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Abstract

The Portfolio Theory has been extensively used as a planning tool for
power generation diversification. However, no one of the existing papers
provide a detailed explanation on how the efficient frontier of the Power
Generation Portfolio (PGP) is costructed. We provide a parametric for-
mulation of the efficient frontier of PGP of up to 5 technologies. The
analysys takes advantages of the fact that the risk of the PGP is a convex
function of the shares of the different technologies. The parametric for-
mulation of the efficient frontier of the PGP constitutes a powerfull policy
tool for power generation policy-makers.

JEL cassification: D81, G11, Q40, Q49
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1 Introduction

The Portfolio Theory, developed by Markowitz (1952), has been extensively
used to design plans of power generation diversification (See DeLlano-Paz et
al. (2017) for a review). However, no one of the existing papers provide a
detailed explanation on how the efficient frontier of the Power Generation Port-
folio (PGP) is constructed. Without any exception, all of them only present a
graph depicting the efficient frontier of the corresponding PGP (e.g., Costa et
al. (2017), Pinheiro Neto et al. (2017), Adams and Jamasb (2016), Jain et al.
(2014), Cunha and Ferreira (2014), Roques et al. (2010), Vithayasrichareon et
al. (2010a), Vithayasrichareon et al.(2010b), Roques et al. (2008), and Awer-
buch and Berger (2003)).

In the present paper we aim to fill this gap in the literature by providing a
parametric formulation of the efficient frontier of PGP of up to 5 technologies.
Following the existing literature, in present analysis the efficient frontier refers
to the set of the PGPs that maximize their Expected Net Present Value (ENPV)

∗Universidad Anáhuac México. Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huix-
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for a given level of risk. This is, the ENPV of an efficient PGP can be increased
only by increasing its risk (Awerbuch and Berger (2003)). Note that the present
analysis could be directly applied to PGP using Levelized Cost of Electricity
(LCOE). In such a case, the efficient frontier would be a set of PGPs which can
yield the lowest expected energy costs at given, acceptable levels of expected
risk (Jansen et al. (2006)).

The analysis takes advantages of the fact that the risk of the PGP, given
by the Standard Deviation (SD) or the Variance of the NPV, is a convex func-
tion of the shares of the different technologies. First, we obtain the shares of
the technologies that guarantee the minimum risk of the NPV of the PGP. We
then obtain the maximum ENPV of the PGP. Finally, we construct the efficient
frontier that corresponds to the parametric equation of the shares of the tech-
nologies that link the minimum risk of the NPV of the PGP to its maximum
ENPV.

The parametric formulation of the efficient frontier of the PGP allows to
tackle the problem of energy generation diversification in an economy. Then,
it constitutes a powerful policy tool for power generation policy-makers. Actu-
ally, it could be applied to portfolios of assets different than power generation
technologies.

The paper also shows that the "portfolio effect" results from the fact that the
risk of the PGP is a convex function of the shares of the different technologies.

As this is a methodological paper, instead of focusing the analysis on PGP
of a particular economy, we use hypothetical data. This fact allows to show the
scope of the methodology and, at the same time, improves exposition simplicity.

The whole analysis relies on the assumption that the covariances of the NPVs
of the different technologies is zero. Although this is a strong assumption, it
leads to gains in tractability and in the scope of the methodology formulated.

To the best of our knowledge, this is the first effort to provide a detailed
methodology to construct, parametrically, the efficient frontier of PGPs.

The paper is organized as follows: In Section 2, we present the preliminaries.
Section 3 presents PGP of 2 technologies. Section 4 presents PGP of 3 technolo-
gies. PGP of 4 technologies are presented in section 5. PGP of 5 technologies
are presented in section 6. Section 7 contains the final remarks and conclusions.
The appendix contains the formal proofs.

2 Preliminaries

We apply the Portfolio Theory developed by Markowitz (1952) to find the effi-
cient power generation mix: the ENPV of the generation mix can be increased

2



only by increasing its risk. As usual, risk is measured by the SD or, alterna-
tively, by the variance. Formally, let Xi be the random variable that represents
the NPV of technology i. Let Y a random variable describing the NPV of the
PGP which is defined as follows:

Y =
∑n

i=1 αiXi, with
∑n

i=1 αi = 1. (1)

Where αi ∈ [0, 1] represent the share of technology i. Following result provides
the basic tools for the analysis.

Lemma 1 Let Xi a random variable that represents the NPV of technology
i with mean µi and variance σ

2
i . Where αi ∈ [0, 1] is the the share of tech-

nology i = 1, 2, . . . , n. Let the PGP be represented by the random variable
Y =

∑n
i=1 αiXi with

∑n
i=1 αi = 1. Then

E (Y ) =
∑n

i=1 αiE (Xi) ,
µY =

∑n
i=1 αiµi.

(2)

and
V ar (Y ) = E [Y − µY ]

2
,

σ2Y =
∑n

i=1 α
2
iσ

2
i +

∑∑
i<j αiαjσi,j.

(3)

where the double summation extends to any values i and j , from 1 to n, such
that i < j. In addition, σi,j = E

[
(Xi − µi)

(
Xj − µj

)]
is the covariance of the

NPVs of technologies i and j.

Proof. See pp. 158, Freund et al. (2000).

First result of Lemma 1 indicates that the ENPV of the PGP is a convex
sum of the ENPVs of the different technologies. Following corollary describes
such fact.

Corollary 2 Assume that the ENPV of technology 1 is the greatest while the
ENPV of technology n is the lowest. Then, it holds that µ1 ≥ µY ≥ µn for∑n

i=1 αi = 1.

Second result of Lemma 1 captures the role of the covariances of the NPVs
of the different technologies on the risk of the PGP. If the covariances of the
NPVs of the different technologies are negative, the risk of the PGP reduces.
On the other hand, the risk of the PGP increases when the covariances among
the NPVs of the technologies are positive. When some covariances are positive
while others are negative, it is difficult to determine the final effect on the risk
of the PGP. The existing literature reports that, regardless of the variable used
to construct the PGP (NPV, LCOE, capacity factor, or installed capacity),
the covariances amongst the different technologies have an absolute value less
than one (e.g., Pinheiro Neto et al. (2017), Adams and Jamasb (2016), Cunha
and Ferreira (2014), Roques et al. (2010), and Roques et al. (2008)). As the
NPVs of the technologies are reported in million of dollars (or pounds) and the
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shares of the different technologies are less than one, we expect that the term∑∑
i<j αiαjσi,j to be significantly smaller than the term

∑n
i=1 α

2
iσ

2
i . Then,

for the following analysis we assume that the covariances among the different
technologies is zero. this is, σi,j = 0, for any values i and j , from 1 to n,
such that i < j. This assumption leads to a lack of precision in calculating
the minimum risk of the PGP. However, such loss is compensated by a gain in
tractability and by the scope of the methodology formulated.

Worth noting that the assumption that the covariances of the different tech-
nologies is zero works well when the PGPs use NPVs or LCOSTs of the different
technologies. Nevertheless, such assumption does not seem feasible when the
PGPs use capacity factor or installed capacity. In those cases, we can not guar-
antee that the term

∑∑
i<j αiαjσi,j will be significantly smaller than the term∑n

i=1 α
2
iσ

2
i (e.g., Cunha and Ferreira (2014) and Roques et al. (2010)). Then,

in such a context, assuming zero covariance amongst the different technologies
would lead to meaningful miscalculations of the risk of the NPV of the PGP.

Then, from now on, the risk of the PGP is described by its SD as follows:

σY =
√∑n

i=1 α
2
iσ

2
i (4)

Expression (4) and Corollary 2 provide the tools to construct a parametric
formulation of the efficient frontier of the PGPs.

As the main contribution of the paper is the parametric formulation of the ef-
ficient frontier, instead of focusing the analysis on PGP of a particular economy,
we use hypothetical data. This fact allows to show the scope of the method-
ology, and improves exposition simplicity. We consider five technologies: 1)
Hydro Power Plant (Hydro); 2) Wind Power Plant (Wind); 3) Combined Cy-
cle Gas Turbine (CCGT); 4) Advanced Gas-Cooled reactor (Nuclear), and; 5)
Integrated Gasification Combined Cycle (Coal). Following table present the
statistics of the NPV of the different technologies in USD million.

Table 1: Single technology NPV distribution statistics

Now we have all the building blocks to provide a parametric formulation of
the efficient frontier of PGPs. We start with portfolios of two technologies.

