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This paper focuses on the forecasting of market risk measures for the Russian RTS index future, 

and examines whether augmenting a large class of volatility models with implied volatility and 

Google Trends data improves the quality of the estimated risk measures.  We considered a time 

sample of daily data from 2006 till 2019, which includes several episodes of large-scale 

turbulence in the Russian future market. We found that the predictive power of several models 

did not increase if these two variables were added, but actually decreased. The worst results were 

obtained when these two variables were added jointly and during periods of high volatility, when 

parameters estimates became very unstable. Moreover, several models augmented with these 

variables did not reach numerical convergence. Our empirical evidence shows that, in the case of 

Russian future markets, T-GARCH models with implied volatility and student’s t errors are better 
choices if robust market risk measures are of concern. 
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1 Introduction 

The market risk is usually defined in the financial literature as the gains and losses on the value of a position 

or portfolio that can take place due to the movements in market variables (asset prices, interest rates, forex 

rates), see the Basel Committee on Banking Supervision (2009), Hartmann (2010) and references therein for 

more details. The most well-known market risk measure is the Value-at-Risk (VaR), which can be defined as 

the maximum loss over a given time horizon that may be incurred by a position or a portfolio at a given level 

of confidence. The VaR is recognized by official bodies worldwide as an important market risk measurement 

tool, see Jorion (2007) and the Basel Committee on Banking Supervision (2013, 2016). The Value-at-Risk 

(VaR) has been criticized for not being sub-additive so that the risk of a portfolio can be larger than the sum 

of the stand-alone risks of its components, see e.g. Artzner et al. (1997) and Artzner et al. (1999).  For this 

reason, the Expected Shortfall (ES) has been proposed as an alternative risk measure able to satisfy the property 

of sub-addittivity and to be a coherent risk measure, see Acerbi and Tasche (2002).  The ES measures the 

average of the worst α losses, where α is the percentile of the returns distribution. Unfortunately, Gneiting 

(2011) showed that the ES does not satisfy a mathematical property called elicitability (while VaR does have 

it), and it cannot be backtested. However, Emmer et al. (2015) showed that the ES is elicitable conditionally 

on the VaR, and that it can be backtested through the approximation of several VaR levels: this idea was further 
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developed by Kratz et al. (2018) who proposed a multinomial test of VaR violations at multiple levels as an 

intuitive idea of backtesting the ES. 

The goal of this paper is to examine whether augmenting a large class of volatility models with implied 

volatility from option prices and Google Trends data improves the quality of the estimated VaRs at multiple 

confidence levels for the Russian RTS index future. The RTS index is based on the 50 most liquid stocks of 

the Russian market, and it is an important indicator for the whole Russian market. Since the RTS index is not 

tradable, we considered the RTS index future for the purpose of our analysis. Google search data is an indicator 

of the people behavior and their attention, and it can be a driver of future volatility, see for example Campos 

et al. (2017) and references therein for a large discussion. Implied volatility from option prices is a standard 

way to obtain a forward-looking estimate of the volatility which considers investors’ beliefs, see the survey by 

Mayhew (1995) and references therein for more details. Internet searches come mostly from the general public 

and small investors (Da, Engelberg and Gao (2011), Goddard et al. (2012), Vlastakis and Markellos (2012), 

and Vozlyublennaia (2014)),  whereas implied volatility captures the expectations of institutional investors 

and market makers who have access to premium and insider information (Martens and Zein (2004), Busch et 

al. (2011), Bazhenov and Fantazzini (2019)). These two measures of investors’ attention and expectations are 

used to augment a large class of volatility models to forecast the VaR at multiple levels for the Russian RTS 

index future, using daily data from 2006 till 2019. We considered four class of models: the Threshold-GARCH 

model by Glosten et al. (1993) and Zakoian (1994), the Heterogeneous Auto-Regressive (HAR) model by 

Corsi (2009), the AutoRegressive Fractional (ARFIMA) model by Andersen et al. (2003), and the Realized-

GARCH model by Hansen et al. (2012). The forecasting performances of these models are compared using 

the forecasting diagnostics for market risk measurement, such as the tests by Kupiec (1995) and Christoffersen 

(1998), the multinomial test of VaR violations by  Kratz et al. (2018), the asymmetric quantile loss (QL) 

function proposed by Gonzalez-Rivera et al. (2004), and the Model Confidence Set by Hansen et al. (2011). 

The first contribution of this paper is an evaluation of the contribution of both online search queries and 

options-based implied volatility to the modelling of the volatility of the Russian RTS index future, and how 

this dependence has changed over almost two decades (from 2006 till 2019). To our knowledge, this analysis 

has not been done elsewhere. The second contribution is an out-of-sample forecasting exercise of the Value-

at-Risk for the RTS index future at multiple confidence levels using several alternative models’ specifications, 

with and without Google data and implied volatility. The third contribution of the paper is a robustness check 

to measure the accuracy of Value-at-Risk forecasts obtained with a multivariate model.  

The rest of this paper is organized as follows. Section 2 briefly reviews the literature devoted to Google Trends 

and implied volatility, while the methods proposed for forecasting the Value-at-Risk are discussed in Section 

3. The empirical results are reported in Section 4, while a robustness check is discussed in Section 5. Section 

6 briefly concludes. 
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2 Literature review 

There is an increasing body of the financial literature which examines how implied volatility (IV) from 

option prices and Google Trends data influence volatility modelling and risk measures.  

In the case of implied volatility, past research showed that it provides better forecasts for volatility than 

traditional GARCH models, see Christensen and Prabhala (1998), Corredor and Santamaría (2004), Martens 

and Zein (2004), Busch et al. (2011) and Haugom et al. (2014a), just to name a few. However, there are some 

(few) cases where this is not true: for example, Agnolucci (2009) found that a Component-GARCH model 

performs better than IV in forecasting the volatility of crude oil futures, while Birkelund et al. (2015) examined 

the Nordic the power forward market and found that the IV is a biased predictor of the realized volatility. In 

general, the financial literature usually shows that the best results are obtained when both the IV and other 

market variables are included in the forecasting model, with intraday volatility information being the only 

variable able to successfully complement IV, see Taylor and Xu (1997), Pong et al. (2004), and Jeon  and 

Taylor (2013). 

While implied volatility forecasts the future volatility well, the results are more mixed when forecasting 

the future quantiles of the returns’ distribution is of concern. Giot (2005) showed that the VaR forecasts based 

on lagged implied volatility performed similarly to VaR estimates based on GARCH models, while Jeon and 

Taylor (2013) reported that the implied volatility has explanatory power for the left tail of the conditional 

distribution of SP500 daily returns. Instead, Chong (2004) found that time series models performed better than 

the model based on implied volatility when estimating the VaR for exchange rates. Similarly, Christoffersen 

and Mazzotta (2005) found that, while implied volatility provided the most accurate volatility forecasts for all 

currency exchange rates and forecast horizons considered, unfortunately, it did not capture the tail behavior of 

the returns distribution. Barone‐Adesi et al. (2019) estimated and backtested the 1%, 2.5%, and 5% WTI crude 

oil futures value at risk and conditional value at risk for the years 2011–2016 and for both tails of the 

distribution, and they showed that the option-implied risk metrics are valid alternatives to filtered-historical 

simulation models. 

