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Abstract

We consider an infinitely repeated prisoner’s dilemma under costly

monitoring. If a player observes his opponent, then he pays an observa-

tion cost and knows the action chosen by his opponent. If a player does

not observe his opponent, he cannot obtain any information about his

opponent’s action. Furthermore, no player can statistically identify the

observational decision of his opponent. We prove efficiency without any

signals. Then, we extend the idea with a public randomization device and

we present a folk theorem for a sufficiently small observation cost when

players are sufficiently patient.

Keywords Costly observation; Efficiency; Folk theorem; Prisoner’s

dilemma
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1 Introduction

A now standard insight in the theory of repeated games is that repetition enables
players to obtain collusive and efficient outcomes in a repeated game. However,
a common and important assumption behind such results is that the players in
the repeated game can monitor each other’s past behavior without any cost. We
analyze an infinitely repeated prisoner’s dilemma game where each player can
only observe or monitor his opponent’s previous action at a (small) cost and
a player’s monitoring decision is unobservable to his opponent. We establish
an approximate efficient result together with a corresponding approximate folk
theorem.
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In our model, we consider costly monitoring as a monitoring structure. Each
player chooses his action and makes an observational decision. If a player chooses
to observe his opponent, then he can observe the action chosen by the opponent.
The observational decision itself is unobservable. The player cannot obtain any
information about his opponent in that period if he chooses not to observe that
player.

Furthermore, no player can statistically identify the observational decision of
his opponent. That is, our monitoring structure is neither almost-public private
monitoring (Hörner and Olszewski (2009); Mailath and Morris (2002, 2006);
Mailath and Olszewski (2011)), nor almost perfect private monitoring (Bhaskar
and Obara (2002); Chen (2010); Ely and Välimäki (2002); Ely et al. (2005);
Hörner and Olszewski (2006); Sekiguchi (1997); Piccione (2002); Yamamoto
(2007, 2009))

We present two results. First, we show that the symmetric Pareto efficient
payoff vector can be approximated by a sequential equilibrium without any
signals under some assumptions regarding the payoff matrix when players are
patient and the observation cost is small (efficiency). The second result is a
type of folk theorem. We introduce a public randomization device. The public
randomization device is realized at the end of each stage game, and players see
the public randomization device without any cost. We present a folk theorem
with a public randomization device under some assumptions regarding the payoff
matrix when players are patient and the observation cost is small. The first
result shows that cooperation is possible without any signals or communication
in the venture company example. The second result implies that companies
need a coordination device to achieve an asymmetric cooperation in the venture
company example.

The nature of our strategy is similar to the keep-them-guessing strategies in
Chen (2010). In our strategy, each player i chooses Ci with certainty at the
cooperation state, but randomizes the observational decision. Depending on
the observation result, players change their actions from the next period. If the
player plays Ci and observes Cj , he remains in a cooperation state. However,
in other cases (for example, the player does not observe his opponent), player i
moves out of the cooperation state and chooses Di. From the perspective of
player j, player i plays the game as if he randomizes Ci and Di, even though
player i chooses pure actions in each state. Such randomized observations create
uncertainty about the opponents’ state in each period and give an incentive to
observe.

As with Chen (2010), our analysis is tractable. By construction, the only
concern of each player at each period is whether his opponent is in the cooper-
ation state. It is sufficient to keep track of this belief, which is the probability
that the opponent is in the cooperation state.

Our main contribution is the efficiency result and folk theorem in an infinitely
repeated prisoner’s dilemma. Some previous studies show that the efficiency
result holds if tools to share information are available. For example, certain
studies assume that some information is available even if players do not observe
their opponent. We describe these tools and discuss previous studies in Section 2
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before we define our model in Section 3. Our efficiency result shows that players
can construct a cooperative relationship without any randomization device.

Another contribution of the paper is a new approach to the construction of
a sequential equilibrium. We consider randomization of monitoring, whereas
previous studies confine their attention to randomization of actions. In most
cases, the observational decision is supposed to be unobservable in costly mon-
itoring models. Therefore, even if a player observes his opponent, he cannot
know whether the opponent observes him. If the continuation strategy of the
opponent depends on the observational decision in the previous period, the op-
ponent might randomize actions from the perspective of the player, even though
the opponent chooses pure actions in each history. This new approach enables
us to construct a nontrivial sequential equilibrium.

The rest of this paper is organized as follows. In Section 2, we discuss pre-
vious studies, and in Section 2.1, we focus on some previous literature and ex-
plain some difficulties in constructing a cooperative relationship in an infinitely
repeated prisoner’s dilemma under costly monitoring. Section 3 introduces a re-
peated prisoner’s dilemma model with costly monitoring. We present our main
idea and results in Section 4, including an efficiency result with a small obser-
vation cost. We extend our main idea with a public randomization device and
present a folk theorem in Section 5. Section 6 provides concluding remarks.

2 Literature Review

We only review previous studies on repeated games with costly monitoring.
One of the biggest difficulties in costly monitoring is monitoring the moni-

toring activity of opponents, because observational behavior under costly mon-
itoring is often assumed to be unobservable. Each player has to check this un-
observable monitoring behavior to motivate the other player to observe. Some
previous studies circumvent the difficulty by assuming that the observational
decision is observable. Kandori and Obara (2004); Lehrer and Solan (2018)
assume that players can observe other players’ observational decisions.

Next approach is communication. Ben-Porath and Kahneman (2003) an-
alyze an information acquisition model with communication. They show that
players can share their information through explicit communication, and present
a folk theorem for any level of observation cost. Ben-Porath and Kahneman
(2003) consider randomizing actions on the equilibrium path. In their strategy,
players report their observations to each other. Then, each player can check
whether the other player observes him by the reports. Therefore, players can
check the observation activities of other players.

Miyagawa et al. (2008) consider a communication through actions, and they
call it implicit communication. They assume that communication is not allowed,
but players can obtain imperfect private signals about the other player’s action
even when they do not observe their opponent. They show that players can
communicate with each other using implicit communication and present a folk
theorem for any level of observation cost.
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Another approach is introduction of nonpublic randomization device. The
nonpublic randomization device enables players randomize actions even though
they are certain that both players are in the cooperation state. Hino (2019)
shows that if nonpublic randomization device is available before players choose
their actions and observational decisions, then players can achieve an efficiency
result.