3 Portfolios of two technologies

Following result exploits the fact that the SD of the PGP is a convex function
of the shares of technologies 1 and 2, (α1,α2).
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Proposition 3 From expression (4) the SD of the NPV of the PGP of two
technologies is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2. Assume that the NPV of tech-

nology 2 is the less risky. For σ1,2 = 0, αi ∈ [0, 1] for i = 1, 2, and α1 + α2 = 1
it holds that

a) The risk of the NPV of the PGP, given by σY , reaches its global minimum
at (

α∗1
α∗2

)
= 1

σ2
1
+σ2

2

(
σ22
σ21

)

b) The minimum risk of the NPV of the PGP is

σ∗Y =
√

σ2
1
σ2
2

σ2
1
+σ2

2

< σ2.

Proof. See appendix.

3.1 Efficient frontier

Following result provides the parametric formulation of the efficient frontier for
PGP of two technologies.

Proposition 4 Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 be the SD of the NPV of the PGP.

Assume that µ1 ≥ µ2, then the following holds:

a) The efficient frontier corresponds to the following parametric equation of
the shares of technologies 1 and 2,

(
α1
α2

)
=

(
α

1− α

)
,

where the parameter α is such that α∗1 ≤ α ≤ α
df ≤ 1. αdf refers to the

value of α that guarantees certain amount of the ENPV of the PGP.

b) The SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ
(
αdf
)
. Note that

σ
(
αdf
)
≤ σ1.

c) The maximum ENPV for every corresponding level of risk is given by µ (α∗1) ≤
µy ≤ µ

(
αdf
)
. Note that µ

(
αdf
)
≤ µ1.

Proof. See appendix.

3.2 Illustrative Portfolios: CCGT-Coal

From Table 1, the corresponding ENPV and variance of the CCGT (cc) and
Coal (co) are: µcc = 100, µco = −100, σ

2
cc = 302500, and σ

2
co = 160000.
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1. Following Proposition 3, CCGT corresponds to technology 1 and Coal
to technology 2. Then, the shares of the technologies that ensure the
minimum risk are

(α∗cc, α
∗
co) = (0.34595, 0.65405) .

The minimum risk reached by this PGP is σ∗Y = 323.49. And the maxi-
mum ENPV for such level of risk is µY = −30.81.

2. From Proposition 4, the efficient frontier corresponds to the following para-
metric equation of the shares of the two technologies

(
αcc
αco

)
=

(
α

1− α

)
,

for 0.34595 ≤ α ≤ 0.6919. Note that the PGP of CCGT-Coal reaches the
maximum ENPV when αcc = 1, and µY = µcc = 100. However, devoting
a share of 100% to CCGT would be very risky in economic and social terms
as the SD of the NPV of CCGT is the greatest, σcc = 550. In this case
the desicion-maker should take a criteria to define the efficient frontier.
We propose the upper limit of the efficient frontier to be αdf = 0.6919.
This fact guarantees that the PGP reaches a risk equal to σco = 400, the
minimum risk of the two technologies.

Note that in this case we might say that CCGT "weakly dominates"
the PGP as it has the greatest ENPV which is also relatively risky.1 On
the other hand, a technology "strongly dominates" a PGP if it has the
greatest ENPV and the lowest risk. Roques et al. (2010), Table 4, 2nd
scenario, provides a good example where CCGT "strongly dominates" the
PGP. However, an economy would face a potential social risk by placing
its Power Generation in one single technology. Even in such case, the
decision-maker should support Power Generation diversification.

3. The SD in the efficient frontier is given by 323.49 ≤ σy ≤ 400.

4. The maximum ENPV for every corresponding level of risk is given by
−30.81 ≤ µy ≤ 38.38.

1See Pinheiro Neto et al. (2017) for clear example where Hydro "weakly dominates" the
PGP.
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5. The feasible PGPs of CCGT-Coal are shown in the following figure:

Figure 1: Feasible PGPs of CCGT-Coal

6. The parameters of the efficient frontier are presented in the following fig-
ure:

Figure 2: Efficient Frontier of PGP of CCGT-Coal

4 Portfolios of three technologies

Following result exploits the fact that the SD of the PGP is a convex function
of the shares of technologies 1, 2, and 3, (α1, α2, α3).

Proposition 5 From expression (4) the SD of the NPV of the PGP of three
technologies is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3. Assume that the NPV

of technology 2 is the less risky. For σ1,2 = σ1,3 = σ2,3 = 0, αi ∈ [0, 1] for

i = 1, 2, 3, and
∑3

i=1 αi = 1 it holds that

a) The risk of the NPV of the of the PGP, given by σY , reaches its global
minimum at 


α∗1
α∗2
α∗3



 = 1
|A3|




σ22σ

2
3

σ21σ
2
3

σ21σ
2
2



 ,

where |A3| = σ
2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3.

b) The minimum risk of the NPV of the PGP is

σ∗Y =
√

σ2
1
σ2
2
σ2
3

|A3|
< σ2.

Proof. See appendix.
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4.1 Efficient frontier

Following result provides the parametric formulation of the efficient frontier for
PGP of three technologies.

Proposition 6 Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 the SD of the NPV of the

PGP. Assume that µ1 ≥ µ2 ≥ µ3, then following holds:

a) The efficient frontier corresponds to the following parametric equation of
the shares of technologies 1, 2, and 3,




α1
α2
α3



 =




α1+x

α− α1+x

1− α



 ,

where the parameter α is such that [α∗1]
1

1+x ≤ α ≤ αdf ≤ 1. Let x be given

by x =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[α∗1+α∗2]
. αdf refers to the value of α that guarantees certain

amount of the ENPV of the PGP.

b) The SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ
(
αdf
)
. Note that

σ
(
αdf
)
≤ σ1.

c) The maximum ENPV for every corresponding level of risk is given by µ
(
[α∗1]

1
1+x

)
≤

µy ≤ µ
(
αdf
)
. Note that µ

(
αdf
)
≤ µ1.

Proof. See appendix.

4.2 Illustrative Portfolios: CCGT-Nuclear-Coal

From Table 1, the corresponding ENPV and variance of the CCGT (cc), Nuclear
(nu) and Coal (co) are: µcc = 100, µnu = −50, µco = −100, σ2cc = 302500,
σ2nu = 90000, and σ

2
co = 160000.

1. Following Proposition 5, CCGT corresponds to technology 1 and Coal
to technology 3. Then, the shares of the technologies that ensure the
minimum risk are

(α∗cc, α
∗
nu, α

∗
co) = (0.15996, 0.53763, 0.30242) .

The minimum risk reached by this PGP is σ∗Y = 219.97. The maximum
ENPV for such level of risk is µY = −41.128.

2. From Proposition 6, we obtain x =
ln[ 0.15996

0.15996+0.53763 ]
ln[0.15996+0.53763] = 4.089 4 and [α

∗
1]

1
1+x =

[0.15996]
1

5.0894 = 0.69759. Then, the efficient frontier corresponds to the
following parametric equation of the shares of the three technologies




αcc
αnu
αco



 =




α5.0894

α− α5.0894

1− α



 ,
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for 0.69759 ≤ α ≤ 0.93645. The PGP of CCGT—Nuclear-Coal reaches the
maximum ENPV when αcc = 1, and µY = µcc = 100. In this case, again,
CCGT "weakly dominates" the PGP as it has the greatest ENPV which
is also the most risky, σcc = 550. Then, we propose the upper limit of
the efficient frontier to be αdf = 0.6919. This fact guarantees that the
PGP reaches a risk equal to σco = 400. Although the ENPV of nuclear is
the less risky, it is associated to a lower ENPV of the PGP, µY = 16.17.
Then, choosing the upper limit of the efficient frontier as αdf = 0.6919
allows the PGP to reach a greater ENPV, µy = 54.21, for a considerable
risk.

3. The SD in the efficient frontier is given by 219.97 ≤ σy ≤ 400.

4. The maximum ENPV for every corresponding level of risk is given by
−41.128 ≤ µy ≤ 54.21.

5. The feasible PGPs of CCGT-Nuclear-Coal are shown in the following fig-
ure:

Figure 3: Feasible PGP of CCGT—Nuclear-Coal

6. The parameters of the efficient frontier are presented in figure 4.

Figure 4: Efficient Frontier of PGP of CCGT—Nuclear-Coal

At this stage of the paper we are able to provide a geometric intuition about
the parametric formulation of the efficient frontier stated in Proposition 6. We
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start by plotting the ENPV and the SD of the NPV of the PGP of CCGT-
Nuclear-Coal given as follows

σY =

√
α2ccσ

2
cc + α

2
nuσ

2
nu + (1− αcc − αnu)

2
σ2co,

µY = αccµcc + αnuµnu + (1− αcc − αnu)µco.