The work by Bams et al. (2017) is the largest backtesting exercise to date, comparing the Value-at-Risk 

forecasts from implied volatility and historical volatility models, using more than 20 years of daily data from 

American markets. Their large-scale backtesting analysis shows that implied volatility based Value-at-Risk 

tends to be outperformed by simple GARCH based Value-at-Risk, and they explain the poor performance of 

the former due to the volatility risk premium embedded in implied volatilities. However, even when correcting 

for the variance risk premium, the VaR forecasts based on the IV cannot outperform the historical volatility 

models. Bams et al. (2017) explain this result by showing that, while the IV is useful for forecasting the future 

volatility, it is not useful for forecasting a quantile of the return distribution, due to the complex dependence 

structure between the volatility risk premium and the extreme returns which influence the quantile forecasting 

power of the implied volatility. 
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In the case of Google search data, a vast literature discussed how the Internet search activity captures 

investor attention and information demand, see Ginsberg et al. (2009), Choi and Varian (2012), Da et al. (2011), 

Vlastakis and Markellos (2012), Vozlyublennaia (2014), Goddard et al. (2012),  and Fantazzini and 

Toktamysova (2015), just to name a few. 

Vozlyublennaia (2014) showed that Google data does have short term and -in some cases- even long term 

effects on returns, whereas the effects on volatility are less pronounced. However, she does not investigate the 

predictability of volatility by using Google data. Dimpfl and Jank (2016) were among the first to use daily 

Google data to forecast daily and weekly realized variances by including it as an additive component in 

Autoregressive (AR) and Heterogeneous Autoregressive (HAR) models, and they showed that Google searches 

improved both in- and out-of-sample performances. Campos and Cortazar (2017) evaluated the marginal 

contribution of Google trends to forecast the Crude Oil Volatility index by using HAR models and several 

macro-finance variables and showed that Google data has a positive relationship with the oil volatility index, 

even accounting for macroeconomic variables. They also found that internet search volumes add valuable 

information to their forecasting models and their predictions generate more economic value than models 

without them.  Xu et al. (2017) showed that Google Trends is a significant source of volatility besides 

macroeconomic fundamentals and its contribution to forecasting volatility can be enhanced by combining with 

other macroeconomic variables. Interestingly, they found that Google data with a higher observed frequency 

tends to be more useful in volatility forecasting than with a lower frequency. Moreover, the higher the stock 

market volatility is, the more important Google data are for volatility forecasting. Seo et al. (2019) proposed a 

set of hybrid models based on artificial neural networks with multi-hidden layers, combined with GARCH 

family models and Google Trends. They reported that their hybrid models with Google data statistically 

outperform the GARCH models and the hybrid models without Google data when forecasting the volatility of 

American markets. 

The studies dealing with market risk measurement and Google Trends are much more limited, instead: 

Hamid et al. (2015) proposed an empirical similarity approach to forecast the weekly volatility and the VaR 

for the Dow Jones index by using Google data. They performed an out-of-sample exercise with 260 weekly 

data and found that their model delivered significantly more accurate forecasts than competing models (HAR 

and ARFIMA models with and without Google data), while requiring less capital due to fewer over-predictions. 

Basistha et al. (2018) was the first work that evaluated both the role of the Google data and implied volatility 

for forecasting the realized volatility of American financial markets, exchanges rates and commodity markets. 

They found that Google search data play a minor role in predicting the realized volatility once implied volatility 

is included in the set of regressors. They also performed a small risk management exercise involving the one-

week-ahead 1% Value-at-Risk for the SP500 and the DJIA indices and found that adding the implied volatility 

produces an economically meaningful improvement in market risk measurement, while this is not the case 

when adding the Google search volume to the forecasting models. Bazhenov and Fantazzini (2019) performed 

a similar analysis with four Russian stocks for the 2016-2019 time sample, and they found that models 
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including the implied volatility improved their forecasting performances, whereas models including Google 

Trends data worsened their performances. Interestingly, simple HAR and ARFIMA models without additional 

regressors often reported the best forecasts for the daily realized volatility and the daily Value-at-Risk at the 

1% probability level, thus showing that efficiency gains more than compensate any possible model 

misspecifications. 

 

3 Methodology 

The goal of this paper is to verify whether adding the implied volatility from option prices and Google data to 

a large set of volatility models improves the quality of the estimated VaRs at multiple confidence levels for 

the Russian RTS index future. This procedure also has the benefit to indirectly test the quality of the models’ 

Expected Shortfall, following the aforementioned approach by Kratz et al. (2018). Before presenting these 

market risk measures and the associated backtesting procedures, we briefly review the measures of volatility 

and the forecasting models that we will use to compute these market risk measures. 

 

3.1 Measures of volatility 

3.1.1 Realized Variance 

Suppose we have a stochastic process with the following form:  

       dp t t dt t dW t    

where p(t) is the logarithm of instantaneous price, μ(t) is of finite variation, σ(t) is strictly positive and square 

integrable and dW(t) is a Brownian motion. This is a continuous-time diffusive setting which rules out price 

jumps and assumes a frictionless market. For this diffusion process, the Integrated Variance associated with 

day t is defined as the integral of the instantaneous variance over the following one day integral:  

 
1

2

1

t

t

t

IV s ds


    

It is possible to show that the previous integrated variance can be approximated to an arbitrary precision using 

the sum of intraday squared returns. This nonparametric estimator is called Realized Variance and it is a 

consistent estimator of the integrated variance as the sampling frequency increases, see Meddahi (2002) and 

Andersen et al. (2001):  

2

1

1

M

t t j

j

RV r 


  

where △=1/M is the time interval of the intraday prices, M is the number of intraday returns, while 
 t jr is the 

intraday return. The previous estimator considers the daily realized variance, but different time horizons longer 

than a single day d can be computed. For example, the weekly realized variance w at time t is given by, 
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        1 4

1
... .

5

w d d d

t t t d t dRV RV RV RV      

where we considered a weekly time interval of five working days. 

If we allow for the presence of jumps and consider the following continuous-time jump-diffusion process, 

           dp t t dt t dW t k t dq t    , where q(t) is a counting process with dq(t) = 1 corresponding 

to a jump at time t and dq(t) = 0 otherwise and k(t) refers to the size of the corresponding jumps, then it is 

possible to show that the realized volatility converges to the sum of the integrated variance and the cumulative 

squared jumps, see Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006), 

Andersen et al. (2007): 

     
1

2 2

1
Δ 0 1

plim Δ
t

t

t s tt

RV s ds k s



   

    

The continuous sample path variation measured by the integrated variance can be estimated non-parametrically 

using the standardized Realized Bipower Variation measure, 

     
1/Δ

2 2

1 1 Δ 1 , , 1 11 Δ
2 2

Δ | |   Δ
M

t t j t i t i tt j

j i

BV r r r r C  
    

 

     

while the jump component can be consistently estimated by   

     1 1 1Δ Δ Δ ,0t t tJ max RV BV       

where the non-negativity truncation on the actual empirical jump measurements was suggested by Barndorff-

Nielsen and Shephard (2004b) because the difference between RV and BV can become negative in a given 

sample. However, Huang and Tauchen (2005) and Andersen et al. (2007) suggested to treat the small jumps 

as measurement errors and consider them as part of the continuous sample path variation process, whereas 

only abnormally large values of RVt+1(Δ) − BVt+1(Δ) should be associated with the jump component. To 

achieve this goal, they proposed a test to identify the significant jumps and automatically guarantee that both 

Jt+1 and Ct+1 are positive. We employed this approach in our empirical analysis and we refer to Huang and 

Tauchen (2005) and Andersen et al. (2007) for the full description of this testing procedure. 

