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Abstract

This paper proposes a set of models which can be used to estimate the market risk for a portfolio
of crypto-currencies, and simultaneously to estimate also their credit risk using the Zero Price Prob-
ability (ZPP) model by Fantazzini et al (2008), which is a methodology to compute the probabilities
of default using only market prices. For this purpose, both univariate and multivariate models with
different specifications are employed. Two special cases of the ZPP with closed-form formulas in case
of normally distributed errors are also developed using recent results from barrier option theory. A
backtesting exercise using two datasets of 5 and 15 coins for market risk forecasting and a dataset of
42 coins for credit risk forecasting was performed. The Value-at-Risk and the Expected Shortfall for
single coins and for an equally weighted portfolio were calculated and evaluated with several tests.
The ZPP approach was used for the estimation of the probability of default/death of the single coins
and compared to classical credit scoring models (logit and probit) and to a machine learning algo-
rithm (Random Forest). Our results reveal the superiority of the t-copula/skewed-t GARCH model
for market risk, and the ZPP-based models for credit risk.
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1 Introduction

Cryptocurrencies and the cryptomarket have become a popular trend in finance in the last years, as

discussed by Antonopoulos (2014), Narayanan et al. (2016), Burniske and Tatar (2017), Fantazzini

(2019) and Corbet et al. (2019). Bohr and Bashir (2014) and Yelowitz and Wilson (2015) showed that

different people, from crypto and tech enthusiasts to investors, are interested in these new financial tools.

Large market capitalizations for the most popular cryptocurrencies, increasing number of crypto funds1,

a growing cumulative number of Initial Coin Offerings (ICOs) and, at the same time, a frequent number

of hacks and frauds, make the topic of cryptocurrencies’ risk a really urgent problem, see Fantazzini et

al. (2016), Fantazzini et al. (2017) and references therein. Hence, the main goal of this paper is to

propose a unified framework for the simultaneous modelling of credit and market risk. If we use the

formal definition of cryptocurrency proposed by Lansky (2018), then a cryptocurrency can be defined as

a system that satisfies these six conditions:

“1) The system does not require a central authority, its state is maintained through distributed

consensus. 2) The system keeps an overview of cryptocurrency units and their ownership. 3)

The system defines whether new cryptocurrency units can be created. If new cryptocurrency

units can be created, the system defines the circumstances of their origin and how to deter-

mine the ownership of these new units. 4) Ownership of cryptocurrency units can be proved

exclusively cryptographically. 5) The system allows transactions to be performed in which

ownership of the cryptographic units is changed. A transaction statement can only be issued

by an entity proving the current ownership of these units. 6) If two different instructions

for changing the ownership of the same cryptographic units are simultaneously entered, the

system performs at most one of them.”

— Lansky (2018, p. 19)

Therefore, a cryptocurrency does not have debt, and it cannot default in a classical sense. However,

its price and the investors’ demand might drop dramatically because of a revealed scam, hack or other

hidden problems that cannot be observed directly from the market data. Because of that, we believe

that such risk is not exactly a market one and therefore we propose a definition of credit risk which is

somewhat different from the classic one: credit risk for a crypto-coin is its “death”, a situation when

its price drops significantly and a coin becomes illiquid. In this regard, we have to admit that there is

not an unambiguous definition of a dead coin, neither in the professional literature, nor in the academic

literature. However, it is worth noting that even when considered dead, some coins do still have some

negligible daily trading volumes. There are two reasons for this phenomenon: the possibility to recover

1https://cryptofundresearch.com/cryptocurrency-funds-overview-infographic/
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at least a small amount of the initial investment, or to bet on the possible revamp of the dead coin.

Differently from stock companies and small and medium enterprises (SMEs), the procedure to revamp a

coin is much easier and faster: it only takes a new code or, even easier, an update of the previous code

where the major flaws are corrected. This is why the “death” state for a cryptocurrency can be only a

temporary situation rather than a permanent one: see, for example, Sid (2018) who discussed the story

of PENG, which is a coin revamp of an old abandoned project. A brief review of the history and the

financial literature devoted to cryptocurrencies is reported in Appendix A.

The first contribution of the paper is a large discussion about credit risk and market risk for cryp-

tocurrencies and how these risks can be defined with these assets. In traditional finance, credit risk is

usually defined as the gains and losses on a position (or portfolio) associated with the fulfillment (or

not) of contractual obligations, whereas market risk as the gains and losses on the value of a position (or

portfolio) due to the changes in market prices (Basel Committee on Banking Supervision (2009) p. 6-7,

Hartmann (2010), p. 697). Instead, we argue that credit risk for cryptocurrencies can be defined as the

gains and losses on the value of a position of a cryptocurrency that is abandoned and considered dead

but which can be potentially revived, while market risk can be described as the gains and losses on the

value of a position (or portfolio) of alive cryptocurrencies, due to the movements in market prices in

centralized and decentralized exchanges.

The second contribution of the paper is a set of multivariate models which can be used to estimate the

market risk for a portfolio of crypto-currencies by using the Value-at-Risk and the Expected Shortfall,

and simultaneously to estimate also their credit risk using the Zero Price Probability (ZPP) model by

Fantazzini et al. (2008), which is a methodology to compute the probabilities of default using only market

prices. Recent papers by Su and Huang (2010), Li et al. (2016) and Dalla Valle et al. (2016) showed the

ZPP dominance in terms of default probability estimation with respect to competing models.

The third contribution of this work is the development of closed-form formulas for the ZPP in two

special cases, namely the random walk with drift and a GARCH(1,1) model with normal errors, using

recent results from barrier option theory by Su and Rieger (2009). Even though crypto-assets are far from

being normally distributed, these closed-form formulas can provide a quick estimate of the probability

of the coin death and they can give an investor at least a rough idea of the crypto-asset credit risk.

The fourth contribution of the paper is a backtesting exercise using two datasets of 5 and 15 coins

for market risk forecasting and a dataset of 42 coins for credit risk forecasting. For the purpose of

the multivariate modelling of a portfolio of cryptocurrencies, we employ VAR-DCC and VAR-Copula-

GARCH models with different specifications for the error terms. The Value-at-Risk and the Expected

Shortfall for the single coins and for an equally weighted portfolio are calculated during a back-testing

exercise and then evaluated with several tests. The ZPP approach is used for the estimation of the
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probability of default/death for the single coins and compared to classical credit scoring models (logit and

probit) and to a machine learning algorithm (Random Forest). Our results show that a t-copula/skewed-t

GARCH model outperform the competing models for market risk, while ZPP-based models outperform

the other models for credit risk.

The paper is organized as follows: the definitions of credit risk and market risk for cryptocurrencies

are introducted in Section 2, while the methods proposed for market and credit risk modelling with

cryptocurrencies are discussed in Section 3. Section 4 describes the empirical results, while robustness

checks are discussed in Section 5. Section 6 briefly concludes.

2 Theoretical framework: Credit and Market risk for cryp-

tocurrencies

The literature review in Appendix A shows that risk management is still in its early stages when cryp-

tocurrencies are of concern. In this regard, there are important differences between cryptocurrency

trading and traditional stock and forex trading:

• The lack of financial oversight for many crypto-based companies and exchanges means that coins

prices can be susceptible to manipulations, pump and dump schemes and market frauds of various

types. For example, Gandal et al. (2018) showed that the quick rise in the bitcoin price in 2013

from $150 to more than $1000 was probably due to price manipulation. Griffin and Shams (2018)

showed that Tether, a digital currency pegged to US dollars, is likely used to provide price support

and manipulate cryptocurrency prices. Moreover, the lack of regulatory oversight is one of the main

reasons why there are large and recurring deviations in cryptocurrency prices across exchanges, as

shown by Makarov and Schoar (2018)2.

• There are no traditional brokers, and investors can trade cryptocurrencies directly either using

centralized exchanges or decentralized exchanges3.

• Differently from forex and stock markets, cryptocurrency exchanges do not provide neither cash nor

asset insurance (with some exceptions like Coinbase and Gemini exchanges, which only insure cash

deposits): in case of hacking attack, exchanges could lose part or all of investors’ cryptocurrencies,

and investors would not enjoy any type of government protection. Similar fate would await investors

in the case the cryptocurrency turns out to be a scam. Note that if hackers steal the investors’

2A table showing the real-time price difference between the last trades across several bitcoin exchanges can be freely
accessed at https://data.bitcoinity.org/markets/arbitrage

3A list of both centralized and decentralized exchanges can be found at list.wiki/Cryptocurrency Exchanges. More
information about decentralized exchanges is available at github.com/distribuyed/index and references therein.
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private keys from the cryptocurrency exchange’s wallet, then the investors will permanently lose

their assets because cryptocurrency transactions are irreversible (due to the specific nature of

a cryptocurrency blockchain): suing the exchange will not help because it will simply declare

bankruptcy, leaving the investors with their losses. Therefore, choosing a good exchange is very

important when trading cryptocurrencies.

Given this discussion, the separation between market and credit risk becomes even more blurred when

dealing with cryptocurrencies than in traditional finance. In the latter case, credit risk is broadly defined

as the gains and losses on a position or portfolio associated with the fulfillment (or not) of contractual

obligations, whereas market risk is defined as the gains and losses on the value of a position or portfolio

that can take place due to the movements in market prices (such as exchange rates, commodity prices,

interest rates, etc.), see Basel Committee on Banking Supervision (2009), Hartmann (2010) and references

therein for more details. However, the Basel Committee on Banking Supervision (2009) highlighted that

the securitization trend in the last decade “has diminished the scope for differences in measuring market

and credit risk, as securitization transforms the latter into the former”(Basel Committee on Banking

Supervision (2009), p.14). Moreover, market and credit risk are driven by the same economic factors, as

a large literature shows –see the special issue on the interaction of market and credit risk in the Journal

of Banking and Finance in 2010–, so it is difficult to separate these two risks neatly in practical risk

measurement and management.

In general, the definition of market risk can be extended rather easily to the case of cryptocurrencies

market prices. Instead, credit risk requires a new definition because a cryptocurrency does not pay

interest and does not involve the reimbursement of principal amounts, so the previous classical definition

cannot be used. To this aim, the concept of a dead coin needs to be introduced: in simple terms, a dead

coin is a cryptocurrency that does not offer any utility or feature, or it is no more developed and mining

ceased, or it was created for hacking or for spreading of malware, or it was purely a scam, or simply a

fun/parody project.

Unfortunately, there is not a unique definition of dead coins, neither in the professional literature,

nor in the academic literature: in the professional literature, some define dead coins as those whose value

drops below 1 cent4, yet others stress, on top of that, no trading volume, no nodes running, no active

community and de-listing from all exchanges5. In the academic literature, Feder et al. (2018) proposed

the only definition (currently) available: they first define a “candidate peak” as a day in which the 7-day

rolling price average is greater than any value 30 days before or after. Moreover, to choose only those

peaks with sudden jumps, they define a candidate as a peak only if it is greater than or equal 50% of the

4https://www.investopedia.com/terms/d/dead-coin.asp
5https://steemit.com/beyondbitcoin/@freshfund/dead-coins-or-dormant-coins
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minimum value in the 30 days prior to the candidate peak, and if its value is at least 5% as large as the

cryptocurrency’s maximum peak. Given these peak data, Feder et al. (2018) consider a coin abandoned

(= dead), if the daily average volume for a given month is less than or equal to 1% of the peak volume.

Besides, if the average daily trading volume for a month following a peak is greater than 10% of the

peak value and that currency is currently abandoned, then Feder et al. (2018) change the coin status to

resurrected.

Despite the differences in these criteria, they have one thing in common: the “death” state is not

a permanent state and a dead coin can be revamped/revived, even several times during a relatively

short period. For example, Feder et al. (2018) found that 44% of publicly traded coins are subsequently

abandoned (18% permanently), while 85% of announced coins fail before being traded publicly. Moreover,

they also found that most coins are not traded much, and these coins are more likely to die than their

larger counterparts are. Interestingly, they showed that some coins could be revamped up to five times

over a 5-year period.

Given this background, credit risk for cryptocurrencies can be defined as the gains and losses on the

value of a position of a cryptocurrency that is abandoned and considered dead according to professional

and/or academic criteria, but which can be potentially revived and revamped6.

Substantially, the differences between credit and market risk in case of cryptocurrencies are of quan-

titative and temporal nature, not qualitative: if the financial losses and the technical problems can be

dealt with the available financial and technical resources, then we have a market event. If the financial

losses are too big and the technical problems cannot be solved, then we have a credit event and the

cryptocurrency “dies”. Moreover, it follows easily that the longer the time horizon, the more probable

are large losses and/or technical problems and/or hacking attacks on the cryptocurrency blockchain, so

credit risk becomes more important. Note that this latter result is already known in the classical financial

literature, given that “. . . the ratio of default and (normally distributed) market risk losses is proportional

to the square-root of the holding period. Since the ratio goes to 0 as the holding period goes to 0, over

short horizons market risk is relatively more important, while over longer horizons losses due to default

become more important”(Basel Committee on Banking Supervision (2009), p.16-17).

Once a credit event takes place, the development of a cryptocurrency stops, its price falls close to zero

(or even to zero, if we consider the uninterrupted lack of trading for several days and weeks as evidence

of a zero price7), but trading may still continue for the reasons discussed in the introduction. At a first

glance, this situation may be similar to the so-called “zombie firms”: these firms are characterized by

6In this paper, we deal only with the credit risk arising from the death of a cryptocurrency. The credit risk due to the
possibility that a crypto-exchange is hacked and/or goes bankrupt is examined by Moore and Christin (2013) and Moore
et al. (2018).

7Crypto-exchanges work 24 hours a day, 365 days a year.
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a lack of profitability over an extended period, are rather old and their future expected profitability is

rather low. There are no unique criteria to define a zombie firm but, in general, the ability to barely

repay the interest on its debts coupled with the inability to repay the principal are common to several

criteria proposed in the literature, see Caballero et al. (2008), Adalet et al. (2018) and Banerjee and

Hofmann (2018). However, a dead cryptocurrency is a rather different phenomenon from a zombie firm:

there is no financial institution providing financial support to continue the project, and the trading of

the coin can continue even without any project development. Instead, a zombie firm is kept alive to

guarantee that the firm continues its activities, thus saving jobs places.

Given the importance of the zero price barrier to determine the death of a cryptocurrencies, it would

be natural to consider reduced-form and hybrid credit risk models in which the asset price jumps to

zero at default: see, for example, Linetsky (2006), Carr and Linetsky (2006), Campi et al. (2009),

Das and Hanouna (2009), Carr and Wu (2009), Bayraktar and Yang (2011) and Dyrssen et al. (2014).