The red surface in Figure 5 corresponds to the risk of the PGP, σY , while
the blue plane corresponds to the its ENPV, µY .

Figure 5: Efficient Frontier of PGP of CCGT—Nuclear-Coal

The green line in the risk of the PGP depicts the risk of the PGP of CCGT-
Coal. The green line in the ENPV of the PGP depicts the ENPV the PGP
of CCGT-Coal. Then, placing together the corresponding points of the green
lines, we obtain the feasible PGP of CCGT-Coal shown in Figure 1.

The yellow line in the risk of the PGP links the risk of Coal, σco, to the risk
of CCGT, σcc, and the minimum risk of the portfolio, σ

∗
Y . The yellow line in the

ENPV of the PGP links the ENPV of Coal, µco, to the ENPV of CCGT, µcc,

and the ENPV corresponding to the minimum risk of the portfolio, µ
(
[α∗1]

1
1+x

)
.

Then, placing together the corresponding points of the yellow lines, we obtain
the feasible PGP of CCGT-Nuclear-Coal shown in Figure 3.

The fact that µ1 = µcc > µnu > µco = µ3 guarantees that: 1) the efficient
frontier of the PGP of CCGT-Nuclear-Coal is a segment of the feasible PGP of
CCGT-Nuclear-Coal shown in Figure 3; 2) the efficient frontier does reach the
maximum ENPV for a given level of risk, and; 2) the PGP of CCGT-Nuclear-
Coal is less risky than any other PGP containing less than three technologies.

5 Portfolios of four technologies

Following result exploits the fact that the SD of the PGP is a convex function
of the shares of technologies 1, 2, 3, and 4, (α1, α2, α3, α4).
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Proposition 7 From expression (4) the SD of the NPV of the PGP of four
technologies is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4. Assume that the

NPV of technology 2 is the less risky. Assume that σi,j = 0, for any values i and

j , from 1 to 4, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, and
∑4

i=1 αi = 1
it holds that

a) The risk of the NPV of the PGP, σY , reaches its global minimum at





α∗1
α∗2
α∗3
α∗4




 = 1

|A4|






σ22σ
2
3σ

2
4

σ21σ
2
3σ

2
4

σ21σ
2
2σ

2
4

σ21σ
2
2σ

2
3




 .

where |A4| = σ
2
1σ

2
2σ

2
3 + σ

2
1σ

2
2σ

2
4 + σ

2
1σ

2
3σ

2
4 + σ

2
2σ

2
3σ

2
4.

b) The minimum risk of the NPV of the PGP is

σ∗Y =
√

σ2
1
σ2
2
σ2
3
σ2
4

|A4|
< σ2.

Proof. See appendix.

5.1 Efficient frontier

Following result provides the parametric formulation of the efficient frontier for
PGP of four technologies.

Proposition 8 Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 the SD of the NPV of

the portfolio. Assume that the ENPV of technology 1 is the greatest while the
ENPV of technology 4 is the lowest, then following holds:

a) The efficient frontier corresponds to the following parametric equation of
the shares of technologies 1, 2, 3 and 4,






α1
α2
α3
α4




 =






α1+x1

α− α1+x1

αx2 − α1+x2

1− α− αx2 + α1+x2




 ,

where the parameter α is such that [α∗1]
1

1+x1 ≤ α ≤ αdf ≤ 1. Let x1 and

x2 be given by x1 =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[α∗1+α∗2]
and x2 =

ln

[
α
∗
3

α∗
3
+α∗

4

]

ln[α∗1+α∗2]
. αdf refers to the value

of α that guarantees certain amount of the ENPV of the PGP.

b) The SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ
(
αdf
)
. Note that

σ
(
αdf
)
≤ σ1.

c) The maximum ENPV for every corresponding level of risk is given by µ
(
[α∗1]

1
1+x1

)
≤

µy ≤ µ
(
αdf
)
. Note that µ

(
αdf
)
≤ µ1.

Proof. See appendix.
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5.2 Illustrative Portfolios: Wind-CCGT-Nuclear-Coal

From Table 1, the corresponding ENPV and variance of the Wind (wd), CCGT
(cc), Nuclear (nu) and Coal (co) are: µwd = 400, µcc = 100, µnu = −50,
µco = −100, σ

2
wd = 202500, σ

2
cc = 302500, σ

2
nu = 90000, and σ

2
co = 160000.

1. Following Proposition 7, Wind corresponds to technology 1 and Coal to
technology 4. Then, the shares of the four technologies that ensure the
minimum risk are

(α∗wd, α
∗
cc, α

∗
nu, α

∗
co) = (0.192 86, 0.129 11, 0.433 94, 0.244 09) .

The minimum risk reached by this PGP is σ∗Y = 197.62. The maximum
ENPV for such level of risk is µY = 43.949.

2. From Proposition 8, we obtain x1 =
ln[ 0.19286

0.19286+0.12911 ]
ln[0.19286+0.12911] = 0.45221, x2 =

ln[ 0.43394
0.43394+0.24409 ]

ln[0.19286+0.12911] = 0.39379, and [α∗1]
1

1+x1 = [0.19286]
1

1.45221 = 0.32197.

Then, the efficient frontier corresponds to the following parametric equa-
tion of the shares of the four technologies






αwd
αcc
αnu
αco




 =






α1.45221

α− α1.45221

α0.39379 − α1.39379

1− α− α0.39379 + α1.39379




 ,

for 0.32197 ≤ α ≤ 0.732565. The PGP of Wind-CCGT—Nuclear-Coal
reaches the maximum ENPV when αwd = 1, and µY = µwd = 400. In this
case, Wind "weakly dominates" the PGP as it has the greatest ENPV
which is also relatively risky, σwd = 450. We then propose the upper limit
of the efficient frontier to be αdf = 0.732565. This fact guarantees that
the PGP reaches a risk equal to σnu = 300, the minimum risk of the four
technologies.

3. The SD in the efficient frontier is given by 197. 62 ≤ σy ≤ 300.

4. The maximum ENPV for every corresponding level of risk is given by 43.
949 ≤ µy ≤ 249.26

5. The feasible PGPs of Wind-CCGT-Nuclear-Coal are presented in Figure
6.

Figure 6: Feasible PGP of Wind-CCGT-Nuclear-Coal
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6. Following figure presents the parameters of the efficient frontier.

Figure 7: Efficient Frontier of PGP of Wind-CCGT-Nuclear-Coal

6 Portfolios of five technologies

Following result exploits the fact that the SD of the PGP is a convex function
of the shares of technologies 1, 2, 3, 4 and 5, (α1, α2, α3, α4, α5).

Proposition 9 From expression (4) the SD of the NPV of the PGP of five
technologies is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 + α

2
5σ

2
5. Assume

that the NPV of technology 2 is the less risky. Assume that σi,j = 0, for any
values i and j , from 1 to 5, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, 5,

and
∑5

i=1 αi = 1 it holds that

a) The risk of the NPV of the PGP, σY , reaches its global minimum at






α∗1
α∗2
α∗3
α∗4
α∗5





= 1

|A5|






σ22σ
2
3σ

2
4σ

2
5

σ21σ
2
3σ

2
4σ

2
5

σ21σ
2
2σ

2
4σ

2
5

σ21σ
2
2σ

2
3σ

2
5

σ21σ
2
2σ

2
3σ

2
4





.

where |A5| = σ
2
1σ

2
2σ

2
3σ

2
4 + σ

2
1σ

2
2σ

2
3σ

2
5 + σ

2
1σ

2
2σ

2
4σ

2
5 + σ

2
1σ

2
3σ

2
4σ

2
5 + σ

2
2σ

2
3σ

2
4σ

2
5.

b) The minimum risk of the NPV of the PGP is

σ∗Y =
√

σ2
1
σ2
2
σ2
3
σ2
4
σ2
5

|A5|
< σ2.

Proof. See appendix.

6.1 Efficient frontier

Following result provides the parametric formulation of the efficient frontier for
PGP of five technologies.
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Proposition 10 Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 + α

2
5σ

2
5 the SD of

the NPV of the portfolio. Assume that the ENPV of technology 1 is the greatest
while the ENPV of technology 5 is the lowest, then following holds:

a) The efficient frontier corresponds to following parametric equation of the
shares of technologies 1, 2, 3, 4 and 5,






α1
α2
α3
α4
α5





=






α1+x1+x2

α1+x2 − α1+x1+x2

α1+x3 − α1+x2+x3

α− α1+x2 − α1+x3 + α1+x2+x3

1− α





.

where the parameter α is such that [α∗1]
1

1+x1+x2 ≤ α ≤ αdf ≤ 1. Let x1, x2,

and x3 be given by x1 =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[1−α∗5]
, x2 =

ln

[
α
∗
1
+α∗

2
1−α∗

5

]

ln[1−α∗5]
, and x3 =

ln

[
α
∗
3

α∗
3
+α∗

4

]

ln[1−α∗5]
.