Given that we also considered GARCH-type models with daily returns, we had to adjust the previous realized 

variance for the return in the overnight gap from the market close on day t to the market open on day t+1. We 

scaled up the market-open RV using the unconditional variance estimated with the daily squared returns: 

2

24 1
1 1

1

T

tH OPENt
t tT OPEN

tt

r
RV RV

RV


 



 
 
 
 




 

where 
2

tr  are the daily squared returns computed using the close-to-close daily prices, while 
1

OPEN

tRV  is the 

realized variance computed with intraday data when the RTS future market is open. We chose this approach 
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due to its better results in the financial empirical literature, see Hansen and Lunde (2005), Christoffersen 

(2012), and Ahoniemi and Lanne (2013). 

 

3.1.2 Implied volatility 

An implied volatility index estimates the market expectations for the future volatility implied by the stock 

index option prices. The first Russian volatility index named RTSVX (Russian Trading System Volatility 

Index) was introduced on 7 December 2010 and was discontinued on 12 December 2016. It was based on the 

volatility of the nearby and next option series for the RTS (Russian Trading System) Index futures, see the 

Moscow Exchange website for more details. The Moscow Exchange makes available a (partially 

reconstructed) time series of daily closed prices for the RTSVX index starting from January 2006. A new 

Russian Volatility Index (RVI) was introduced on 16 April 2014: this index measures the market expectations 

for volatility over a 30 day period, and it is computed using prices of nearby and next RTS Index option series. 

The RVI is calculated in real time during both day and evening sessions (first values 19:00 – 23:50 Moscow 

time and then 10:00 – 18:45 Moscow time). There are three aspects where the RVI differs from the RTSVX: 

it is discrete, it uses actual option prices over 15 strikes, and it calculates a 30-day volatility. The RVI formula 

is reported below: 

2 2365 2 30 30 1
1 1 2 2

30 2 1 2 1

100 * ,
T T T T T

IV T T
T T T T T

  
 

 
 

where 30T  stands for 30 days expressed as a fraction of a calendar year, 365T  for 365 days expressed as a 

fraction of a calendar year, 1T  is the time to expiration of the near-series options expressed as a fraction of a 

calendar year, 2T  is the time to expiration of the far-series options expressed as a fraction of a calendar year, 

2

1  is the variance of the near-series options and 2

2  is the  variance of the next-series of options, see 

http://fs.moex.com/files/6757 for the full description of the RVI methodology. A detailed comparison of the 

old and new Russian volatility indexes was performed by Caporale et al. (2019) and they found that the 

differences were minor. For this reason, we built a composite volatility index ranging from January 2006 till 

April 2019, which allowed us to cover almost two decades2. 

 

3.2 Volatility Models 

3.2.1 TGARCH model 

The Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) models represent an important 

benchmark in empirical finance, see Hansen and Lunde (2005b) for a large-scale backtesting comparison 

                                                      
2 We also tried to compute market risk measures using only one of the two volatility indexes, but the results did not change 

qualitatively, so that we stuck to our composite index. Note that both indexes are expressed in percentage form.  

http://fs.moex.com/files/6757
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involving more than 330 volatility models. A GARCH(p,q) model for the conditional variance 2

t  at time t 

can be defined as follows: 

2 2 2

1 0

0 0

p q

t i t i j t j

i j

      
 

     

The Threshold-GARCH (TGARCH) model proposed by Glosten et al. (1993) and Zakoïan (1994) to take the 

leverage effect into account can be specified as follows: 

2 2 2 2

1 0

0 0 0

( 0)
p q r

t i t i j t j t k t k

i

k

j k

I           
  

        

where I = 1 if 0t k   . A simple TGARCH (1,1) model with standardized errors following a Student’s t-

distribution was employed in this work. Moreover, we also considered a TGARCH(1,1) specification 

including the (implied) volatility index and Google Trends as additional regressors, 

 2 2 2 2

1 0 1 1 1 0t t t t t t tI IV GT                  

similarly to the specification proposed for Russian stocks by Bazhenov and Fantazzini (2019). 

 

3.2.2 HAR model 

Corsi (2009) proposed a model with a hierarchical process, where the future volatility depends on the past 

volatility over different lengths of periods. The HAR model has the following form, 

1 0 5, 22, 1,t D t W t t M t t tRV RV RV RV            

where D,W and M stand for daily, weekly and monthly values of the realized volatility, respectively. Since we 

want to verify whether adding the implied volatility and Google data improve the estimation of the market risk 

measures for the RTS index future, we also included these additional regressors using the HAR specification 

by Bazhenov and Fantazzini (2019): 

1 0 5, 22, 1t D t W t t M t t t t tRV RV RV RV IV GT                     (1) 

Andersen et al. (2007) extended the HAR-RV model by decomposing the realized variances into the 

continuous sample path variability and the jump variation, and they proposed the so-called HAR-CJ model 

which is defined as follows: 

1 0 5, 22, 5, 22, 1t CD t CW t t CM t t JD t JW t t JM t t tRV C C C J J J                    

If we add the IV and Google data, the previous equation will transform into: 

1 0 5, 22, 5, 22, 1t CD t CW t t CM t t JD t JW t t JM t t t t tRV C C C J J J IV GT                        
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Note that a large-scale forecast comparison of volatility models for the Russian stock market was performed 

by Aganin (2017), and he found that the HAR model showed a statistically significant superior performance 

compared to all other competing models. 

 

3.2.3 ARFIMA model 

The Auto-Regressive Fractional Integrated Moving Average -ARFIMA(p,d,q)- model to forecast the realized 

volatility was proposed by  Andersen et al. (2003), and it can be expressed as follows 

Φ(L)(1 − L)d(RVt+1  − µ) = Θ(L)εt+1 

where L is the lag operator, Φ(L) = 1 − φ1L − ... − φpL
p, Θ(L) = 1 + θ1L + ... + θqL

q  and (1 − L)d is the fractional 

differencing operator defined by: 

   
  0

1
1

k
d

k

k d L
L

d k






 

   

where Γ(•) is the gamma function. Similarly to the HAR and GARCH models, we also added the implied 

volatility and Google Trends as external regressors: 

 Φ(L)(1 − L)d(RVt+1  − µ) =  IVt + ψGTt   + Θ(L)εt+1 

Hyndman and Khandakar (2008) proposed an algorithm for the automatic selection of the optimal ARFIMA 

model, which is implemented in the R packages forecast and rugarch  and which was used in this work. 

 

3.2.4 Realized-GARCH model 

The realized GARCH by Hansen et al. (2012) jointly models the returns and the realized measures of volatility. 

More specifically, this model connects the realized volatility to the latent volatility via a measurement equation, 

which also accommodates an asymmetric reaction to shocks. The realized GARCH model with a log-linear 

specification can be written as follows: 

 2 , . . . 0,1t t t tr z z i i d      

 
2 2

1 1

log log log 
q p

t i t i i t i

i i

RV     
 

      

   2 2 2

1 2log log 1 , . . . 0,t t t t t t uRV z z u u i i d             

where the three equations represent the return equation, the volatility equation, and the measurement equation, 

respectively. The latter equation models the contemporaneous dependence between the latent volatility and the 

realized measure, while the terms  2

1 2 1t tz z    accommodate potential leverage-type effects.  Similarly 

to previous models, we also added the implied volatility and Google Trends as external regressors. The log-

linear specification was used in this work due to its better numerical and statistical properties compared to the 

linear specification, see Hansen et al. (2012). 
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3.3 Market Risk Measures 

The Value-at-Risk is the maximum market loss of a financial position over a time horizon h with at a pre-

defined confidence level (1-α), or alternatively, the minimum loss of the α worst losses over the time horizon 

h. The VaR is a widely used measure of market risk in the financial sector, and we refer to McNeil et al. (2015) 

and Fantazzini (2019) for a large discussion at the textbook level. In this work, we considered h = 1.  