Unfortunately, all these models are based on derivatives data, bond data and/or accounting data, which

are not available for cryptocurrencies8. This is why a different approach based only on market data is

required.

Finally, Table 1 summarizes the main aspects of credit and market risk for cryptocurrencies9.

Market risk Credit risk
Definition Gains and losses on the value

of a position or portfolio of
alive cryptocurrencies, that
can take place due to the
movements in market prices in
centralized and decentralized
exchanges.

Gains and losses on the value
of a position of a cryptocur-
rency that is abandoned and
considered dead according
to professional and/or aca-
demic criteria.

Differences
from
traditional
finance

• Lack of financial oversight
means that coins prices can be
susceptible to manipulations,
pump and dump schemes and
other market frauds;
• Lack of regulatory oversight
also explain why prices can
differ widely across exchanges;
• Cryptocurrency exchanges
do not provide neither cash
nor asset insurance (but there
are exceptions).

• Dead coins can be revamped
several times;
• Dead coins are very different
from “zombie firms”;
• Traditional credit risk mod-
els cannot be used due to the
(current) lack of derivatives
data, bond data and/or ac-
counting data.

Table 1: Main aspects of credit and market risk for cryptocurrencies

8The CME and the CBOT introduced the first futures on bitcoin in December 2017, whereas options on cryptocurrencies
are (currently) traded only on small and illiquid exchanges, with poor or no financial oversight.

9Updated lists of dead coins can be found at https://deadcoins.com, www.coinopsy.com/dead-coins. The first site
employs a broad definition of dead coins, whereas the second site has stricter selection criteria.
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3 Methods: Market and Credit risk models

We first briefly review the Value-at-Risk (VaR) and the Expected Shortfall (ES), as well as a set of

statistical tests to measure the goodness-of-fit of these market risk measures from different models after

a backtesting exercise10. Similarly, we will present several methods to compute the probability of death

for a crypto-coin to measure its credit risk, as well as several metrics to evaluate the estimated death

probabilities. Two special cases of the ZPP with closed-form formulas in case of normally distributed asset

returns will be developed using recent results from barrier option theory. The multivariate time series

models used to simultaneously estimate the market and credit risk for a portfolio of crypto-currencies

are discussed in Appendix B.

3.1 Market Risk

Market risk arises due to movement in market variables − asset prices, interest rates, FX rates, or in our

case − cryptocurrencies prices. In this work, we consider two measures of market risk: the Value-at-Risk

(VaR) and the Expected Shortfall (ES).

Value-at-Risk. The Value at Risk at level α (VaRα) is the minimum loss of the α worst losses an

investor can expect to lose over a specific period of time. More formally, if we call ∆W (l) the change in

the portfolio value from time t to t+ l and Fl(x) the cumulative distribution function (“cdf”) of ∆Wt+l,

the VaR of a long position over the time horizon l with probability α can be defined as follows:

α = Pr[∆W (l) ≤ V aRα,t+l] = Fl(V aRα,t+l).

where VaR is defined as a negative value (loss), even though a part of the financial literature defines it

as a positive value, see e.g. Jorion (2006) and Christoffersen (2011). If the cdf is known, then the VaR

is its α-quantile times the value of the financial position. The previous definition of the VaR continues

to apply to a short position if one uses the distribution of −∆W (l), see Jorion (2007) for more details.

If we consider the profit and losses (P&L) for a single coin or for a portolio of crypto-currencies and

the normal distribution is used, then the VaRα,t+l is given by

V aRα,t+l = µt+l + σt+l Φ
−1
α

where Φ−1
α is the α-quantile of the standard normal distribution, µt+l is the forecasted mean of the P&L

10Backtesting is the process of assessing the performance of a model, by applying this model to a historical dataset to
verify how accurately it would have predicted actual results. See Christoffersen (2011) and McNeil et al. (2015) for a
discussion at the textbook level.
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distribution at time t+ l, and σt+l is the forecasted standard deviation of the P&L distribution at time

t+ l. If the Student’s t distribution is used, then the VaRα,t+l is given by

V aRα,t+l = µt+l + st+l t
−1
α,ν

where st+l is the scale parameter of the Student’s t distribution at time t+l given by st+l = σt+l

√
(ν − 2)/ν,

while t−1
α,ν is the α-quantile of the Student’s t distribution with ν degrees of freedom. If copula models

are used, simulation methods have to be implemented, see Fantazzini (2008) - section 3.2 for a detailed

description, and McNeil et al. (2015) for a general discussion.

Backtesting methods for the Value at Risk. For backtesting purposes, it is common practice to

split the dataset into two parts (training set and testing set), and to perform a rolling window estimation

to compute at each time step the forecasted V aRα,t+l at the desired time horizon l and probability level

α. The VaR forecasts and the actual realized series are then compared using the following back-testing

techniques:

• Kupiec (1995) ’s unconditional coverage test;

• Christoffersen (1998) ’s conditional coverage test;

• Loss functions to evaluate VaR forecasts accuracy and to select the best models among a group of

competing models using the model confidence set by Hansen, Lunde, and Nason (2011).

The Kupiec’s test (also known as the Unconditional Coverage test) tests the difference between the

observed and the expected number of VaR violations. Since the VaR is based on a confidence level α,

when we observe T1 actual exceedances out of T observations (with T = T0 + T1 and T0 the number of

no VaR violations), we observe an empirical frequency of π̂ = T1/T proportion of excessive losses. The

Kupiec’s test checks whether π̂ is statistically significantly different from α. It is possible to show that

the test of the null hypothesis H0 : π̂ = α is given by the following likelihood ratio test statistic, see

Kupiec (1995) for details:

LRuc = −2 ln
[
(1− α)T0αT1 / {(1− T1/T )

T0(T1/T )
T1}
]H0∼ χ2

1

Christoffersen (1998) developed a likelihood ratio statistic to test the joint assumption of unconditional

coverage and independence of VaR exceedances. The main advantage of this test named the Conditional

Coverage test is that it can reject a VaR model that forecasts either too many or too few clustered

exceedances, while its main limit is the need of (at least) several hundred observations to be accurate.
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The test statistic is computed as follows:

LRcc = −2 ln
[
(1− α)T0αT1

]
+ 2 ln

[
(1− π01)

T00πT01
01 (1− π11)

T10πT11
11

]H0∼ χ2
2

where Tij is the number of observations with value i followed by j for i, j = 0, 1 and

πij =
Tij∑
j Tij

are the corresponding probabilities.

Loss functions are useful tools to compare the costs of different admissible choices. We will use the

asymmetric VaR loss function proposed by Gonzalez-Rivera et al. (2004), which penalizes more heavily

the realized losses below the α-th quantile level, that is yt+l < V aRα,t+l:

l(yt+l, V aRα,t+l) = (α− dαt+l)(yt+l − V aRα,t+l)

where dαt+l = 1(yt+l < V aRα,t+l) is the indicator function for the VaR exceedances. This loss function

will be used for the Model Confidence Set (MCS) by Hansen et al. (2011) to select the best forecasting

models among a set of competing models, given a specified confidence level. The MCS approach is an

iterative procedure which consists of a test for the null hypothesis of equal predictive ability and an

elimination rule: at each iteration, an equivalence test is performed to check if all models in the set of

forecasting models M = M0 have an equal forecasting accuracy by testing the following null hypothesis

for a given confidence level 1− β:

H0,M = E(dij,t) = 0, ∀i, j ∈ M, vs HA,M = E(dij,t) 6= 0

where dij,t = Li,t −Lj,t is the sample loss differential between forecasting models i and j and Li,t stands

for the loss function of model i at time t. If the null hypothesis cannot be rejected, then M̂∗
1−β = M . If

the null hypothesis is rejected, the elimination rule eM is used to remove the worst forecasting models

from the set M . The procedure is repeated until the null hypothesis cannot be rejected, and the final

set of models define the so-called model confidence set M̂∗
1−β . Hansen et al. (2011) propose different

equivalence tests and we discuss here the T-max statistic which we used in the paper. First, the following

t-statistics are computed:

ti· =
di·

v̂ar(di·)
, for i ∈ M,

where di· = m−1
∑

j∈M d̄ij is the simple loss of the i-th model relative to the average losses across

10



models in the set M , and dij = T−1
∑T

t=1 dij,t measures the sample loss differential between model i and

j. Then, the T-max statistic is computed as Tmax = maxi∈M (ti·). The distribution of this test statistic

is non-standard and is estimated using bootstrapping methods, see Hansen et al. (2011) for details. The

elimination rule for the T-max statistic is emax,M = argmaxi∈M

(
di·/v̂ar(di·)

)
.

Expected Shortfall. The Expected Shortfall (ES) measures the average of the worst α losses, where

α is a percentile of the P&L distribution. More formally, the expected shortfall at probability level

α ∈ (0, 1) is defined as

ESα =
1

α

∫ α

0

F−1
z (X)dz =

1

α

∫ α

0

V aRz(X)dz

where F−1 is the inverse function of the cdf of the P&L, which is the Value-at-Risk.

If the normal distribution is used, then the ESα,t+l is given by,

ESα,t+l = µt+l + σt+l
φ(Φ−1

α )

α

where φ(·) denotes the standard normal density function. Instead, if the Student’s t distribution is

employed, then the ESα,t+l is given by

ESα,t+l = µt+l + st+l

(
tν(t

−1
α,ν)

α

[
ν + (t−1

α,ν)
2

ν − 1

])

where tν is the density function of the Student’s t distribution with ν degrees of freedom. If copula

models are used, similarly to the case of the VaR, simulation methods have to be implemented.

Backtesting methods for the Expected Shortfall. Backtesting the ES is an active field of research

since the work of McNeil and Frey (2000), but it has become a very hot topic after Gneiting (2011) showed

that ES lacks a mathematical property called elicitability (while VaR does have it), so that it may not

be backtested11. However, Acerbi and Szekely (2014) showed that the ES can be back-tested and that

the property of elicitability is useful only for model selection to choose the best model among a set of

competitors. Moreover, Emmer et al. (2015) showed that the ES is elicitable conditionally on the VaR,

and that it can be backtested through the approximation of several VaR levels: Kratz et al. (2018) used

this latter approach for an empirical application. In this paper, we will use the tests by McNeil and Frey

(2000) and by Kratz et al. (2018).

11In simple terms, a statistic ψ(Y ) of a random variable Y is elicitable if it minimizes the expected value of a scoring
function S, ψ(Y ) = argminx E[S(x, Y )], where S can be, for the case of the Value-at-Risk, the asymmetric loss function of
Gonzalez-Riviera et.al. (2004), while x are the model forecasts. Given a vector of forecasted VaR xt and a vector of realized

P&L yt, the forecasting model can then be evaluated by minimizing the mean score S̄ = 1

T

∑
T

t=1
S(xt, yt). Elicitability

allows for the ranking of the risk models’ performance because the scoring function can be used for comparative tests of
the models.
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McNeil and Frey (2000) proposed a one-sided test based on the Exceedance Residuals (ER) that exceed

the VaR, that is ERt+l = (Yt+l − ÊSα,t+l)1Yt+l≤V̂ aRα,t+l
, which should form a martingale difference

sequence if ÊSα,t+l and V̂ aRα,t+l are the true ES and VaR, respectively. More specifically, McNeil

and Frey (2000) implement the standardized version of this test, where the exceedance residuals are

standardized by the forecasted volatility (that is, ERt+l/σ̂t+l). The null hypothesis is that the expected

value of the standardized ER is zero against the alternative that the residuals have mean greater than

zero, i.e. the expected shortfall is underestimated,

H0 : µ = 0, vs HA : µ > 0

where µ = E(ERt+l). The distribution of this test is computed using the bootstrap method by Efron

and Tibshirani (1994) p. 224.

Kratz et al. (2018) proposed a multilevel VaR backtest to implicitly backtest the expected shortfall

using the initial idea by Emmer et al. (2015), who showed that

ESα ≈ 1

4
[q(α) + q(0.75α+ 0.25) + q(0.5α+ 0.5) + q(0.25α+ 0.75)]

where q(γ) = V aRγ . For example, if α = 0.05 then

ES5% ≈ 1

4
[V aR5% + V aR4% + V aR3% + V aR2%]

An estimated ESα can be considered reliable if the estimates of the four VaR values obtained from

the same model are reliable. In the general case, Kratz et al. (2018) consider VaR probability levels

α1, . . . , αN defined by

αj = α+
j − 1

N
(1− α), j = 1, . . . , N,

for some starting level α. Kratz et al. (2018) suppose to have a set of V aRα,t and ESα,t forecasts and

a series of ex-post losses {Lt, t = 1, . . . , T}. If It,j = 1(Lt>V aRαj,t
) is the usual indicator function for a

VaR violation at the level αj and Xt =
∑N

j=1 It,j , then the sequence (Xt)t=1,...,T counts the number of

VaR levels that were breached. If we define MN(T, (p0, . . . , pN )) as the multinomial distribution with

T trials, each of which may result in one of N + 1 outcomes {0, 1, . . . , N} according to probabilities

p0, . . . , pN that sum to one, while the observed cell counts are defined by

Oj =

T∑

t=1

I(Xt=j), j = 0, 1, . . . , N

then, under the assumptions of unconditional coverage and independence as in Christoffersen (1998), the
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random vector (O0, . . . , ON ) should follow the multinomial distribution (O0, . . . , ON ) ∼ MN(T, (α1 −

α0, . . . , αN+1 − αN )) . Assuming the multinomial distribution estimated from the data is MN(T, (θ1 −

θ0, . . . , θN+1 − θN )), Kratz et al. (2018) test the following null and alternative hypotheses:

H0 : θj = αj , for j = 1, . . . , N

H1 : θj 6= αj , for at least one j ∈ {1, . . . , N}

Several test statistics have been proposed in the statistical literature to test the previous hypotheses:

Cai and Krishnamoorthy (2006) performed a large simulations study to verify the exact size and power

properties of five possible tests, while Kratz et al. (2018) employed three of these five tests. We will

employ the exact method which is the fifth test statistic reviewed by Cai and Krishnamoorthy (2006),

which computes the probability of a given outcome under the null hypothesis using the multinomial

probability distribution itself:

P (O0, O1, . . . , ON ) =
T !

