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1 Introduction

The dominant paradigm in the marriage-matching literature considers marriage mar-
ket equilibrium under Binding Agreements in the Marriage Market(BAMM). In
the typical model of the marriage market (for instance, see Chiappori et al. (2018),
Chiappori et al. (2017), Gayle & Shephard (2019)), the division of the marital sur-
plus is negotiated at the time of marriage. It is assumed that the contract reached
in the marriage market is binding upon the couple, i.e., it cannot be breached or
re-negotiated under any state of the world that may occur in future. In other words,
there is full commitment within marriage.

An empirically testable implication of BAMM is that unanticipated changes in
laws governing exit from marriage, i.e., divorce, have no impact on behavior within
marriage. However, this does not hold in the data. For example, Voena (2015) finds
that change in divorce and property division laws in the United States reduced female
labor force participation and increased rates of asset accumulation in marriages that
had formed before the change in laws. Similarly, empirical evidence suggests that
policy-induced changes in spousal incomes change household expenditure patterns
(for example, see Lundberg et al. (1997)) — a finding that is at odds with couples
having reached binding agreements in the marriage market.

While the empirical evidence is not consistent with BAMM, it can be rationalized
using the Bargaining In Marriage(BIM) hypothesis. According to BIM, married
couples play a cooperative game in each period. Given the threat points (whether
internal as in Lundberg & Pollak (1993) or exit threats as in Voena (2015)) of this
game, married couples attain efficient outcomes in each period of marriage, which
can change if threat points are affected by exogenous changes in policy, examples
of which include legal changes and government-administered welfare programs that
affect relative spousal incomes.

The BAMM and BIM assumptions also entail potentially different marriage mar-

ket equilibria, and have potentially different welfare implications. For instance, with



transferable utility, any stable matching under BAMM yields the highest total utility
(to all players) amongst all possible matchings. In other words, a stable matching
under BAMM and transferable utility is wtilitarian efficient. However, this does
not necessarily hold under BIM. As Pollak (2019) demonstrates, the set of stable
matchings under BIM do not necessarily coincide with the set of stable matchings
under BAMM. In particular, he illustrates that the BAMM and BIM equilibria can
be distinct.

If the notion of marriage market equilibrium in a BIM setting is stability, the ap-
propriate algorithm to find the equilibrium /equilibria is the Gale-Shapley algorithm.
This is the route taken by Pollak (2019). However, the few empirical papers that
have tried to predict real world matches using the Gale-Shapley algorithm (see Hitsch
et al. (2010), Banerjee et al. (2013), Lee (2009)) have failed to replicate patterns of
assortative matching on several important dimensions. These results cast doubt on
whether Gale-Shapley is the appropriate algorithm to use in order to find marriage
market equilibria. Further, they leave open the possibility that the marriage mar-
ket equilibrium under BIM is identical to the marriage market equilibrium under
BAMM — a possibility, which, in our opinion, should be a subject of theoretical and
empirical research.

In this paper, we explore the theoretical aspect of the problem. To be pre-
cise, we pose the following question: Using a matching algorithm different from the
Gale-Shapley algorithm, can we implement the stable matching under BAMM (with
transferable utility) even under BIM? An obvious candidate for implementing the
BAMM assignment in the BIM world is the top trading cycles algorithm, which, in
contrast to the (Gale-Shapley algorithm, produces a Pareto efficient matching. We
show that if agents on one side of the market are sufficiently sensitive to matches rel-
ative to the other side, if the more sensitive side can be ranked by sensitivity, and if
preferences over members of the opposite sex are hierarchical, the top trading cycles

algorithm results in a utilitarian efficient matching. As is obvious, utilitarian effi-



ciency is achieved at the cost of stability — a tension that has been well-recognized
in the literature (see Lee & Yariv (2018) for a recent example).

The exercise in the current paper is, in spirit, similar to the familiar second
welfare theorem in general equilibrium theory (see Mas-Colell et al. (1995)), which
provides conditions under which a Pareto optimal allocation can be supported as a
competitive equilibrium (with taxes and transfers). In our setting, the counterpart to
a Pareto optimal allocation is a stable matching under BAMM, which happens to be
belong to the core of the assignment game; while the counterpart to decentralization
using prices (as in the second welfare theorem) is the “decentralization” using the
top trading cycles algorithm.

The remainder of this paper is structured as follows: Section 2 describes the eco-
nomic environment. Section 3 presents alternative desirable properties of a marriage
market equilibrium. Section 4 discusses implementation of the utilitarian efficient
assignment under BIM. Section 5 concludes with a brief discussion. All proofs are

placed in the appendix.

2 The Economic Environment

There are a finite and equal number of men and women in the market. Formally, let
M and W denote the set of men and women respectively and let |[M| = [W| = N,
where | X| denotes the cardinality of the set X. Men and women play the following
two-stage game: In the first stage, men and women match with one another. We
assume that the matching is simultaneous, not sequential. In the second stage,
matched couples play a cooperative game. In particular, each married couple decides
on public and private consumption within marriage.

We assume that individual preferences over private and public consumption goods
within marriage are such that utility is transferable within any couple. Formally, let
{=m}mem; {=w twew denote individual preference orderings over bundles of private

and public consumption goods. We assume that these orderings are such that for any



m € M, w € W, there exist cardinalizations, denoted by U,, and U, that represent

>m and >,, such that the utility possibility set is given by:

U= {(UpnUs) €ER*: U, + Uy < Sy} (1)

where s,,,, denotes the utility surplus produced if man m were to marry woman w.
We assume that s,,,, > 0 Vm € M, w € W. Thus, utility is transferable within each
household.

While we shall not specify the household game that gives rise to the Pareto fron-
tiers described here, we point out two important facts. First, it is well-known that
(generalized) quasi-linear preference orderings satisfy the transferable utility prop-
erty (see Bergstrom (1989), Chiappori (2017)). Second, transferability of utility does
not require the Pareto frontier to be a hyperplane for every cardinalization of pref-
erences. However, transferability of utility requires that there exist a cardinalization
of preferences such that the Pareto frontier is a hyperplane as described above (see
Bergstrom & Varian (1985), Chiappori (2017)). In our context, U,, and U, are such
well-chosen cardinalizations.