In the case of GARCH and Realized-GARCH models with student’s t errors, the 1-day ahead VaR can be 

computed as follows, 

 1 2

1, 1 , 1 ˆˆ 2 /  t t tVaR µ t     
      

where 1
ˆ  tµ  is the 1-day-ahead forecast of the conditional mean, 2

1
ˆ

t  is the 1-day-ahead forecast of the 

conditional variance, while
1

, t 
  is the inverse function of the Student’s t distribution with υ degrees of freedom 

at the probability level α. The term   12 /    ˆ t      is also known as the scale parameter of the Student's t 

distribution. 

In the case of HAR and ARFIMA models,  the 1-day ahead VaR can be computed as follows: 

1
11, ttVaR RV 


    

where 1


  is the inverse function of a standard normal distribution function at the probability level α, while 

1tRV   is the 1-day-ahead forecast for the realized volatility.  

The Expected Shortfall (ES) measures the average of the worst α losses, where α is a percentile of the returns’ 

distribution, and it is computed as follows: 

   1

0 0

1 1 z zES F X dz VaR X dz

 

  
    

where 
1  F
 is the inverse function of the returns’ distribution, that is the Value-at-Risk.  

The ES attracted a lot of attention when in October 2013 the Basel Committee on Banking Supervision issued 

the revision of the market risk framework, where the 99% VaR (that is, the α=1% probability level VaR) was 

substituted with the 97.5% ES (see Basel Committee on Banking Supervision (2013), pg. 18). The main 

drawback of the ES is that it lacks a mathematical property called elicitability, while VaR does have it (see 

Gneiting (2011)): if a risk measure is elicitable, then it can be used within a scoring function to be minimized 

for comparative tests on models, thus allowing for the ranking of the risk models' performance. However,  

Emmer et al. (2015) and Kratz, et al. (2018) showed that the ES is elicitable conditionally on the VaR, and 

that it can be back-tested through the approximation of several VaR levels. More specifically, Emmer et al. 

(2015)  showed that, 
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       1
0.75 0.25 0.5 0.5 0.25 0.75

4
ES q q q q              

where  q VaR  . For example, if α=2.5% as proposed by the Basel Committee, then  

 2.5% 2.5% 2.125% 1.75% 1.375%

1

4
ES VaR VaR VaR VaR     

In this case, a more convenient approximation was proposed by Wimmerstedt (2015): 

 2.5% 2.5% 2.0% 1.5% 1.0% 0.5%

1

5
ES VaR VaR VaR VaR VaR      

Given these recent results, we decided to take a neutral stance towards the current (hot) debate between VaR 

and ES proponents: we computed the VaRα at five probability levels (2.5%, 2%, 1.5%, 1%, 0.5%), so that we 

could also provide an approximate backtesting of the ES2.5% which will be included in the future Basel 3 

agreement (scheduled to be introduced on 1 January 2022). 

 

3.4 Backtesting Methods 

The forecasting performance of different VaR models can be checked by comparing the forecasted values of 

the VaR with the actual returns for each day. The first step is to count the number of violations 1  T when the 

ex-ante forecasted VaR are smaller than the actual losses, with 1 0T T T  , while 0T  is the the number of no 

VaR violations. A “perfect VaR model” would show the fraction of actual violations 1
ˆ /T T   equal to α%. 

The null hypothesis 0
ˆ:H    can be tested using the unconditional coverage test by Kupiec (1995). He 

showed that the test statistic for this null hypothesis is given by, 

0

0 01 1 2

1 1 12ln (1 )  / {(1 / ) ( / ) }
H

T TT T

ucLR T T T T          

If we want to test the joint null hypothesis that the average number of VaR violations is correct and the 

violations are independent, then we can resort to the conditional coverage test by Christoffersen (1998). The 

main advantage of this test is that it can reject a model that forecasts either too many or too few clustered 

violations, while its main disadvantage is the need of at least several hundred observations to be accurate. The 

test statistic is reported below, 

0

0 1 00 01 10 11 2

01 01 11 11 22ln (1 ) 2ln (1 ) (1 )
H

T T T T T T

ccLR                    

where 
ijT  is the number of observations with value i followed by j for i,j = 0,1 and / ij ij ij

j

T T    are the 

corresponding probabilities. 
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Financial regulators are concerned not only with the number of VaR violations, but also with their 

magnitude. For this reason, we also computed the asymmetric quantile loss (QL) function proposed by 

Gonzalez-Rivera et al. (2004),   

   1, 1 1 1,    t t t tQL I r VaR          , 

where  1 1tI    if 
1 1, t tr VaR    and zero otherwise. This loss function penalizes more heavily the realized 

losses below the α-th quantile level, so that it can be useful to compare the costs of different admissible choices.  

The quantile loss function was subsequently used together with the Model Confidence Set (MCS) by Hansen, 

Lunde, and Nason (2011) to select the best VaR forecasting models at a specified confidence level. Given the 

difference between the QLs of models i and j at time t (that is di,j,t = QLi,t − QLj,t), the MCS approach is used 

to test the following hypothesis of equal predictive ability, H0,M : E(di,j,t) = 0, for all i,j   M, where M is the set 

of forecasting models. The first step is to compute the following t-statistics, 

 
    ,   

ij

ij

ij

d
t for i j M

var d
   

where 1

,

1

 ,  
T

ij ij t

t

d T d




  and  ijvar d  is an estimate of   ijvar d . Then, the following test statistic is 

computed: TR,M = 
  i M ijmax t . This statistic has a non-standard distribution, so the distribution under the null 

hypothesis is computed using bootstrap methods with 5000 replications and a minimum block length equals to 

5. If the null hypothesis is rejected, one model is eliminated from the analysis and the testing procedure starts 

from the beginning.  

The multinomial VaR test by Kratz et al. (2018) implicitly backtests the Expected Shortfall using the previous 

idea by Emmer et al. (2015) to approximate the ES with several VaR levels. More specifically, Kratz et al. 

(2018) considered several VaR probability levels 1, , N   defined by     1 / 1 ,   1, ,j j N j N         

, for some starting level α. If 
,, ( )1

t tj
t j L VaRI

  is the usual indicator function for a VaR violation at the level 

j  and ,

1


N

t t j

j

X I


 , then the sequence 
1, ,( )t t TX    counts the number of VaR violations at the level 

j . If we 

denote with   0, , , NMN T p p   the multinomial distribution with T  trials, each of which may result in 

one of 1N   outcomes  0,1, , N  according to probabilities 0 , , Np p  that sum to one, while the observed 

cell counts are denoted by  
1

,  0,1,
t

T

j X j

t

O I j N


   , then, under the assumptions of unconditional 

coverage and independence as in Christoffersen (1998), it is possible to show that the random vector 
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 0 , , NO O  will follow the multinomial distribution     0 1 0 1, , , , , . N N NO O MN T         Given 

an estimated multinomial distribution represented by  1 0 1( , , , N NMN T        where  ( 1, ,j j N  

) are the distribution parameters estimated with the available data sample, Kratz et al. (2018) consider the 

following null and alternative hypotheses:  

   
0 : ,    for    1, ,j jH j N     

    1 : ,    for at least one  1, ,j jH j N     

The null hypothesis can be tested with several test statistics, and we refer to Cai and Krishnamoorthy (2006) 

for a large simulations study to verify the exact size and power properties of five possible tests (three of them 

were later used by Kratz et al. (2018)). We employed the exact method in our empirical analysis: this is the 

fifth test statistic reviewed by Cai and Krishnamoorthy (2006), and it computes the probability of a given 

outcome under the null hypothesis using the multinomial probability distribution itself:   

   0 1

0 1 1 0 2 1 1

0 1

!
, , , ( ) ( ) ( )

! ! !
NO OO

N N N

N

T
P O O O

O O O
          


 

Cai and Krishnamoorthy (2006) found that the exact method performs very well, but it can be time-consuming 

if the number of cells N and the sample size T  are large. In this latter case, simulation methods need be used3. 