αdf refers to the value of α that guarantees certain amount of the ENPV
of the PGP.

b) The SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ
(
αdf
)
. Note that

σ
(
αdf
)
≤ σ1.

c) The maximum ENPV for every corresponding level of risk is given by µ
(
[α∗1]

1
1+x1+x2

)
≤

µy ≤ µ
(
αdf
)
. Note that µ

(
αdf
)
≤ µ1.

Proof. See appendix.

6.2 Illustrative Portfolios: Hydro-Wind-CCGT-Nuclear-
Coal

From Table 1, the corresponding ENPV and variance of the Hydro (hy), Wind
(wd), CCGT (cc), Nuclear (nu) and Coal (co) are: µhy = 500, µwd = 400,
µcc = 100, µnu = −50, µco = −100, σ2hy = 122500, σ2wd = 202500, σ2cc =

302500, σ2nu = 90 000, and σ
2
co = 160000.

1. To apply Proposition 9, consider that Hydro corresponds to technology 1
and Coal to technology 5. Then, the shares of the technologies that ensure
the minimum risk are

(α∗1, α
∗
2, α

∗
3, α

∗
4, α

∗
5) = (0.24174, 0.14624, 0.09 7896, 0.32904, 0.18508) .

The minimum risk of this PGP is given by σ∗Y = 172.09. And the maxi-
mum ENPV for such level of risk is µY = 154.20.

2. From Proposition 10, we obtain x1 =
ln[ 0.24174

0.24174+0.14624 ]
ln[1−0.18508] = 2.3115, x2 =

ln[ 0.24174+0.146241−0.18508 ]
ln[1−0.18508] = 3.6261, x3 =

ln[ 0.097896
0.097896+0.32904 ]
ln[1−0.18508] = 7.1958, and [α∗1]

1
1+x1+x2 =

14



[0.241 74]
1

6. 9376 = 0.814 92. Then, the efficient frontier corresponds to the
following parametric equation of the shares of the three technologies






α1
α2
α3
α4
α5





=






α6.9376

α4.6261 − α6.9376

α8.1958 − α11.822

α− α4.6261 − α8.1958 + α11.822

1− α





,

for 0.814 92 ≤ α ≤ 0.97647. The PGP of Hydro-Wind-CCGT—Nuclear-
Coal reaches the maximum ENPV when αhy = 1, and µY = µhy = 5000.
In this case, Hydro "weakly dominates" the PGP. We propose the upper
limit of the efficient frontier to be αdf = 0.97647 to guarantees that the
PGP reaches a risk equal to σnu = 300, the minimum risk of the five
technologies.

3. The SD in the efficient frontier is given by 172.09 ≤ σy ≤ 300.

4. The maximum ENPV for every corresponding level of risk is given by 154.
20 ≤ µy ≤ 446.87

5. Following figure presents the feasible PGPs of Hydro-Wind-CCGT-Nuclear-
Coal

Figure 8: Feasible PGP: Hydro-Wind-CCGT—Nuclear-Coal
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6. The parameters of the efficient frontier are presented in figure 9.

Figure 9: Efficient Frontier of PGP of Hydro-Wind-CCGT—Nuclear-Coal

7 Final remarks and conclusions

Present paper tackle the problem of energy generation diversification by pro-
viding a parametric formulation of the efficient frontier of PGP for up to 5
technologies. Then, the parametric formulation of PGP constitutes a powerful
policy tool for power generation policy-makers. Actually, it could be applied to
portfolios of assets different than power generation technologies.

The paper also shows, implicitly, the source of what is called the "portfolio
effect": risk reduction attained through diversification. The portfolio effect
results from the fact that the risk of the PGP is a convex function of the shares
of the different technologies. Part b) of Propositions 3, 5, 7, and 9 guarantee
the existence of the portfolio effect.

From the structure of the paper, it is straight forward to extend the method-
ology to obtain the shares of technologies to guarantee the minimum risk of PGP
of more than 5 technologies. The reader only have to follow the sequence de-
picted by Propositions 3, 5, 7, and 9. However, the parametric formulation of
the efficient frontier of PGPs of more than 5 technologies should be obtained
doing the corresponding mathematical proofs. They could be done by following
the proof of Propositions 4, 6, 8, and 10.

The complete analysis relies on the assumption that the covariances of the
NPV amongst the different technologies is zero. Depending on computational
availability, future research could be extended to verify the actual effect of the
correlation of the NPVs on the minimum risk of the portfolio.
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Appendix
Proof of Proposition 3. The SD of the PGP of two technologies is given
by σY =

√
α21σ

2
1 + α

2
2σ

2
2. Assume that he NPV of technology 2 is the less risky.

For σ1,2 = 0, αi ∈ [0, 1] for i = 1, 2, and α1 + α2 = 1. For tractability, most of
the proof uses the variance of the PGP instead of its SD.

Proof of a) We need to find the shares of technologies 1 and 2, given by
(α1, α2), that guarantees the minimum risk (variance) of the NPV of the PGP.
For tractability, we start by assuming that α2 = 1− α1. Then, the variance of
the NPV of the PGP is given by σ2Y = α

2
1σ

2
1 + (1− α1)

2
σ22. First, we find the

critical point. The First Order Conditions (FOC) are:

∂σ2
Y

∂α1
= 2α1σ

2
1 + 2 (1− α1) (−1)σ

2
2 = 0, (5)

From expression (5) we have

α1σ
2
1 + α1σ

2
2 = σ

2
2, (6)

which leads to
α∗1 =

σ22
σ2
1
+σ2

2

, (7)

Then, α∗2 = 1 − α
∗
1 =

σ21
σ2
1
+σ2

2

. The critical point of the variance of the NPV of

the PGP is
(α∗1, α

∗
2) =

1
σ2
1
+σ2

2

(
σ22, σ

2
1

)
, (8)

To verify that the variance of the NPV of the PGP, σ2Y , has a minimum at
the critical point (α∗1, α

∗
2) we need the Second Order Conditions (SOC):

∂2σ2
Y

∂α2
1

= 2
[
σ21 + σ

2
2

]
> 0.

Then, the variance σ2Y has a minimum at point (α∗1, α
∗
2).

Proof of b) Then, the minimum value of the variance, σ∗2Y , of the NPV of
the PGP is given by

σ∗2Y = 1

[σ21+σ22]
2

[(
σ22
)2
σ21 +

(
σ21
)2
σ22

]
,

σ∗2Y = σ2Y =
σ21σ

2
2

[σ21+σ22]
2

[[
σ22 + σ

2
1

]]
,

σ∗2Y =
σ21σ

2
2

σ2
1
+σ2

2

= α∗2σ
2
2 < σ

2
2,

Then
σ∗Y < σ2. (9)
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The NPV of the PGP is less risky than the NPV of the less risky technology.

Proof of Proposition 4. Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 the SD of the NPV of the

PGP. From Proposition 3 we know that the risk of the NPV of the PGP, σY ,
reaches its global minimum at point (α∗1, α

∗
2). Assume that µ1 ≥ µ2.To obtain

the parametric formulation of the efficient frontier, we write the variance of the
portfolio as follows:

σ2Y = α
2σ21 + (1− α)

2
σ22, (10)

for α ∈ [0, 1]. Note that when α = 1, then σ2Y = σ
2
1, the variance of the NPV

of the PGP equals the variance of technology 1. This scenario ensures that
technology 1, which has the greatest ENPV, receives a share of 100%. On the
other hand, when α = 0, then σ2Y = σ

2
2, the variance of the NPV of the PGP

equals the variance of technology 2. The latter implies that technology 2, which
has the lower ENPV, receives a share of 100%. Then, this way of expressing
the variance of the NPV of the PGP allows to have portfolios assigning a share
of 100% to the technologies with the greater and lower ENPV. To be sure that
expression (10) allows to reach the point (α∗1, α

∗
2) where σY reaches its global

minimum, it should hold that
α∗1 = α, (11)

α∗2 = 1− α, (12)

Expressions (11) and (12) lead to the fact that the shares of technologies 1 and
2 in this PGPs are given by the following expressions

α1 = α, (13)

α2 = 1− α, (14)

From expressions (13) and (11), the PGP with lowest risk (variance or
SD) is given when

α = α∗1. (15)

Now we need to find the PGP with the greatest ENPV. The ENPV of the PGP
is given by:

µY = α1µ1 + α2µ2, (16)

substituting expressions (13) and (14) into expression (16) leads to

µY = αµ1 + (1− α)µ2,

it is straight forward to obtain that

dµ
Y

dα
= µ1 − µ2 > 0,

because of the assumption that µ1 ≥ µ2. Then, the PGP reaches its maxi-
mum ENPV when α = 1, and µY = µ1 and σ

2
Y = σ

2
1. However, there could

be an alternative criteria to choose the maximum ENPV of the PGP. For ex-
ample, if the NPV of technology 2 is the less risky, then, the criteria could be
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to choose αdf such that σ2Y
(
αdf
)
= σ22. In this case α

df < 1. Then, the PGP
with maximum ENPV given when α = αdf . Then, the efficient frontier
is given by expressions (13) and (14) for α∗1 ≤ α ≤ α

df . As a consequence, the
SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ

(
αdf
)
while the maximum

ENPV for every corresponding level of risk is given by µ (α∗1) ≤ µy ≤ µ
(
αdf
)
.