The primitives of the economic environment depend on whether we assume BIM
or BAMM. Under BAMM, the primitives of the two-stage problem are given by
the objects < M, W, S >, where S is a NXN utility-surplus matrix, whose m, w
-th element, denoted by s, ., is the utility surplus if the couple (m,w) were to be
formed. Further, we normalize the utility surplus from non-marriage to zero for each
individual. By contrast, the primitives of the problem under BIM are given by the

following objects: < M, W, Ut URiy >, where Uty (UR),,) is an N X N matrix

w

whose m, w-th element, denoted by u%w (um’w), gives the payoff in marriage that
will accrue to man m (woman w) if he (she) were to marry woman w (man m). These
payoffs are the outcome of bargaining that would happen in marriage, were couple
(m,w) to be formed. Moreover, the outcome of the bargaining game is correctly

foreseen by all participants in the marriage market. Further, we assume that the



anticipated outcome of the bargaining game induces a strict preference ordering over
the set of men. Formally, for any w, w)}, # u)y , whenever m # m’. Finally, in
order to ensure comparability with BAMM, we set U, + U¥ = S.

The solution under BAMM consists of the following two objects: an assign-

!"and a utility imputation vector for all possi-

ment/matching of women to men
ble couples that determine how the marital surplus will be split. Formally, the
solution under BAMM consists of Apaypm and Igaypy where Agans 1S a one-
to-one onto mapping such that Agappy @ W — M and and a NXN matrix
Iganin, whose (m,w) — th element, denoted by Igana(m,w) is an ordered pair
in{(U,,U,) ER?:m € M,w e Wand U, + Uy, < Sy}, m € M, w € W. By
contrast, under BIM the solution to the matching game consists of only one object,
namely, the assignment Ag;y : W — M where Apjys is one-to-one and onto. For
any couple that may form, the utility to the man and the woman are as dictated by
the primitives of the problem.

Notice that under BAMM, the splits of the marital surplus are decided in the
marriage market. These contracts are inviolable, ie, they cannot be reneged in mar-
riage. By contrast, under BIM, each individual, in the marriage market, correctly
foresees his/her payoff in each possible match. As mentioned before, the potential
payoffs result from bargaining in marriage, should the corresponding man-woman
pair match. Most importantly, no contracts regarding the split of marital surplus
can be made in the marriage market.

If we are in a BIM environment, it is convenient to develop some further notation
to denote the utility to an individual from an assignment. For any i, i € M UW,
we intend to have a function that provides the utility received by ¢ under any given
assignment A. This is accomplished by defining (71 : A — R, where
A= {A|A: W M} and U; satisfies the following property:

!Since we have normalized the utility surplus from non-marriage to zero and assumed that each
marriage produces a positive surplus, all individuals would marry under any reasonable solution
concept in our setting. Also, we exclude polygamy by assumption.
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1. For any A € A, m € M and the ordered pair (w,m) € A, Up(A) = u)! . 51us

—~

2. For any A € A, w € W and the ordered pair (w,m) € A, Uy(A) =) .51

Notice that U;(A) is the utility of individual i under assignment A. As is standard,
in this basic framework, there are no externalities between matched couples.

It is worth emphasizing that under our set-up, both the matching and the split
of the surplus accruing to each spouse in the second stage are determined in the first
stage. Nonetheless, the second stage of the game is not superfluous. In other words,
we cannot reduce the game we have described to a one-shot game, like the prisoners’
dilemma, for example. The difference between a one-shot game, like the prisoners’
dilemma and the current set-up is as follows: In a prisoners’ dilemma, the prisoners
are matched. By contrast, under the current set-up, the payoff matrix in the second
stage is sensitive to the matching that occurs in the first stage.

Finally, we note that while the Gale-Shapley algorithm is usually used in a non-
transferable utility framework, it can easily be adapted for use in a transferable
utility setting in a Bargaining in Marriage (BIM) set-up. In doing so, we follow
Pollak (2019), who points out that the anticipated outcome of bargaining provides
the utility that agents foresee arising from different marriages. These numbers can
be used to derive a ranking of potential partners, which are the primitives required

to run the Gale-Shapley algorithm.

3 Marriage Market Equilibrium: Alternative Crite-
ria and Welfare Implications

With a view to exploring the nature of the marriage market equilibrium under Bind-
ing Agreements in the Marriage Market(BAMM) and Bargaining in Marriage(BIM),

we first introduce a few possible characteristics of an equilibrium assignment:

1. Stability: In a BIM setting, an assignment Ag;ys is said to be stable if there



does not exist a pair (w,m), w € W, m € M such that Ag;y(w) # m,

w w

M M
Unp o > Uy ()0 A0 Ul >

mVA;B}]VI(m)

. Analogously, in a BAMM setting,
an assignment Aganry and associated imputations of utility Ipana(m,w) =
(uf,(m,w),ul (m,w)), m € M, w € W, is said to be stable if there does
not exist a pair (w’,m’), w € W, m’ € M such that Agayn(w') # m/,

wt,(m! w') > ul, (Apanr (w'), w') and u?, (m/,w') > uk, (m/, Azl (M)

2. Woman-Pareto Optimality: In a BIM setting, an assignment A is said to
be woman Pareto optimal if there does not exist another assignment A" € A
such that U, (A") > U,(A) Vw € W and there is at least one w’ € W such that

Uu (A") > U, (A). Similarly, one can define a man Pareto optimal assignment?.

3. Utilitarian Optimality: In a BIM setting, an assignment Apgy,, is said to sat-
isfy wtilitarian optimality if it is an assignment that a utilitarian social planner
would choose, ie, Apyy € arg max [>., Un(A) + Y wew ﬁw(A’)}. Analo-

A'cA

gously, in a BAMM setting, an assignment Apg s is said to satisfy utilitarian

optimality if Agpany € arg max [ > smw].
AleA {(w,m):A’(w)=m}

It is well-known that with transferable utility and BAMM, stability is equivalent
to wtilitarian optimality (see Koopmans & Beckmann (1957), Shapley & Shubik
(1971)). On the other hand, a stable assignment under BIM, which may be found
by using the Gale-Shapley algorithm, is not utilitarian optimal in general (see Pollak
(2019)). As mentioned before, we will implement the utilitarian efficient assignment
in a BIM setting using the top trading cycles algorithm. To ensure comparability,
we will restrict our attention to the woman-proposing Gale-Shapley algorithm and
the “ woman-choosing” top trading cycles algorithm. The two alternative matching
algorithms are described below.