A large discussion at the textbook level of all these backtesting methods and many others can be found in 

Fantazzini (2019) - chapter 11. 

 

4 Empirical Analysis 

4.1 Data 

Intraday data sampled every 5 minutes for the continuous RTS index future were downloaded from the website 

finam.ru, covering the period from January 2006 till April 2019. We then used the 5-minutes squared log-

returns to calculate the daily, weekly and monthly realized variance measures, as previously discussed in 

Section 3.1.1. We remark that Liu et al. (2015) performed a large-scale forecasting analysis involving more 

than 400 estimators of realized measures and they found that it is difficult to significantly outperform the 5-

minute RV estimator. For this reason, we employed this estimator in this work. 

The daily historical data for the implied volatility of the RTS index were downloaded from the Moscow 

exchange (moex.com): as we discussed in section 3.1.2, our volatility index is a composite index which consists 

of the RTSVX index for the period from January 2006 till November 2016, and the RVI index for the period 

from December 2016 till April 2019. The volatility index was rescaled to make it a daily volatility index, 

comparable with the other variables used in our empirical work. 

                                                      
3  Several tests reviewed by Cai and Krishnamoorthy (2006) are implemented in the R package XNomial available at cran.r-

project.org/web/packages/XNomial . 
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Google Trends tracks the number of search queries for a topic or a keyword over a specific period and a specific 

region, and creates time-series reporting the relative popularity of the searched queries. More specifically, the 

amount of searches is divided by the total amount of searches for the same period and region, and the resulting 

time series is divided by its highest value and multiplied by 100. We remark that Google Trends creates a new 

time series for every period because its algorithm takes the highest value over the chosen period and normalizes 

all others to this peak point. Even though Google is not the main search engine in Russia (Yandex is, with a 

market share close to 56% in 2018 - all platforms), its market share is still very significant (over 40%). 

Moreover, Yandex search data are available only for the last year (in case of monthly data) or for the last 2 

years (in case of weekly data), so that a reliable statistical analysis with these data is not possible. We used 

Google Trends data for the query "RTS index", both in English and in Russian, and we computed the average 

of these two series. All search volumes were downloaded from the Google Trends website using the R package 

"gtrendsR". Google trends data are available since 2004, but if a multi-year sample is requested, only monthly 

data are obtained. To remedy this problem, we downloaded daily data for each month separately, and then we 

concatenated them in a single series by multiplying the separate daily data with the corresponding monthly 

data for the whole period. 

The daily returns for the RTS index future, the implied volatility index (rescaled to show the daily implied 

variance), the Google Trends data and the daily realized variance are reported in Figure 1. 

 

 

 

Figure 1: The daily returns, the implied volatility index, the Google Trends data and the daily realized 

variance for the RTS index future. 
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4.2 In-sample analysis 

Our time sample covers almost 15 years of daily data which includes several episodes of high volatility in the 

Russian financial market, like the global financial crisis in 2008-2009 and several rounds of sanctions since 

2014: for example, Aganin and Peresetsky (2018) found that sanctions initially increased the volatility of the 

ruble exchange rate, but their impact has then decreased with time. For these reasons, we do not report the 

models' estimates for the full sample because they would be misleading, being strongly impacted by structural 

breaks of different nature. Instead, we prefer to show the recursive estimates of the coefficients for the implied 

volatility and Google Trends in the HAR model of eq. (1), which better convey the changing impacts of these 

regressors on the realized volatility of the RTS index future.  

 

Figure 2: Recursive estimates of the coefficients for the implied volatility and Google Trends in the HAR 

model of eq. (1). 

 

Figure 2 clearly shows the strong impact of the global financial crisis in 2008-2009, whereas the impact of 

sanctions since 2014 appear to be minor. Moreover, the (positive) effect of Google search queries seems to 

have decreased with time.  

There is a vast literature dealing with multiple structural breaks in linear regression models, see Zeileis et al. 

(2002), Zeileis (2005) and Perron (2006) for extensive surveys. Among the several approaches proposed, we 

decided to employ the methodology based on information criteria proposed by Yao (1988), Liu et al. (1997), 

Bai and Perron (2003a) and Zeileis et al. (2010), which finds the optimal number of breakpoints by optimizing 

the Bayesian Information Criterion (BIC) and the modified BIC by Liu et al. (1997), known as the LWZ 

criterion. This approach has shown to be robust with different model setups and computationally tractable even 

with large datasets.  

The multiple breakpoint test for the HAR model of eq. (1) allowing for a maximum of 5 breaks and a dataset 

trimming of 15% is reported in Table 1. It employs heteroscedasticity and autocorrelation consistent (HAC) 

covariances using a Quadratic-Spectral kernel with a Newey-West bandwidth, see Newey and  West (1994), 

Zeileis (2006) and references therein for more details. The estimates of the model coefficients with breaks are 

reported in Table 2. 
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Table 1: Multiple breakpoint test for the HAR model of eq. (1). 

      
        Sum of  Schwarz* LWZ* 

Breaks # of Coefs. Sq. Resids. Log-L Criterion Criterion 
      
       0  6 0.006125 17081.35 -13.18175 -13.15066 

 1  13 0.005198 17351.93 -13.32864 -13.26128 
 2  20 0.005136 17371.72 -13.32345 -13.21981 
 3  27 0.005099 17383.45 -13.31337 -13.17344 
 4  34 0.005069 17393.26 -13.30213 -13.12591 
 5  41 0.005060 17396.41 -13.28684 -13.07433 
      
      Estimated break dates:    

1:  9/23/2008    

2:  9/23/2008,  9/17/2010    

3:  9/23/2008,  7/18/2014,  7/19/2016   

4:  9/23/2008,  9/20/2010,  7/18/2014,  7/19/2016  
5:  9/23/2008,  9/17/2010,  9/21/2012,  11/25/2014,  11/21/2016 

      
      * The minimum information criterion values are displayed in bold font and with shading. 

 

Table 2: Model estimates for the HAR model of eq. (1) with breaks and HAC standard errors. 

  2/09/2006 - 9/22/2008  9/23/2008 - 4/29/2019  

Constant -0.00154 *** -0.00016   

 (0.00042)  (0.00014)  

Realized Volatility (daily) -0.77159 ** 0.49714 *** 

 (0.27715)  (0.01829)  

Realized Volatility (Weekly) 2.62269 *** -0.06182  

 (0.68857)  (0.04861)  

Realized Volatility (Monthly) -1.15187 * 0.38608 *** 

 (0.52013)  (0.07994)  

RVI index 0.00005 *** 0.00000  

 (0.00002)  (0.00000)  

Google Trends 0.00004  0.00002 ** 

  (0.00002)   (0.00001)   

Note: * — p < 0.05, ** — p < 0.01, *** — p < 0.001 
 

Table 1 shows that both the Schwarz and the LWZ information criteria select 1 break, coinciding with the 

beginning of the global financial crisis. Interestingly, the selected date is just 1 week after the bankruptcy of 

Lehman Brothers. Table 2 shows that both the sign and the size of the coefficients change significantly between 

the two time samples, particularly for the volatility components. Instead, the coefficients for the lagged implied 

volatility and Google Trends remain positive in both samples, but the RVI is statistically significant only in 

the first sample up to September 2008, whereas Google search queries are statistically significant only in the 

second sample (which makes sense given that Google was not very used in Russia during the first period). We 

also computed other tests for detecting breaks, like the sequential tests proposed by Bai (1997) and Bai and 

Perron (1998), and the global maximizer tests by Bai and Perron (1998, 2003a, 2003b): in these cases, the 

number of significant breaks was higher -mostly 4 breaks-, identified around September 2008, September 
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2010, December 2014 and December 2016, which we can be loosely interpreted as the beginning and the end 

of the global financial crisis in Russia (2008-2010) and the beginning and the end of the crisis related to 

sanctions and the oil price collapse (2014-2016)4. Finally, we remark that the variability of the parameters for 

the other models (GARCH and ARFIMA models) was even higher, which should not be a surprise, given the 

greater computational complexity of these models. However, we do not report them for the sake of interest 

and space, and we prefer to focus on VaR forecasting which is the main goal of this work. 