Note that µ
(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.

Proof of Proposition 5. The SD of the of the NPV of the PGP of three
technologies is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3. Assume that the NPV

of technology 2 is the less risky. For σ1,2 = σ1,3 = σ2,3 = 0, αi ∈ [0, 1]

for i = 1, 2, 3, and
∑3

i=1 αi = 1. For tractability, most of the proof uses the
variance of the PGP instead of its SD.

Proof of a) We need to find the shares of technologies 1, 2, and 3, given by
(α1, α2, α3) that ensures the minimum risk (variance) of the NPV of the PGP.
For tractability, we start by assuming that α3 = 1−α1−α2. Then, the variance
of the NPV of the PGP is given by σ2Y = α

2
1σ

2
1+α

2
2σ

2
2+(1− α1 − α2)

2
σ23. First,

we find the critical point. The FOC are:

∂σ2
Y

∂α1
= 2α1σ

2
1 + 2 (1− α1 − α2) (−1)σ

2
3 = 0, (17)

∂σ2
Y

∂α2
= 2α2σ

2
2 + 2 (1− α1 − α2) (−1)σ

2
3 = 0, (18)

from expression (17) we have

α1
[
σ21 + σ

2
3

]
+ α2σ

2
3 = σ

2
3, (19)

from expression (18) we have

α1σ
2
3 + α2

[
σ22 + σ

2
3

]
= σ23. (20)

Expressions (19) and (20) lead to the following system of equations
[
σ21 + σ

2
3 σ23

σ23 σ22 + σ
2
3

] [
α1
α2

]
=

[
σ23
σ23

]
, (21)

Calculating the inverse of matrix A3 =

[
σ21 + σ

2
3 σ23

σ23 σ22 + σ
2
3

]
we end up with

[
α∗1
α∗2

]
= 1

|A3|

[
σ22 + σ

2
3 −σ23

−σ23 σ21 + σ
2
3

] [
σ23
σ23

]
, (22)

where |A3| = σ
2
1σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3. Leading to the result

[
α∗1
α∗2

]
= 1

|A3|

[
σ22σ

2
3

σ21σ
2
3

]
, (23)

Then, α∗3 = 1− α
∗
1 − α

∗
2 =

σ21σ
2
2

|A3|
. The critical point of the variance of the NPV

of the PGP is
(α∗1, α

∗
2, α

∗
3) =

1
|A3|

(
σ22σ

2
3, σ

2
1σ

2
3, σ

2
1σ

2
2

)
. (24)
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To verify that the variance of the NPV of the PGP, σ2Y , has a minimum at
point (α∗1, α

∗
2, α

∗
3) we need the SOC. The Hessian matrix is as follows:

H = 2

[
σ21 + σ

2
3 σ23

σ23 σ22 + σ
2
3

]
,

Following the criteria of the leading principal minors of the Hessian matrix, we
have

H1 = 2
(
σ21 + σ

2
3

)
> 0.

H2 = 2 |A3| = 2
(
σ21σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

)
> 0.

The two leading principal minors of the Hessian matrix are positive for any
(α1, α2, α3). Then, the variance of the NPV of the PGP is a convex function of
the shares of the three technologies, (α1, α2, α3). As a consequence, the variance
of the NPV of the PGP, σ2Y , has a global minimum at point (α∗1, α

∗
2, α

∗
3), given

by expression (24).
Proof of b) Then, the minimum value of the variance of the NPV of the

PGP is
σ∗2Y = 1

[A3]
2

[(
σ22σ

2
3

)2
σ21 +

(
σ21σ

2
3

)2
σ22 +

(
σ21σ

2
2

)2
σ23

]
,

σ∗2Y =
σ21σ

2
2σ

2
3

[A3]
2

[
σ21σ

2
2 + σ

2
1σ

2
3 + σ

2
2σ

2
3

]
,

σ∗2Y =
σ21σ

2
2σ

2
3

A3
= α∗2σ

2
2 < σ

2
2,

Then
σ∗Y < σ2. (25)

The NPV of the PGP is less risky than the NPV of the less risky technology.

Proof of Proposition 6. Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 the SD of the

NPV. From Proposition 5 we know that the risk of the NPV of the PGP, σY ,
reaches its global minimum at point (α∗1, α

∗
2, α

∗
3). Assume that µ1 ≥ µ2 ≥ µ3.To

obtain the parametric formulation of the efficient frontier, we write the variance
of the portfolio as follows:

σ2Y = α
2
(
β2σ21 + (1− β)

2
σ22

)
+ (1− α)

2
σ23,

σ2Y = α
2β2σ21 + α

2 (1− β)
2
σ22 + (1− α)

2
σ23,

(26)

for α, β ∈ [0, 1]. Note that when α = β = 1, then σ2Y = σ
2
1, the variance of the

portfolio equals the variance of technology 1. This fact implies that technology
1, which has the greatest ENPV, receives a share of 100%. On the other hand,
when α = 0, then σ2Y = σ23, the variance of the portfolio equals the variance
of technology 3. Then, technology 3, which has the lower ENPV, receives a
share of 100%. Then, this formulation of the variance of the NPV of the PGP
allows to have portfolios that assign a share of 100% to the technologies with
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the greatest and lowest ENPV. To be sure that expression (26) allows to reach
the point (α∗1, α

∗
2, α

∗
3), where σY reaches its global minimum, it should hold that

α∗1 = αβ, (27)

α∗2 = α (1− β) , (28)

α∗3 = (1− α) , (29)

from expression (27)

α =
α∗1
β

(30)

substituting expression (30) into expression (28) leads to

β =
α∗1

α∗
1
+α∗

2

, (31)

substituting expression (31) into expression (30) leads to

α = α∗1 + α
∗
2. (32)

Assume that
β = β (α) = αx (33)

to ensure that β ∈ [0, 1] for α ∈ [0, 1]. Then, from expression (31) and (32) we
have

α∗1
α∗
1
+α∗

2

= (α∗1 + α
∗
2)
x
.

which leads to

x =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[α∗1+α∗2]
. (34)

Substituting expression (33) into expressions (27), (28), and (29) leads to the
fact that the shares of technologies 1, 2 and 3 in this portfolio are given by the
following expressions

α1 = αβ = α
1+x, (35)

α2 = α (1− β) = α− α
1+x, (36)

α3 = 1− α. (37)

From expressions (27) and (35), the PGP with lowest risk (variance or
SD) is given when

α = [α∗1]
1

1+x . (38)

Now we need to fond the PGP with the corresponding greatest ENPV. The
ENPV of the PGP is given by

µY = α1µ1 + α2µ2 + α3µ3, (39)

substituting expressions (35), (36), and (37) into expression (39) leads to

µY = α
1+xµ1 +

(
α− α1+x

)
µ2 + (1− α)µ3,
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It is straight forward to obtain that

dµ
Y

dα
= [1 + x]αx [µ1 − µ2] + µ2 − µ3 > 0,

because of the assumption that µ1 ≥ µ2 ≥ µ3. Then, the PGP reaches its
maximum ENPV when α = 1, and µY = µ1 and σ

2
Y = σ21. However, there

could be an alternative criteria to choose the maximum ENPV of the PGP. For
example, if the NPV of technology 2 is the less risky, then, the criteria could
be to choose αdf such that σ2Y

(
αdf
)
= σ22. In this case α

df < 1. Then, the
PGP with maximum ENPV is given when α = αdf . Then, the efficient

frontier is given by expressions (35), (36), and (37) for [α∗1]
1

1+x ≤ α ≤ αdf . As
a consequence, the SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ

(
αdf
)

while the maximum ENPV for every corresponding level of risk is given by

µ
(
[α∗1]

1
1+x

)
≤ µy ≤ µ

(
αdf
)
. Note that µ

(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.