The woman-proposing Gale-Shapley algorithm proceeds as follows: In the first
round, each woman proposes to her favorite man. Each man tentatively accepts (ie,

“dates”) the woman that he prefers most amongst the women who have proposed to

2We do not need to define Pareto optimality for a BAMM setting.
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him. He rejects all other proposals. In any subsequent round, each woman who is
not currently “dating” a man proposes to her most preferred man from amongst the
set of men have not rejected her at any previous round. If a man prefers his current
partner to all the proposals he receives in the current round, he rejects all proposals
and continues “dating” his existing partner. On the other hand, if a woman who
has proposed to a man is more attractive to him than his current partner, he ends
his “engagement” with his current partner and starts “dating” the most preferred
woman who proposed to him in the current round. He rejects all other proposals.
The algorithm stops when there are no more rejections by men.

The “ woman-choosing” top trading cycles algorithm proceeds as follows. In the
first step, each man points to his favorite woman and each woman points to her
favorite man. If (mq,wy, ma, wy, ..., mg, wy) form a cycle, each woman pairs with
the man she points to. Matched men and women are removed and the algorithm
proceeds until everyone is matched.

As originally shown by Gale & Shapley (1962), the Gale-Shapley algorithm pro-
duces a stable match. On the other hand, the top trading cycles algorithm produces
a woman-Pareto optimal assignment, ie, an assignment of men to women such that
by changing the assignment, no woman can be made better off without making at
least one other woman worse off. The (Gale-Shapley assignment is not necessarily
woman-Pareto optimal while the top trading cycles assignment is not necessarily
stable (see Abdulkadiroglu & Sonmez (2003) for an illustration).

A matching mechanism is said to be strategy proof if it is a dominant strategy for
all agents to reveal their true preferences under that mechanism. Since the woman-
proposing Gale-Shapley mechanism is woman-optimal, it is a dominant strategy for
each woman to state her true preferences (see Roth & Sotomayor (1990), Theorem
4.7, page 90). However, with strict preferences, whenever more than one stable
assignment exists, there will always be an incentive for some man to misrepresent

his preferences under the woman-proposing Gale-Shapley algorithm (see Roth &



Sotomayor (1990), Corollary 4.12, page 96). A similar result applies to the top
trading cycles algorithm. Abdulkadiroglu & Sonmez (2003)* prove that the top
trading cycles mechanism is strategy proof for women while the example in our

Appendix A shows that it is not strategy proof for men.

4 Implementing the BAMM Assignment in a BIM
Framework

Proposition 1 below provides a sufficient condition under which the BAMM assign-
ment may coincide with the assignment under BIM with top-trading cycles. In order

to state Proposition 1, we must first introduce some notation and establish a lemma.

For J = M, W, define Uy = {uc R: 3 A€ Ast. u= Y., U;(A)}
U = max >icsUi(A) and A% = ar%leriax > ics Ui(A), .

In words, A% is the set of assignments, each element of which maximizes the sum
of utilities of all individuals belonging to set J.

*7(_1) P r7 —

Uz = Aéﬂ?ﬁ;z@ Ui(A), J =MW
In words, if the unique values of the sum of utilities (over all possible assignments) of
individuals in set 7 (to members of the opposite sex) were to be ranked in descending
order, U;(fl) would be the second element.

Further, define CONDITION A as follows:
CONDITION A: Uy, — Uyl Y > Us,, and A3, is a singleton.

With a view toward understanding the condition intuitively, let us define the first-
best assignment for any gender as the assignment that maximizes the sum of utilities
of all members of that gender across all possible assignments. Then, CONDITION
A translates into the requirement that the first-best assignment for men entail a

lower total utility (to men) than the difference in utility (to women) between the

3See their Proposition 4, pg. 738



first-best and the second-best assignment for women. Since we have normalized the
utility of non-marriage to zero, CONDITION A implies that men, as a group,
are less sensitive to marriage than women. Also, note that CONDITION A is a
cardinal property, ie, whether it holds depends on the choice or cardinalization of the
utility function representing preferences. Given underlying preference orderings over
private and public consumption goods in marriage, it has to hold for a well-chosen
cardinalization of utility such that the Pareto frontier is a hyperplane as in (1).

As an illustration of CONDITION A consider the following example.

Example 1

An economy consists of three men and three women with the following preferences’

Suppose the utilities from different assignments are given by

Table 1
’ H Woman 1 \ Woman 2 \ Woman 3 ‘
Man 1 (1,5) (0,10) (0.5,1)
Man 2 || (0.5,10) (1,5) (0,0.5)
Man 3 || (0.5,2) (1,2) (0,0)

In Table 1 above, the entry in the cell with index (i, j) is the ordered pair (U7, U;)
where Uij denotes the utility of man 7 if he were to marry woman j and U ; denotes
the utility of woman j if she were to marry man 1.

It is easy to check that CONDITION A holds in the example above (see Ap-
pendix B).

As stated earlier, CONDITION A requires that the loss in total utility to
women by moving from the assignment that is first-best for women to the assignment
that is second-best for women exceed the total utility (to men) of the first-best

assignment for men. Thus, it seems intuitive that this requirement implies that

4The preference ordering in this example is a slight alteration of Example 1 in Abdulkadiroglu
& Sonmez (2003), pg. 736. Cardinal utility values consistent with the ordering have been added
by us.
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the assignment that is first-best for women also maximizes the total utility of all

individuals (of both sexes). This is formally demonstrated in the lemma below.

Lemma 1

If CONDITION A holds, A* € A}, = A* € argmax [Y, .\ Un(4) +

N AeA
ZwGW UW(A>:|
Proof: See Appendix C.

Proposition 1

If the top-trading cycles algorithm produces an assignment A* € A3, and CON-
DITION A holds, then the assignment under top-trading cycles coincides with an
equilibrium BAMM assignment.

Proof: See Appendix D.

As an illustration of the proposition above, note that in Example 1 the man-
pointing, woman-choosing top trading cycles algorithm converges to the following

assignment.