If these assumptions do not hold, that is, if no costless information is avail-
able, then cooperation is difficult. Two other papers present folk theorems with-
out costless information. Flesch and Perea (2009) consider monitoring structures
similar to our structure. In their model, players can purchase the information
about the actions taken in the past if the players incur an additional cost.
That is, some organization keeps track of all the sequence of the action profiles,
and each player can purchase the information from the organization. Flesch and
Perea (2009) present a folk theorem for an arbitrary observation cost. Miyagawa
et al. (2003) consider less stringent models. They assume that no organization
keeps track of all the sequence of the action profiles for players. Players can
observe the opponent’s action in the current period, and cannot purchase the
information about the actions in the past. Therefore, if a player wants to keep
track of actions chosen by the opponent, he has to pay observation cost every
period. This monitoring structure is the same as the one in the current paper.
Miyagawa et al. (2003) present a folk theorem with a small observation cost.

The above two studies, Flesch and Perea (2009) and Miyagawa et al. (2003),
consider implicit communication through mixed actions. To use implicit com-
munication by mixed actions, the above two papers need more than two actions
for each player. This means that their approach cannot be applied to infinitely
repeated prisoner’s dilemma under costly . We discuss their implicit commu-
nication in Miyagawa et al. (2003); Flesch and Perea (2009) in Section 2.1 in
more detail.

It is an open question whether players can achieve an efficiency result and a
folk theorem in 2-action games, even though the monitoring cost is sufficiently
small. We show an efficiency result without any randomization device using a
grim trigger strategy and mixed monitoring rather than mixed actions when
observation cost is small. Since we use a grim trigger strategy, players have no
incentive to observe the opponent once after the punishment has started. In
addition, in our strategy, players choose different actions when they are in the
cooperation state and when they are in another state. Therefore, the observation
in the current period gives player i enough information to check whether the
punishment starts or not. It means that our efficiency result holds under the
same structure in Flesch and Perea (2009) or Miyagawa et al. (2003). We
will extend the efficiency result using public randomization, and present a folk
theorem in infinitely repeated prisoner’s dilemma when observation cost is small.
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2.1 Cooperation failure in the prisoner’s dilemma (Miya-
gawa et al. (2003))

Consider the bilateral trade game with moral hazard in Bhaskar and van Damme
(2002) simplified by Miyagawa et al. (2003).

Player 2
C2 D2 E2

Player 1
C1 1 , 1 −1 , 2 −1 , −1
D1 2 , −1 0 , 0 −1 , −1
E1 −1 , −1 −1 , −1 0 , 0

Table 1: Extended prisoner’s dilemma

Players choose whether he observes the opponent or not at the same time
with his action choice. Miyagawa et al. (2003) consider the following keep-them-
guessing grim trigger strategies to approximate payoff vector (1, 1). There are
three states: cooperation, punishment, and defection. In the defection state,
both players choose Ei, and the state remains the same. In the punishment
state, both players choose Ei for some periods, and then the state moves back
to a cooperation state. In both the punishment state and the defection state,
the players do not observe their opponent. In the cooperation state, each player
chooses Ci with sufficiently high probability and chooses Di with the remaining
probability. Players observe their opponent in the cooperation state. If players
observe (C1, C2) or (D1, D2), the state remains the same. The state moves to
the defection state if player i chooses Ei or observes Ej . When (C1, D2) or
(D1, C2) is realized, the state moves to the punishment state.

Players have an incentive to observe their opponent because their opponent
randomizes actions Cj and Dj in the cooperation state. If a player does not
observe their opponent, the player cannot know the state of the opponent in
the next period. If the state of the opponent is the cooperation state, then
action Ei is a suboptimal action because the opponent never chooses action Ej .
That is, choosing action Ei has some opportunity cost because the state of the
opponent is the cooperation state with a high probability. However, if the state
of the opponent is the defection state, then action Ei is a unique optimal action.
Choosing actions Ci or Di also has opportunity costs because the state of the
opponent is the punishment state with a positive probability. To avoid these
opportunity costs, players have an incentive to observe.

These ideas do not hold in two-action games. Let us consider the prisoner’s
dilemma as an example. If players randomize Ci and Di in the cooperation
state, then their best response action includes action Di at any history. As a
result, choosing Di and not observe player j every period is one of the best
response strategy. The strategy fails to give players monitoring incentive.

I consider the following strategy. In the cooperation state, player i chooses
action Ci with probability one, but randomizes observational decision. Only
if player i chooses Ci and observes Cj , player i can remain in the cooperation
state. Otherwise, player i moves out of the cooperation state and chooses Di.
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Using this strategy, we show an efficiency result without any randomization
device, and we extend it with public randomization device and present a folk
theorem.

The reason why our strategy works in a two-action game is that the strat-
egy prescribes different actions based on the observation result. The strategy
prescribes action Ci (resp., Di) when player i observes action oi = Ci (resp.,
oi = Dj). Hence, player i does not randomize actions Ci and Di in each period
except for the initial period, and the above-mentioned problem does not occur.
The above-mentioned problem does not happen in the initial because there is no
previous period of the initial period and player i does not observe the opponent
in the previous period.

However, it causes another problem related to the monitoring incentive. As
player j does not randomize his action, player i can easily guess player j’s action
through past observation. For example, if player i chooses Ci and observed Cj

in the previous period, player i can guess that player j’s action will be Cj . Then,
player i loses the monitoring incentive again.

Our strategy can overcome this difficulty as well. Since player j randomize
his observational decision in the cooperation state and it is unobservable, player i
in the cooperation state cannot know whether player j observed player i or not.
Suppose that player i chooses Ci in the previous period. Then, if player j chooses
Cj and observed player i in the previous period, player j is in the cooperation
state in the current period and chooses Cj . Otherwise, player j chooses Dj

in the current period. Therefore, from the viewpoint of player i, it looks as
if player j randomizes actions Cj and Dj , which gives player i an incentive to
observe. This is why player i has an incentive to observe player j given our
strategy.

3 Model

The base game is a symmetric prisoner’s dilemma. Each player i (i = 1, 2)
chooses an action, Ci or Di. Let Ai ≡ {Ci, Di} be the set of actions for player i.
Given an action profile (a1, a2), the base game payoff for player i, ui(a1, a2), is
displayed in Table 2.

Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ , 1 + g
D1 1 + g, −ℓ 0 , 0

Table 2: Prisoner’s dilemma

We make the usual assumptions about the above payoff matrix.

Assumption 1. (i) g > 0 and ℓ > 0; (ii) g − ℓ < 1.

The first condition implies that action Ci is dominated by action Di for each
player i, and the second condition ensures that the payoff vector of action pro-
file (C1, C2) is Pareto efficient. We impose an additional assumption.

6 / 38



Assumption 2. g − ℓ > 0.