O0!O1! . . . ON !
(α1 − α0)

O0(α2 − α1)
O1 . . . (αN+1 − αN )ON

Cai and Krishnamoorthy (2006) found out that the exact method performs very well, but it can be

time-consuming if the number of cells and the sample size T are large. In this latter case, simulation

methods can be used to decrease the computational burden12.

3.2 Credit Risk

In traditional finance, credit risk is the risk of a change in the value of positions associated with an

unexpected deterioration in their credit quality, either downgrade or default. In the case of cryptocur-

rencies, as we previously discussed in section 3, credit risk is the risk of an extreme drop in the coin price

following its “death”, due to the discovery of a scam or a hacker attack or for other reasons. In this work,

we will use the Probability of Default (PD) as the main measure of credit risk. However, when dealing

with cryptocurrencies, this probability is usually referred to as the probability of death of the coin i, over

a period of time t+T, given that it is alive at the time t:

PDi,t = P(Di
t+T = 1|Di

t = 0)

Several approaches will be considered to estimate this probability using only available data, namely credit

scoring models and the Zero Price Probability by Fantazzini, De Giuli, and Maggi (2008). We want to

12Several tests reviewed by Cai and Krishnamoorthy (2006) are implemented in the R package XNomial available at
cran.r-project.org/web/packages/XNomial .

13



emphasize that structural models, like the well known Merton and KMV models, cannot be used because

they require accounting data which are not available for cryptocurrencies. Similary to traditional credit

risk, we will consider a 1-year time horizon.

Scoring models. Scoring models use statistical techniques to combine different factors into a quantita-

tive score which is used to compute the probability of default, see Mester (1997), Fuertes and Kalotychou

(2006), Rodriguez and Rodriguez (2006), Altman and Sabato (2007), Fantazzini and Figini (2008) and

Fantazzini and Figini (2009). Credit scoring models can be applied even if ratings and accounting data

are not available. Several scoring models typically take the following form:

PDi,t = P(Di
t+T = 1|Di

t = 0;Xi,t) = F (β′Xi,t)

In case of a logit model, F (β′Xi,t) is given by the logistic cdf,

F (β′Xi,t) =
1

1 + e−(β′Xi,t)

while for the probit model F (β′Xi,t) = Φ(β′Xi,t) where Φ(·) is a standard normal cdf.

We can also employ machine learning algorithms for solving classification tasks with two classes

(dead coin/alive coin): in this work, we will use the Random Forest algorithm proposed by Ho (1995)

and Breiman (2001). A Random Forest is an ensemble method using a large number of decision trees,

where a decision tree is an instrument for decision making with the structure of a tree, i.e. it has

branches and leaves. Each branch includes attributes which separate the alternative cases and following

the tree through the branches, we end with a (pre-specified) value of an objective function. In case of a

classification problem, each leave places an object either in one class or in the competing one. A single

decision tree may provide a poor classification and can suffer from over-fitting and model instability: this

is why the Random Forest algorithm is commonly used. Such an approach has multiple advantages: it

is not sensitive to monotone transformations, it can cope with datasets with a large number of features

and classes, and it can be used with continuous variables. See Friedman et al. (2016) and Smith and

Koning (2017) for more details about decision trees and random forests.

The Zero Price Probability (ZPP). The Zero Price Probability was firstly introduced in Fantazzini

et al. (2008) and relies on the fact that the PD can be estimated by computing the market-implied

probability P(Pτ ≤ 0) with t < τ ≤ t+ T . Because for a stock price (or a coin price) Pτ is a truncated

variable and cannot become less than zero, the Zero-Price Probability is the probability that Pτ goes

below the truncation level of zero. Fantazzini et al. (2008) discussed in details why the null price can be
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used as a default barrier.

A general estimation procedure of the ZPP for multivariate time series is reported below:

1. Consider a generic conditional model for the differences of prices levels Xt = Pt − Pt−1 without

the log-transformation:

Xt = µt +Dtzt (1)

where µt is a vector of conditional means, Dt = diag(σ1,t, . . . , σn,t) a diagonal matrix of conditional

standard deviations, while zt is a vector of standardized errors with a conditional joint distribution

given by Ht, which can be any of those discussed in Section 3.1 .

2. Simulate a high number N of price trajectories up to time t + T , using the estimated time series

model (3) at step 1. We will compute the 1-year ahead probability of death for each coin using

T = 365 days, given that crypto-assets are traded every day of the week (whereas T = 250 would

be used in the case of traditional financial assets).

3. The probability of default/death for a crypto-coin i is simply the ratio n/N , where n is the number

of times out of N when the simulated price P k
τ,i touched or crossed the zero barrier along the

simulated trajectory:

PDi,t =
1

N

N∑

k=1

1
{
P k
τ,i ≤ 0 for some t < τ ≤ t+ T

}

It follows easily from (1) that the models used in section 3.1 for measuring market risk can also be

used for measuring credit risk.

A special case: ZPP with normally distributed price differences. The original method proposed

in Fantazzini et al. (2008) dealt with general univariate models, where the ZPP can be estimated using

only simulation methods. However, if we assume that the price differences are normally distributed and

we use some recent theoretical results from barrier option theory, then it is possible to compute the ZPP

using a closed-form solution.

Su and Rieger (2009) (Theorem 2.2) showed that if a stock price St follows a standard Brownian

motion, then the ratio of the probability that the asset hits a barrier H ∈ [0,∞) before the maturity T

and the probability that the asset is below the barrier at maturity T is equal to 2 :

P (τ ≤ T ) = 2P (ST ≤ H) = 2
1√
2πT

∫ H

−∞

e−
x2

2t dx
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where τ is the first t when the underlying asset price touches the barrier H, that is min0≤t≤T {t|St ≤ H}.

If the asset follows a geometric Brownian motion with drift, they showed that the ratio of the previous

two probabilities is not constant anymore, but for H → 0 it still converges to 2 (see Su and Rieger (2009),

Lemma 2.1):

lim
H→0

P (τ ≤ T )

P (ST ≤ H)
= 2

Using these theoretical results and assuming that the coin price differences Xt = Pt −Pt−1 are normally

distributed, we can find the closed-form solutions for the ZPP in two special cases:

• Naive constant variance model (NCV). This model was initially proposed by Li, Yang, and Zou

(2016) and it is simply the random walk with drift:

Xt = µ+ εt, εt ∼ NID(0, σ2)

If we use the previous results by Su and Rieger (2009) with H = 0 and a geometric Brownian

motion with drift, it is straightforward to show that the 1-yead ahead ZPP can be computed at

time t as follows:

ZPPNCV = PNCV [Pτ ≤ 0] ≈ 2Φ

(
Pt − µT

σ
√
T

)
, with t < τ ≤ t+ T (2)

where Pt is the last price. Note that this formula is an approximation which is valid only in the

limit with ∆t → 0 and H → 0.

• GARCH(1,1) with normal errors. If we assume that Xt follows a model with a constant mean and

a GARCH(1,1) with normally distributed errors,

Xt = µ+ εt

εt = σ
1/2
t ηt, ηt ∼ NID(0, 1)

σ2
t = ω + αε2t + βσ2

t−1

the ZPP can be approximated as follows

ZPPGARCH11 = PGARCH11[Pτ ≤ 0] ≈ 2Φ

(
Pt − µT

σT

)
, with t < τ ≤ t+ T (3)

where σ2
T is sum of the forecasted variances of all shocks εt from t+1 till t+T , which can be shown

to be13

13Compute the recursive forecasts of the conditional variance from time t+1 till time t+T ; then collect all the common
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σ2
T = ω · [A×B] +

[1− (α+ β)T ]

[1− (α+ β)]
· σ̂2

t+1|t (4)

where σ̂2
t+1|t can be either the forecasted variance at time t+ 1 conditional on information at time

t, or the unconditional variance forecast14, while A and B are two vectors defined below:

A︸︷︷︸
1×(T−1)

= [(T − 1) (T − 2) . . . 2 1], B︸︷︷︸
(T−1)×1

=




(α+ β)0

(α+ β)1

...

(α+ β)T−3

(α+ β)T−2




There is an increasing empirical literature showing that the statistical distributions of crypto-assets

are far from being normally distributed, see e.g. Chu et al. (2015), Osterrieder (2016), Chu et al. (2017),

and Osterrieder and Lorenz (2017). Nevertheless, the previous closed-form formulas for the ZPP can

provide a quick estimate of the probability of coin death and they can give an investor at least a rough

idea of the crypto-asset credit risk. This is why they can be useful instruments for online data providers,

who can publish the quotes of traded crypto-assets together with these market-implied PDs15. Note

that the ZPP can highlight potential fraudulent behavior, like the famous pump-and-dump fraud that

involves artificially inflating the price of a stock through various means, to later sell the purchased stock

at a higher price to (un-informed) investors who lose all their money. In these cases, the ZPP tends to

show very large swings of the estimated PD in short periods of time and any investor should consider

such unusual behavior as a potential red flag. See Fantazzini et al. (2008) for some examples with the

ZPPs of bankrupt companies which committed different forms of fraud.

Evaluation of prediction quality The main instrument used to check the forecasting performance

of a model with binary data is the confusion matrix (Kohavi and Provost (1998)). The confusion matrix

for a two class classifier is reported in Table 2. In the specific context of our analysis, the entries in the

confusion matrix have the following meaning: a is the number of correct predictions that a coin is dead,

b is the number of incorrect predictions that a coin is dead, c is the number of incorrect predictions that

a coin is alive, while d is the number of correct predictions that a coin is alive.

The confusion matrix is then used to compute the Area Under the Receiver Operating Characteristic

curve (AUC or AUROC) by Metz and Kronman (1980), Goin (1982) and Hanley and McNeil (1982)

components and use the property of the geometric series. The result will be given by (4).
14This second option is preferable in case of risk management.
15The ZPP is implemented in the R package bitcoinFinance available at github.com/deanfantazzini/bitcoinFinance

.
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Observed/Predicted DEAD COIN ALIV E
DEAD COIN a b

ALIV E c d

Table 2: Theoretical confusion matrix. Number of: a true positive, b false positive, c false negative, d
true negative.

for all forecasting models: the receiver operating characteristic curve is obtained by plotting, for any

probability threshold between 0 and 1, the proportion of correctly predicted dead coins a/(a+ b) on the

y-axis (also known as the sensitivity or hit rate), and the proportion of alive coins predicted as dead

coins c/(c + d) (also known as the false positive rate). The AUC lies between zero and one and the

closer it is to one the more accurate the forecasting model is, see Sammut and Webb (2011), pp. 869-875,

and references therein for more details. We will also compute the model confidence set by Hansen et al.

(2011) which was extended by Fantazzini and Maggi (2015) to binary models, to assess the prediction

power of our competing models. We will employ the squared loss which is called the Brier score when

applied on binary outcomes, see Brier (1950).

4 Empirical analysis

We combined a collection of over 1500 coins available from coinmarketcap.com with a list of 42 dead

coins from deadcoins.com, which is a trusted source of information about scams, parody, and other junk

coins. Merging both datasets and taking only the coins that are traded from at least the 1st January

2016, we obtained a dataset with 149 alive and 13 dead coins. It is worth noting that dead coins still

have some negligible daily trading volumes for the reasons discussed in the Introduction.

The focus of this work is to estimate the market risk and the credit risk for small and medium-sized

portfolios of crypto-currencies, so that we considered the following three cases:

• estimation of the market risk measures for a portfolio of the top-5 cryptocurrencies by market

capitalization;

• estimation of the market risk measures for a portfolio of 15 coins, consisting of the top-5 coins, 5

random average coins, and 5 junk cryptocurrencies;

• estimation of the credit risk measures for 42 coins, consisting of 29 alive coins and 13 dead coins16.

16We used a sample of 42 coins for credit risk and not a larger sample for two reasons: 1) considering that we used
multivariate models for the simultaneous estimation of both market and credit risk, the models discussed in this paper
would be unable to estimate the market risk of a portfolio of hundreds (or thousands) of coins. In this case, a completely
different set of multivariate models need to be used, the DECO model by Engle and Kelly (2012) being (potentially) one
of them. 2) The lack of historical data for the vast majority of dead coins: this problem would make any model suffer from
massive selection bias. For these two reasons, the case of large portfolios will be considered in a separate paper.
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4.1 Portfolio with top-5 coins

We considered the top-5 coins by market capitalization at the time we started writing this paper in

2018, with daily data ranging between June 2016 and May 2018: BTC (Bitcoin), ETH (Ethereum),

XRP (Ripple), LTC (Litecoin) and XLM (Stellar). This period of time witnessed the fast rise of crypto-

currencies (with bitcoin reaching almost $20000), followed by a violent price fall. The descriptive statistics

of the daily profits and losses for each coin are presented in Table 3. All coins generally exhibited large

skewness and kurtosis, very high coefficients of variations, and unconditional distributions very far from

the Gaussian.

Mean Std.Dev. Min Max Skewness Kurtosis Coeff.of Var.
BTC 9.60 381.65 -2329.30 3608.20 0.97 20.16 39.74
ETH 0.79 27.94 -238.23 151.21 -0.58 15.20 35.27
XRP 0.00 0.07 -0.92 0.78 -0.26 76.95 83.89
XLM 0.00 0.02 -0.17 0.33 4.07 87.40 54.78
LTC 0.16 8.42 -52.53 101.96 3.10 42.05 53.05

Table 3: Descriptive statistics for the daily P&L for each coin (June 2016 - May 2018).