M1 — W27 M2 — Wl, M3 — W3 (2)

By part 1 of Proposition 1, (2) is also the equilibrium assignment under BAMM.
The woman-proposing variant of the (Gale-Shapley algorithm converges to the

unique stable assignment, which is the following:

M1 — Wl, M2 — WQ, M3 — W3 (3)

Notice that assignments (2) and (3) are distinct. Thus, A* is not stable in general.
Note that Proposition 1 requires that the top trading cycles assignment coincide
with an element in Aj,. While that may be the case, it is not guaranteed to happen.
In particular, the top trading cycles algorithm can converge to an assignment that

is Pareto optimal but does not belong to Aj,,. As an illustration of this consider the

11



following simple example.

Example 2

Suppose there are two individuals of each gender in the economy and their utilities

from alternative assignments are as shown in Table 2 below:

Table 2
H Woman 1 \ Woman 2 ‘
Man 1 (0,10) (1,5)
Man 2 (0,0) (1,0)

If we run the top trading cycles, in the first step both women point at man 1.
Both men point at woman 2. Man 1 and woman 2 form the only cycle, so they
match. In the next step man 2 matches with woman 1. Thus the top trading cycles

algorithm produces the following assignment.

W1 — MQ, W2 — M1 (4)

Notice that assignment (4) yields a total utility of 6, which is lower than the total

utility of 11 yielded by assignment (5) below

W, — M1, Wy — M, (5)

Hence, assignment (5) is the unique BAMM assignment in this economy, and the top
trading cycles algorithm reaches a different assignment.

Since our interest lies in implementing the BAMM assignment, that leaves open
the issue as to whether there are conditions on preferences under which the top trad-

ing cycles algorithm or some variant thereof can implement the BAMM assignment.

Example 2 above illustrates why the top trading cycles algorithm may fail to

converge to the BAMM assignment. If the preferences of men are such that they

12



prefer women who lose lower amounts of utility when they are matched with a lower
ranked partner as opposed to women who lose higher amounts of utility when forced
to make the corresponding change in respect to their partner, the assignment result-
ing from the top trading cycles is different from the BAMM assignment. In order
to ensure that the top trading cycles implements the BAMM assignment, we need to
make more assumptions on preferences. To that end, we first introduce a definition.

Definition:

Woman i is more sensitive than woman ¢’ if and only if the following holds:

GO g9 > N.@N —dD) Wi e (1,2, N — 1)

where U; := {u € Ry |3A € As.tu = U;(4)} and Z:{;-(j) denotes the j-th order statistic
of IJ,

In words, if a more “sensitive” woman were to be matched with a partner one
rank below rather than with a partner of the rank (according to her ordering) under
consideration, she would lose more utility than all “less” sensitive woman could gain
by switching from her worst partner to her best partner.

We assume that women can be ranked by order of sensitivity. We state this
formally in Assumption 1° below.

Assumption 1: Sensitivity

The following statements hold:
L. mnlf;=C, CeR, YieW

2. i is more sensitive than i + 1 Vi€ {1,...N -1}, i e W

5These are not the weakest possible assumptions that implement the utilitarian efficient assign-
ment, but weaker assumptions are more complicated.
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Assumption 2: Hierarchy

1. There exist a finite number of groups labeled 1,2, .., K, where K < N, ranked
hierarchically; group 1 being the highest and group K being the lowest. For-
mally, let the family of sets Py, P», ..., Pk be a partition of the set of all agents

in the game, i.e., M UW.
2. There are an equal number of men and women in each set P, k = 1,2, ..., K.

3. Given wy,wy € W, if wy is more sensitive than wsy, wy is in the same level as

wy or at a higher level than ws.

4. For men and women in a group k, k < K, the following holds: For each
woman (man), there is a distinct man(woman) in her(his) level whom she(he)
strictly prefers to all other men(women) in her(his) level or below her(his) level.
For men and women in a group k > 1, the following holds: Each woman(man)
strictly prefers any man(woman) above her(his) level to any man(woman) in

her(his) level.

One can think of at least two real-world scenarios in which it is plausible that
Assumption 2 holds. The first is a school assignment context where a school may
have a priority for students who live in the attendance area of the school, or has
siblings attending the same school (see Abdulkadiroglu & Sonmez (2003)). The
second example, and the one that is more closely related to the current context, is
the Indian marriage market, where there are quite a few castes ranked hierarchically
(see Anderson (2003)). Interestingly, Anderson (2003) uses a quality-of-groom (as
perceived by the bride) function which is such that a bride prefers grooms of a higher
caste to those of a lower caste. Such a quality-of-groom function is consistent with
Assumption 2.

We are now in a position to state the central proposition in this paper.

14



Proposition 2

If Condition A, Assumption 1 and Assumption 2 hold, the top trading cycles algo-
rithm produces the BAMM assignment.
Proof: See Appendix E.

As an illustration of Proposition 2, consider the following example®:

Example 3

There are three women and three men with preference orderings given below.
mp Wy > W3z > W2
Mo @ Wo > W1 > W3

ms : Wo > W1 > W3

w1t Mg > My > M3

W : My > Mg > M3

Ws > 1My > Mg > M3

There are two levels in society, ie K = 2. Level 1 consists of {mj, ms, w;,ws} and
level two consists of {mg3, ws}. Notice that this preference ordering satisfies Assump-
tion 2 if we further assume w; is more sensitive than wy, who is more sensitive than
ws. To see this, observe that the most preferred woman for m; and my are both from
level 1. The same holds for w; and ws. Further, ws is ms’s worst choice. Similarly,
ms is ws’s worst choice.

The top trading cycles algorithm on this particular preference ordering pro-
ceeds as follows: At Step 1, there is exactly one cycle, which is the following:
(w1, ma, we, my). Notice that this cycle is nested within level 1. Further, all members
from level 2, ie m3 and w3 point to some member in level 1, but neither ms nor ws

is part of any cycle. At Step 1, wy is matched with my and wy is matched with m;.

6The example is adapted from Abdulkadiroglu & Sénmez (2003), Example 1, Pg. 736
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At Step 2 of the algorithm the only cycle is (mg, ws). Thus, ms and ws are paired
at Step 2 of the algorithm, and the algorithm terminates.

While the matching produced by the top trading cycles algorithm is woman
Pareto optimal, it is not stable. For example, m; prefers ws over his current match
and ws prefers m; over her current match. Two aspects of the matching produced
by the top trading cycles algorithm are worth emphasizing. First, all matches are
nested within levels. This is consistent with caste endogamy observed in the Indian
marriage market. Second, given the assignment produced by the top trading cycles,
the profitable bilateral deviation is between the two levels, not within a given level.