Assumption 2 is the same as Assumption 1 in Chen (2010).
The stage game is of simultaneous form. Each player i chooses an action ai

and the observational decision simultaneously. Let mi represent the observa-
tional decision for player i. LetMi ≡ {0, 1} be the set of observational decisions
for player i, where mi = 1 represents “to observe the opponent,” and mi = 0
represents “not to observe the opponent.” If player i observes the opponent, he
incurs an observation cost λ > 0, and receives complete information about the
action chosen by the opponent at the end of the stage game. If player i does
not observe the opponent, he does not incur any observation cost and obtains
no information about his opponent’s action. We assume that the observational
decision for a player is unobservable.

A stage behavior for player i is the pair of base game actions ai for player i
and observational decision mi for player i and is denoted by bi = (ai,mi). An
outcome of the stage game is the pair b1 and b2. Let Bi ≡ Ai×Mi be the set of
stage-behaviors for player i, and let B ≡ B1 ×B2 be the set of outcomes of the
stage game. Given an outcome b ∈ B, the stage game payoff πi(b) for player i
is given by

πi(b) ≡ ui(a1, a2)−miλ.

For any observation cost λ > 0, the stage game has a unique stage game Nash
equilibrium outcome, b∗ = ((D1, 0), (D2, 0)).

Let δ ∈ (0, 1) be a common discount factor. Players maximize their expected
average discounted stage game payoffs. Given a sequence of outcomes of the
stage games (bt)∞t=1, player i’s average discounted stage game payoff is given by

(1− δ)
∞
∑

t=1

δt−1πi(b
t).

During the repeated game, players does not receive any free signals regarding
player actions (no free signal). It implies that a player receives no information
about the action chosen by his opponent when he does not observe the opponent.
This implies that no player receives the base game payoffs in the course of
play. As in Miyagawa et al. (2003), we interpret the discount factor as the
probability with which the repeated game continues, and it is assumed that each
player receives the sum of the payoffs when the repeated game ends. Then, the
assumption of no free signals regarding actions is less problematic.

Let oi ∈ Aj ∪ {ϕi} be an observation result for player i. Observation re-
sult oi = aj ∈ Aj implies that player i chose observational decision mi = 1 and
observed aj . Observation result oi = ϕi implies that player i chose mi = 0, that
is, he obtained no information about the action chosen by the opponent.

Let hti be the (private) history of player i at the beginning of period t ≥ 2:
hti = (aki , o

k
i )

t−1
k=1. This history is a sequence of his own actions and observation

results up to period t− 1. We omit the observational decisions from hti because
observation result oki implies the observational decision mk

i for any k. Let Ht
i
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denote the set of all the histories for player i at the beginning of period t ≥ 1,
where H1

i is an arbitrary singleton set.
A (behavior) strategy for player i in the repeated game is a function of the

history of player i to his (mixed) stage behavior.
The belief ψt

i of player i in period t is a function of the history hti of player i
in period t obtained from a probability distribution over the set of histories for
player j in period t. Let ψi ≡ (ψt

i)
∞
t=1 be a belief for player i, and ψ = (ψ1, ψ2)

denote a system of beliefs.
A strategy profile σ is a pair of strategies σ1 and σ2. Given a strategy

profile σ, a sequence of completely mixed behavior strategy profiles (σn)∞n=1

that converges to σ is called a tremble. Each completely mixed behavior strategy
profile σn induces a unique system of beliefs ψn.

The solution concept is a sequential equilibrium. We say that a system of
beliefs ψ is consistent with σ if a tremble (σn)∞n=1 exists such that the corre-
sponding sequence of system of beliefs (ψn)∞n=1 converges to ψ. Given the system
of beliefs ψ, strategy profile σ is sequentially rational if, for each player i, the
continuation strategy from each history is optimal given his belief of the history
and the opponent’s strategy. It is defined that a strategy profile σ is a sequential

equilibrium if a consistent system of beliefs ψ for which σ is sequentially rational
exists.

4 No public randomization

In this section, we show our efficiency result without any randomization device.
The following proposition shows that the symmetric efficient outcome is approx-
imated by a sequential equilibrium if the observation cost λ is small and the
discount factor δ is moderately low.

Proposition 1. Suppose that Assumptions 1 and 2 are satisfied. For any ε > 0,

there exist δ ∈
(

g
1+g

, 1
)

, δ ∈ (δ, 1), and λ > 0 such that for any discount

factor δ ∈ [δ, δ] and for any observation cost λ ∈ (0, λ), there exists a symmetric

sequential equilibrium whose payoff vector (v∗1 , v
∗
2) satisfies v∗i ≥ 1 − ε for each

i = 1, 2.

Proof. See Appendix A.

An illustration

While the proof in Appendix A provides the detailed construction of an equi-
librium that approximates the Pareto-efficient payoff vector, we here present its
main idea.

Let us consider the following four-state automaton: initial state ω1
i , cooper-

ation state (ωt
i)

∞
t=2, transition state ωE

i , and defection state ωD
i . In the initial

state ω1
i , player i randomizes three stage-behaviors: (Ci, 1), (Ci, 0), and (Di, 0).

Player i chooses (Ci, 1) with sufficiently high probability. In the cooperation
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state ωt
i(t ≥ 2), player i chooses Ci and randomizes the observational decision.

Player i chooses (Ci, 1) with sufficiently high probability. In the transition state
and defection state ωD

i , player i chooses (Di, 0).
The state transition is described in Figure 1.

ω1
i ω2

i ω3
i ωt

i

(a1i , o
1
i ) = (Ci, Cj)

. . .

(ati, o
t
i) = (Ci, Cj)

. . .

ωE
i

(ai, oi) = (Ci, ϕi)

oi = ϕi

ωD
i

ai = Di

or
oi = Dj

ai = Di

or
oi = Dj

If (ati, o
t
i) = (Ci, Cj)

at ωE
i in period t,

the state in pe-
riod t + 1 is ωt+1

i

Figure 1: The state-transition rule

That is, a player remains in the cooperation state only when he chooses Ci

and observes Cj . Player i moves to the defection state if he chooses Di or
observes Dj . If player i does not observe his opponent in the cooperation state,
he moves to the transition state. Although, the stage-behavior in the transition
state is the same as that in the defection state, the transition function is not.
Player i moves back to the cooperation state from the transition state if he
observes (Ci, Cj), which is the event off the equilibrium path. Let strategy σ∗

be the strategy above.
Another property of this strategy is that players never randomize their ac-

tions in the cooperation state, whereas players randomize their observational
decisions in the cooperation state. As a result, the player looks as if he ran-
domizes actions from the viewpoint of his opponent although he chooses pure
actions in each state. Furthermore, we show in the appendix that player i
strictly prefers action Ci in the cooperation state although he strictly prefers
action Di in the defection state. This creates a monitoring incentive in order to
know which action is optimal.