 

4.3 Value-at-Risk forecasts 

The previous empirical evidence of 1 or more breaks suggested to us to use a rolling window of 500 

observations to estimate the volatility models and to compute the forecasted VaR. This time window should 

be a good compromise, given the numerical properties of GARCH models discussed by Hwang and Valls 

Pereira (2006) and Bianchi et al. (2011), together with the simulation evidence reported by Pesaran and 

Timmermann (2007), who showed that in a regression with multiple breaks the optimal window for estimation 

includes all of the observations after the last break, plus a limited number of observations before this break. 

Moreover, we considered the results for the full out-of-sample validation period (2008-2019) and for a rolling 

out-of-sample of 250 days (as requested by the Basel agreements), to examine how several structural breaks 

impacted the backtesting procedure. We employed the following models:  

 

Table 3: Model specifications used in the backtesting analysis. 

Model NO external regressors  IV GT IV+GT Total  

TGARCH     4  

HAR     4  

HARCJ     4  

ARFIMA     4  

RG     4  

HAR LOG     4  

HARCJ LOG     4 TOTAL 

ARFIMA LOG     4 32 
 

 

4.3.1 Full out-of-sample validation 

The p-values of the Kupiec and Christoffersen's tests values and the number of violations in % are reported 

in Table 4, while the models included in the Model Confidence Set (MCS) at the 10% confidence level and 

their associated asymmetric quantile loss are reported in Table 5. The p-values of the Multinomial VaR test 

by Kratz et al. (2018) with probability levels 1=0.5%, 2=1%, 3=1.5%, 4=2% and 5=2.5% are reported in 

Table 6. Only models who reached numerical convergence over the full out-of-sample are reported. 

                                                      
4 These results are not reported for sake of space and are available from the authors upon request. 
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Table 4: Kupiec tests p-values, Christoffersen's tests p-values and number of violations in %. P-values smaller than 0.05 are in bold font. 

 VaR with α = 0.5% VaR with α = 1% VaR with α = 1.5% VaR with α = 2% VaR with α = 2.5% 

Model Kupiec  Christ. Violations Kupiec  Christ. Violations Kupiec  Christ. Violations Kupiec  Christ. Violations Kupiec  Christ. Violations 

TGARCH 0.00 0.01 0.96 0.00 0.00 1.82 0.00 0.00 2.64 0.00 0.00 3.15 0.00 0.00 3.72 

TGARCH IV 0.13 0.28 0.71 0.03 0.06 1.43 0.04 0.11 2.00 0.00 0.02 2.79 0.04 0.10 3.15 

TGARCH GT 0.13 0.28 0.71 0.02 0.04 1.47 0.01 0.04 2.11 0.00 0.00 2.93 0.01 0.03 3.29 

TGARCH IVGT 0.13 0.28 0.71 0.00 0.01 1.57 0.03 0.08 2.04 0.01 0.05 2.68 0.04 0.11 3.15 

HAR 0.00 0.00 1.04 0.01 0.02 1.54 0.00 0.00 2.22 0.01 0.02 2.75 0.06 0.08 3.07 

HAR IV 0.00 0.00 4.75 0.00 0.00 5.58 0.00 0.00 6.29 0.00 0.00 6.79 0.00 0.00 7.29 

HAR GT 0.00 0.00 2.14 0.00 0.00 2.75 0.00 0.00 3.25 0.00 0.00 3.65 0.00 0.00 4.25 

HAR IVGT 0.00 0.00 5.97 0.00 0.00 6.75 0.00 0.00 7.15 0.00 0.00 7.68 0.00 0.00 8.04 

HARCJ 0.00 0.00 1.22 0.00 0.00 1.64 0.01 0.01 2.14 0.04 0.04 2.57 0.12 0.20 2.97 

HARCJ IV 0.00 0.00 4.93 0.00 0.00 5.58 0.00 0.00 6.11 0.00 0.00 6.72 0.00 0.00 7.33 

HARCJ GT 0.00 0.00 1.97 0.00 0.00 2.43 0.00 0.00 3.11 0.00 0.00 3.47 0.00 0.00 3.93 

HARCJ IVGT 0.00 0.00 5.58 0.00 0.00 6.33 0.00 0.00 6.90 0.00 0.00 7.40 0.00 0.00 7.97 

ARFIMA 0.00 0.00 1.14 0.01 0.02 1.54 0.01 0.01 2.18 0.01 0.01 2.68 0.05 0.07 3.11 

ARFIMA GT 0.00 0.00 1.86 0.00 0.00 2.61 0.00 0.00 3.25 0.00 0.00 3.75 0.00 0.00 4.32 

RG 0.00 0.00 1.11 0.00 0.00 1.82 0.00 0.00 2.25 0.01 0.03 2.72 0.06 0.17 3.07 

RG IV 0.00 0.00 1.18 0.00 0.00 1.75 0.00 0.00 2.36 0.00 0.02 2.79 0.01 0.03 3.29 

RG GT 0.00 0.00 1.11 0.00 0.00 1.79 0.00 0.00 2.25 0.01 0.04 2.68 0.05 0.14 3.11 

RG IVGT 0.00 0.00 1.18 0.00 0.00 1.86 0.00 0.00 2.32 0.01 0.04 2.72 0.01 0.04 3.25 

HAR LOG 0.00 0.00 1.82 0.00 0.00 2.61 0.00 0.00 3.18 0.00 0.00 3.47 0.00 0.00 3.93 

HAR IV LOG 0.00 0.00 1.68 0.00 0.00 2.43 0.00 0.00 2.93 0.00 0.00 3.54 0.00 0.00 4.07 

HAR GT LOG 0.00 0.00 1.72 0.00 0.00 2.57 0.00 0.00 3.15 0.00 0.00 3.57 0.00 0.00 4.00 

HAR IVGT LOG 0.00 0.00 1.75 0.00 0.00 2.43 0.00 0.00 2.93 0.00 0.00 3.57 0.00 0.00 4.07 

HARCJ LOG 0.00 0.00 1.79 0.00 0.00 2.43 0.00 0.00 2.79 0.00 0.00 3.22 0.00 0.00 3.90 

HARCJ IV LOG 0.00 0.00 1.64 0.00 0.00 2.43 0.00 0.00 2.82 0.00 0.00 3.32 0.00 0.00 3.82 

HARCJ GT LOG 0.00 0.00 1.79 0.00 0.00 2.43 0.00 0.00 2.82 0.00 0.00 3.22 0.00 0.00 3.93 

HARCJ IVGT LOG 0.00 0.00 1.57 0.00 0.00 2.39 0.00 0.00 2.82 0.00 0.00 3.36 0.00 0.00 3.82 
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Table 5: Models included in the MCS at the 10% confidence level and associated asymmetric quantile loss. 