Proof of Proposition 7. The SD of the NPV of the PGP of four technologies
is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4. Assume that the NPV of

technology 2 is the less risky. If σi,j = 0, for any values i and j , from 1 to 4,

such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, and
∑4

i=1 αi = 1. For tractability,
most of the proof uses the variance of the PGP instead of its SD.

Proof of a) We need to find the shares of technologies 1, 2, 3, and 4, given
by (α1, α2, α3, α4), that ensures the minimum risk (variance) of the NPV of the
PGP. For tractability, we start by assuming that α4 = 1− α1 − α2 − α3. Then,
the variance of the NPV of the PGP is given by σ2Y = α

2
1σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 +

(1− α1 − α2 − α3)
2
σ24. First, we find the critical point. The FOC are:

∂σ2
Y

∂α1
= 2α1σ

2
1 + 2 (1− α1 − α2 − α3) (−1)σ

2
4 = 0, (40)

∂σ2
Y

∂α2
= 2α2σ

2
2 + 2 (1− α1 − α2 − α3) (−1)σ

2
4 = 0, (41)

∂σ2
Y

∂α3
= 2α3σ

2
3 + 2 (1− α1 − α2 − α3) (−1)σ

2
4 = 0, (42)

from expression (40) we have

α1
[
σ21 + σ

2
4

]
+ α2σ

2
4 + α3σ

2
4 = σ

2
4, (43)

from expression (41) we have

α1σ
2
4 + α2

[
σ22 + σ

2
4

]
+ α3σ

2
4 = σ

2
4, (44)

from expression (42) we have

α1σ
2
4 + α2σ

2
4 + α3

[
σ23 + σ

2
4

]
= σ24. (45)

Expressions (43), (44), and (45) lead to the following system of equations



σ21 + σ

2
4 σ24 σ24

σ24 σ22 + σ
2
4 σ24

σ24 σ24 σ23 + σ
2
4








α1
α2
α3



 =




σ24
σ24
σ24



 , (46)
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Calculating the inverse of matrix A4 =




σ21 + σ

2
4 σ24 σ24

σ24 σ22 + σ
2
4 σ24

σ24 σ24 σ23 + σ
2
4



 we end

up with






α∗1
α∗2
α∗3




=

1
|A4|






σ22σ
2
3 + σ

2
2σ

2
4 + σ

2
3σ

2
4 −σ23σ

2
4 −σ22σ

2
4

−σ23σ
2
4 σ21σ

2
3 + σ

2
1σ

2
4 + σ

2
3σ

2
4 −σ21σ

2
4

−σ22σ
2
4 −σ21σ

2
4 σ21σ

2
2 + σ

2
1σ

2
4 + σ

2
2σ

2
4











σ24
σ24
σ24




,

(47)
where |A4| = σ

2
1σ

2
2σ

2
3 + σ

2
1σ

2
2σ

2
4 + σ

2
1σ

2
3σ

2
4 + σ

2
2σ

2
3σ

2
4. The solution is the system

of equations is 


α∗1
α∗2
α∗3



 = 1
|A4|




σ22σ

2
3σ

2
4

σ21σ
2
3σ

2
4

σ21σ
2
2σ

2
4



 , (48)

Then, α∗4 = 1−α
∗
1−α

∗
2−α

∗
3 =

σ21σ
2
2σ

2
3

|A4|
. The critical point of the variance of the

NPV of the PGP is

(α∗1, α
∗
2, α

∗
3, α

∗
4) =

1
|A4|

(
σ22σ

2
3σ

2
4, σ

2
1σ

2
3σ

2
4, σ

2
1σ

2
2σ

2
4, σ

2
1σ

2
2σ

2
3

)
. (49)

To verify that the variance of the NPV of the PGP, σ2Y , has a minimum at
point (α∗1, α

∗
2, α

∗
3, α

∗
4) we need the SOC. The Hessian matrix is as follows:

H = 2




σ21 + σ

2
4 σ24 σ24

σ24 σ22 + σ
2
4 σ24

σ24 σ24 σ23 + σ
2
4



 , (50)

Following the criteria of the leading principal minors of the Hessian matrix, we
have

H1 = 2
(
σ21 + σ

2
4

)
> 0,

H2 = 2

∣∣∣∣
σ21 + σ

2
4 σ24

σ24 σ22 + σ
2
4

∣∣∣∣ = 2
(
σ21σ

2
2 + σ

2
1σ

2
4 + σ

2
2σ

2
4

)
> 0,

H3 = 2 |A4| > 0.

The three leading principal minors of the Hessian matrix are positive for any
(α1, α2, α3, α4). Then, the variance of the NPV of the PGP is a convex function
of the shares of the four, (α1, α2, α3, α4). As a consequence, the variance of the
NPV of the PGP, σ2Y , has a global minimum at point (α∗1, α

∗
2, α

∗
3, α

∗
4), given by

expression (49).
Proof of b) Then, the minimum value of the variance of the NPV of the

portfolio is

σ∗2Y = 1
[|A4|]

2

[(
σ22σ

2
3σ

2
4

)2
σ21 +

(
σ21σ

2
3σ

2
4

)2
σ22 +

(
σ21σ

2
2σ

2
4

)2
σ23 +

(
σ21σ

2
2σ

2
3

)2
σ24

]
,

σ∗2Y = σ2Y =
σ21σ

2
2σ

2
3σ

2
4

[|A4|]
2

[
σ22σ

2
3σ

2
4 + σ

2
1σ

2
3σ

2
4 + σ

2
1σ

2
2σ

2
4 + σ

2
1σ

2
2σ

2
3

]
,
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σ∗2Y =
σ21σ

2
2σ

2
3σ

2
4

|A4|
= α∗2σ

2
2 < σ

2
2,

Then
σ∗Y < σ2. (51)

The NPV of the portfolio is less risky than the NPV of the less risky technology.

Proof of Proposition 8. Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 the SD

of the NPV. From Proposition 7 we know that σY reaches its global minimum
at point (α∗1, α

∗
2, α

∗
3, α

∗
4). Assume that the ENPV of technology 1 is the great-

est while the ENPV of technology 4 is the lowest. To obtain the parametric
formulation of the efficient frontier, we write the variance of the portfolio as
follows:

σ2Y = α
2
[
β2σ21 + (1− β)

2
σ22

]
+ (1− α)

2
[
γ2σ23 + (1− γ)

2
σ24

]
,

σ2Y = α
2β2σ21 + α

2 (1− β)
2
σ22 + (1− α)

2
γ2σ23 + (1− α)

2
(1− γ)

2
σ24

(52)

for α, β, γ ∈ [0, 1]. Note that when α = β = 1, then σ2Y = σ
2
1, the variance of the

portfolio equals the variance of technology 1. This fact implies that technology
1, which has the greatest ENPV, receives a share of 100%. On the other hand,
when α = γ = 0, then σ2Y = σ

2
4, the variance of the portfolio equals the variance

of technology 4. Then, technology 4, which has the lowest ENPV, receives share
of 100%. Then, this formulation of the variance of the NPV of the PGP allows to
have portfolios that assign a share of 100% to the technologies with the greatest
and lowest ENPV. To be sure that expression (52) allows to reach the point
(α∗1, α

∗
2, α

∗
3, α

∗
4) where σY reaches its global minimum, it should holds that

α∗1 = αβ, (53)

α∗2 = α (1− β) , (54)

α∗3 = (1− α) γ, (55)

α∗4 = (1− α) (1− γ) , (56)

from expression (53)

α =
α∗1
β
, (57)

substituting expression (57) into expression (54) leads to

β =
α∗1

α∗
1
+α∗

2

, (58)

substituting expression (58) into expression (57) leads to

α = α∗1 + α
∗
2. (59)

From expression (55)

1− α =
α∗3
γ

(60)
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substituting expression (60) into expression (56) leads to

γ =
α∗3

α∗
3
+α∗

4

. (61)

Assume that
β = β (α) = αx1 (62)

γ = γ (α) = αx2 (63)

to ensure that β ∈ [0, 1] and γ ∈ [0, 1] for α ∈ [0, 1]. Then, substituting
expressions (58) and (59) into expression (62) he have

α∗1
α∗
1
+α∗

2

= (α∗1 + α
∗
2)
x1 .

which leads to

x1 =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[α∗1+α∗2]
. (64)

Now, substituting expressions (59) and (61) into expression (63) he have

α∗3
α∗
3
+α∗

4

= (α∗1 + α
∗
2)
x2 .

which leads to

x2 =
ln

[
α
∗
3

α∗
3
+α∗

4

]

ln[α∗1+α∗2]
. (65)