Let us consider sequential rationality in each state. First, we consider the
defection state. A sufficient condition for sequential rationality in the defection
state is that player i is certain that the state of the opponent is the transition
or defection state. It implies that player i is sure that player j chooses Dj and
never observes player i. Hence, player i does not have an incentive to choose Ci

or mi = 1 in the defection state on the equilibrium path.
The defection state occurs only when player i chooses Di or observed Dj in

the past. Therefore, this sufficient condition is obvious on the equilibrium path.
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The defection state might be realized off the equilibrium path. Then, it is
not obvious whether this sufficient condition holds off the equilibrium path or
not. Let us consider the following history in period 3. Player i chooses ai = Di

and mi = 0 in period 1, and he chooses ai = Ci and observes Cj in period 2.
We can consider the following history. Player j chooses aj = Cj and mj = 0 in
period 1, and he chooses aj = Cj (by mistakes) and observes Cj (by mistake)
in period 2. Then, player j is in the cooperation state in period 3.

To obtain the desired belief, we consider the same belief as Miyagawa et al.
(2008). That is, we consider a sequence of behavioral strategy profiles (σ̂n)∞n=1

such that each strategy profile attaches a positive probability to every move,
but puts far smaller weights on the trembles with respect to the observational
decisions compared with those with respect to actions1. These trembles induce
a consistent system of beliefs that player i at any defection state is sure that the
state of their opponent is the defection state. It ensures the sufficient condition.

Let us discuss sequential rationality in the cooperation state. First of all,
we consider how to find the sequence of randomization probabilities of stage-
behaviors. We define the sequence as follows. We fix small probability of choos-
ingDj in the initial probability. Then, we can derive the payoff for player i when
player i choose Di in the initial period based on probability of Dj . Player i must
be indifferent between Ci and Di in the initial period. The continuation payoff
from the cooperation state in period 2 is the continuation payoff when player i
chooses Ci and does not observe the opponent in period 2. It is the function
of the probabilities of choosing Dj and of monitoring in the initial period. We
choose monitoring probability in the initial period to make player i indifferent
between Ci and Di. The similar argument holds in period 2 onwards. The
continuation payoff from the cooperation state in period t ≥ 3 is the contin-
uation payoff when player i chooses Ci and does not observe the opponent in
period t. It is the function of the probabilities of monitoring in the previous
and current period. In period 2, we know the monitoring probability in the ini-
tial period. Therefore, we choose the monitoring probability in the period 2 so
that player i is indifferent between observing and not observing in period 2. In
period t(≥ 3), we know the monitoring probability in the previous period, and
we choose the monitoring probability in period t so that player i is indifferent
between observing and not observing in period t.

Then, the sequential rationality in the initial and cooperation states is satis-
fied as follows. In the initial state, player i is indifferent between Ci and Di, and
is indifferent between observing and not observing because of the randomization
probability of Di and the definition of the monitoring probability in the initial
state. It is suboptimal that choosing Di but observing the opponent because
player i is certain that the opponent is no longer in the cooperation state irre-
spective his observational result. In period t ≥ 2, player i is indifferent between
observing and not observing by the selection of the monitoring probability of
player j in the current period. It is also suboptimal to choose Di and observe
the opponent as the same as in the initial period. Furthermore, this definition

1See Miyagawa et al. (2008) for further discussion.
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ensures that player i strictly prefers action Ci to Di in the cooperation state.
Suppose that player i weakly prefers action Di in the next cooperation state.
Then, choosing action Di is the best response action irrespective of his observa-
tion result. This means that player i strictly prefers mi = 0 because he can save
the observation cost by choosing (Ci, 0) in the current period and (Di, 1) in the
next period. Hence, player i strictly prefers action Ci in the next cooperation
state after he chooses Ci and observes Cj in the cooperation state. Therefore,
sequential rationality is satisfied in the cooperation state.

Next, let us consider the transition state. We show why player i prefers
action Di in the transition state. In the transition state, there are two types
of situations. Situation A is where player i is in the cooperation state if he
observed his opponent in the previous period. Situation B is where player i
is in a defection state if he observed his opponent in the previous period. Of
course, player i cannot distinguish between these two situations because he did
not observe his opponent. To understand sequential rationality in the transition
state, let us assume that the monitoring cost is almost zero. This means that
the deviation payoff to (Di, 0) in the cooperation state is sufficiently close to
the continuation payoff from the cooperation state. Otherwise, player i strictly
prefers to observe in the cooperation state to avoid choosing action Di in situa-
tion A. Therefore, player i is almost indifferent between choosing Ci and Di in
situation A, whereas player i strictly prefers action Di in situation B. Hence,
player i strictly prefers action Di when the observation cost is sufficiently small
because both situations are realized with a positive probability.

Third, let us consider the initial state. The indifference condition between Ci

and Di is ensured by the randomization probability between (Ci, 1) and (Ci, 0)
in the initial state. If the monitoring probability in the cooperation state is high
enough, then player i is willing to choose action Ci. The indifference condition
between (Ci, 1) and (Ci, 0) in the initial state is ensured by the randomization
probability between (Ci, 1) and (Ci, 0) in the cooperation state in period 2.
There is no incentive to choose (Di, 1) because the state of the opponent in the
next period is not the cooperation state for sure, irrespective of the observation.

Lastly, let us consider the payoff. It is obvious that the equilibrium payoff
vector is close to 1 if the probabilities of (Ci, 1) in the initial state and cooper-
ation state are close to 1 and the observation cost is close to 0. In Appendix A,
we show that the equilibrium payoff vector is close to 1 when the discount factor
is close to g

1+g
. Another remaining issue is whether our strategy is well-defined,

which is shown by solving a difference equation of monitoring constraints in
Appendix A when Assumption 2 is satisfied.

We extend Proposition 1 using Lemma 1.

Lemma 1. Fix any payoff vector v and any ε > 0. Suppose that there exist

δ ∈
(

g
1+g

, 1
)

, δ ∈ (δ, 1) such that for any discount factor δ ∈ [δ, δ], there exists a

sequential equilibrium whose payoff vector (v∗1 , v
∗
2) satisfies |v

∗
i −vi| ≤ ε for each

i = 1, 2. Then, there exist δ∗ ∈ (g/1+g, 1) such that for any discount factor δ ∈
[δ∗, 1), there exists a sequential equilibrium whose payoff vector (v∗1 , v

∗
2) satisfies

|v∗i − vi| ≤ ε for each i = 1, 2.
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Proof of Lemma 1 . We use the technique of Lemma 2 in Ellison (1994). We
define δ∗ ≡ δ/δ, and choose any discount factor δ ∈ (δ∗, 1). Then, we choose
some integer n∗ that satisfies δn

∗

∈ [δ, δ]. Then there exists a strategy σ′

whose payoff vector is (v∗1 , v
∗
2) given δn

∗

. We divide the repeated game into
n∗ distinct repeated games. The first repeated game is played in period 1,
n∗ + 1, 2n∗ + 1 . . . , the second repeated game is played in period 2, n∗ + 1,
2n∗+2 . . . , and so on. Each repeated game can be regarded as a repeated game
with discount factor δn

∗

. Let us consider the following strategy σL1. In the 1st
game, players follow strategy σ′. In the 2nd game, players follow strategy σ′. In
the n(n ≤ n∗)th game, players follow strategy σ′. Then, strategy σL1 will be a
sequential equilibrium. This is because strategy σ′ is a sequential equilibrium in
each game. As the equilibrium payoff vector in each game satisfies |v∗i − vi| ≤ ε
for each i = 1, 2, the equilibrium payoff of strategy σL1 also satisfies |v∗i −vi| ≤ ε
for each i = 1, 2.

