩ି ଵ൫𝑢ଶ,௧ି൯ for the Normal and the Student's t 
copula models across ten previous periods (Patton, 2006).  
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measured by the index of industrial production, which was obtained from the Organization for 

Economic Co-operation and Development (OECD) statistics online database. The empirical 

analysis captures the data spanning the period from January 1973 to January 2017. In Figure-

1a and Figure-1b, we provide the plots of the related time-series. 

[Insert Figures-1a and 1b around here] 

A summary of statistics for the logarithmic returns is reported in Table-2, which shows 

that the growth rate of CO2 emissions is negative, while the growth rate of industrial 

production index is positive. Furthermore, the evidence indicates that CO2 emissions are 

relatively more volatile, and both series are negatively skewed, as well as they have high 

kurtosis. The null hypothesis of the normality has been rejected for both variables, and both 

series are stationary as evident from the unit root and stationarity tests.  

 

Table-2. Descriptive Statistics Properties of Monthly CO2 Emissions and Industrial 
Production Index (INPRO) Returns (January 1973– January 2017) 

Test Statistics CO2Emissions INPRO 
Mean –0.000540 0.001565 

Median 0.005064 0.001901 
Maximum 0.134595 0.020311 
Minimum –0.200210 –0.043900 

Standard Deviation 0.052106 0.007200 
Skewness –0.562184 –1.340810 
Kurtosis 3.738584 9.133563 

Q(10) 422.03*** 209.20*** 
Q2(10) 31.122*** 141.55*** 

Jarque-Bera Statistics 39.81361*** 985.8571*** 
PP Test –50.9717*** –17.8768*** 

ADF Test –5.9352*** –8.0512*** 
KPSS Test 0.0533 0.1096 

Notes: The Q(10) and the Q2 (10) refer to the Ljung-Box tests for autocorrelation, respectively. The ADF, the PP, 
and the KPSS are the empirical statistics of the Augmented Dickey-Fuller (1979), and the Phillips-Perron (1988) 
unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively. *** denotes the rejection of the 
null hypotheses of normality, no autocorrelation, unit root, non-stationarity, and conditional homoscedasticity at 
the 1% significance level 

 

4. Empirical Findings 

4.1. Results of the Marginal Model  
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Table-3 provides the estimated effects of the marginal models. We select the optimal model, 

AR (p)-EGARCH (1,1), according to the Schwarz / Bayesian Information Criterion (BIC) 

criteria. The estimation shows that the asymmetry coefficient is negative and statistically 

significant for the industrial production index (IPI) series, and it is positive as well as 

statistically significant for CO2 emissions. This evidence argues a heavy tail to the left for the 

marginal distribution of IPI, which highlights that negative shocks produce less volatility than 

positive ones. The heavy right tail of CO2 emissions marginal distribution implies that the 

positive innovations are more fluctuating than the negative ones. Therefore, we reject the 

normal distribution as an adequate fit for our series.  

 

Table-3. Results of the Estimations of the Marginal Distribution Models 
Mean CO2Emissions INPRO ∅𝟎 4.775*** 

(1.467) 
0.172*** 
(0.057) ∅𝟏 –0.437*** 

(0.047) 
0.216*** 
(0.009) ∅𝟐 –0.118** 

(0.051) 
0.202*** 
(0.027) ∅𝟑 –0.128*** 

(0.044) 
– 
 ∅𝟒 –0.173*** 

(0.045) 
– 
 ∅𝟓 0.031 

(0.036) 
– 
 ∅𝟔 –0.277*** 

(0.037) 
– 
 

Variance CO2 Emissions INPRO 𝝎 0.417** 
(0.174) 

–0.612*** 
(0.125) 𝜶 0.307*** 

(0.079) 
0.389*** 
(0.049) 𝜷 0.763*** 

(0.064) 
0.704*** 
(0.087) 

Tail 19.793 
(16.204) 

6.536*** 
(1.749) 

Log Likelihood –1463.39 –455.1744 
Akaike Information Criteria 5.657 1.765 

Bayesian Information Criterion 5.763 1.838 
Q2 (10) 17.47 

(0.047) 
11.38 

(0.329) 
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Q2 (20) 14.52 
(0.123) 

12.69 
(0.304) 

ARCH LM (10) 9.97092 
(0.44305) 

5.92096 
(0.82186) 

Kolmogorov–Smirnov 0.999 0.999 
Anderson–Darling 0.0007954 4.319e-13 
Cramér–von Mises 0.003548 1.524e-08 