Substituting expression (62) and (63)into expressions (53), (54), (55), and (56)
leads to the fact that the share of technologies 1, 2, 3 and 4 in this portfolio is
given by the following expressions

α1 = αβ = α
x1+1, (66)

α2 = α (1− β) = α− α
x1+1, (67)

α3 = α
x2 − αx2+1. (68)

α4 = 1− α− α
x2 + αx2+1. (69)

From expressions (53) and (66), the PGP with lowest risk (variance or
SD) is given when

α = [α∗1]
1

1+x1 . (70)

Now we need to find the portfolio with the corresponding greatest ENPV. The
ENPV of the PGP is given by

µY = α1µ1 + α2µ2 + α3µ3 + α4µ4, (71)

substituting expressions (66), (67), (68), and (69) into expression (71) leads to

µY = α
1+x1µ1 +

(
α− α1+x1

)
µ2 +

(
αx2 − α1+x2

)
µ3 +

(
1− α− αx2 + α1+x2

)
µ4,
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It is straight forward to obtain that

dµ
Y

dα
= (1 + x1)α

x1 [µ1 − µ2] +
[
x2α

x2−1 − (1 + x2)α
x2
]
[µ3 − µ4] + [µ2 − µ4] > 0,

because of the assumption that the ENPV of technology 1 is the greatest while
the NPV of technology 4 is the lowest. Then, the portfolio reaches its
maximum ENPV when α = 1, and µY = µ1 and σ

2
Y = σ

2
1. However, there

could be an alternative criteria to choose the maximum ENPV. For example, if
the NPV of technology 2 is the less risky, then, the criteria could be to choose
αdf such that σ2Y

(
αdf
)
= σ22. Then, the PGP with maximum ENPV is

given when α = αdf . Then, the efficient frontieris given by expressions (66),

(67), (68), and (69) for [α∗1]
1

1+x1 ≤ α ≤ αdf . As a consequence, the SD in the
efficient frontier is given by σ∗Y ≤ σy ≤ σ

(
αdf
)
while the maximum ENPV for

every corresponding level of risk is given by µ
(
[α∗1]

1
1+x1

)
≤ µy ≤ µ

(
αdf
)
. Note

that µ
(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.

Proof of Proposition 9. The SD of the NPV of the PGP of five technologies
is given by σY =

√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 + α

2
5σ

2
5. Assume that he NPV

of technology 2 is the less risky. If σi,j = 0, for any values i and j , from 1

to 5, such that i < j. If αi ∈ [0, 1] for i = 1, 2, 3, 4, 5, and
∑5

i=1 αi = 1. For
tractability, most of the proof uses the variance of the PGP instead of its SD.

Proof of a)We need to find the shares of technologies 1, 2, 3, 4, and 5, given
by (α1, α2, α3, α4, α5), that ensures the minimum risk (variance) of the NPV of
the PGP. For tractability, we start by assuming that α5 = 1−α1−α2−α3−α4.
Then, the variance of NPV of the PGP is given by σ2Y = α

2
1σ

2
1+α

2
2σ

2
2+α

2
3σ

2
3+

α24σ
2
4+ (1− α1 − α2 − α3 − α4)

2
σ25. First, we find the critical point. The FOC

are:
∂σ2

Y

∂α1
= 2α1σ

2
1 + 2 (1− α1 − α2 − α3 − α4) (−1)σ

2
5 = 0, (72)

∂σ2
Y

∂α2
= 2α2σ

2
2 + 2 (1− α1 − α2 − α3 − α4) (−1)σ

2
5 = 0, (73)

∂σ2
Y

∂α3
= 2α3σ

2
3 + 2 (1− α1 − α2 − α3 − α4) (−1)σ

2
5 = 0, (74)

∂σ2
Y

∂α4
= 2α3σ

2
3 + 2 (1− α1 − α2 − α3 − α4) (−1)σ

2
5 = 0, (75)

from expression (72) we have

α1
[
σ21 + σ

2
5

]
+ α2σ

2
5 + α3σ

2
5 + α4σ

2
5 = σ

2
5, (76)

from expression (73) we have

α1σ
2
5 + α2

[
σ22 + σ

2
5

]
+ α3σ

2
5 + α4σ

2
5 = σ

2
5. (77)

from expression (74) we have

α1σ
2
5 + α2σ

2
5 + α3

[
σ23 + σ

2
5

]
+ α4σ

2
5 = σ

2
5. (78)
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from expression (75) we have

α1σ
2
5 + α2σ

2
5 ++α3σ

2
5 + α4

[
σ24 + σ

2
5

]
= σ25. (79)

Expressions (76), (77), (78), and (79) lead to the following system of equations





σ21 + σ
2
5 σ25 σ25 σ25

σ25 σ22 + σ
2
5 σ25 σ25

σ25 σ25 σ23 + σ
2
5 σ25

σ25 σ25 σ25 σ24 + σ
2
5











α1
α2
α3
α4




 =






σ25
σ25
σ25
σ25




 , (80)

Calculating the inverse of matrixA5 =






σ21 + σ
2
5 σ25 σ25 σ25

σ25 σ22 + σ
2
5 σ25 σ25

σ25 σ25 σ23 + σ
2
5 σ25

σ25 σ25 σ25 σ24 + σ
2
5






we end up with






α∗1
α∗2
α∗3
α∗4





= 1
|A5|











σ22σ
2
3σ

2
4+

σ22σ
2
3σ

2
5+

σ22σ
2
4σ

2
5+

σ23σ
2
4σ

2
5




 −σ23σ

2
4σ

2
5 −σ22σ

2
4σ

2
5 −σ22σ

2
3σ

2
5

−σ23σ
2
4σ

2
5






σ21σ
2
3σ

2
4+

σ21σ
2
3σ

2
5+

σ21σ
2
4σ

2
5+

σ23σ
2
4σ

2
5




 −σ21σ

2
4σ

2
5 −σ21σ

2
3σ

2
5

−σ22σ
2
4σ

2
5 −σ21σ

2
4σ

2
5






σ21σ
2
2σ

2
4+

σ21σ
2
2σ

2
5+

σ21σ
2
4σ

2
5+

σ22σ
2
4σ

2
5




 −σ21σ

2
2σ

2
5

−σ22σ
2
3σ

2
5 −σ21σ

2
3σ

2
5 −σ21σ

2
2σ

2
5






σ21σ
2
2σ

2
3+

σ21σ
2
2σ

2
5+

σ21σ
2
3σ

2
5+

σ22σ
2
3σ

2
5
















σ25
σ25
σ25
σ25






(81)
where |A5| = σ

2
1σ

2
2σ

2
3σ

2
4 + σ

2
1σ

2
2σ

2
3σ

2
5 + σ

2
1σ

2
2σ

2
4σ

2
5 + σ

2
1σ

2
3σ

2
4σ

2
5 + σ

2
2σ

2
3σ

2
4σ

2
5. The

solution is the system of equations is





α∗1
α∗2
α∗3
α∗4




 =

1
|A5|






σ22σ
2
3σ

2
4σ

2
5

σ21σ
2
3σ

2
4σ

2
5

σ21σ
2
2σ

2
4σ

2
5

σ21σ
2
2σ

2
3σ

2
5




 , (82)

Then, α∗4 = 1−α
∗
1−α

∗
2−α

∗
3−α

∗
4 =

σ21σ
2
2σ

2
3σ

2
4

|A5|
. The critical point of the variance

of the NPV of the PGP is





α∗1
α∗2
α∗3
α∗4
α∗5





= 1

|A5|






σ22σ
2
3σ

2
4σ

2
5

σ21σ
2
3σ

2
4σ

2
5

σ21σ
2
2σ

2
4σ

2
5

σ21σ
2
2σ

2
3σ

2
5

σ21σ
2
2σ

2
3σ

2
4





. (83)
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To verify that the variance of the NPV of the PGP, σ2Y , has a minimum at
point (α∗1, α

∗
2, α

∗
3, α

∗
4, , α

∗
5) we need the SOC. The Hessian matrix is as follows:

H = 2






σ21 + σ
2
5 σ25 σ25 σ25

σ25 σ22 + σ
2
5 σ25 σ25

σ25 σ25 σ23 + σ
2
5 σ25

σ25 σ25 σ25 σ24 + σ
2
5




 , (84)

Following the criteria of the leading principal minors of the Hessian matrix, we
have

H1 = 2
(
σ21 + σ

2
5

)
> 0,

H2 = 2

∣∣∣∣
σ21 + σ

2
5 σ25

σ25 σ22 + σ
2
5

∣∣∣∣ = 2
(
σ21σ

2
2 + σ

2
1σ

2
5 + σ

2
2σ

2
5

)
> 0,

H3 = 2

∣∣∣∣∣∣

σ21 + σ
2
5 σ25 σ25

σ25 σ22 + σ
2
5 σ25

σ25 σ25 σ23 + σ
2
5

∣∣∣∣∣∣
= 2

(
σ21σ

2
2σ

2
3 + σ

2
1σ

2
2σ

2
5 + σ

2
1σ

2
3σ

2
5 + σ

2
2σ

2
3σ

2
5

)
> 0,

H4 = 2 |A5| > 0.