We obtain efficiency for a sufficiently high discount factor.

Proposition 2. Suppose that the base game satisfies Assumptions 1 and 2.

For any ε > 0, there exist δ∗ ∈ (0, 1) and λ > 0 such that for any discount

factor δ ∈ (δ∗, 1) and any λ ∈ (0, λ), there exists a sequential equilibrium whose

payoff vector (v∗1 , v
∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.

Proof of Proposition 2 . Apply Lemma 1 to Proposition 1.

Remark 1. Proposition 2 shows monotonicity of efficiency on the discount
factor. If efficiency holds given ε, observation cost λ and discount factor δ, then
efficiency holds given a sufficiently large discount factor δ′ > δ.

Lastly, let us consider what happens if Assumption 2 is not satisfied. Let β1
be the probability that player i chooses ai = Di in the first period. Let βt+1 be
the probability that player i chooses mi = 0 in the cooperation state ωt

i . Then,
the following proposition holds.

Proposition 3. Suppose that Assumption 1 is satisfied, but 2 is not satisfied.

Then, (βt)
∞
t=1 is not well defined for a small observation cost λ.

Proof of Proposition 3 . See Appendix C.

Proposition 3 implies that our strategy is not well-defined when 2 is not
satisfied. Let us explain Proposition 3. A relationship between βt and βt+1 is
determined by the monitoring incentive and ℓ

g
. We show that the absolute value

of βt goes to infinity as t goes to infinity when ℓ
g
> 1.

Let us derive the relationship. If player i chooses Ci and observes Cj in
state ωt−1

i , his continuation payoff from period t is given by

(1− δ) {(1− βt) · 1− βtℓ}+ δ(1− δ)(1− βt)(1− βt+1)(1 + g).
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On the other hand, if player i chooses Ci but does not observe player j, his
continuation payoff from period t is

(1− δ)(1− βt)(1 + g).

Therefore, only when the following equation holds, player i is indifferent between
mi = 0 and mi = 1 in state ωt−1

i .

λ

δ(1− βt−1)
= −g + βt(g − ℓ) + δ(1− βt)(1− βt+1)(1 + g). (1)

Rewards for choosing mi = 1 comes from two parts: −g + βt(g − ℓ) and δ(1 −
βt)(1 − βt+1)(1 + g) in (1). Reward δ(1 − βt)(1 − βt+1)(1 + g) implies that
when βt is too small (resp., large), βt+1 must be large (resp., small) in order to
keep the right-hand side in (1) unchanged. Reward −g + βt(g − ℓ) implies that
when g− ℓ > 0 (resp., g− ℓ < 0), an increase in βt strengthens (resp., weakens)
the monitoring incentive. This is because increase in βt implies decrease of
(1− βt)g and makes choosing Di in the next period less attractive. Increase in
βt also implies decrease of −βtℓ and makes choosing Ci in the next period less
attractive. Therefore, whether larger βt strengthens the monitoring incentives
or not depends on whether Assumption 2 holds or not.

Assume that Assumption 2 holds, then these two rewards has opposite effect.
Suppose that βt is high. Then, the reward δ(1− βt)(1− βt+1)(1 + g) prescribes
smaller βt+1 to maintain the monitoring incentive. On the other hand, reward
−g + βt(g − ℓ) strengthens the monitoring incentive and prescribes higher βt+1

in order to reduce δ(1− βt)(1− βt+1) and to weaken the monitoring incentive.
On the other hands, if Assumption 2 does not hold, then these two rewards

have the same effect. Given high βt, the reward δ(1 − βt)(1 − βt+1)(1 + g)
prescribes smaller βt+1 to maintain the monitoring incentive. Reward −g +
βt(g− ℓ) weakens the monitoring incentive and prescribes smaller βt+1 in order
to strengthen the monitoring incentive. As a result, the sequence (βt)

∞
t=1 will

be a divergent sequence.
Let us show this fact by an approximation. Let define ε′ ≡ δ − g

1+g
and

assume that ε′ is sufficiently small. Then, assuming ε′, βt, and βt+1 are small,
and λ is sufficiently small compared to ε′, we can ignore λ, βt · βt+1, ε

′βt and
ε′βt+1. Then, we obtain

0 =− βtℓ+ (1 + g)ε′ − βt+1g

or,

βt+1 −
1 + g

g + ℓ
ε′ = −

ℓ

g

(

βt −
1 + g

g + ℓ
ε′
)

(2)

The above equation (2) shows the relationship between βt and βt+1.
The ratio ℓ

g
determines how large βt+1 must be in order to satisfy the mon-

itoring incentive. The equation (2) says that when Assumption 2 does not hold
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(i.e., ℓ
g
> 1), the absolute value of βt+2 −

1+g
g+ℓ

ε′ must be larger than the abso-

lute value of βt+1 −
1+g
g+ℓ

ε′. As a result, the absolute value of βt −
1+g
g+ℓ

ε′ goes
to infinity as t goes to infinity. More precise calculation without approximation
can be found in Appendix C.

Remark 2. Let us refer to σ∗ in the proof of Proposition 1 and σL1 in Lemma 1
as keep-them-monitoring grim trigger strategy. Proposition 1 and Proposition 3
shows a sufficient and necessary condition for keep-them-monitoring grim trigger
strategy. A keep-them-monitoring grim trigger strategy is a sequential equilib-
rium for a sufficiently large discount factor and a sufficiently small observation
cost if and only if Assumption 2 is satisfied.

5 Public randomization

In this section, we assume the public randomization device is available at the
end of each stage game. The distribution of the public signal is independent
of the action profile chosen. Public signal x is uniformly distributed over [0, 1)
and each player observes the public signal without any cost.

The purpose of this section is to prove a folk theorem. To prove Theorem 1
(folk theorem), we present the following proposition first.