Berkowitz 1.320312e-07 1.320312e-07 
Notes: The Table presents the estimates of univariate the AR-EGARCH model. The standard errors are in 
parentheses. Q2 denotes the Ljung-Box p-values for serial in the squared residual model calculated with 10 and 
20 lags. The last four rows show goodness-of-fit tests to the probability integral transform from the margins 
(Kolmogorov–Smirnov, Anderson–Darling (Anderson and Darling, 1952), Cramér–von Mises, and Berkowitz 
(Berkowitz, 2001) tests. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

 

Also, the estimated coefficients (𝛽) exhibit high values indicate that volatility was 

persistent across our underlying macroeconomic variables. Then, the use of the multivariate 

normal or the symmetric Student's t distributions would not be an appropriate choice to 

characterize the joint distribution of industrial production and CO2 emissions returns. We also 

observe that the results of the goodness-of-fit tests, which provide no evidence of serial 

correlation, as we can infer by the Ljung-Box Q2 statistics and the ARCH effects. 

Furthermore, the Anderson–Darling (AD), Berkowitz, Cramér–von Mises, and Kolmogorov–

Smirnov (KS) tests, which are used as uniformity tests for the transformed marginal of these 

residuals provides the mixed results. Those are the formal statistics to ensure the adequacy of 

the potential switching behavior; therefore, we should use the copula models.8 

 

4.2. Results of Time-varying (Dynamic) Copula Dependence  

After the estimations of the marginal distribution, the four time-varying Copula functions 

(time-varying Normal, time-varying Student's t, time-varying Rotated Gumbel, and time-

varying Gumbel)9 are used to broadly analyze the dynamic dependence structures between 

business cycles and CO2 emissions. Moreover, the Markov-Switching Copula models are 

                                                             
8 Note that there is no potential confusion between switching behavior and structural breaks in the dependence 
relationship over the long sample period under concern. 
9 Note that the time-varying Symmetrized Joe-Clayton (SJC) Copula estimations do not converge. 
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employed to examine further if the dependence structures of CO2 emissions will be regime-

switching (the high- and low regimes). It is common in the literature to select the best model 

as the one presenting the highest likelihood figure and the lowest information criteria, such as 

the Akaike Information Criteria (AIC) and the BIC values. The ability of time-varying Copula 

function to predict in-sample the dependence between industrial production and CO2 

emissions is judged by the log-likelihood (LL) value of the competing models. The time-

varying Normal Markov copula emerges as the best fitting models (have the highest 

likelihood figure), which also has the lowest AIC and BIC values. This finding suggests that 

the dependence structure between the time series variables is seemingly symmetric, i.e., there 

is no noteworthy difference between the degrees of tail dependence in the upper- and lower 

tails.  

The estimations of the Markov Switching Copula models further reveal that the 

dependence structure between the two variables is not unchanging, but switches through 

different regimes. In Table-4, we display the copula estimation results for the time-varying 

Normal Markov copula function (with the regime switching) used in our study. We also report 

other time-varying Markov copula functions (the Gumbel, the Rotated Gumbel, and the 

Student's t) in Appendix Table-I and Appendix Figure-I. However, it is essential to note that 

the results of the time-varying normal Markov copula are considered as the baseline results 

because Log Likelihood criteria is a maximum for the time-varying Normal Markov copula 

function. 

 

Table-4. Time-varying Normal Markov Copula Estimation Results for Industrial 
Production and CO2 Emissions  

Parameters Dependent Variable: 
CO2 Emissions 𝜔 

 
2.1557*** 
(0.3626) 𝜔ଵ  
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–1.9327*** 
(0.3488) 𝛽 

 
–2.4448*** 

(0.1384) 𝛼 
 

–0.3561*** 
(0.3184) 

P 
 

0.0297 
(0.9012) 

Q 
 

0.9703*** 
(0.7095) 

 
Log Likelihood 

 
–15.872 

Notes: The numbers in parentheses represent the standard errors. *** indicates the statistical 
significance at the 1% level. 

 

In the results in Table-4, the first regime characterized by low dependence (recession) 

is less persistent than the second one described by high dependence (expansion), as indicated 

by probabilities p (low value) and q (high value). This result implies that there is a strong 

persistence in the dependence structure between CO2 emissions and industrial production in 

the expansion regime. Thus, we can infer regime 0 to be the low dependence regime, while 

regime 1 is the high dependence regime. It looks that the dependence structure between CO2 

emissions and business cycles differs under the two regimes. Moreover, the dependence 

between the two variables has high-level fluctuations, and CO2 emissions are more volatile 

than industrial production. This finding is somehow consistent with the findings of Doda 

(2014) and Heutel (2012). 