This is a result that holds generally. The proposition below states this formally.

Proposition 3

If Assumption 2 holds, all bilaterally profitable deviations from the matching produced
by the top trading cycles are across levels.

Proof: See Appendix F.

The fact that bilaterally profitable deviations are across levels has the follow-
ing interpretation in the Indian marriage context: If the marriage matching process
in society produces a utilitarian efficient matching, individuals may have an incen-
tive to deviate from the efficient matching. To prevent those one would need strict
social norms, for example, brutal punishments to couples who bilaterally deviate.
However, these punishments would not be necessary if the matching produced were
stable. Thus, the existence of costly-to-implement social sanctions against inter-caste
marriages is consistent with our framework, but cannot be rationalized if the mar-
riage matching in the Indian market were to be thought of as being produced by the
Gale-Shapley algorithm.

We now provide a partial converse to Proposition 1. To that end, define CON-
DITION B as follows:

16



CONDITION B: Uy, — > Uw(A%) > Uiy, Ay is a singleton, and A%, N

Agy =0,

wew

In words, CONDITION B requires that the total loss in utility to women by
moving from the assignment that is first-best for women to the assignment that is
first-best for men exceed the total utility to all men from the assignment that is first-
best for men. If we assume A%, N A5, = 0, CONDITION A — CONDITION B
To see why this is true, assume that A%, N A}, = 0 and CONDITION A holds. So,
U;\}(_l) > wew ﬁw(Aj\A) Hence,

Upy = Upt ™V > Up = Uy = S Uu(A) > Uiy
Hence, A%, N A}, = 0 and CONDITION A — CONDITION B. Before we
introduce the next proposition, we need to develop some notation. Denote by A%,

the assignment that the top trading cycles algorithm produces.

Proposition 4

If Aavn = Avre = Ay AN Abay = 0 and A% 400 s a singleton, then
CONDITION B holds.
Proof: See Appendix G

Next, we illustrate through an example that Assumption 2 is necessary for imple-
menting the utilitarian efficient matching through the top trading cycles algorithm.

Consider the example below:

Example 4

Table 3

H Woman 1 \ Woman 2 \ Woman 3 ‘
Man 1 (5,500) (0.1,25) (1,6)
Man 2 || (1,1000) (5,50) (0.1,5)
Man 3 (1,0.1) (5,0.1) (0.1,0.1)
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In Table 3 above, the entry in the cell with index (i, j) is the ordered pair (U7, U;)
where Uij denotes the utility of man 7 if he were to marry woman j and U j’ denotes the
utility of woman j if she were to marry man i. Note that in the example above, the
preference ordering satisfies CONDITION A and Assumption 1, but fails to satisfy
Assumption 2 (see Appendix H for details). Further, as we show in Appendix H, the

top trading cycles algorithm produces the following assignment:

W1 — Ml, W2 — MQ, W3 — M3

The assignment above results in a total utility of 560.2 to all agents, which is

lower than 1026.3 produced by the following assignment:

W1 %MQ, W2—>M1, W3—>M3

Hence, in the example above, the top trading cycles algorithm does not result in

a utilitarian efficient assignment/matching.

Finally, note that in the “unusual” case where a stable assignment is also Pareto
optimal, the equilibrium under BIM with the Gale-Shapley algorithm could coincide
with the equilibrium with the top-trading cycles algorithm. This equilibrium could
be distinct from the equilibrium under BAMM. As an illustration, consider the

following example’.

Example 5

Suppose the economy consists of two men and two women whose preferences can be
represented by the cardinal utility shown in Table 4 below.

The equilibrium BAMM assignment is the following:

M, — Wl, My — Wy (6)

"The example is a slight modification of the example in Pollak (2019), pg 23.
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Table 4

H Woman 1 ‘ Woman 2 ‘
Man 1 (11,1) (2,2)
Man 2 (2,2) (0,0)

Irrespective of whether one uses the top trading cycles algorithm or the Gale-Shapley

algorithm, the BIM assignment is the following:

M1 — WQ, MQ — W1 (7)

Note that assignments (6) and (7) are distinct.

5 Conclusion

The set of stable marriage matches, and their welfare implications, are different
depending on whether allocation within marriage is determined by binding agree-
ments in the marriage market (BAMM) or by bargaining in marriage (BIM) with no
commitment. With transferable utility, any stable matching is utilitarian efficient
under BAMM. This, however, does not hold under BIM, which appears to be a more
(empirically) plausible assumption than BAMM. In this paper we showed that it is
possible to implement the utilitarian efficient matching even in a BIM setting. If
agents on one side of the market are sufficiently sensitive to matches relative to the
other side, the more sensitive side can be ranked by sensitivity, and preferences over
members of the opposite sex are hierarchical, the top trading cycles algorithm results
in a utilitarian efficient matching.

Given that the assignments produced by using the alternative algorithms of Gale-
Shapley and top trading cycles under BIM could be different, it is of great interest to
examine the empirical evidence on which algorithm better represents the real world
marriage market. After all, these algorithms are not meant to serve as literal descrip-

tions of the matching process, but rather as constructive proofs of the existence of a
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matching with desirable properties — stability in the case of the Gale-Shapley algo-
rithm and Pareto efficiency in the case of the top trading cycles algorithm. Thus, the
choice of one matching algorithm over the other should not be based on the consid-
eration as to whether one provides a better literal description of marriage matching
but on whether one algorithm is better able to rationalize the data as compared to
the other. However, this question has hardly been addressed in the literature.

There are only a few empirical papers dealing with marriage-matching in a non-
transferable utility setting that use the GGale-Shapley algorithm. For instance, Hitsch
et al. (2010) estimate mate preferences from matches observed on a dating site. Then
they use the Gale-Shapley algorithm to predict matches on the dating site and do
fairly well. They also attempt to use the estimated preferences to predict matches in
the real world, again using the Gale-Shapley algorithm. In the real world, the Gale-
Shapley algorithm underpredicts assortative matching on several dimensions. Lee
(2009) performs a similar exercise using data from an online matchmaking platform
in South Korea. In her exercise, she estimates preferences with matchmaker data,
and the Gale-Shapley algorithm does a fair job of predicting matches amongst users
of online services. Gale-Shapley predictions, however, are somewhat off in terms of
predicting matches in the real world. Banerjee et al. (2013) use data on matches in
the marriage market from India to estimate preferences for partner attributes, most
notably for caste of the partner. They use their estimated preferences to simulate
matches using the Gale-Shapley algorithm to clear the marriage market. While
moments from their simulated data match data fit real world matches on several
dimensions, their simulations overpredict (by a substantial margin) caste homogamy
relative to that in the data.