Proposition 4. Suppose that a public randomization device is available, and

the base game satisfies Assumptions 1 and 2. For any ε > 0, there exist δ ∈
(

g
1+g

, 1
)

, δ ∈ (δ, 1), and λ > 0 such that for any discount factor δ ∈ [δ, δ] and

for any observation cost λ ∈ (0, λ), there exists a sequential equilibrium whose

payoff vector (v∗1 , v
∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ
− ε.

Proof of Proposition 4 . See Appendix D.

An illustration

Here we explain our strategy and why we need a public randomization device
for our result.

In our strategy, the players play (C1, D2) in the first period and only player 2
observe, and then play the strategy in the proof of Proposition 1 from period 2
onward. Applying the strategy in Section 4, let us consider the following strat-
egy. At the initial state, player 1 randomizes actions C1 and D1, whereas
player 2 chooses D2. Player 2 randomly observes player 1. The state transition
depends on public randomization. If realized x is greater than x̂ in the initial
state, the remains the same. If realized x is not greater than x̂ in the initial
state, the state transition depends on the stage-behaviors. If player 1 plays D1

(resp., player 2 observes D1) in the initial state, then he moves to the defection
state in period 2 onward. If player 1 play C1 (resp., player 2 observes C1) in
the initial state, then he moves to the cooperation state and play a sequential
equilibrium whose payoff vector is sufficiently close to (1, 1), which is similar to
the one in Section 4. We show in Appendix D that our sequential equilibrium
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strategy is similar to that above. If player 2 observes nothing in the initial state,
she moves to the transition state.

Let us consider sequential rationalities of players. The sequential rationality
in defection state both on and off the equilibrium path holds in the same man-
ner in the Section 4. The sequential rationality in the cooperation state from
period 3 on holds as well.

Let us consider the sequential rationality of player 1 in the cooperation state
in period 2. Player 1 cannot distinguish whether the state of the opponent is
cooperation state or not because the observational decision is unobservable. If
player 2 observes in the previous period, he chooses C2. Otherwise, player 2
chooses D2. Therefore, from the viewpoint of player 1, player 2 randomizes
three stage-behavior: (C2, 1), (C2, 0), and (D2, 0) like the initial state in the
proof of Proposition 1. Hence, if player 2 chooses appropriate randomization
probability of (C2, 1), (C2, 0), and (D2, 0), then player 1 is indifferent between
(C1, 1), (C1, 0), and (D1, 0). Next, let us consider the sequential rationality of
player 2 in the cooperation state in period 2. As player 1 randomizes (C1, 1),
(C1, 0), and (D1, 0), it is easily satisfied when player 1 chooses appropriate
randomization probability.

Let us consider the sequential rationality in period 1. As Assumption 2 is
satisfied, the deviation to action Di is more profitable in terms of the stage
game payoff when the opponent chooses Cj than when the opponent chooses
Dj . The incentive for player 1 to choose C1 is higher than the one in the proof
of Proposition 1. Therefore, we use an public randomization device to decrease
the incentive to choose action C1.

Let us explain why we need a public randomization device in more detail.
Let β2,2 be the probability that player 2 chooses m2 = 0 in the initial state.
Then, without public randomization device, player 1 is indifferent between C1

and D1 when the following equation holds.

−ℓ+ δ(1− β2,2)(1 + g) = 0.

The left-hand (resp., right-hand) side is the payoff when player 1 chooses C1

(resp., D1). Our strategy σ∗ in the proof of Proposition 1 will be a sequential
equilibrium only when discount factor is slightly greater than g

1+g
and Assump-

tion 2 holds. However, when discount factor is slightly greater than g
1+g

and
Assumption 2 holds and β2,2 is close to zero, the payoff when player 1 chooses
C1 is higher than zero. As a result, player 1 strictly prefers C1 and does not
randomize C1 and D1.

We can consider two approaches to this problem. The first one is choosing
high β2,2. However, it means that player 2 chooses D2 in period 2 and (D1, D2)
will be played with a high probability from period 3. We cannot approximate

the Pareto efficient payoff vector
(

0, 1+g+ℓ
1+ℓ

)

.

Let us consider what happens if we decrease an efficient discount factor only
in period 1 using public randomization. To satisfy the indifference condition,

the discount factor must be close to ℓ
1+g

(

< g
1+g

)

. It is well known that we can
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decrease the efficient discount factor dividing the game into several games (e.g.,
Ellison (1994)). However, there is no technique to increase the discount factor
without public randomization device as game proceeds. Therefore, we need
public randomization device to use a smaller efficient discount factor in the
initial state. Public randomization device is indispensable because the discount
factor must increase when players moves out of the initial state. The sequential
rationality of player 2 holds as well because player 1 randomizes C1 and D1

with moderate probability and monitoring cost is sufficiently small. Therefore,
the strategy will be a sequential equilibrium.

The last issue is the equilibrium payoff. Given this strategy, we have to
consider the effect of public randomization device to the equilibrium payoff.
Let Vi be the payoff for player i for each i = 1, 2. In the proof of Proposition 1,
we have shown that Pareto efficient payoff vector (1, 1) can be approximated by
a sequential equilibrium when the discount factor is close to g

1+g
. Therefore,

the continuation payoff when player 1 moves to cooperation state in period 2 is
close to 1. The value of x̂ can be approximated as the solution of the following
equation.

−(1− δ)ℓ+ δx̂ · 1 + δ(1− x̂)V1 = (1− δ) · 0 + δx̂ · 0 + δ(1− x̂)V1

The left-hand side is the payoff when player 1 chooses C1, and the right-hand
side is the one when he chooses D1. Therefore, x̂ is close to 1−δ

δ
ℓ. Then, the

payoff V2 of player 2 can be approximated by the following equation.

V2 =(1− δ)(1 + g) + δx̂ · 1 + δ(1− x̂)V2

=
(1− δ)(1 + g) + δx̂ · 1

1− δ + δx̂

=
1 + g + ℓ

1 + ℓ

We have obtained the desired result.

Corollary 4.1. Suppose that a public randomization device is available, and the

base game satisfies Assumptions 1 and 2. For any ε > 0, there exist δ ∈
(

g
1+g

, 1
)

and λ > 0 such that for any discount factor δ ∈ [δ, 1) and for any observation

cost λ ∈ (0, λ), there exists a sequential equilibrium whose payoff vector (v∗1 , v
∗
2)

satisfies v∗1 = 0 and v∗2 ≥ 1+g+ℓ
1+ℓ

− ε.

Proof of Corollary 4.1 . Use Lemma 1.