Following Giacomini and Komunjer (2005), Gonzalez-Rivera et al. (2004) and Fantazzini (2009a),

we used a rolling forecasting scheme of 522 observations and we left 200 data for the out-of-sample

evaluation. We used the first differences of the data without log transformation (that is the P&L) to

compute not only their market risk measures, but also their credit risk measures using the Zero Price

Probability (ZPP) by Fantazzini et al. (2008). More specifically, we used a VAR(1) model for the

conditional means, univariate GARCH(1,1) models for the conditional variances, and the following six

multivariate distributions for the standardized errors:

• a DCC(1,1) model with multivariate normal distribution;

• a DCC(1,1) model with multivariate Student’s t distribution;

• a normal copula/skewed-t GARCH model with constant correlation matrix;

• a t-copula/skewed-t GARCH model with constant correlation matrix;

• a normal copula/skewed-t GARCH model with a correlation matrix following a DCC(1,1) model;

• a t-copula/skewed-t GARCH model with a correlation matrix following a DCC(1,1) model;

We calculated the 1-day-ahead forecasts for the 1%, 2%, 3%, 4% and 5% VaR levels and for the 5%

ES, for each coin and for an equally-weighted portfolio with the five coins. The actual VaR exceedances

T1/T , the p-values of the Kupiec’s unconditional coverage test and the p-values of the Christoffersen’s

conditional coverage test for the VaR forecasts at all quantile levels are reported in Tables 4-6. The

asymmetric VaR losses and the forecasting models included in the MCS are reported in Table 7.
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DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

VaR exceedances (T1/T ): 1\% quantile
BTC 3.52% 1.51% 1.51% 1.01% 1.51% 1.51%
ETH 3.02% 3.52% 3.02% 1.51% 2.51% 3.02%
XRP 1.51% 1.51% 0.50% 0.00% 0.00% 0.00%
XLM 2.01% 1.51% 1.01% 0.50% 1.01% 1.01%
LTC 0.50% 0.00% 0.00% 0.00% 0.00% 0.00%
portfolio 4.02% 2.01% 5.03% 2.51% 2.51% 2.01%

VaR exceedances (T1/T ): 2\% quantile
BTC 4.02% 4.52% 3.02% 2.51% 4.02% 4.02%
ETH 4.52% 4.02% 4.02% 3.52% 4.02% 4.02%
XRP 3.52% 4.52% 1.01% 1.01% 1.01% 1.01%
XLM 3.52% 4.02% 1.01% 1.01% 1.01% 1.01%
LTC 1.51% 2.51% 0.50% 0.50% 0.50% 0.50%
portfolio 7.54% 6.53% 6.03% 5.53% 6.03% 6.03%

VaR exceedances (T1/T ): 3\% quantile
BTC 5.53% 6.03% 4.52% 4.02% 4.52% 4.52%
ETH 5.53% 6.03% 6.03% 4.52% 6.03% 6.03%
XRP 4.02% 6.03% 1.51% 2.01% 2.01% 2.01%
XLM 3.52% 6.03% 2.51% 1.01% 3.02% 3.02%
LTC 3.02% 5.03% 1.01% 1.01% 1.51% 1.01%
portfolio 8.54% 8.54% 9.55% 10.05% 8.54% 8.54%

VaR exceedances (T1/T ): 4\% quantile
BTC 6.03% 6.53% 5.03% 5.03% 6.03% 5.53%
ETH 7.04% 7.54% 8.04% 7.54% 8.54% 8.54%
XRP 4.02% 8.54% 2.51% 2.51% 2.51% 2.51%
XLM 3.52% 6.03% 3.02% 3.02% 3.02% 3.02%
LTC 4.52% 10.05% 2.01% 1.51% 2.01% 2.01%
portfolio 9.55% 11.06% 10.55% 10.05% 10.05% 9.55%

VaR exceedances (T1/T ): 5\% quantile
BTC 6.53% 7.54% 6.53% 6.03% 6.53% 6.53%
ETH 8.04% 8.04% 8.54% 8.54% 9.05% 9.05%
XRP 5.03% 10.55% 3.02% 4.02% 3.52% 3.52%
XLM 4.52% 7.54% 4.52% 3.52% 4.02% 4.02%
LTC 5.53% 12.56% 2.51% 2.01% 3.02% 2.51%
portfolio 11.06% 12.56% 12.06% 11.06% 10.55% 11.06%

Table 4: VaR exceedances T1/T for each coin and for the equally-weighted portfolio.

DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

Kupiec’s test p-value: VaR 1\%
BTC 0.01 0.50 0.50 0.99 0.50 0.50
ETH 0.02 0.01 0.02 0.50 0.07 0.02
XRP 0.50 0.50 0.44 0.05 0.05 0.05
XLM 0.21 0.50 0.99 0.44 0.99 0.99
LTC 0.44 0.05 0.05 0.05 0.05 0.05
portfolio 0.00 0.21 0.00 0.07 0.07 0.21

Kupiec’s test p-value: VaR 2\%
BTC 0.07 0.03 0.34 0.62 0.07 0.07
ETH 0.03 0.07 0.07 0.17 0.07 0.07
XRP 0.17 0.03 0.27 0.27 0.27 0.27
XLM 0.17 0.07 0.27 0.27 0.27 0.27
LTC 0.60 0.62 0.07 0.07 0.07 0.07
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Kupiec’s test p-value: VaR 3\%
BTC 0.06 0.03 0.24 0.42 0.24 0.24
ETH 0.06 0.03 0.03 0.24 0.03 0.03
XRP 0.42 0.03 0.17 0.38 0.38 0.38
XLM 0.68 0.03 0.68 0.06 0.99 0.99
LTC 0.99 0.13 0.06 0.06 0.17 0.06
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Kupiec’s test p-value: VaR 4\%
BTC 0.17 0.09 0.48 0.48 0.17 0.30
ETH 0.05 0.02 0.01 0.02 0.00 0.00
XRP 0.99 0.00 0.25 0.25 0.25 0.25
XLM 0.72 0.17 0.46 0.46 0.46 0.46
LTC 0.71 0.00 0.11 0.11 0.11 0.11
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Kupiec’s test p-value: VaR 5\%
BTC 0.34 0.13 0.34 0.52 0.34 0.34
ETH 0.07 0.07 0.04 0.04 0.02 0.02
XRP 0.99 0.00 0.17 0.51 0.31 0.31
XLM 0.75 0.13 0.75 0.31 0.51 0.51
LTC 0.74 0.00 0.08 0.03 0.17 0.08
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Kupiec’s tests for each coin and for the equally-weighted portfolio.
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DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

Christoffersen’s test p-value: VaR 1\%
BTC 0.02 0.76 0.76 0.98 0.76 0.76
ETH 0.03 0.01 0.03 0.76 0.05 0.03
XRP 0.76 0.76 0.73 0.14 0.14 0.14
XLM 0.42 0.76 0.98 0.73 0.98 0.98
LTC 0.73 0.14 0.14 0.14 0.14 0.14
portfolio 0.00 0.42 0.00 0.17 0.17 0.42

Christoffersen’s test p-value: VaR 2\%
BTC 0.14 0.06 0.53 0.78 0.14 0.14
ETH 0.01 0.12 0.12 0.18 0.12 0.12
XRP 0.30 0.06 0.53 0.53 0.53 0.53
XLM 0.30 0.14 0.53 0.53 0.53 0.53
LTC 0.83 0.78 0.20 0.20 0.20 0.20
portfolio 0.00 0.00 0.00 0.01 0.00 0.00

Christoffersen’s test p-value: VaR 3\%
BTC 0.05 0.04 0.33 0.52 0.33 0.33
ETH 0.05 0.04 0.08 0.36 0.08 0.08
XRP 0.52 0.04 0.38 0.63 0.63 0.63
XLM 0.71 0.08 0.81 0.16 0.83 0.83
LTC 0.83 0.18 0.16 0.16 0.38 0.16
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Christoffersen’s test p-value: VaR 4\%
BTC 0.16 0.13 0.63 0.63 0.16 0.52
ETH 0.09 0.05 0.03 0.07 0.02 0.02
XRP 0.71 0.01 0.46 0.46 0.46 0.46
XLM 0.73 0.37 0.63 0.63 0.63 0.63
LTC 0.61 0.00 0.26 0.26 0.26 0.26
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Christoffersen’s test p-value: VaR 5\%
BTC 0.33 0.22 0.33 0.33 0.33 0.33
ETH 0.16 0.16 0.10 0.10 0.06 0.06
XRP 0.59 0.00 0.32 0.58 0.46 0.46
XLM 0.62 0.31 0.62 0.46 0.58 0.58
LTC 0.49 0.00 0.18 0.08 0.32 0.18
portfolio 0.00 0.00 0.00 0.00 0.01 0.00

Table 6: Christoffersen’s tests for each coin and for the equally-weighted portfolio.

DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

Asymmetric VaR Loss and inclusion in the MCS: 1\% quantile
BTC 0.004 0.004 0.005 0.005 0.004 0.005
ETH 0.005 0.004 0.005 0.005 0.005 0.005
XRP 0.008 0.008 0.007 0.007 0.007 0.007
XLM 0.005 0.007 0.007 0.007 0.007
LTC 0.004 0.004
portfolio 0.003 0.003 0.003 0.003 0.003 0.003

Asymmetric VaR Loss and inclusion in the MCS: 2\% quantile
BTC 0.008 0.008 0.008 0.008 0.008
ETH 0.009 0.009 0.009 0.009 0.009 0.009
XRP 0.012 0.014 0.013 0.013 0.013 0.013
XLM 0.010 0.012 0.012 0.012 0.012
LTC 0.008 0.008
portfolio 0.005 0.005 0.005 0.005 0.005 0.004

Asymmetric VaR Loss and inclusion in the MCS: 3\% quantile
BTC 0.011 0.012 0.012 0.012 0.012 0.012
ETH 0.012 0.012 0.012 0.012 0.012 0.012
XRP 0.016 0.018 0.017 0.017 0.017 0.017
XLM 0.014 0.016 0.016 0.016 0.016 0.016
LTC 0.011 0.011
portfolio 0.006 0.006 0.006 0.006 0.006 0.006

Asymmetric VaR Loss and inclusion in the MCS: 4\% quantile
BTC 0.014 0.014 0.015 0.015 0.015 0.015
ETH 0.015 0.015 0.015 0.015 0.015 0.015
XRP 0.020 0.021 0.021 0.021 0.021 0.021
XLM 0.018 0.019 0.020
LTC 0.014 0.015
portfolio 0.007 0.008 0.008 0.008 0.008 0.008

Asymmetric VaR Loss and inclusion in the MCS: 5\% quantile
BTC 0.017 0.017 0.017 0.017 0.017 0.017
ETH 0.017 0.018 0.018 0.018 0.018 0.018
XRP 0.023 0.024 0.024 0.024 0.024 0.024
XLM 0.021 0.022
LTC 0.016 0.019
portfolio 0.009 0.009 0.009 0.009 0.009 0.009

Table 7: Asymmetric VaR Loss and MCS: an empty cell means the model is not included into the MCS.
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Table 4-7 show that the t-copula with skewed-t GARCH marginals can be a good compromise for

precise VaR estimates across different quantile levels, particularly for the most extreme quantiles (1% and

2%) which are the most important for regulatory purposes, see BIS (2013) and BIS (2016). This evidence

is consistent with other results reported in the financial literature using copulas, see Cherubini et al.

(2004), Fantazzini (2008), Fantazzini (2009a), Patton (2009), Weiss (2011), Weiss (2013), Patton (2013)

and McNeil et al. (2015). The worse VaR results for central quantiles (4% and 5%) were expected, due to

the computational problems associated with the estimation of GARCH models with small samples (≤ 500

observations), see Fantazzini (2009a) for more details. Unfortunately, increasing the estimation window

is not advisable when using crypto-assets, due to the potential presence of structural breaks caused by

changes in local regulations, the arrival of new investors, hacking attacks and massive improvements in

mining hardware, see e.g. Bouri et al. (2016), Fantazzini et al. (2016), Fantazzini et al. (2017) and

Mensi et al. (2018). This is why we employed a rolling estimation window of 522 observations, which

is similar to the window size suggested by Hwang and Valls Pereira (2006), who investigated the small

sample properties of the maximum likelihood estimates of ARCH and GARCH models. The asymmetric

VaR losses of the competing models are rather close and almost all models are included into the MCS

(for both the single coins and the portfolio case). This latter result was expected because Fantazzini

(2009a) showed that, when small samples are considered and the data are skewed and leptokurtic, the

biases in the GARCH parameters are so large that they deliver conservative VaR estimates, even with a

simple multivariate normal distribution.

The p-values of the exceedance residuals test by McNeil and Frey (2000) and of the multilevel VaR

backtest with N = 4 levels by Kratz et al. (2018) for the forecasted ES 5% are reported in Table 8.

DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

ES 5% test 1: Exceedance Residuals test by McNeil and Frey (2000)
BTC 1.00 1.00 0.78 0.75 0.66 0.67
ETH 0.85 1.00 0.49 0.70 0.52 0.52
XRP 0.28 1.00 0.66 0.91 0.83 0.81
XLM 0.00 0.99 0.87 0.93 0.86 0.85
LTC 0.96 1.00 0.99 0.98 1.00 0.99
portfolio 0.25 1.00 0.12 0.21 0.15 0.44

ES 5% test 2: multilevel VaR backtest by Kratz et al. (2018)
BTC 0.09 0.01 0.51 0.81 0.17 0.22
ETH 0.01 0.01 0.00 0.02 0.00 0.00
XRP 0.68 0.00 0.22 0.51 0.42 0.42
XLM 0.70 0.03 0.76 0.21 0.73 0.73
LTC 0.97 0.00 0.02 0.00 0.08 0.02
portfolio 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: ER test by McNeil and Frey (2000) and multilevel VaR backtest by Kratz et al. (2018).

The ER test by McNeil and Frey (2000) does not reject the null hypothesis for almost any model,

except for a normal DCC model. Instead, the multilevel VaR backtest by Kratz et al. (2018) is much

more selective, and it rejects the null hypothesis of a correctly specified multinomial distribution for both
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DCC models and (to a lesser extent) copula models. These results confirm the evidence reported in table

4 that DCC models work poorly with extreme quantiles, while copula models have problems with central

quantiles.

4.2 Portfolio with 15 coins

We considered the following 15 coins with daily data ranging between June 2016 and May 2018: BTC

(Bitcoin), ETH (Ethereum), XRP (Ripple), LTC (Litecoin), XLM (Stellar), XCP (Counterparty), SHIFT

(Shift), RVR (RevolutionVR), THC (HempCoin), CLAM (Clams), GAME (GameCredits), MINT (Mint-

Coin), ABY (ArtByte), GLD (GoldCoin), EFL (e-Gulden). The actual VaR exceedances T1/T and the

p-values of the Kupiec’s unconditional coverage test are reported in Table 9, while the p-values of the

Christoffersen’s conditional coverage test, the asymmetric VaR losses and the forecasting models included

in the MCS are reported in Table 10. The p-values of the exceedance residuals test by McNeil and Frey

(2000) and of the multilevel VaR backtest with N = 4 levels by Kratz et al. (2018) for the forecasted ES

5% are reported in Table 11.