In summary, the Gale-Shapley algorithm does not do a stellar job in predicting
matches in the real world. Further, while there is sufficient evidence to suggest that
BIM, rather than BAMM, is an appropriate framework to model ongoing marriages,

there are, to the best of our knowledge, no empirical studies that investigate whether
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the marriage market equilibrium in the real world is substantially different from the
BAMM equilibrium. Moreover, social norms governing marriage and courtship vary
widely across the world, and there may exist social norms that violate stability. For
example, in Kyrgyzstan, men routinely kidnap women, often without their consent,
for marriage (see Kleinbach ef al. (2005), Handrahan (2004) and Nedoluzhko & Agad-
janian (2015)). In India, caste endogamy and clan exogamy are widely prevalent. It
is possible that social norms relating to endogamy and exogamy serve to facilitate
efficient matches even though these matches may not be stable. Further, the fact
that they are often enforced by brutal social punishments to couples that deviate
could be on account of the fact that the utilitarian efficient matching is not robust to
bilateral deviation. In all these cases, the top trading cycles algorithm, which results
in an assignment that is Pareto optimal, could be a better predictor of matches in the
real world than the Gale-Shapley algorithm, which results in an assignment that is
stable. In future research, we intend to estimate models using the top trading cycles
algorithm instead of the Gale-Shapley algorithm, for example, with the data in the

studies cited above.
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Appendices

A Example: Top Trading Cycles is not strategy-
proof for men

The example below illustrates that top trading cycles algorithm is not strategy proof
for men.

Suppose there are three men and three women and that their true preferences are as
follows:

my Wy > Wy > We

Mo @ Wo > W1 > W3

ms : Wo > Wy > W3

w1t Mg > My > M3
W : My > Mg > M3
Ws 1My > Mg > M3
If everyone reveals her/his true preference, the top trading cycles mechanism con-
verges to the following assignment:
mp — Wy, Mg —> Wi, M3 — W3
Notice that man 1 is matched with the woman ranked lowest according to his pref-
erence ordering.

Suppose man 1, instead of revealing his true preferences, reveals the following:
m{alse DWs3 - Wy = W
Suppose further that all other individuals in the economy state their true preferences.
In this case the top trading cysles mechanism converges to the following assignment.
mp — wsz, Mg — Wy, M3z — Wy
Notice that man 1 is now matched with the woman ranked second according to his

true preference ordering. Thus, truth-telling is not a dominant strategy for man 1.
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B Example 1 satisfies CONDITION A

Table 5: Tabulation of sum of Utilities from all Possible Assignments

] (m,w) pairs \ Y e Um \ > wew Uw ‘
(1,1), (2,2), (3,3) 2 10
(1,2), (2,3), (3,1) 0.5 12.5
(1,3), (2,1), (3,2) 2 13
(1,1), (2,3), (3,2) 2 7.5
(1,2), (2,1), (3,3) 0.5 20
(1,3), (2,2), (3,1) 8

’ Maximum ‘ 2 ‘ 20 ‘

Here, U}, = 2, Usy, = 20, Uy~ = 13
Uy — U =7>2=U3,
Hence, CONDITION A holds.

C Proof of Lemma 1

Suppose CONDITION A holds, A* € A3, but A* ¢ arg max [> .\, Un(A) +
AcA
> wew Uw(A)]. Then, 3 A’ € A, A’ # A* such that

[ X Un(A) + 2ew Un(A)] > [Zmep Un(A%) + 2 e Un(A7)]
= [Zmem ﬁm(Al>+Zw€W ﬁw(A/)] > [ em ﬁm(A*)+UM [ AT € A3
Rearranging the above inequality and applying CONDITION A, we have

[ D Un(A) = D Un(A)] > [y = 3 Ul )] 2 U3y = U ™ > Ui (8)

meM meM weWw

But Up > Y Un(A) > [ D Un(A) = Y Un(A)] VA €A (9)

meM meM meM

From (8) and (9), Ux, > Ui, which is a contradiction.ll
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D Proof of Proposition 1

Suppose the top-trading cycles algorithm produces an element A* € Aj,, and CON-
DITION A holds. With transferable utility, the set of equilibrium assignments
under BAMM is given by Af = {A € A: A € argmax [Y, Un(A) +
Y wew ﬁw(A)}} Thus, if CONDITION A is true, from ALEsmma 1 we conclude

E Proof of Proposition 2

Step 1

Definition: Nested Cycle
A cycle C' = (my,wy, ..., My, wy,) is nested within level k, k < K if and only if for
any j, j = 1,2,...,n, such that m;,w; € C, m; and w; are both in level k.

Claim: At Step 1 of the TTC, all cycles are nested within the top level,
ie, level 1.

Proof -
Suppose not. Then there is at least one cycle not nested within level 1. First, notice
that all individuals below level 1 are pointing at someone in level 1. So any cycle
has to include at least one person from level 1. Suppose such a cycle is not nested
within level 1. Then there is at least one man or woman in level 1 who is pointing
at a woman or man at level k£, £k > 1. But that implies she or he prefers a partner

below her or his level to all partners at her/his level, which violates Assumption 2.l

Step 2

Claim: Fach man and woman in level 1 is part of some cycle at Step 1 of the top
trading cycles (TTC).
Proof
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Suppose there are some women and men in level 1 who are not part of any cycle
at Step 1. Note that there is at least one cycle. Since each man and woman has
a unique and distinct most preferred mate, no individual who does not belong to
any cycle is pointing to any individual who is part of a cycle. Further, there are
as many men as women who do not belong to any cycle. Let each man point to
his most preferred woman and each woman point to her most preferred man. Let
such men and women form the following ordered list: (m§, ws, ....,m{, wf). Then, wf
must be pointing back at some man in the ordered list, thus forming a cycle, and
contradicting the initial claim that no man or woman in (mg, w{, ...., m{, wy) belongs

to a cycle.l

Step 3

Claim: Each man and woman in level 1 is matched at Step 1 of the TTC.