We have shown that two types of payoff vectors can be approximated by se-
quential equilibria (Propositions 1 and 4) when the discount factor is sufficiently
large and the observation cost is sufficiently small. It is straightforward to show

that payoff vector
(

1+g+ℓ
1+ℓ

, 0
)

can be approximated by a sequential equilibrium

exchanging the roles of player 1 and player 2. Let us denote this strategy by σ̂,
and let us denote the strategy used in the proof of Proposition 4 by σ̃.
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Using the technique in Ellison (1994) again and alternating four strate-
gies σ∗, σ̃, σ̂, and the repetition of the stage game Nash equilibrium, we can
approximate any payoff vector in F∗.

Theorem 1 (Approximate folk theorem). Suppose that a public randomization

is available, and Assumptions 1 and 2 are satisfied. Fix any interior point v =

(v1, v2) of F∗. Fix any ε > 0. There exist a discount factor δ ∈
(

g
1+g

, 1
)

and

observation cost λ > 0 such that for any δ ∈ [δ, 1) and λ ∈ (0, λ), there exists a

sequential equilibrium whose payoff vector vF = (vF1 , v
F
2 ) satisfies |v

F
i − vi| ≤ ε.

Proof of Theorem 1. See Appendix E.

Remark 3. Our approach can be applied under the monitoring structure of
Flesch and Perea (2009) if a public randomization device is available. Our
strategy is a variant of the grim trigger strategy. It means that players have no
incentive to observe the opponent once after the punishment starts. In addition,
in our strategy, player i chooses Ci and choose Di if he is not in the cooperation
state. Therefore, the observation in the current period gives player i enough
information to check whether the punishment starts or not. Therefore, each
player does not have an incentive to acquire information about past actions.

Remark 4. We have proven efficiency and the folk theorem in a repeated
symmetric prisoner’s dilemma. In this section, we discuss what happens if the
prisoner’s dilemma is asymmetric, as in Table 3.

Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ1 , 1 + g2
D1 1 + g1, −ℓ2 0 , 0

Table 3: Asymmetric prisoner’s dilemma

In the proofs of the propositions and theorems below, we require that the
discount factor δ is sufficiently close to g

1+g
. This condition is required to

approximate a Pareto-efficient payoff vector. If g1 ̸= g2, it is impossible to
ensure that the discount factor δ is sufficiently close to both g1

1+g1
and g2

1+g2
.

Therefore, we have to confine our attention to the case of g1 = g2 = g.
Let us consider Propositions 1 and 2. In the construction of the strategy,

the randomization probability of player i is defined based on the incentive con-
straint of the opponent only. In other words, the randomization probability
is determined independently of the payoffs of player i. This means that the
randomization probability of player i is determined based on δ, g, ℓj and is in-
dependent of ℓi. Therefore, we can discuss the randomization probabilities of
player 1 and 2 independently. Hence, if g1 = g2 and Assumptions 1 and 2 for
each ℓi (i = 1, 2) hold, our efficiency result and folk theorem under a small
observation cost hold.
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6 Concluding Remarks

Although only a few possible types of cooperation exist in a two-player, two-
action prisoner’s dilemma, prisoner’s dilemma under costly monitoring is still
a useful model to understand cooperation. Prisoner’s dilemma under costly
monitoring has some properties. First, the number of actions is limited. This
means that players cannot communicate using a variety of actions. Second,
the number of players is limited. If there are three players A,B,C, it is easy
to check the observation deviation of the opponents. Player A can monitor
the observational decisions of players B and C by comparing their actions. If
players B and C choose inconsistent actions toward each other, player A finds
that players B or C do not observe some of the players. Third, there is no
free-cost informative signal. To obtain information about the actions chosen by
their opponents, players have to observe.

Originally, the prisoner’s dilemma under costly monitoring has these con-
straints. Despite the above limitations, we have shown efficiency without any
randomization device. Our paper is the first result to show that efficiency
holds without any randomization device under an infinitely repeated prisoner’s
dilemma with costly monitoring, although it is the simplest model among those
with costly monitoring considered in the literature (e.g., Miyagawa et al. (2003)
and Flesch and Perea (2009)).

We considered a public randomization device and obtained a folk theorem. It
is worth mentioning that our folk theorem holds in some asymmetric prisoner’s
dilemma. Our results can be applied to more general games.

A Proof of Proposition 1

Proof. We prove Proposition 1.

Strategy

We define a grim trigger strategy σ∗, and then we define a consistent system
of beliefs ψ∗. Strategy σ∗ is represented by an automaton that has four types
of states: initial state ω1

i , cooperation states (ωt
i)

∞
t=2, transition state ωE

i , and
defection state ωD

i . For any period t ≥ 2, there is a unique cooperation state.
Let ωt

i be the cooperation state in period t ≥ 2.
At the initial state ω1

i , each player i chooses (Ci, 1) with probability (1 −
β1)(1−β2), chooses (Ci, 0) with probability (1−β1)β2, and chooses (Di, 0) with
probability β1. We call (ai, oi) an action–observation pair. The state moves
from the initial state to the cooperation state ω2

i if the action–observation pair
in period 1 is (Ci, Cj). The state moves to the transition state ωE

i in period 2
when (Ci, ϕi) is realized in period 1. Otherwise, the state moves to a defection
state in period 2.

At the cooperation state ωt
i , each player i chooses (Ci, 1) with probabil-

ity 1 − βt+1 and (Ci, 0) with probability βt+1. That is, the randomization
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probability βt+1 depends on calendar time t. The state moves to the next co-
operation state ωt+1

i if the action–observation pair in period t is (Ci, Cj). The
state moves to the transition state ωE

i in period t + 1 when (ati, o
t
i) or (Ci, ϕi)

is realized in period t. Otherwise, the state moves to the defection state in
period t+ 1.

At the transition state ωE
i in period t, each player i chooses (Di, 0) with

certainty. The state moves to the defection state ωD
i in period t + 1 when

ati = Di or oti = Dj is realized. If player i chooses (Ci, 0), the state remains
the same. When player i chooses Ci and observes Cj in period t, the state in
period t+ 1 moves to the cooperation state ωt+1

i .
Players choose (Di, 0) and the state remains the same ωD

i at the defection
state ωD

i , irrespective of the action–observation pair.
The state-transition rule is summarized in Figure 1. Let strategy σ∗ be the

strategy represented by the above automaton.
We define a system of beliefs consistent with strategy σ∗ by the same ap-

proach as that in Section 4. Each behavioral strategy profile σ̂n induces the
system of beliefs ψn, and the consistent system of beliefs ψ∗ is defined as the
limit of limn→∞ ψn.