The results with 15 coins are rather similar to the previous analysis with 5 coins: copula-GARCH

models pass the vast majority of Kupiec and Christoffersen tests (whereas DCC models do not) and are

usually more precise for extreme quantiles, particularly the t-copula/skewed-t GARCH model. However,

the asymmetric VaR losses are not very different and in several cases, all models are included in the

MCS. The ER test by McNeil and Frey (2000) rejects the null hypothesis for very few models, while

the multilevel VaR backtest by Kratz et al. (2018) again rejects the null hypothesis much more for

DCC models than for copula models. In general, DCC models seem to provide worse model fits of the

multivariate distribution tails compared to copula models, thus confirming recent simulation studies by

Muller and Righi (2018).

4.3 Credit risk for 42 coins

We computed the probability of death/default for a set of 42 coins reported in Table 12 , using the

methods described in section 3.2.2 .

We split our dataset into a training set containing all coins up to May 2017, and a validation (out-of-

time) set ranging from June 2017 till May 2018. Note that the coins which were considered dead in May

2017, were also included in the validation set because they kept on trading and they could be potentially

revived, see the previous discussion in Section 3. We estimated all models using the training subset and

then we computed the 1-year-ahead forecasts for the probability of death for each coin: these forecasts

were used with the validation dataset to compute the AUC scores, Brier scores and the MCS.
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DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

VaR exceedances (T1/T ): 1\% quantile Kupiec’s test p-value: VaR 1\%
BTC 4.02% 1.01% 2.01% 0.50% 1.01% 1.01% 0.00 0.99 0.21 0.44 0.99 0.99
ETH 4.02% 2.51% 3.02% 1.01% 1.51% 1.51% 0.00 0.07 0.02 0.99 0.50 0.50
XRP 4.52% 2.01% 1.51% 0.50% 0.50% 0.50% 0.00 0.21 0.50 0.44 0.44 0.44
XLM 5.03% 3.02% 3.52% 1.51% 2.51% 2.51% 0.00 0.02 0.01 0.50 0.07 0.07
LTC 2.51% 0.50% 1.01% 0.00% 0.00% 0.00% 0.07 0.44 0.99 0.05 0.05 0.05
XCP 4.02% 3.02% 3.02% 3.52% 3.52% 3.52% 0.00 0.02 0.02 0.01 0.01 0.01
SHIFT 5.03% 3.02% 2.51% 1.51% 1.51% 1.51% 0.00 0.02 0.07 0.50 0.50 0.50
RVR 4.52% 4.02% 2.51% 1.51% 2.01% 2.01% 0.00 0.00 0.07 0.50 0.21 0.21
THC 3.02% 3.02% 1.01% 0.50% 0.50% 0.50% 0.02 0.02 0.99 0.44 0.44 0.44
CLAM 3.02% 1.01% 1.51% 0.50% 0.50% 0.50% 0.02 0.99 0.50 0.44 0.44 0.44
GAME 2.01% 3.02% 2.01% 1.01% 1.01% 1.01% 0.07 0.02 0.21 0.99 0.99 0.99
MINT 4.02% 1.51% 1.51% 1.01% 1.01% 1.01% 0.00 0.50 0.50 0.99 0.99 0.99
ABY 4.52% 3.02% 1.51% 1.51% 1.51% 1.51% 0.00 0.02 0.50 0.50 0.50 0.50
GLD 2.01% 1.51% 1.51% 0.50% 0.50% 0.50% 0.21 0.50 0.50 0.44 0.44 0.44
EFL 2.51% 2.01% 1.01% 0.00% 0.00% 0.00% 0.07 0.21 0.99 0.05 0.05 0.05
portfolio 7.04% 6.03% 7.04% 4.52% 5.03% 5.03% 0.00 0.00 0.00 0.00 0.00 0.00

VaR exceedances (T1/T ): 2\% quantile Kupiec’s test p-value: VaR 2\%
BTC 7.04% 4.02% 3.02% 1.01% 1.51% 1.51% 0.00 0.07 0.34 0.27 0.60 0.60
ETH 5.53% 3.52% 4.52% 1.51% 4.02% 4.02% 0.00 0.17 0.03 0.60 0.07 0.07
XRP 5.03% 4.52% 3.52% 1.51% 2.01% 2.01% 0.01 0.03 0.17 0.60 0.99 0.99
XLM 6.53% 6.03% 4.02% 4.02% 4.02% 4.02% 0.00 0.00 0.07 0.07 0.07 0.07
LTC 3.52% 4.02% 1.01% 0.50% 0.50% 0.50% 0.17 0.07 0.27 0.07 0.07 0.07
XCP 5.53% 3.52% 4.02% 6.03% 6.03% 6.03% 0.00 0.17 0.07 0.00 0.00 0.00
SHIFT 5.03% 4.02% 4.52% 3.52% 3.52% 3.52% 0.01 0.07 0.03 0.17 0.17 0.17
RVR 5.03% 5.03% 4.02% 3.02% 3.02% 3.02% 0.01 0.01 0.07 0.34 0.34 0.34
THC 3.52% 3.02% 2.51% 0.50% 1.51% 1.51% 0.17 0.34 0.62 0.07 0.60 0.60
CLAM 3.02% 1.51% 2.01% 1.01% 1.01% 1.01% 0.34 0.60 0.99 0.27 0.27 0.27
GAME 4.52% 4.52% 3.02% 2.51% 3.02% 3.02% 0.01 0.03 0.34 0.62 0.34 0.34
MINT 5.53% 4.52% 3.02% 2.51% 2.51% 2.51% 0.00 0.03 0.34 0.62 0.62 0.62
ABY 5.53% 5.53% 4.02% 4.52% 4.02% 4.52% 0.00 0.00 0.07 0.03 0.07 0.03
GLD 2.51% 3.02% 2.01% 0.50% 0.50% 0.50% 0.62 0.34 0.99 0.07 0.07 0.07
EFL 2.51% 4.52% 1.51% 0.00% 0.00% 0.00% 0.62 0.03 0.60 0.00 0.00 0.00
portfolio 8.04% 8.04% 8.04% 7.04% 7.04% 7.04% 0.00 0.00 0.00 0.00 0.00 0.00

VaR exceedances (T1/T ): 3\% quantile Kupiec’s test p-value: VaR 3\%
BTC 8.04% 5.03% 5.03% 3.02% 5.03% 5.03% 0.00 0.13 0.13 0.99 0.13 0.13
ETH 6.03% 5.53% 5.03% 4.02% 4.52% 4.52% 0.03 0.06 0.13 0.42 0.24 0.24
XRP 5.03% 6.03% 6.03% 3.02% 3.02% 3.02% 0.13 0.03 0.03 0.99 0.99 0.99
XLM 7.54% 6.53% 5.03% 4.02% 4.52% 4.52% 0.00 0.01 0.13 0.42 0.24 0.24
LTC 5.03% 7.04% 2.01% 1.01% 1.51% 2.01% 0.13 0.00 0.38 0.06 0.17 0.38
XCP 6.53% 5.53% 6.53% 6.53% 7.04% 7.04% 0.01 0.06 0.01 0.01 0.00 0.00
SHIFT 6.03% 6.53% 5.53% 4.52% 4.52% 4.52% 0.03 0.01 0.06 0.24 0.24 0.24
RVR 5.53% 6.03% 5.03% 5.03% 5.03% 5.03% 0.06 0.03 0.13 0.13 0.13 0.13
THC 3.52% 6.03% 3.02% 2.01% 2.01% 2.01% 0.68 0.03 0.99 0.38 0.38 0.38
CLAM 4.02% 2.51% 2.01% 1.51% 1.51% 1.51% 0.42 0.68 0.38 0.17 0.17 0.17
GAME 5.53% 5.53% 4.02% 4.52% 5.03% 5.03% 0.03 0.06 0.42 0.24 0.13 0.13
MINT 5.53% 6.03% 4.02% 4.52% 4.52% 4.52% 0.06 0.03 0.42 0.24 0.24 0.24
ABY 6.53% 6.53% 8.04% 6.03% 6.03% 6.03% 0.01 0.01 0.00 0.03 0.03 0.03
GLD 3.02% 3.52% 2.51% 2.01% 1.51% 1.51% 0.99 0.68 0.68 0.38 0.17 0.17
EFL 2.51% 5.53% 2.01% 0.50% 0.50% 0.50% 0.68 0.06 0.38 0.01 0.01 0.01
portfolio 9.55% 10.05% 10.55% 7.04% 7.54% 7.54% 0.00 0.00 0.00 0.00 0.00 0.00

VaR exceedances (T1/T ): 4\% quantile Kupiec’s test p-value: VaR 4\%
BTC 9.05% 7.04% 6.03% 6.03% 7.04% 7.04% 0.00 0.05 0.17 0.17 0.05 0.05
ETH 7.04% 6.53% 6.03% 4.52% 5.03% 5.53% 0.05 0.09 0.17 0.71 0.48 0.30
XRP 5.53% 8.54% 6.53% 3.52% 4.02% 4.02% 0.30 0.00 0.09 0.72 0.99 0.99
XLM 7.54% 7.54% 5.53% 4.52% 4.52% 5.03% 0.02 0.02 0.30 0.71 0.71 0.48
LTC 5.03% 8.04% 2.01% 2.01% 2.51% 3.02% 0.48 0.01 0.11 0.11 0.25 0.46
XCP 6.53% 6.03% 8.04% 7.54% 7.54% 8.04% 0.09 0.17 0.01 0.02 0.02 0.01
SHIFT 6.53% 7.04% 6.53% 5.53% 5.53% 5.53% 0.09 0.05 0.09 0.30 0.30 0.30
RVR 6.53% 8.54% 5.53% 5.03% 5.53% 5.53% 0.09 0.00 0.30 0.48 0.30 0.30
THC 3.52% 7.04% 3.02% 2.51% 2.51% 2.51% 0.72 0.05 0.46 0.25 0.25 0.25
CLAM 5.53% 5.03% 3.02% 2.01% 2.01% 2.51% 0.30 0.48 0.46 0.11 0.11 0.25
GAME 6.03% 7.04% 5.53% 5.53% 6.03% 6.03% 0.09 0.05 0.30 0.30 0.17 0.17
MINT 7.04% 6.53% 4.52% 4.52% 4.52% 4.52% 0.05 0.09 0.71 0.71 0.71 0.71
ABY 7.04% 10.05% 8.04% 7.54% 7.54% 7.54% 0.05 0.00 0.01 0.02 0.02 0.02
GLD 4.02% 6.53% 3.52% 3.02% 2.51% 3.02% 0.99 0.09 0.72 0.46 0.25 0.46
EFL 3.02% 6.53% 2.51% 1.01% 1.01% 1.51% 0.46 0.09 0.25 0.01 0.01 0.04
portfolio 11.06% 12.56% 10.55% 9.55% 9.55% 9.55% 0.00 0.00 0.00 0.00 0.00 0.00

VaR exceedances (T1/T ): 5\% quantile Kupiec’s test p-value: VaR 5\%
BTC 9.05% 9.05% 7.04% 7.04% 7.54% 7.54% 0.02 0.02 0.21 0.21 0.13 0.13
ETH 8.04% 7.54% 7.04% 4.52% 6.53% 6.53% 0.07 0.13 0.21 0.75 0.34 0.34
XRP 8.04% 10.05% 8.04% 4.02% 4.02% 4.02% 0.07 0.00 0.07 0.51 0.51 0.51
XLM 7.54% 8.04% 7.54% 5.03% 5.53% 5.53% 0.13 0.07 0.13 0.99 0.74 0.74
LTC 6.53% 10.55% 4.02% 2.51% 4.02% 4.52% 0.34 0.00 0.51 0.08 0.51 0.75
XCP 7.54% 8.04% 8.54% 8.54% 8.54% 8.54% 0.13 0.07 0.04 0.04 0.04 0.04
SHIFT 7.04% 9.05% 7.54% 6.03% 6.03% 6.03% 0.21 0.02 0.13 0.52 0.52 0.52
RVR 6.53% 9.55% 7.04% 5.53% 6.03% 6.03% 0.34 0.01 0.21 0.74 0.52 0.52
THC 4.52% 8.54% 3.52% 2.51% 2.51% 2.51% 0.75 0.04 0.31 0.08 0.08 0.08
CLAM 6.03% 7.04% 3.52% 3.02% 2.51% 3.02% 0.52 0.21 0.31 0.17 0.08 0.17
GAME 6.03% 7.54% 6.03% 6.03% 6.03% 6.03% 0.34 0.13 0.52 0.52 0.52 0.52
MINT 7.54% 8.04% 4.52% 5.03% 5.03% 5.03% 0.13 0.07 0.75 0.99 0.99 0.99
ABY 7.04% 11.06% 9.55% 7.54% 7.54% 7.54% 0.21 0.00 0.01 0.13 0.13 0.13
GLD 4.02% 8.54% 5.53% 4.52% 4.02% 4.02% 0.51 0.04 0.74 0.75 0.51 0.51
EFL 3.52% 8.54% 3.02% 1.51% 1.51% 1.51% 0.31 0.04 0.17 0.01 0.01 0.01
portfolio 12.06% 13.57% 12.06% 10.05% 10.05% 10.05% 0.00 0.00 0.00 0.00 0.00 0.00

Table 9: VaR exceedances T1/T (left) and Kupiec’s tests (right) for each coin and for the equally-weighted
portfolio. P-values smaller than 0.05 are in bold font.
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DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

DCC
MVN

DCC
MVT

Const N-
Copula
GARCH

Const T-
Copula
GARCH

DCC N-
Copula
GARCH

DCC T-
Copula
GARCH

Christoffersen’s test p-value: VaR 1\% Asymmetric VaR 1% Loss and MCS
BTC 0.00 0.98 0.42 0.73 0.98 0.98 0.010 0.006 0.008 0.007 0.006 0.006
ETH 0.00 0.17 0.06 0.98 0.76 0.76 0.010 0.006 0.007 0.007 0.007 0.007
XRP 0.00 0.42 0.76 0.73 0.73 0.73 0.006 0.006 0.007 0.006 0.006 0.006
XLM 0.00 0.06 0.02 0.76 0.17 0.17 0.009 0.008 0.009 0.007 0.007 0.007
LTC 0.17 0.73 0.98 0.14 0.14 0.14 0.010 0.005 0.008 0.007 0.007 0.006
XCP 0.00 0.06 0.06 0.02 0.02 0.02 0.013 0.013 0.010 0.014 0.014 0.014
SHIFT 0.00 0.06 0.17 0.76 0.76 0.76 0.007 0.007 0.007 0.007 0.007
RVR 0.00 0.00 0.17 0.76 0.42 0.42 0.015 0.010 0.010 0.009 0.009 0.009
THC 0.06 0.06 0.98 0.73 0.73 0.73 0.008 0.009 0.008 0.009 0.009
CLAM 0.06 0.98 0.76 0.73 0.73 0.73 0.015 0.014 0.014 0.014 0.014
GAME 0.17 0.06 0.42 0.98 0.98 0.98 0.012 0.008 0.009 0.008 0.008 0.008
MINT 0.00 0.76 0.76 0.98 0.98 0.98 0.014 0.014 0.015 0.015 0.015 0.015
ABY 0.00 0.06 0.76 0.76 0.76 0.76 0.012 0.007 0.009 0.008 0.008 0.008
GLD 0.42 0.76 0.76 0.73 0.73 0.73 0.015 0.014 0.014 0.014 0.014
EFL 0.17 0.42 0.98 0.14 0.14 0.14 0.016 0.009 0.014 0.015 0.014 0.014
portfolio 0.00 0.00 0.00 0.00 0.00 0.00 0.005 0.005 0.005 0.005