The four leading principal minors of the Hessian matrix are positive for any
(α1, α2, α3, α4, α5).Then, the variance of the NPV of the PGP is a convex
function of the shares of the five technologies (α1, α2, α3, α4, α5). As a con-
sequence, the variance of the NPV of the PGP, σ2Y , has a global minimum at
point (α∗1, α

∗
2, α

∗
3, α

∗
4, α

∗
5), given by expression (83).

Proof of b) Then, the minimum value of the variance of the NPV of the
portfolio is

σ∗2Y = 1
[|A5|]

2 [
(
σ22σ

2
3σ

2
4σ

2
5

)2
σ21 +

(
σ21σ

2
3σ

2
4σ

2
5

)2
σ22+(

σ21σ
2
2σ

2
4σ

2
5

)2
σ23 +

(
σ21σ

2
2σ

2
3σ

2
5

)2
σ24 +

(
σ21σ

2
2σ

2
3σ

2
4

)2
σ25]

σ∗2Y =
σ21σ

2
2σ

2
3σ

2
4σ

2
5

[|A5|]
2

[
σ22σ

2
3σ

2
4σ

2
5 + σ

2
1σ

2
3σ

2
4σ

2
5 + σ

2
1σ

2
2σ

2
4σ

2
5 + σ

2
1σ

2
2σ

2
3σ

2
5 + σ

2
1σ

2
2σ

2
3σ

2
4

]
,

σ∗2Y =
σ21σ

2
2σ

2
3σ

2
4σ

2
5

|A5|
= α∗2σ

2
2 < σ

2
2,

Then
σ∗Y < σ2. (85)

The NPV of the portfolio is less risky than the NPV of the less risky technology.

Proof of Proposition 10. Let σY =
√
α21σ

2
1 + α

2
2σ

2
2 + α

2
3σ

2
3 + α

2
4σ

2
4 + α

2
5σ

2
5

the SD of the NPV. From Proposition 9 we know that σY reaches its global
minimum at point (α∗1, α

∗
2, α

∗
3, α

∗
4, α

∗
5). Assume that the ENPV of technology

1 is the greatest while the ENPV of technology 5 is the lowest. To obtain the
parametric formulation of the efficient frontier, we write the variance of the
portfolio as follows:

σ2
Y
=α2(η2[β2σ21+(1−β)

2σ22]+(1−η)
2[γ2σ23+(1−γ)

2σ24])+(1−α)
2σ25,

σ2
Y
=α2η2β2σ2

1
+α2η2(1−β)2σ2

2
+α2(1−η)2γ2σ2

3
+α2(1−η)2(1−γ)2σ2

4
+(1−α)2σ2

5

(86)
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for α, η, β, γ ∈ [0, 1]. Note that when α = β = η = 1, then σ2Y = σ21, the
variance of the portfolio equals the variance of technology 1. This fact implies
that technology 1, which has the greatest ENPV, receives a share of 100%.
On the other hand, when α = 0, then σ2Y = σ25, the variance of the portfolio
equals the variance of technology 5. Then, technology 5, which has the lower
ENPV, receives a share of 100%. Then, this formulation of the variance of the
NPV of the PGP allows to have portfolios that assign a share of 100% to the
technologies with the greatest and lowest ENPV. To be sure that expression
(86) allows to reach the point (α∗1, α

∗
2, α

∗
3, α

∗
4, α

∗
5) where σY reaches its global

minimum, it should hold that

α∗1 = αηβ, (87)

α∗2 = αη (1− β) , (88)

α∗3 = α (1− η) γ, (89)

α∗4 = α (1− η) (1− γ) , (90)

α∗5 = (1− α) , (91)

from expression (87)

αη =
α∗1
β

(92)

substituting expression (92) into expression (88) leads to

β =
α∗1

α∗
1
+α∗

2

, (93)

substituting expression (93) into expression (92) leads to

αη = α∗1 + α
∗
2. (94)

From expression (91)
α = 1− α∗5, (95)

substituting expression (95) into expression (94) leads to

η =
α∗1+α

∗
2

1−α∗
5

. (96)

From expression (89)

α (1− η) =
α∗3
γ
, (97)

substituting expression (97) into expression (90) leads to

γ =
α∗3

α∗
3
+α∗

4

, (98)

Assume that
β = β (α) = αx1 (99)

η = η (α) = αx2 (100)
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γ = γ (α) = αx3 (101)

to ensure that β ∈ [0, 1], η ∈ [0, 1] and γ ∈ [0, 1] for α ∈ [0, 1]. Then, substituting
expressions (93) and (95) into expression (99) he have

α∗1
α∗
1
+α∗

2

= (1− α∗5)
x1 .

which leads to

x1 =
ln

[
α
∗
1

α∗
1
+α∗

2

]

ln[1−α∗5]
. (102)

Substituting expressions (95) and (98) into expression (100) he have

α∗1+α
∗
2

1−α∗
5

= (1− α∗5)
x2 .

which leads to

x2 =
ln

[
α
∗
1
+α∗

2
1−α∗

5

]

ln[1−α∗5]
. (103)

Substituting expressions (95) and (96) into expression (101) he have

α∗3
α∗
3
+α∗

4

= (1− α∗5)
x3 .

which leads to

x3 =
ln

[
α
∗
3

α∗
3
+α∗

4

]

ln[1−α∗5]
. (104)

substituting expression (99), (100) and (101) into expressions (87), (88), (89),
(90), and (91) leads to the fact that the share of technologies 1, 2, 3, 4 and 5 in
this portfolio is given by the following expressions,

α1 = αηβ = α
1+x1+x2 , (105)

α2 = αη (1− β) = α
1+x2 − α1+x1+x2 , (106)

α3 = α (1− η) γ = α
1+x3 − α1+x2+x3 , (107)

α4 = α (1− η) (1− γ) = α− α
1+x2 − α1+x3 + α1+x2+x3 , (108)

α5 = 1− α. (109)

From expressions (87) and (105), the PGP with lowest risk (variance or
SD) is given when

α = [α∗1]
1

1+x1+x2 . (110)

Now we need to find the portfolio with the corresponding greatest ENPV. The
ENPV of the PGP is given by

µY = α1µ1 + α2µ2 + α3µ3 + α4µ4 + α5µ5, (111)
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substituting expressions (105), (106), (107), (108), and (109) into expression
(111) leads to

µY =
(
α1+x1+x2

)
µ1 +

(
α1+x2 − α1+x1+x2

)
µ2+(

α1+x3 − α1+x2+x3
)
µ3 +

(
α− α1+x2 − α1+x3 + α1+x2+x3

)
µ4 + (1− α)µ5,

It is straight forward to obtain that

dµ
Y

dα
= (1 + x1 + x2)α

x1+x2 [µ1 − µ2] + (1 + x2)α
x2 [µ2 − µ4] +

[(1 + x3)α
x3 − (1 + x2 + x3)α

x2+x3 ] [µ3 − µ4] + [µ4 − µ5] > 0,

because of the assumption that the ENPV of technology 1 is the greatest while
the NPV of technology 5 is the lowest. Then, the portfolio reaches its
maximum ENPV when α = 1, and µY = µ1 and σ

2
Y = σ

2
1. However, there

could be an alternative criteria to choose the maximum ENPV. For example, if
the NPV of technology 2 is the less risky, then, the criteria could be to choose αdf

such that σ2Y
(
αdf
)
= σ22. Then, the PGP with maximum ENPV is given

when α = αdf . Then, the efficient frontier is given by expressions (105),

(106), (107), (108), and (109) for [α∗1]
1

1+x1+x2 ≤ α ≤ αdf . As a consequence, the
SD in the efficient frontier is given by σ∗Y ≤ σy ≤ σ

(
αdf
)
while the maximum

ENPV for every corresponding level of risk is given by µ
(
[α∗1]

1
1+x1+x2

)
≤ µy ≤

µ
(
αdf
)
. Note that µ

(
αdf
)
≤ µ1 and σ

(
αdf
)
≤ σ1.
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