VaR with α = 0.5% VaR with α = 1% VaR with α = 1.5% VaR with α = 2% VaR with α = 2.5% 

Models in MCS Loss Models in MCS Loss Models in MCS Loss Models in MCS Loss Models in MCS Loss 

TGARCH IVGT 0.00047 TGARCH IVGT 0.00080 TGARCH IV 0.00110 TGARCH IVGT 0.00138 HARCJ 0.00163 

TGARCH IV 0.00049 TGARCH IV 0.00081 TGARCH IVGT 0.00110 TGARCH IV 0.00138 TGARCH IVGT 0.00163 

TGARCH 0.00049 TGARCH GT 0.00081 TGARCH GT 0.00111 HARCJ 0.00138 HAR 0.00163 

TGARCH GT 0.00049 TGARCH 0.00083 HARCJ 0.00112 TGARCH GT 0.00139 ARFIMA 0.00164 

HARCJ 0.00053 HARCJ 0.00085 HAR 0.00113 HAR 0.00139 TGARCH IV 0.00164 

HAR 0.00054 HAR 0.00085 TGARCH 0.00114 ARFIMA 0.00139 HARCJ IV LOG 0.00164 

HARCJ IV LOG 0.00055 ARFIMA 0.00086 ARFIMA 0.00114 HARCJ IV LOG 0.00140 HARCJ IVGT LOG 0.00164 

HARCJ IVGT LOG 0.00055 HARCJ IV LOG 0.00087 HARCJ IV LOG 0.00115 HARCJ IVGT LOG 0.00140 TGARCH GT 0.00164 

ARFIMA 0.00056 HARCJ IVGT LOG 0.00087 HARCJ IVGT LOG 0.00115 TGARCH 0.00142 HAR IV LOG 0.00166 

HAR IV LOG 0.00057 HAR IV LOG 0.00089 HAR IV LOG 0.00116 HAR IV LOG 0.00142 HARCJ GT LOG 0.00166 

HARCJ GT LOG 0.00057 HARCJ GT LOG 0.00089 HARCJ GT LOG 0.00117 HARCJ GT LOG 0.00142 TGARCH 0.00166 

HARCJ LOG 0.00057 HAR IVGT LOG 0.00090 HAR IVGT LOG 0.00118 RG IVGT 0.00143 RG IV 0.00167 

HAR IVGT LOG 0.00058 HARCJ LOG 0.00090 HARCJ LOG 0.00118 RG IV 0.00143 RG IVGT 0.00167 

HAR LOG 0.00060 RG IVGT 0.00090 RG IVGT 0.00118 HAR IVGT LOG 0.00143 HARCJ LOG 0.00167 

RG IVGT 0.00060 RG IV 0.00091 RG IV 0.00118 HARCJ LOG 0.00143 HAR IVGT LOG 0.00167 

HAR GT LOG 0.00060 HAR LOG 0.00091 RG GT 0.00119 RG GT 0.00144 RG GT 0.00168 

RG IV 0.00061 RG GT 0.00092 HAR LOG 0.00119 RG 0.00145 RG 0.00168 

HARCJ GT 0.00061 HAR GT LOG 0.00092 RG 0.00120 HAR LOG 0.00145 HAR LOG 0.00168 

RG GT 0.00061 RG 0.00093 HAR GT LOG 0.00120 HAR GT LOG 0.00146 HAR GT LOG 0.00169 

RG 0.00062 HARCJ GT 0.00093 HARCJ GT 0.00121 ARFIMA GT 0.00147 ARFIMA GT 0.00170 

ARFIMA GT 0.00063 ARFIMA GT 0.00094 ARFIMA GT 0.00122 HARCJ GT 0.00147 HARCJ GT 0.00171 

HAR IVGT eliminated HAR IVGT eliminated HAR IVGT eliminated HAR IVGT eliminated HAR IVGT eliminated 

HARCJ IVGT eliminated HARCJ IVGT eliminated HARCJ IVGT eliminated HARCJ IVGT eliminated HARCJ IVGT eliminated 

HAR IV eliminated HARCJ IV eliminated HARCJ IV eliminated HARCJ IV eliminated HARCJ IV eliminated 

HARCJ IV eliminated HAR IV eliminated HAR IV eliminated HAR IV eliminated HAR IV eliminated 

HAR GT eliminated HAR GT eliminated HAR GT eliminated HAR GT eliminated HAR GT eliminated 
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Table 6: Multinomial VaR test with probability levels 1=0.5%,2=1%,3=1.5%,4=2%,5=2.5%. 

P-values smaller than 0.05 are in bold font. 

Model P-values Model P-values 

TGARCH 0.00 ARFIMA GT 0.00 

TGARCH IV 0.08 RG 0.00 

TGARCH GT 0.03 RG IV 0.00 

TGARCH IVGT 0.10 RG GT 0.00 

HAR 0.01 RG IVGT 0.00 

HAR IV 0.00 HAR LOG 0.00 

HAR GT 0.00 HAR IV LOG 0.00 

HAR IVGT 0.00 HAR GT LOG 0.00 

HARCJ 0.00 HAR IVGT LOG 0.00 

HARCJ IV 0.00 HARCJ LOG 0.00 

HARCJ GT 0.00 HARCJ IV LOG 0.00 

HARCJ IVGT 0.00 HARCJ GT LOG 0.00 

ARFIMA 0.00 HARCJ IVGT LOG 0.00 

 

These tables show that only TGARCH models were able to pass the Kupiec and Christoffersen's tests for most 

quantiles, and to provide VaR violations in % close to the theoretical probability levels. TGARCH models 

also reported the lowest asymmetric losses for all quantiles up to the 2% probability level, and they provided 

the most precise VaR forecasts for the most extreme quantiles (0.5% and 1%), which are the most important 

quantiles for regulatory purposes. However, only the TGARCH model with implied volatility managed to pass 

most of the VaR tests, including the multinomial back-test with five quantiles, whereas TGARCH models with 

Google Trends or without any external regressors performed worse. 

In general, we found that when both the implied volatility and Google data are added jointly, the parameters 

estimates of several models became very unstable (see the next section 4.3.2 for more details), while six models 

out of 32 simply did not reach numerical convergence (four ARFIMA models and two realized-GARCH 

models). With the exception of TGARCH models, these results highlight that simpler models with no external 

regressors are a better choice when out-of-sample forecasting is the main concern, thanks to more efficient 

estimates. Our empirical evidence complements the results provided by Bams et al. (2017), who showed that 

implied volatility based Value-at-Risk could not outperform simple GARCH based Value-at-Risk due to the 

complex dependence structure between implied volatility, realized volatility and extreme returns. This is 

particularly true for Russian financial markets, where extreme returns take place more often than in American 

markets and they are caused by different type of shocks, from energy economics to geopolitics, see e.g. 

Malakhovskaya and Minabutdinov (2014), and Aganin and Peresetsky (2018).  However, in the case of Russian 

markets, GARCH models augmented with IV do provide more precise VaR forecasts than simple GARCH 

models. Moreover, our results reveals another important factor that a model need to possess for successful VaR 

forecasting: computational robustness in case of frequent and extreme market returns. 
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4.3.2 Rolling out-of-sample of 250 days 

After the previous results, we wanted to verify how the backtesting performance of the competing models 

changed over time. To achieve this goal, we computed the VaR violations in % for all competing models using 

a rolling out-of-sample of 250 days (as requested by the Basel agreements). The full color figure reporting the 

violations in % for the forecasted VaR at the 1% probability level can be found in the supplementary materials 

posted on the corresponding author’s website. 