Proof :

From Step 2 of this proof, each man and each woman at level 1 is part of some cycle.
By construction of the T'TC, each woman is matched with the man she points to at
Step 1 of the TTC. Hence, each man and woman in level 1 is matched at Step I of
the TTC.A

Step 4

Claim: At any subsequent Step k of the TTC, all cycles are nested within level k.
All individuals at level k are matched in Step k.

Proof:

By induction on k.

Suppose the statement is true for some k = m, m < K — 1. We will show that the
statement is true for £ = m+ 1. Note that by Step m + 1 of the T'TC, all individuals
at or above level m are already matched. (This holds by the induction hypothesis.)

By the same argument as in Step 1 of this proof, all cycles at Step m + 1 of the TTC
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are nested within level m 4 1. By the same argument as in Step 2 of this proof, each
man and woman at level m + 1 is part of some cycle at Step m + 1 of the TTC, and

are, therefore, matched at Step m + 1 of the TTC.H

Step 5

Claim: The top trading cycles algorithm produces a matching A* where A* is given
by:

A(uwn) = my 5.t Uy (my) = maw{Us, (1), Uy, (), o Uy (m)}

For j ={2,3,..., N}, A*(w;) =my

s.t. Uy, (my) = ma:z:{{ij(ml), U, (M2), ..., Uy, (mx) }\
Proof

i=1,.,j—1 A(wi)}

Consider women at level 1, ie wy,..,wg,. Each woman at level 1 has a unique and
distinct most preferred man. Thus, m; # m;, VI # ', w;, wy € level 1, where

m; = argmaz{Uy,(m1), Uy, (Mm2), ...., Uy, (mn)}

Hence, for all women at level 1, A* satisfies the following property:

A*(wy) = my s.b. Uy, (my) = maz{Uy, (m1), Uy, (M2), ...., Uy, (mn)}, and

for j ={2,3,..., Ki}, A*(w;) = m]

s.t. Uy, (my) = max{{ij (1), Uy (m2), oy U, ()} U A(wi)}

All men and women at level 1 are matched in Step 1 of the TTC. Thus, when
the TTC proceeds to Step 2, the most preferred men of all women at level 2 have
already been eliminated at Step 1 of the TTC. Thus, each woman at level 2 has a
unique and distinct most preferred man from amongst the set of unmatched men.
Hence, the argument in the above paragraph can be applied repeatedly to establish

the claim. H

Step 6

Claim: A* is woman-Pareto optimal.

Proof
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Suppose A* is not woman-Pareto optimal. Then 3 an assignment A’ # A* such that
Uy, (A') > Uy, (A*) Yw; € W and 3 wy € W such that (N]wi, (A") > ﬁwi,(A*). Define
i = min{i’ € {1,2,...,]\7}\[7%,(14’) > ﬁwi,(A*)}. By definition, A* assigns w;
to her most preferred man. Hence, i/ . # 1. Further, by construction of A*, the
following holds: If the preference of w;  clashes with the preference of a woman
with a higher index, w; ’s preferences are given priority. Since preferences over
men are strict, it follows that if assignment A’ matches w;  with the partner that
some woman with a higher index had under assignment A*, w;; would be worse off

under assignment A’ than under assignment A*. But that cannot be the case since

that would violate the definition of i’ , . Formally, $ 4, i > i’ ., such that

min»

Al(wy ) = A*(w;). So, wy s partner under A’ must have been the partner of a

min

woman with a lower index under A*. Formally, 3 w; € W,i € {2,...,4/,, — 1} such

that A’(wy ) = A*(w;). But then A" must match w; with a man who, under A*,

was the partner of a woman with an index (weakly) higher than 4/, . So it must
be the case that A'(w;) = A*(w;) where 7 € {i/;,, ..., N}. However, by construction

of A%, Uy, (A*(w;)) > Up, (A*(w3)) = Uy, (A'(w;)) = Up,(A) < Uy, (A*) which

contradicts the definition of A’. B

Step 7

A e A}, = A is woman-Pareto optimal

Proof -

Suppose A is not woman Pareto optimal. Then there is an assignment A’ £ A such
that Uy, (A') > Uy, (A) Yw; € W and 3 wy € W such that U, (A') > U, (A).

Let Wy = {w € W|U,(A") > U,(A)}.

> wew Uu(A) = X pem, UulA) + Epemm, TulA) > 3 e TulA).

Hence, A ¢ A3,. R
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Step 8

Claim: If Assumption 1 holds, A* is the unique element in Aj,,.

Proof :

From Step 7 above, it suffices to demonstrate that > ., Up(A*) > Y wew Uy (A
where A’ # A* and A’ is an arbitrary woman Pareto optimal assignment.

Suppose A" # A* and A’ is an arbitrary woman Pareto optimal assignment.
Define the set of losers L := {w € W|Uy,(A") < U,(A*)} and the set of gainers
G = {w € W|U,(A) > Uy, (A*)}

For I = L, G, define I,,;, := min{i €{1,2,..,N}uw; € I} and 1,4, = max{i €
{1,2,..., N}|w; € I}. Notice, Lyin < Gmin- To see why this holds, assume, for the
sake of contradiction, that L., > Gnin®. Note that G,,;, # 1, because A* matches
wy with her most preferred man. Further, by construction of A*, the following holds:
Under assignment A’ any woman w; € G would have to be matched with a man,
who, under A*, was partnered with a woman w;, where 7 < 7. In particular, this
holds for G,nin. Thus, 3i € {1, .., Gpin — 1} such that under A’, G,,;, gets i’s partner
under A*. But then, woman i has a different partner under A’ than under A*. Since
preferences are strict, woman ¢ is not indifferent between A’ and A*. She has a lower
index than G, so w; ¢ G. Therefore, w; € L, which contradicts the supposition
that L > Goin-

Hence, 3 at least one woman, wy_. € L, who is more sensitive (or equivalently,

has a lower index) than any woman in G.

Now, ¥V w € G, Uy(A") = Uy(A%) < (U =ty < @) —ul) )
where the second inequality above follows from observing the fact that any w € G is
and by applying Assumption 1.

weakly less sensitive than wg

min

8 Limin = Gumin is D0t a possibility because the same woman cannot be both a loser and a gainer,
i.e., she cannot be in both sets L and G.