In Figure-2a, we report the time-varying dependence between the related variables. 

The findings show that most often, the time-varying dependence structure between industrial 

production and CO2 emissions is more likely to be in the regime 1; however, during specific 

periods, the tail dependence between the two related variables will no longer prevail, which 

corroborate that the dependence structure can be characterized well by the time-varying 

normal copula (see, Figure-2b). The dependence structure could change over time or alternate 



20 
 

between symmetric form without the tail dependence or with the low dependence (Da Silva 

Filho et al. 2012).  

 

Figure-1a. Total Industrial Sector CO2 Emissions (January 1973–March 2019) 

 
Data Source: U.S. Energy Information Administration 

 
Figure-1b. Industrial Production Index (January 1973– March 2019) 

 
Data Source: OECD 
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Figure-2a. Time-varying Dependence between Industrial Production and CO2 Emissions 
(Time-varying Normal Markov Copula Estimation) 

 

 
Figure-2b. Tail Dependence between Industrial Production and CO2 Emissions 

(Time-varying Normal Markov Copula Estimation) 

 

 

Essentially, our analysis suggests that the dependence structures between business 

cycles and carbon emissions tend to be different during two interesting periods. First, before 
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lower dependence regime during the recession phases (see Figure-2a). This result is 

confirmed by the significant change in the intercept term in the equation describing the 

dependence dynamics (see Table-3), which highlight that the dependence is the non-linear and 

the time-varying. Doda (2014) states that in the U.S., among other countries, the growth rate 

of carbon dioxide emissions is more strongly associated with the GDP growth rate during 

recessionary periods than expansionary periods, which is not in line with our finding as for 

the recession episodes the low dependence regime characterized after 1983. 

Concerning the dynamic dependence captured by the estimated copula (see Figure-

2b), it can be seen that starting from 1983, the dependence degree changes from values around 

0.15 and 0.65 with the values around 0.3 and 0.5. Therefore, since this period there has been a 

decrease in the dependence, probably associated with the steady decline in oil consumption 

from 1979 through 1983 resulting, at least in part, from a higher petroleum price. 

 

4.3. Discussion and Policy Implications  

In this paper, we determined that 1983 is the turning point in the U.S. economy for the 

association between business cycles and CO2 emissions. This evidence is the first evidence 

for the dynamic dependence between business cycles (fluctuations in aggregate economic 

activity) and climate change (measured by CO2 emissions) using the Markov regime 

switching copula-based AR-EGARCH approach, which takes into account nonlinear and the 

asymmetric characteristics of the related time-series. We observed that business cycles, which 

are important for the dependence structure and CO2 emissions in the U.S., are regime-

dependent.  

We also found that CO2 emissions are pro-cyclical in the U.S. economy, i.e., CO2 

emissions increase during the expansion times and decrease during the contraction times. 

However, the decline in CO2 emissions during the contraction periods is higher than the 
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increase in CO2 emissions during the expansion periods. Thus the relationship is asymmetric. 

These findings are in line with the results of Heutel (2012), Shahiduzzaman and Layton (2015 

and 2017), and Sheldon (2017). Also, according to our results, business cycles are related to 

the consequences of the global financial crisis of 2007–09 do not significantly affect the level 

of CO2 emissions. This finding is in line with the evidence of Peters et al. (2012).  

Following these results, policymakers can implement some policy implications to 

decrease in CO2 emissions. First, we observed that the relationship between business cycles 

and CO2 emissions is asymmetric (dynamic) and regime-dependent (nonlinear). Therefore, 

policymakers should not use the EKC hypothesis for the long-run forecasts of CO2 emissions 

in the U.S. since the EKC hypothesis assumes that economic performance is constant over 

time. In other words, the EKC hypothesis can be suitable only for the short-run projections of 

CO2 emissions in the U.S. At this stage, business cycles, most essential elements of the 

macroeconomic policy and environmental policies, should respond to the macroeconomic 

downturns; and therefore, the U.S. policymakers should take the business cycle phase into 

account when they implement environmental policies. For instance, achieving the U.S. 2025 

target for reducing greenhouse gas emissions can slow down the pattern of global climate 

change.10 At this stage, environmental policies (e.g., providing the energy efficiency and 

energy intensity) and carbon taxes can help to achieve the U.S. 2025 target for reducing the 

greenhouse gas emissions. Renewable energy can also help to decrease carbon dioxide 

emissions in the U.S. (Gozgor, 2018). In addition, providing the optimal government 

expenditure level and tax rate during the times of macroeconomic downturns can also 

indirectly affect CO2 emissions via business cycles. 