Christoffersen’s test p-value: VaR 2\% Asymmetric VaR 2% Loss and MCS
BTC 0.00 0.14 0.53 0.53 0.83 0.83 0.015 0.012 0.013 0.011 0.011 0.011
ETH 0.01 0.18 0.06 0.83 0.14 0.14 0.015 0.010 0.012 0.012 0.012 0.012
XRP 0.02 0.06 0.30 0.83 0.92 0.92 0.012 0.012 0.012 0.010 0.011 0.010
XLM 0.00 0.00 0.14 0.14 0.14 0.14 0.013 0.013 0.012 0.012 0.012
LTC 0.30 0.14 0.53 0.20 0.20 0.20 0.014 0.009 0.011 0.011 0.011 0.010
XCP 0.01 0.30 0.12 0.00 0.00 0.00 0.020 0.019 0.017 0.022 0.023 0.023
SHIFT 0.02 0.14 0.06 0.30 0.30 0.30 0.013 0.013 0.014 0.013 0.014 0.013
RVR 0.03 0.03 0.14 0.53 0.53 0.53 0.020 0.018 0.018 0.017 0.018 0.018
THC 0.30 0.53 0.78 0.20 0.83 0.83 0.012 0.013 0.015
CLAM 0.53 0.83 0.92 0.53 0.53 0.53 0.025 0.025 0.030 0.024 0.024 0.023
GAME 0.02 0.06 0.53 0.78 0.53 0.53 0.018 0.016 0.014 0.014 0.014 0.014
MINT 0.01 0.06 0.53 0.78 0.78 0.78 0.024 0.024 0.025 0.025 0.025 0.026
ABY 0.01 0.01 0.14 0.06 0.14 0.06 0.019 0.014 0.014 0.016 0.017 0.017
GLD 0.78 0.53 0.92 0.20 0.20 0.20 0.022 0.020 0.020 0.021 0.020
EFL 0.78 0.06 0.83 0.02 0.02 0.02 0.023 0.018 0.022 0.023 0.023 0.022
portfolio 0.00 0.00 0.00 0.00 0.00 0.00 0.009 0.008 0.009 0.007 0.008 0.007

Christoffersen’s test p-value: VaR 3\% Asymmetric VaR 3% Loss and MCS
BTC 0.00 0.07 0.25 0.83 0.07 0.07 0.017 0.016 0.016 0.016
ETH 0.08 0.05 0.25 0.43 0.36 0.36 0.019 0.015 0.016 0.016 0.017 0.016
XRP 0.18 0.04 0.04 0.83 0.83 0.83 0.016 0.017 0.016 0.015 0.015 0.015
XLM 0.01 0.04 0.18 0.52 0.33 0.33 0.017 0.017 0.017 0.017 0.017
LTC 0.18 0.02 0.63 0.16 0.38 0.63 0.017 0.014 0.015 0.015 0.014 0.014
XCP 0.04 0.15 0.02 0.04 0.01 0.01 0.026 0.025 0.023 0.029 0.029 0.029
SHIFT 0.04 0.02 0.09 0.33 0.33 0.33 0.018 0.018 0.019 0.018 0.019 0.018
RVR 0.15 0.04 0.18 0.25 0.25 0.25 0.025 0.024 0.024 0.023 0.024 0.023
THC 0.71 0.08 0.83 0.63 0.63 0.63 0.016 0.018
CLAM 0.52 0.81 0.63 0.38 0.38 0.38 0.033 0.035 0.040 0.032 0.032 0.032
GAME 0.08 0.09 0.52 0.33 0.18 0.18 0.023 0.021 0.018 0.020 0.021 0.020
MINT 0.15 0.04 0.52 0.33 0.33 0.33 0.033 0.032 0.034 0.035 0.035 0.035
ABY 0.02 0.02 0.00 0.04 0.04 0.04 0.033 0.032 0.034 0.035 0.035 0.035
GLD 0.83 0.44 0.81 0.63 0.38 0.38 0.028 0.025 0.026 0.026 0.026
EFL 0.81 0.09 0.63 0.04 0.04 0.04 0.029 0.025 0.031 0.030 0.029
portfolio 0.00 0.00 0.00 0.02 0.00 0.00 0.010 0.010 0.010 0.009 0.009 0.009

Christoffersen’s test p-value: VaR 4\% Asymmetric VaR 4% Loss and MCS
BTC 0.00 0.03 0.16 0.16 0.03 0.03 0.025 0.022 0.023 0.020 0.021 0.021
ETH 0.09 0.03 0.03 0.66 0.17 0.18 0.022 0.019 0.020 0.020 0.020 0.020
XRP 0.30 0.02 0.10 0.73 0.71 0.71 0.020 0.021 0.020 0.019 0.020 0.019
XLM 0.07 0.07 0.30 0.61 0.61 0.46 0.021 0.020 0.021 0.021 0.020
LTC 0.46 0.04 0.26 0.26 0.46 0.63 0.021 0.019 0.018 0.018 0.017 0.017
XCP 0.24 0.16 0.03 0.05 0.05 0.03 0.031 0.030 0.029 0.034 0.035 0.034
SHIFT 0.10 0.05 0.10 0.30 0.30 0.30 0.022 0.022 0.023 0.023 0.023 0.023
RVR 0.24 0.02 0.30 0.63 0.52 0.52 0.030 0.028 0.028 0.028 0.028 0.028
THC 0.73 0.14 0.63 0.46 0.46 0.46 0.019 0.021
CLAM 0.30 0.46 0.63 0.26 0.26 0.46 0.041 0.043 0.048 0.041 0.041 0.040
GAME 0.24 0.14 0.52 0.52 0.37 0.37 0.027 0.026 0.022 0.026 0.026 0.025
MINT 0.14 0.10 0.61 0.61 0.61 0.61 0.040 0.040 0.041 0.043
ABY 0.05 0.00 0.04 0.02 0.02 0.02 0.029 0.025 0.028 0.030 0.031 0.031
GLD 0.71 0.13 0.45 0.63 0.46 0.63 0.033 0.030 0.031 0.031 0.031
EFL 0.63 0.24 0.46 0.04 0.04 0.12 0.035 0.031 0.037 0.036 0.036
portfolio 0.00 0.00 0.00 0.00 0.00 0.00 0.012 0.012 0.012 0.011 0.011 0.011

Christoffersen’s test p-value: VaR 5\% Asymmetric VaR 5% Loss and MCS
BTC 0.03 0.00 0.09 0.09 0.08 0.08 0.029 0.026 0.027 0.025 0.026 0.025
ETH 0.16 0.08 0.09 0.67 0.33 0.33 0.026 0.023 0.024 0.024 0.024 0.024
XRP 0.07 0.01 0.05 0.58 0.58 0.58 0.023 0.025 0.024 0.023 0.023 0.023
XLM 0.31 0.18 0.31 0.59 0.49 0.49 0.024 0.023 0.024 0.024 0.024
LTC 0.63 0.01 0.58 0.18 0.58 0.62 0.023 0.022 0.020 0.021 0.020 0.020
XCP 0.22 0.16 0.10 0.10 0.10 0.10 0.036 0.034 0.034 0.039 0.039 0.039
SHIFT 0.16 0.01 0.31 0.37 0.37 0.37 0.025 0.025 0.027 0.026 0.027 0.026
RVR 0.63 0.02 0.29 0.84 0.77 0.77 0.033 0.033 0.033 0.032 0.032 0.032
THC 0.62 0.10 0.46 0.18 0.18 0.18 0.022 0.024
CLAM 0.37 0.16 0.46 0.32 0.18 0.32 0.048 0.051 0.055 0.048 0.048 0.047
GAME 0.63 0.31 0.77 0.77 0.77 0.77 0.031 0.029 0.026 0.030 0.030 0.030
MINT 0.31 0.05 0.62 0.59 0.59 0.59 0.047 0.046 0.048
ABY 0.16 0.00 0.02 0.09 0.09 0.09 0.033 0.030 0.032 0.035 0.036 0.036
GLD 0.58 0.10 0.84 0.62 0.58 0.58 0.037 0.035 0.036 0.037 0.036
EFL 0.46 0.10 0.32 0.03 0.03 0.03 0.039 0.036 0.043
portfolio 0.00 0.00 0.00 0.01 0.01 0.01 0.013 0.013 0.014 0.012 0.012 0.012

Table 10: Christoffersen’s tests, asymmetric VaR Loss and MCS (an empty cell means the model is not
included) for each coin and for the equally-weighted portfolio.
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ES 5\% test 1: Exceedance Residuals test ES 5\% test 2: multilevel VaR backtest
BTC 0.99 1.00 0.76 1.00 1.00 1.00 0.00 0.01 0.21 0.36 0.10 0.10
ETH 0.97 0.99 0.70 0.32 0.49 0.46 0.00 0.06 0.06 0.90 0.26 0.22
XRP 0.67 0.96 0.91 0.98 0.96 0.96 0.02 0.00 0.03 0.94 0.98 0.98
XLM 0.01 1.00 0.04 0.11 0.14 0.12 0.00 0.00 0.10 0.47 0.37 0.34
LTC 0.26 1.00 0.85 0.99 1.00 1.00 0.29 0.00 0.36 0.00 0.03 0.07
XCP 0.96 1.00 0.54 0.06 0.04 0.03 0.00 0.06 0.00 0.00 0.00 0.00
SHIFT 0.63 1.00 0.35 0.07 0.10 0.09 0.01 0.00 0.02 0.39 0.39 0.39
RVR 0.49 0.99 0.34 0.17 0.12 0.10 0.02 0.00 0.13 0.50 0.39 0.39
THC 0.10 0.99 0.12 0.25 0.20 0.20 0.71 0.02 0.79 0.10 0.28 0.28
CLAM 0.90 0.97 0.15 0.94 0.93 0.96 0.62 0.66 0.71 0.15 0.10 0.22
GAME 0.87 0.98 0.47 0.33 0.23 0.22 0.01 0.02 0.62 0.61 0.32 0.32
MINT 0.95 1.00 0.52 0.63 0.65 0.79 0.00 0.01 0.82 0.82 0.82 0.82
ABY 0.90 1.00 0.86 0.39 0.42 0.29 0.00 0.00 0.00 0.01 0.01 0.01
GLD 0.87 1.00 0.78 0.91 0.86 0.85 0.96 0.11 0.98 0.38 0.19 0.24
EFL 0.94 1.00 0.93 0.97 0.98 0.97 0.76 0.01 0.42 0.00 0.00 0.00
portfolio 0.54 0.99 0.00 0.05 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: ER test by McNeil and Frey (2000) and multilevel VaR backtest by Kratz et al. (2018).

Ticker Name Ticker Name Ticker Name
BTC Bitcoin SC Siacoin MUE MonetaryUnit
ETH Ethereum GAME GameCredits RADS Radium
XRP XRP DMD Diamond OMNI Omni
XLM Stellar THC HempCoin MINT MintCoin
LTC Litecoin BLK BlackCoin ABY ArtByte
USDT Tether AMP Synereo GLD GoldCoin
XMR Monero CLAM Clams HUC HunterCoin
DASH Dash PND Pandacoin EFL e-Gulden
XEM NEM GRC GridCoin EGC EverGreenCoin
DOGE Dogecoin POT PotCoin ORB Orbitcoin
LSK Lisk IOC I/O Coin WDC WorldCoin
BTS BitShares XMY Myriad GUN Guncoin
DCR Decred FLO FLO TTC TittieCoin
DGB DigiByte XST Stealth QTL Quatloo

Table 12: Set of coins used for credit risk measurement

The last month trading volume, the one-year trading volume and the average yearly search volume

index as provided by Google Trends were used as regressors for the logit, probit and random forest

models17. For computing the ZPP, we employed the random walk model with the closed-formula (2), the

univariate GARCH(1,1) model with normal errors and the closed-formula (3), univariate GARCH(1,1)

models with student’s t and skewed-t errors, DCC(1,1) models with standardized errors following either a

multivariate normal or a multivariate t distribution, and Copula-GARCHmodels with skewed-t marginals

and either a normal copula or a t-copula (both with constant and dynamic parameters). The AUC scores,

the Brier score and the models included in the MCS, for both the training and the validation datasets,

are reported in Table 13.

Classical credit scoring models performed better in the training sample, whereas the models perfor-

17The Search Volume Index by Google Trends computes how many searches have been done for a keyword or a topic
on Google over a specific period of time and a specific region. See https://support.google.com/trends/?hl=en for more
details.
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Model AUC
(training)

AUC
(validation)

Brier
score/MCS
(training)

Brier
score/MCS
(validation)

Logit 0.91 0.91 0.097 0.125
Probit 0.91 0.90 0.097 0.124
Random forest 0.80 0.90 0.154 0.103
ZPP RW 0.75 0.81 0.180 0.300
ZPP GARCH n 0.40 0.52
ZPP GARCH t 0.56 0.63 0.187 0.301
ZPP GARCH sk.t 0.59 0.66 0.186 0.303
ZPP DCC n 0.60 0.76 0.168 0.277
ZPP DCC t 0.48 0.66 0.143 0.233
ZPP N.Copula sk.t-G. 0.56 0.73 0.230 0.262
ZPP T.Copula sk.t-G. 0.58 0.70 0.297
ZPP N.Copula DCC sk.t-G 0.59 0.72 0.246 0.280
ZPP T.Copula DCC sk.t-G 0.57 0.74 0.200 0.228

Table 13: AUC, Brier scores and MCS (an empty cell means the model is not included).

mances are much closer when the validation/out-of-time sample is considered. In the latter case, the

ZPPs computed with multivariate models improved their performances in term of AUC, but they are still

worse then credit scoring models. However, almost all models are included in the MCS, thus showing

that there is insufficient information in the data to separate good and bad models: this outcome was

expected due to the small sample size involved. Interestingly, the ZPP computed with the simple random

walk with drift performed remarkably well, thus confirming the empirical evidence by Li et al. (2016).