First, the performance of TGARCH models remained remarkably stable over the full period, ranging between 

1% and 2%, despite the several episodes of strong volatility in the RTS index future (see Figure 1). Secondly, 

the HAR models with additional regressors performed very poorly and clearly suffered from computational 

problems, which resulted in VaR forecasts being strongly underestimated: particularly, the HAR models with 

both IV and Google data, and the HAR models with IV showed empirical violations  higher than 5% and, after 

2016, even higher than 15%. Using variables in logarithms solved this numerical problem, but the models’ 

VaR violations were still quite high (between 2% and 4%) and unable to pass the Kupiec and Christoffersen 

tests. The few realized-GARCH and ARFIMA models which managed to reach numerical convergence 

behaved similarly to HAR models with variables in logs. One of the main messages that our backtesting 

analysis conveys is to check the computational robustness of the model used to forecast the VaR or any other 

risk measure. This is important not only for the Russian market, but also for all emerging markets which may 

be subject to sudden market crashes due to a variety of reasons. 

 

4.4 Robustness Check: a Hierarchical VAR model with LASSO 

We wanted to check how our previous results changed with a multivariate model able to both accommodate a 

large number of regressors and to improve the model estimation and its forecasting performances. To achieve 

this goal, we employed the Hierarchical Vector Autoregression (HVAR) model estimated with the Least 

Absolute Shrinkage and Selection Operator (LASSO) proposed by Nicholson et al. (2018). Let us consider the 

following vector autoregression,  
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where tY  is a 4 1  vector containing the daily returns, the daily realized volatility, the implied volatility and 

the Google data, ν is an intercept vector, while Φl
 are the usual coefficient matrices.  

The HVAR approach proposed by Nicholson et al. (2018) adds structured convex penalties to the least squares 

VAR problem, so that the optimization problem is given by,  
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where 
F

A  denotes the Frobenius norm of matrix A (that is, the elementwise 2-norm), 0   is a penalty 

parameter, while  ΦY
 is the group penalty structure on the endogenous coefficient matrices. The HVAR 

class of models solves the problem of an increasing maximum lag order by including the lag order into 

hierarchical group LASSO penalties, which induce sparsity and a low maximum lag order.  

For our empirical work, we employed the elementwise penalty function, 

 
4 4 22

:22

2
1 1 1

Φ Φl

Y ij

i j l  

  

which is the most general structure, because every variable in every equation is allowed to have its own 

maximum lag resulting in 
24  possible lag orders. The penalty parameter    is estimated by sequential cross-

validation, see Nicholson et al. (2018) for the full details. The p-values of the Kupiec and Christoffersen's 

tests, the number of violations in %, and the p-values of the Multinomial VaR test by Kratz et al. (2018) with 

probability levels 1=0.5%, 2=1%, 3=1.5%, 4=2% and 5=2.5% are reported in Table 7, while the VaR 

violations in % for the forecasted VaR1% using a rolling out-of-sample of 250 days are reported in Figure 3. 

 

Table 7: Kupiec tests p-values, Christoffersen's tests p-values, and  Multinomial VaR test with probability 

levels 1=0.5%,2=1%,3=1.5%,4=2%,5=2.5%. P-values smaller than 0.05 are in bold font. 

  
Kupiec t. 

(p-value) 

Christ. T. 

(p-value) 
Violations % 

Multinomial VaR test  

(p-value) 

VaR with α = 0.5% 0.00 0.00 1.67 0.00 

VaR with α = 1% 0.00 0.00 2.02   

VaR with α = 1.5% 0.00 0.00 2.30   

VaR with α = 2% 0.01 0.00 2.69   

VaR with α = 2.5% 0.02 0.00 3.19   

 

Figure 3: Violations in % for the forecasted VaR1% using a rolling out-of-sample of 250 days. 
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The HVAR model solves the numerical problems of the HAR model with additional variables in levels, but it 

has a backtesting performance similar to the HVAR models with variables in logarithms: that is, it 

underestimates the VaR following episodes of extremely high volatility.  

 

5 Conclusions 

We evaluated the contribution of both online search intensity and options-based implied volatility to the 

modelling of the volatility of the Russian RTS index future, and we examined how this dependence changed 

over almost two decades. We found that both the sign and the size of their coefficients changed significantly, 

particularly in the periods following the beginning of the global financial crisis in 2008 and (to a lower degree) 

after the introduction of sanctions in 2014. 

We then performed a backtesting analysis involving the forecasting of the Value-at-Risk for the RTS index 

future at multiple confidence levels using several alternative models specifications, with and without Google 

data and implied volatility. We found that only TGARCH models were able to pass the Kupiec and 

Christoffersen's tests for most quantiles, and they also reported the lowest asymmetric losses for all quantiles 

up to the 2% probability level. However, only the TGARCH model with implied volatility managed to pass 

almost all back-tests, including the multinomial test with five quantiles needed to back-test the expected 

shortfall, whereas TGARCH models with Google Trends or without any external regressors did not. We 

noticed that when both the implied volatility and Google data were added jointly, the parameters estimates of 

several models became very unstable and several models did not reach numerical convergence (particularly, 

ARFIMA and realized-GARCH models). Moreover, with the exception of TGARCH models, our results 

highlighted that simpler models with no additional regressors provided better VaR forecasts than augmented 

models. This empirical evidence complements the results provided by Bams et al. (2017), who showed that 

forecasting the volatility is different from forecasting a certain quantile of the return distribution, hence models 

forecasting well the former may not forecast well the latter.  However, in the case of Russian markets, 

TGARCH models augmented with IV did provide better VaR forecasts than TGARCH models without it. We 

also evaluated the backtesting performance of the competing models using a rolling out-of-sample of 250 days: 

we found that the performance of TGARCH models remained remarkably stable over the full evaluation 

period, whereas HAR models with additional regressors performed very poorly and clearly suffered from 

computational problems, which resulted in VaR forecasts being strongly underestimated. Using variables in 

logarithms solved this numerical problem, but the models’ VaR violations were still quite high  and unable to 

pass the usual Kupiec and Christoffersen tests. The few realized-GARCH and ARFIMA models which 

managed to reach numerical convergence behaved similarly to HAR models with variables in logs. Therefore, 

one of the main guidance that emerged from our backtesting analysis is to check the computational robustness 

of the model employed to forecast the VaR (or any other risk measure) in case of extreme and sudden market 

crashes. Finally, we also performed a robustness check to verify how our previous results changed with a 

hierarchical-VAR model with LASSO able to both accommodate a large number of regressors and to improve 
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the model estimation and its forecasting performances. The HVAR model solved the numerical problems of 

the HAR models with additional variables in levels, but it still underestimated the VaR in the periods following 

episodes of extremely high volatility and abrupt market changes.  

In general, models with implied volatility performed better than models with Google Trends data, thus 

confirming similar evidence reported by Basistha et al. (2018) and Bazhenov and Fantazzini (2019). These 

authors suggested two possible explanations for these results: first, the informational content included in 

Google search activity is also present in the implied volatility, but the opposite is not true, due to the fact that 

implied volatility is a forward-looking measure based on the expectations of large investors who have access 

to premium and insider information, while Google Trends data are mainly based on the expectations of small 

investors and un-informed traders. A second simpler explanation is that Yandex is the main search engine in 

Russia, so that Google Trends may not be the best proxy for Russian investors’ interest and behavior. If Yandex 

will make available online search data at the daily frequency and for long periods, then this issue will definitely 

be an interesting avenue of future research. 
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