9From Assumption 1 it follows that for any i < 7/,
AN~ D) < L@ — a9 < @D - TD) < @D T where j € 1,2, N — 1}
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Hence, we have

Y [Uu(A) = Uu(A)] < |GLUE)  —UD ) < NUY) —ul) ) (10)

weG

Since Lin < Guin, by Assumption 1,

(A) = Uuy (AN > N.UY  —UD) )

min me'Ln
; (1)

)

[V

— > [Uu(A7) = Tu(A)] > N.@ULYY) U

min Gmin

min

weL

Now, > e Uw(A*) = > e Un(A')
= ZweL [ﬁw<A*) - ﬁw(Alﬂ - ZwGG [fjw(A/) - ﬁw<A*)}

From (10) and (11), >, o Uuw(A*) =D ey Uw(A) >0 W

Step 9

Claim: Under Assumption 1 and CONDITION A, A* = A% 0
Proof:
From Step 8 above, A* is the unique element in Aj,, if Assumption 1 holds. From

Proposition 1, if CONDITION A holds, A* = A% 45, B

F  Proof of Proposition 3

For any level k, k < K, each woman at level k£ gets her most preferred man within

level k. So a woman from level £ is not interested in deviating to any man at level k.l

G Proof of Proposition 4

Suppose Ap sy = Arre = A3y and Aj 45, 1s a singleton. Then,

Uy + Smert Un(Asaning) > e Un(A) + 5 g Un(A) VA # Ap iy

In particular, for A = A}, we have
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%y + 2 memt Un(ABaninr) > D wew ﬁw(A*M) + Ul
= Uy — D wew ﬁw(Ajvt) > Up = Domem ﬁm(-A*BAMM) > Uy

— CONDITION B.R

H Details relevant to Example 4

H.1 Example 4 satisfies CONDITION A

Table 6: Tabulation of sum of Utilities from all Possible Assignments

| (m,w)pairs | > o Un | 2 e U |
(1,1), (2,2), (3,3) 10.1 550.1
(1,2), (2,3), (3,1) 1.2 30.1
(1,3), (2,1), (3,2) 7 1006.1
(L1), (2.3), (3,2) 10.1 505.1
(1,2), (2.1), (3,3) 1.2 1025.1
(1,3), (2,2), (3,1) 7 56.1

| Maximum | 101 | 1025.1

Here, U}, = 10.1, Uy, = 1025.1, U™ = 1006.1
U — UtV =19 > 101 = Uy,
Further, the matching {(1,2),(2,1),(3,3)} uniquely maximizes ) ., Us.
Hence, CONDITION A holds.

H.2 Example 4 satisfies Assumption 1

First, observe that each woman’s utility from her worst possible match is 0.1. Next,
notice that w; is more sensitive than ws. By moving from her first-best to her
second-best match, w; loses 500 utils while she loses 499.9 utils by moving from her
second-best to her third-best. Both these number are more than 149.7 utils'’. Note
that wy’s gain by moving from her best to her worst partner equals 49.9. Similarly,

wsq is more sensitive than ws. By moving from her first to her second-best ws loses 25

1049.9 X 3 = 149.7
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utils while she loses 24.9 utils. Both these numbers are larger than 17.7 utils, which

is what ws gains by moving from her worst to her best choice'!.

H.3 Example 4 violates Assumption 2

We must show that there is no partition of M U W such that the conditions of As-
sumption 2 are satisfied. We can consider all possible partitions of M U W below.
Case 1

K=1,P=MUW

M UW does not satisfy Assumption 2. w; and ws both have my as their stated

preference, which is a violation of Assumption 2.

Case 2

K = 2. There are two sub-cases of this case.

1. Consider a partition in which w; and wy are at the same level and ws is at a
lower level. Both w; and w, both have my as their stated preference, which
is a violation of Assumption 2. To see why, notice that ms can either belong
to the same level as wy or the lower level. In the first case, Assumption 2 is
violated because the most preferred man (in the same level) for two women are
not distinct. In the second case, Assumption 2 is violated because the most

preferred man of both w; and ws belong to a lower level.

2. Consider a partition in which w; is at the highest level and wy, and w3 both
belong to the lower level. ms can belong to the higher or to the lower level.
If msy belongs to the lower level, m; and mgs belong to a higher level. But w,
prefers ms, who is at a lower level over my, who is at a higher level. This is a
violation of Assumption 2. Alternatively, if my belongs to the higher level, m,

and mg must belong to the lower level. Then, w;’s preference ordering violates

H59X 3 =177
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Assumption 2, because she prefers my, who is at a lower level, over msy, who is

in a higher level.

Case 3
If K = 3, we might have the following sub-cases:
Sub-case 1
Py = {wy,mq}, Py = {wy,my}, P3s = {ws, ms}
Notice, wy prefers ms, who is in a lower level over my, who is in a higher level. This
is a violation of Assumption 2.
Sub-case 2
Py = {wy,ma}, Py = {wq, ms}, P3 = {ws,may}
Notice, wy prefers mo, who is in a lower level over m, who is in a higher level. This
is a violation of Assumption 2.
Sub-case 3
Py = {wy,ma}, Py = {ws,m1}, Py = {ws, ms}
Notice, m; prefers ws, in level 3, over ws, who is in level 2, thereby violating As-
sumption 2.
Sub-case 4
Py = {wy,mz}, Py = {wa,m1}, P3 = {ws,my}
Notice, wy prefers mq in level 2 over ms in level 1, thereby violating Assumption 2.
Sub-case 5
Py = {wy,ma}, Py = {ws, ms}, Py = {ws,mi}
Notice, ws prefers my in level 3 over mg in level 1, thus violating Assumption 2.
Sub-case 6
P = {wl,m:s}, Py = {11)2,7712}7 Py = {w37m1}

Notice, w; prefers mqy in level 2 over mg in level 1, thus violating Assumption 2.
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H.4 Top Trading Cycles (TTC) on Example 4

In Step 1 of the TTC, My and W5 are the only two agents that are part of a cycle.
They are matched in Step 1. The algorithm proceeds to Step 2. M; and W, are the
only two agents that are part of a cycle. They are matched in Step 2. In Step 3, Mj;
and W3 point to one another, and are matched. Thus, the TTC algorithm produces

the following assignment:

W1 — Ml, W2 — MQ, W3 — M3
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