This result and the improved performance of the ZPP computed with multivariate models can proba-

bly be explained using again the simulation results in Fantazzini (2009a), who showed that the biased

parameters of a multivariate distribution computed with a small sample of skewed and leptokurtic data

can deliver conservative VaR estimates in the left tail of the distribution: considering that the left tail of

the P&L distribution is the key element to compute the ZPP, a positively biased probability may have

helped these models to forecast the riskiest coins. Another reason which could have contributed to the

better performance of all multivariate models in the validation sample is the different coins’ dependence

structure in the training and validation time samples. Figure 1 reports the heat maps of the correlation

matrices for all coins in the training sample (left) and the validation sample (right): it is evident that the

second sample witnessed a much stronger dependence among coins than the first sample, and we would

have a similar picture if we used measures of rank correlation like the Kendall’ tau and the Spearman’s

rho (not reported). For example, the average correlation between coins in the training sample was 0.15,

whereas it was 0.32 in the validation sample. This stronger dependence may explain why multivariate

models performed better than the univariate models thanks to a larger information set.

Finally, we remark that the AUCs estimated with an out-of-time validation dataset can be higher

than those estimated with an in-sample dataset at a previous time, because new future data may well
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Figure 1: Heat maps of the correlation matrices in the training sample (June 2016 - May 2017, left) and
the validation sample (June 2017 - May 2018, right)

come from a different distribution, see Figure 1 for an explicative example. Moreover, an estimated AUC

may widely differ from the true metric in a small sample. In this regard, Hanczar et al. (2010) performed

an extensive simulation study with several models and cross-section training and test datasets, and they

showed that “(i) for small samples the root mean square differences of the estimated and true metrics are

considerable; (ii) even for large samples, there is only weak correlation between the true and estimated

metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric” (Hanczar

et al. (2010), p. 822). Interestingly, they found that with N = 50 the estimated AUCs may differ from

the true AUC with amounts up to ±0.2: given that we worked with temporal datasets and parameter-

intensive models, this range may be even higher. Besides, this simulation evidence also helps to explain

why the MCS included almost all models. All metrics computed by Hanczar et al. (2010) with small

simulated samples showed very large variances and any model selection based on these metrics would be

difficult: hence the inability of the MCS approach to distinguish between good and bad models.

5 Robustness checks

We wanted to verify that our previous results hold also with different portfolios and different models.

Therefore, we performed a series of robustness checks, considering a capitalization-weighted portfolio

instead of an equally-weighted portfolio, and we computed the market risk measures assuming the cryp-

tocurrencies P&L to be comonotonic.
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5.1 Capitalization-weighted portfolios

The equally-weighted portfolio is the main benchmark of the financial industry and literature, see e.g.

DeMiguel et al. (2007) and references therein. Moreover, Hu et al. (2018) and Brauneis and Mestel (2019)

analyzed cryptocurrency-portfolios and showed that the simple 1/N portfolio outperforms all competing

portfolio strategies. However, most investors in crypto-currencies use capitalization-weighted portfolios,

where individual assets are weighted according to their total market capitalization see, for example,

the monthly trading volume rankings published at coinmarketcap.com/currencies/volume/monthly.

Moreover, capitalization-weighted portfolios are important benchmarks in the financial literature, see

Sharpe (1992), Black and Litterman (1992) and Reilly and Brown (2002). Therefore, we performed

the previous back-testing analysis with capitalization-weighted portfolios considering 5 and 15 coins,

respectively. The actual VaR exceedances T1/T , the p-values of the Kupiec’s unconditional coverage test,

the p-values of the Christoffersen’s conditional coverage test, the p-values of the exceedance residuals test

by McNeil and Frey (2000) and of the multilevel VaR backtest by Kratz et al. (2018) for the forecasted

5%ES are reported in Table 14.
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VaR exceedances (T1/T ): 1\% quantile Kupiec’s test p-value: VaR 1\%
5 coins 3.52% 1.51% 3.52% 2.51% 2.51% 2.01% 0.01 0.50 0.01 0.07 0.07 0.21
15 coins 6.53% 4.52% 6.53% 3.52% 4.52% 4.02% 0.00 0.00 0.00 0.01 0.00 0.00

VaR exceedances (T1/T ): 2\% quantile Kupiec’s test p-value: VaR 2\%
5 coins 5.53% 5.53% 5.53% 5.03% 5.53% 5.03% 0.00 0.00 0.00 0.01 0.00 0.01
15 coins 7.04% 6.53% 7.04% 5.53% 5.53% 5.53% 0.00 0.00 0.00 0.00 0.00 0.00

VaR exceedances (T1/T ): 3\% quantile Kupiec’s test p-value: VaR 3\%
5 coins 6.53% 7.04% 8.54% 6.53% 6.53% 6.53% 0.01 0.00 0.00 0.01 0.01 0.01
15 coins 8.04% 8.54% 7.54% 6.03% 6.53% 6.53% 0.00 0.00 0.00 0.03 0.01 0.01

VaR exceedances (T1/T ): 4\% quantile Kupiec’s test p-value: VaR 4\%
5 coins 8.04% 9.55% 9.55% 9.05% 8.04% 8.54% 0.01 0.00 0.00 0.00 0.01 0.00
15 coins 8.54% 11.56% 9.05% 7.04% 6.53% 6.53% 0.00 0.00 0.00 0.05 0.09 0.09

VaR exceedances (T1/T ): 5\% quantile Kupiec’s test p-value: VaR 5\%
5 coins 9.05% 12.06% 9.55% 9.55% 10.55% 10.55% 0.02 0.00 0.01 0.01 0.00 0.00
15 coins 10.05% 12.06% 10.55% 9.05% 9.05% 9.05% 0.00 0.00 0.00 0.02 0.02 0.02

Christoffersen’s test p-value: VaR 1\% ES 5\% test 1: Exceedance Residuals test
5 coins 0.02 0.76 0.02 0.17 0.17 0.42 0.45 0.99 0.21 0.50 0.54 0.68
15 coins 0.00 0.00 0.00 0.02 0.00 0.00 0.74 0.99 0.06 0.38 0.23 0.26

Christoffersen’s test p-value: VaR 2\% ES 5\% test 2: multilevel VaR backtest
5 coins 0.01 0.01 0.01 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
15 coins 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Christoffersen’s test p-value: VaR 3\%

5 coins 0.02 0.01 0.00 0.02 0.02 0.02
15 coins 0.00 0.00 0.01 0.08 0.04 0.04

Christoffersen’s test p-value: VaR 4\%

5 coins 0.03 0.00 0.00 0.00 0.01 0.01
15 coins 0.02 0.00 0.00 0.14 0.24 0.24

Christoffersen’s test p-value: VaR 5\%

5 coins 0.06 0.00 0.02 0.02 0.01 0.01
15 coins 0.02 0.00 0.00 0.06 0.06 0.06

Table 14: Capitalization-weighted portfolios risk measures: Kupiec’s unconditional coverage test,
Christoffersen’s conditional coverage test, ER test by McNeil and Frey (2000), multilevel VaR back-
test by Kratz et al. (2018).

The risk estimates are slightly more precise than the corresponding estimates with equally-weighted

portfolios, probably due to the less extreme distributions of top cryptocurrencies compared to coins

with small capitalizations. Nevertheless, the null hypotheses of the Kupiec’s unconditional coverage test,

29



Christoffersen’s conditional coverage test, and the multilevel VaR backtest are again rejected for most

portfolio risk estimates, while the ER test by McNeil and Frey (2000) does not highlight any particular

misspecification for the ES 5%. T-copula based models often provide the most precise estimates and,

in general, copula models tend to fare better than DCC models with large portfolios than with small

portfolios.

5.2 Comonotonic assets

A set of random variables is comonotonic if they are perfectly positively dependent, which means that

they are almost surely strictly increasing functions of a single random variable, see McNeil et al. (2015)

for a detailed discussion at the textbook level. In this case, the Value-at-Risk and the expected shortfall

are additive for a sum of comonotonic random variables, see Dhaene et al. (2006) for a proof. Therefore,

portfolio risk measures can be computed using only the marginal models without the need to estimate

the dependence structure (which is represented by the so-called comonotonicity copula).

The actual VaR exceedances T1/T , the p-values of the Kupiec’s unconditional coverage test, the p-

values of the Christoffersen’s conditional coverage test, the p-values of the exceedance residuals test by

McNeil and Frey (2000) and of the multilevel VaR backtest by Kratz et al. (2018) for the forecasted

5%ES in case of an equally-weighted portfolio are reported in Table 15.

Marginal models Marginal models Marginal models Marginal models
Normal
GARCH

Student
GARCH

Skewed-t
GARCH

Normal
GARCH

Student
GARCH

Skewed-t
GARCH

Normal
GARCH

Student
GARCH

Skewed-t
GARCH

Normal
GARCH

Student
GARCH

Skewed-t
GARCH

VaR exceedances (T1/T ): 1% Kupiec’s test p.: VaR 1% C. test p-value: VaR 1% ES 5%: E.R. test
5 coins 1.01% 1.01% 0.00% 0.99 0.99 0.05 0.98 0.98 0.14 0.85 0.98 0.99
15 coins 1.51% 0.00% 1.01% 0.50 0.05 0.99 0.76 0.14 0.98 0.62 1.00 0.83

VaR exceedances (T1/T ): 2% Kupiec’s test p.: VaR 2% C. test p-value: VaR 2% ES 5%: m.VaR backtest
5 coins 2.01% 1.51% 1.01% 0.99 0.60 0.27 0.92 0.83 0.53 0.96 0.79 0.12
15 coins 1.51% 1.01% 1.01% 0.60 0.27 0.27 0.83 0.53 0.53 0.49 0.75 0.12

VaR exceedances (T1/T ): 3% Kupiec’s test p.: VaR 3% C. test p-value: VaR 3%

5 coins 3.02% 4.02% 1.01% 0.99 0.42 0.06 0.83 0.52 0.16
15 coins 2.51% 2.01% 1.01% 0.68 0.38 0.06 0.81 0.63 0.16

VaR exceedances (T1/T ): 4% Kupiec’s test p.: VaR 4% C. test p-value: VaR 4%

5 coins 3.02% 5.03% 2.01% 0.46 0.48 0.11 0.63 0.63 0.26
15 coins 2.51% 4.02% 2.01% 0.25 0.99 0.11 0.46 0.71 0.26

VaR exceedances (T1/T ): 5% Kupiec’s test p.: VaR 5% C. test p-value: VaR 5%

5 coins 4.52% 6.03% 3.02% 0.75 0.52 0.17 0.67 0.33 0.32
15 coins 3.02% 4.52% 3.52% 0.17 0.75 0.31 0.32 0.62 0.46

Table 15: Equally-weighted portfolios risk measures with comonotonic assets: Kupiec’s unconditional
coverage test, Christoffersen’s conditional coverage test, ER test by McNeil and Frey (2000), multilevel
VaR backtest by Kratz et al. (2018).

All estimated portfolio risk measures pass the backtesting specification tests, with the student’s t

GARCH marginals providing the most accurate measures, whereas the other marginal models are slightly

more conservative. These results will definitely not surprise traders and financial professionals dealing

with crypto-currencies, who several times repeated that the crypto-market is still a “one-man show”

driven by the bitcoin price, see e.g. Mitsuru et al. (2014), Bitconnect (2017) and DeMichele (2018).
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6 Conclusions

Credit and market risks for cryptocurrencies are more interlinked than for traditional assets, and their

differences are of quantitative and temporal nature, not qualitative. Credit risk for cryptocurrencies can

be defined as the gains and losses on the value of a position of a cryptocurrency that is abandoned and

considered dead but which can be potentially revived, while market risk can be described as the gains

and losses on the value of a position (or portfolio) of alive cryptocurrencies, due to the movements in

market prices in centralized and decentralized exchanges.

This paper proposed a set of models to estimate simultaneously both the market risk and the credit

risk for a portfolio of crypto-currencies. Moreover, two closed-form formulas for the ZPP model in case

of normally distributed errors were also developed using recent results from barrier option theory. These

formulas can be useful to get a rough idea of the crypto-asset credit risk and may be interesting to online

data providers, who can publish the quotes of crypto-assets together with their market-implied credit

risk measures.

A backtesting exercise for market risk modelling using two datasets of 5 and 15 coins was performed.

Our results showed that the t-copula with skewed-t GARCH marginals can be a good compromise for

precise VaR estimates across different quantile levels, particularly the most extreme quantiles (1% and

2%) which are the most important for regulatory purposes. However, the asymmetric VaR losses of the

competing models were rather close and all models were included in the MCS for almost all coins and for

the portfolio case: this result was expected because Fantazzini (2009a) showed that, when small samples

are considered and the data are skewed and leptokurtic, the biases in the GARCH parameters are so large

that they can deliver conservative VaR estimates, even with a simple multivariate normal distribution.

The backtesting of the expected shortfall estimates showed that DCC models often underestimated the

true ES, whereas t-copula/skewed-t GARCH models were generally fine.

A backtesting exercise for credit risk modelling was performed using a dataset of 42 coins. The

empirical analysis showed that classical credit scoring models performed better in the training sample,

whereas the models’ performances were much closer in the validation sample, with the simple ZPP

computed using a random walk with drift performing remarkably well. In general, all multivariate

models performed much better in the validation sample than in the training sample, thanks to the much

stronger dependence shown by coins in the validation sample.

Finally, we performed a set of robustness checks to verify that our results also hold under different

forecasting setups. We found out that risk estimates using capitalization-weighted portfolios are slightly

more precise than those with equally-weighted portfolios, probably due to the less extreme distributions

of top cryptocurrencies compared to coins with small capitalizations. Moreover, market risk measures
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computed assuming the cryptocurrencies P&L to be comonotonic passed all the backtesting specification

tests, thus confirming financial professional literature showing that crypto-currencies are mainly driven

by the bitcoin price.