 

 

                                                             
10 In here, the role of technological advances in the industry can be estimated to see whether the U.S. will 
achieve 2025 target using the data for the decrease in CO2 emissions since 2007. 
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5. Conclusion 

In this paper, we investigated the time-varying dependence and the tail dependence 

relationships between business cycles (measured by industrial production) and climate change 

(measured by CO2 emissions) in the U.S. for the period from January 1973 to January 2017. 

To this end, we consider five approaches to model interdependence between the underlying 

variables over time, combining time-varying copula and the Markov-switching models: The 

Gumbel, the Rotated Gumbel, the Normal, the Student's t, and the Symmetrized Joe-Clayton. 

The empirical findings from the model estimations indicate that there are significant time-

varying dependence and the tail dependence structures between business cycles and CO2 

emissions for the period from January 1973 to January 2017. We observe that the time-

varying normal Markov copula estimation is the best-fitting model. Specifically, during the 

recession episodes, we find that the high dependence regime with the Normal (Gaussian) 

copula is valid until 1982. In addition, the beginning of 1983, the low dependence structure 

regime becomes prominent.  

Overall, our paper demonstrates that there is a significant dependence structure 

between business cycles and CO2 emissions, and it is regime-switching for the period from 

January 1973 to January 2017. Future papers on the subject can focus on other large 

economies in the world (e.g., Brazil, China, India, and Japan) to examine the interdependence 

relationship between CO2 emissions and business cycles (including the role of technological 

advances in industries) using the time-varying copula and the Markov switching models with 

the stochastic volatility models.  
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Appendix Figure-I. 
Time-varying Dependence between Industrial Production and CO2 Emissions 

(Time-varying Student's t Markov Copula Estimation) 

 

Appendix Figure-II. 
Tail Dependence between Industrial Production and CO2 Emissions 

(Time-varying Student's t Markov Copula Estimation) 
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Appendix Figure-III. 
Time-varying Dependence between Industrial Production and CO2 Emissions 

(Time-varying Rotated Gumbel Markov Copula Estimation) 

 

Appendix Figure-IV. 
Tail Dependence between Industrial Production and CO2 Emissions 

(Time-varying Rotated Gumbel Markov Copula Estimation) 
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Appendix Figure-V. 
Time-varying Dependence between Industrial Production and CO2 Emissions 

(Time-varying Gumbel Markov Copula Estimation) 

 

 

Appendix Figure-VI. 
Tail Dependence between Industrial Production and CO2 Emissions 

(Time-varying Gumbel Markov Copula Estimation) 
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Appendix Table-I.  
Time-varying Copula Estimation Results for the Industrial Production and CO2 

Emissions 
 

Time-varying Student's t Markov Copula 
Parameters CO2 Emissions 𝜔 

 
–0.7815 
(0.8403) 𝜔ଵ 

 
–1.5519 
(0.6578) 𝛽 

 
0.4816 

(0.1097) 𝛼 
 

2.5191 
(1.8223) 

P 
 

0.4620 
(1.6651) 

Q 
 

0.5380 
(1.1135) 

 
Log Likelihood 

 
–18.316 

 

Time-varying Rotated Gumbel Markov Copula 
Parameters CO2 Emissions 𝜔 

 
–0.7815 
(0.8403) 𝜔ଵ 

 
–1.5519 
(0.6578) 𝛽 

 
0.4816 

(0.1097) 𝛼 
 

2.5191 
(1.8223) 

P 
 

0.4620 
(1.6651) 

Q 
 

0.5380 
(1.1135) 

 
Log Likelihood 

 
–17.2728 
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Time-varying Gumbel Markov Copula 
Parameters CO2 Emissions 𝜔 

 
1.3105 

(0.1965) 𝜔ଵ 
 

0.3710 
(1.2012) 𝛽 

 
–0.8286 
(1.0343) 𝛼 

 
1.3916 

(0.7153) 

P 
 

0.7314 
(4.3468) 

Q 
 

0.2686 
(8.1723) 

 
Log Likelihood 

 
–20.5714 

 

 