The extreme volatility, skewness, kurtosis, and dependence of cryptocurrencies due to the frequent

presence of structural breaks and price manipulations pose a serious challenge to any multivariate risk

model. Skewed-t marginals and copulas allowing for dynamic dependence are a good starting point,

but the length of the estimation window plays also an important role due to multiple breaks of different

nature. In this regard, a rolling estimation window of approximately 500 observations can be considered a

good compromise, considering the numerical properties of GARCH models discussed by Hwang and Valls

Pereira (2006), together with the simulation evidence reported by Pesaran and Timmermann (2007), who

showed that in a regression with multiple breaks the optimal window for estimation includes all of the

observations after the last break, plus a limited number of observations before this break. This setup is

viable with portfolios of small sizes, but it is hardly feasible with portfolios of medium and large sizes,

due to a large number of parameters involved. Moreover, the strong dependence of cryptocurrencies from

the bitcoin price becomes much more complex and unstable to model with larger portfolios. In such a

situation, a numerically efficient solution is to assume the assets to be comonotonic.

The number of coins that we used for backtesting is rather low, and this can be a potential limitation

of our analysis. However, we want to remark that we considered only small and medium-sized portfolios

to avoid additional model complexity and due to the lack of historical data for the vast majority of dead

coins. The last issue is certainly a major stumbling block for fully developing models for credit risk

measurement and management with crypto-assets, because the lack of these data would make any model

suffer from massive selection bias: for example, in the middle of 2017, there were more than 1500 traded

alive coins and almost 800 dead coins, but historical market data were available only for a few dozens

dead coins. The retrieval and the analysis of such data are left as an avenue for future research. Another

potential future development is the analysis of the interactions effects between market risk and credit

risk for cryptocurrencies and how they change over time.
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Appendix A: a review of the history and the financial literature

devoted to cryptocurrencies

Brief historical overview: Bitcoin & sons

Bitcoin was not the first cryptocurrency proposed in the IT literature, see e.g. the works by Chaum (1983),

Chaum and Brands (1997) and Back (2002). The idea of Bitcoin was presented in a paper published in

2008 by a group of anonymous authors under the pseudonym of Satoshi Nakamoto (Nakamoto (2008)).

Since then, Bitcoin has become the most popular online decentralized currency, which allows users to

make transactions without any third party by using a peer-to-peer protocol. The system is based on

cryptography algorithms which provide security for all operations, see Antonopoulos (2014), Narayanan

et al. (2016) for more details. The Bitcoin market capitalization was close to $ 70 bn at the end of

2018 and represented almost 50% of all cryptocurrencies total capitalization. The price for a single

bitcoin decreased to approximately $ 4000, after reaching a top of almost $ 20000 at the end of 2017.

Most cryptocurrencies are hard forks of the Bitcoin protocol, that is they introduced new rules to create

blocks which are not considered valid by the older (Bitcoin) software. A description of the history of

bitcoin (and cryptocurrencies in general) can be found in Burniske and Tatar (2017).

A common way to raise funds to create a new coin, app, or service with cryptocurrencies is to launch

an Initial Coin Offering (ICO). An ICO is a type of crowdfunding, where funds are collected by selling

a fixed number of new coins to investors. It is similar to an Initial Public Offering (IPO) of a company,

but there are some important differences: ICOs may fall outside current regulations and can be prone to

scams and securities law violations. Moreover, holding coins not necessarily gives dividends, but services

and goods manufactured by the company. According to the CoinDesk State of Blockchain Q1 201818, the

number of ICOs is still increasing (number of ICOs in 2017 was twice larger than in 2016) and its funding

attained $ 12 bn. Only in the first quarter of 2018, there were 202 ICOs with $ 6.3 bn of total funding.

However, investing in cryptocurrencies can be an extremely risky process and the final return depends on

the strategy adopted: Kostovetsky and Benedetti (2018) shows that approximately 56 percent of crypto

startups that raise money through ICOs die within four months of their initial coin offerings. However,

they also show that the representative ICO investor earns 82% and the safest strategy is to acquire coins

in an ICO and then sell them on the first day -if individual investors can participate in ICOs-, or to sell

them in the first six months, otherwise.
18https://www.coindesk.com/research/state-blockchain-q1-2018
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Literature review

The Bitcoin phenomenon has attracted significant attention in the academic literature with regard to its

fundamental value (Woo, Gordon, and Iaralov (2013), Garcia et al. (2014), Hayes (2015), Hayes (2017)),

price dynamics (Buchholz et al. (2012), Kristoufek (2013), Garcia et al. (2014), Garcia and Schweitzer

(2015), Glaser et al. (2014), Bouoiyour and Selmi (2015), Bouoiyour, Selmi, and Tiwari (2015), Ciaian,

Rajcaniova, and Kancs (2016), Bouri, Azzi, and Dyhrberg (2017)), bubble modelling (MacDonell (2014),

Cheah and Fry (2015), Gerlach, Demos, and Sornette (2018)), price discovery (Brandvold et al. (2015)),

and more recently about univariate volatility modelling (Dyhrberg (2016a), Dyhrberg (2016b)), Balcilar

et al. (2017), Chu et al. (2017), Katsiampa (2017), Liu et al. (2017), Pichl and Kaizoji (2017), Naimy

and Hayek (2018) and Catania, Grassi, and Ravazzolo (2018). See Fantazzini et al. (2016) and Fantazzini

et al. (2017) for a large survey of the econometric and mathematical tools which have been proposed so

far to model the bitcoin price and several related issues, highlighting advantages and limits.

With regards to risk management for cryptocurrencies, the number of works is much more limited:

Chu et al. (2017) compared twelve GARCH models with seven popular cryptocurrencies, and their fits

were assessed in terms of five in-sample criteria and out-of-sample Value at Risk performances. Chan et

al. (2017) analyzed the (unconditional) statistical properties of seven cryptocurrencies, while Osterrieder

and Lorenz (2017) examined the tail behavior of bitcoin returns using extreme value distributions but no

backtesting was performed. Stavroyiannis (2018) examined a set of market risk measures for the BTC

and compared these measures with the SP500 index, the Brent crude oil spot price and the gold spot

price by performing a backtesting analysis. Gkillas and Katsiampa (2018) studied the tail behavior of the

returns of five major cryptocurrencies by using again extreme value analysis and computing the Value-

at-Risk and Expected Shortfall, but no backtesting analysis was implemented. Trucios (2018) compared

the one-step-ahead volatility forecast of Bitcoin using several GARCH-type models and also evaluated

the performance of several procedures when estimating the Value-at-Risk. As it is possible to notice,

all these studies dealt only with univariate models, focused almost exclusively on the Value-at-Risk and

volatility forecasting, while only three works performed backtesting analysis.

In general, standard models for market risk tend to work poorly with cryptocurrencies due to the

frequent presence of structural breaks, see Bouri et al. (2016), Fantazzini et al. (2016), Fantazzini et al.

(2017), Mensi, Al-Yahyaee, and Kang (2018) and Thies and Molnar (2018). To make matters worse, price

manipulations and market frauds caused by the lack of financial oversight (Gandal et al. (2018), Griffin

and Shams (2018)) and the fact that cryptocurrencies are still mainly used for speculative purposes,

make financial bubbles a recurring phenomenon, see Corbet, Lucey, and Yarovaya (2018), Cheah and Fry

(2015) and Gerlach, Demos, and Sornette (2018). A potential solution could be to use complex model
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specifications able to accommodate structural breaks and extreme price volatility, but this would come

at the cost of lower computational tractability and potential model over-fitting. Moreover, this solution

would become quickly unfeasible in the multivariate case, due to the well-known curse of dimensionality.

Finally, we remark that credit risk modelling and the implications of having invested in dead coins have

not been considered so far.

Appendix B: Multivariate time series models

We employed two multivariate models for simultaneously computing the market and credit risk measures

of a portfolio of cryptocurrencies: the VAR-DCC and the VAR-Copula-GARCH models. The DCC

model was originally proposed by Engle (2002) and Tse and Tsui (2002), while copula-GARCH models

were discussed in Cherubini, Luciano, and Vecchiato (2004), A. J. Patton (2006a), A. J. Patton (2006b),

Fantazzini (2008) and Fantazzini (2009b). We provide below a brief review of these two approaches, while

we refer the interested reader to Bauwens, Hafner, and Laurent (2012) for a more detailed treatment at

the textbook level.

These two approaches share similar building blocks for the conditional mean and the conditional

variance: for the mean, a Vector Auto-Regression model (VAR) is used, while for the variance a set

of GARCH models was employed. Let Yt be a vector stochastic process of dimension n × 1, then a

conditional model for Yt can be expressed as follows:

Yt = µt +Dtzt

where µt is a vector of conditional means, Dt = diag(σ1,t, . . . , σn,t) a diagonal matrix of conditional

standard deviations, while zt is a vector of standardized errors with a conditional multivariate distribution

Ht(z1,t, . . . , zn,t;θ) and parameter vector θ.

The conditional means are modelled with a VAR(p) model,

µt = a0 +

p∑

m=1

AmYt−m

while the conditional variances with GARCH(p,q) models,

σ2
i,t = ωi +

p∑

m=1

αi,m(σi,t−mzi,t−m)2 +

q∑

k=1

βi,kσ
2
i,t−k

Other univariate GARCH models, like the Exponential-GARCH, the Threshold-GARCH, etc. can be

used. Where the VAR-DCC and the VAR-Copula-GARCH models differ is how they specify the condi-
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tional joint distribution Ht.

Dynamic Conditional Correlation (DCC) models

The DCC model by Engle (2002) assumes that Ht is a multivariate Normal or Student’s t distribution

with correlation matrix Rt,

Rt = (diagQt)
−1/2Qt(diagQt)

−1/2 (5)

where the n× n symmetric positive definite matrix Qt is given by:

Qt =

(
1−

L∑

l=1

θ1,l −
S∑

s=1

θ2,s

)
Q̄+

L∑

l=1

θ1,lzt−lz
′
t−l +

S∑

s=1

θ2,sQt−s

where Q̄ is the n × n unconditional variance/covariance matrix of zt, θ1,l(≥ 0) and θ2,s(≥ 0) are scalar

parameters satisfying
∑L

l=1 θ1,l +
∑S

s=1 θ2,s < 1 to have Qt > 0 and Rt > 0. Qt is the covariance matrix

of zt, so that qii,t is not equal to 1 by construction and it is subsequently transformed into a correlation

matrix by (5).

In the multivariate normal case, the total likelihood can be decomposed in two parts, so that the

models for the conditional means and variances can be estimated in a first stage, while the parameters

of the conditional correlation are estimated in a second stage using the parameters from the first step.

Instead, in case of a multivariate student’s t distribution, the estimation should be performed either in

one step (so that the shape parameter is jointly estimated for all volatility models), or in two stages: in

this latter case, the first step is based on a Gaussian quasi-maximum likelihood (QML) estimator for the

conditional means and variances, while the shape parameter is estimated in a second step, as suggested

by Bauwens and Laurent (2005).

The DCC model is one of the most used models in applied finance, thanks to its computational flex-

ibility that allows this model to be computed also with portfolios consisting of up to 100 assets (Engle

and Sheppard (2001), Bauwens, Hafner, and Laurent (2012)). Despite known problems (Aielli (2013),

Caporin and McAleer (2013)), it still remains an important benchmark when multivariate volatility mod-

elling is of concern, see Bauwens, Laurent, and Rombouts (2006), Satchell and Knight (2011), Caporin

and McAleer (2014) and Bali and Zhou (2016).

Copula-VAR-GARCH models

Copula theory provides an easy way to deal with the (usually) complex multivariate modelling. Using the

so-called Sklar (1959) theorem, a joint distribution can be factored into the marginals and a dependence
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function called a copula. The joint distribution Ht can be expressed as follows:

zt ∼ Ht(z1,t, . . . , zn,t;θ) ≡ Ct(F1,t(z1; δ1), . . . , Fn,t(zn,t; δn);γ) (6)

which means that the joint distribution Ht of a vector of standardized errors zt is the copula Ct(·;γ) of

the cumulative distribution functions of the innovation marginals F1,t(z1; δ1), . . . , Fn,t(zn,t, ; δn), where

γ, δ1, . . . , δn are the copula and marginal parameters, respectively. For more details about copulas, we

refer the interested reader to the textbooks by Joe (1997) and Nelsen (1999), while Cherubini, Luciano,

and Vecchiato (2004) provide a detailed discussion of copula techniques for financial applications. It

follows from (6) that the log-likelihood function for the joint conditional distribution Ht(·,θ) is given by

l(θ) =

T∑

t=1

log

(
c
(
F1,t(z1; δ1), . . . , Fn,t(zn,t; δn);γ

))
+

T∑

t=1

n∑

i=1

log fi(zi,t; δi)

where c is the copula density function, whereas fi are the marginal densities. The maximization of

the previous log-likelihood with respect to the parameters (γ, δ1, . . . , δn) can be made in 1 step, or in

several steps by partitioning of the parameter vector into separate parameters for each margin and the

parameters for the copula. This multi-step procedure is known as the method of Inference Functions for

Margins (IFM), see Joe (1997) for details.

It is rather straightforward to show that the previous DCC model can be represented as a special

case within a more general copula framework,

Yt = µt +Dtzt, where zt ∼ Ht(z1,t, . . . , zn,t;θ), and

zt ∼ Ht ≡ CNormal
t (FNormal

1,t (z1; δ1), . . . , F
Normal
n,t (zn,t; δn);Rt)

see e.g. A. J. Patton (2006a), A. J. Patton (2006b), Fantazzini (2008) and Fantazzini (2009b) for more

details.

The copula approach allows us to consider more general cases than a multivariate normal DCC model.

For example, if we consider skewed-t distributions for the marginals, like those proposed by Hansen (1994)

or Fernandez and Steel (1998), then a multivariate model allowing for marginal skewness, kurtosis and

normal dependence can be expressed as follows:

Yt = µt +Dtzt

zt ∼ Ht ≡ CNormal
t (FSkewed−t

1,t (z1,t; δ1), . . . , F
Skewed−t
n,t (zn,t; δn);Rt)
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where FSkewed−t
i,t is the cumulative distribution function of the marginal Skewed-t, and Rt can be made

constant or time-varying, as in the constant conditional correlation (CCC) model or in the DCC model,

respectively.

If we suppose that our assets have symmetric tail dependence, we can use a Student’s t copula,

instead,

Yt = µt +Dtzt

zt ∼ Ht ≡ CStudent′sT
t (FSkewed−t

1,t (z1; δ1), . . . , F
Skewed−t
n,t (zn,t; δn);Rt, ν)

where ν denotes the degrees of freedom of the t-copula.
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