Selection of discount factor and observation cost

Fix any ε > 0. We define ε, δ, δ, and λ as follows

ε ≡
ℓ2

54(1 + g + ℓ)3
ε

1 + ε
,

δ ≡
g

1 + g
+ ε,

δ ≡
g

1 + g
+ 2ε < 1,

λ ≡
1

16

g

1 + g

1

1 + g + ℓ
ε2.

We fix an arbitrary discount factor δ ∈ [δ, δ] and an arbitrary observation
cost λ ∈ (0, λ). We show that there exists a sequential equilibrium whose payoff
vector (v∗1 , v

∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.

Specification of strategy

Let us define ε′ ≡ δ − g
1+g

. We set β1 = 1+g+ℓ
g+ℓ

ε′. Given β1, we define β2 as

the solution of the following indifference condition between (Ci, 0) and (Di, 0)
in period 1.

(1− β1) · 1− β1 · ℓ+ δ(1− β1)(1− β2)(1 + g) =(1− β1)(1 + g). (3)

Next, we define (βt)
∞
t=3. We choose βt+2 so that player j at state ω

t
i is indifferent

between choosing (Ci, 1) and (Ci, 0).
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To define βt(t ≥ 3), let Wt (t ≥ 1) be the sum of the stage game payoffs
from the cooperation state ωt

i . That is, payoff Wt is given by

Wt =

[

∞
∑

s=t

δs−1ui(a
s)

∣

∣

∣

∣

∣

σ∗, ψ∗, ωt
i

]

.

Please note that Wt (t ≥ 1) is determined uniquely. There are several
histories associated with the cooperation state ωt

i (e.g., the ones where player i
cooperated and observed cooperation in the transition state in the previous
period). At any of those histories, player i believes that player j is at the
cooperation state ωt

j with probability 1 − βt and at the transition state with
probability βt. Therefore, the continuation payoff Wt is uniquely determined.

At the cooperation state ωt
i(t ≥ 2), player i weakly prefers to play (Ci, 0).

Therefore, payoff Wt is given by

Wt = (1− βt) · 1− βtℓ+ δ(1− βt)(1− βt+1)(1 + g), ∀ t ≥ 2. (4)

Therefore, payoff Wt is a function of (βt, βt+1). We denote payoff Wt by
Wt(βt, βt+1) when we should consider Wt as a function of (βt, βt+1).

Then, β3 is given by

W1 =(1− β1) · 1− β1ℓ− λ+ δ(1− β1)W2(β2, β3). (5)

Next, let us consider the indifference condition between (Ci, 1) and (Ci, 0)
at the cooperation state ωt

i(t ≥ 2). Let us consider the belief for each player i
at the cooperation state ωt

i in period t. Assume that βt ∈ (0, 1) for any t ∈ N,
which is proved later. Then, we show by mathematical induction that, for any
period t ≥ 2, player i at the cooperation state ωt

i in period t believes that the
state of his opponent is a cooperation state with positive probability 1−βt. Let
us consider period t = 2 first. The state moves to the cooperation state ω2

i in
period 2 only when player i has observed the action–observation pair (a1i , o

1
i ) =

(Ci, Cj) in period 1. Therefore, player i believes that the state of his opponent
is the cooperation state with positive probability 1 − β2 by Bayes’ rule. Thus,
the statement is true in period 2. Next, suppose that the statement is true until
period t and consider player i at the cooperation state ωt+1

i . This means that
player i has observed action–observation pair (ati, o

t
i) = (Ci, Cj) in period t.

Thus, player i believes with certainty that player j was in the cooperation state
in period t. Therefore, he believes that player j is the in the cooperation state
with positive probability 1− βt+1 by Bayes’ rule. Hence, the statement is true.

Taking the belief at the cooperation state ωt
i(t ≥ 2) into account, βt+2 is

defined as the solution of the equation below.

Wt(βt, βt+1) =(1− βt) · 1− βtℓ− λ+ δ(1− βt)Wt+1(βt+1, βt+2). (6)
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Specifically, β2 is defined by (3), and βt+2 (t ∈ N) is defined by (6) as follows.

β2 =
(1− β1) {δ(1 + g)− g} − β1ℓ

δ(1− β1)(1 + g)

=
g + g2 − ℓ2 − (1 + g + ℓ)(1 + g)ε′

(g + ℓ) {g + (1 + g)ε′}
(

1− 1+g+ℓ
g+ℓ

ε′
)ε′

=
1 + g − ℓ

g
ℓ− (1 + g + ℓ) 1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ) (ε′)2

1

g + ℓ
ε′

βt+2 =
(1− βt+1) {δ(1 + g)− g} − βt+1ℓ−

λ
δ(1−βt)

δ(1− βt+1)(1 + g)
, ∀ t ∈N.

Now, to focus on a game theoretic argument, we assume the following
Lemma 2, which is proved in Appendix B.

Lemma 2. Suppose that Assumptions 1 and 2 are satisfied. Fix any discount

factor δ ∈ [δ, δ] and observation cost λ ∈ (0, λ). Then, it holds that

1

2

1 + g − ℓ

g + ℓ
ε′ < β2 < β4 < β6 · · · < β5 < β3 < β1 =

1 + g + ℓ

g + ℓ
ε′.

Thanks to Lemma 2, we obtain a lower bound and an upper bound of βt for
any t ∈ N.

Now, let us show that the grim trigger strategy σ∗ is a sequential equilibrium.

Sequential rationality at the initial state

At the initial state, the indifference condition between (Ci, 0) and (Di, 0) is
ensured by the construction of β2. The indifference condition between (Ci, 1)
and (Ci, 0) is ensured by the construction of β3. Furthermore, if player i chooses
action Di, then his opponent chooses action Dj with certainty from the next
period on, irrespective of his observation result. Thus, player i has no incentive
to choose (Di, 1). Therefore, it is optimal for player i to follow strategy σ∗ at
the initial state.

Sequential rationality in the cooperation state

Next, consider a history associated with the cooperation state ωt
i in period t (≥

2). Then, strategy σ∗ prescribes to randomize (Ci, 1) and (Ci, 0). As we
explained earlier, at any history associated with a cooperation state in pe-
riod t (≥ 2), player i believes that player j is at the cooperation state ωt

j

with probability 1 − βt and at the transition state with probability βt. The
definition of βt+2 ensures that (Ci, 1) and (Ci, 0) are indifferent for player i in
period t. When player i chooses (Di, 0) or (Di, 1), then the continuation payoff
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is bounded above by (1− βt)(1 + g). Equation (6) implies that, for any t ∈ N,
it holds that

Wt+1 = (1− βt+1)(1 + g) +
λ

δ(1− βt)
. (7)

The above equality ensures that, for any period t ≥ 1, (1 − βt+1)(1 + g) is
strictly smaller than Wt+1, which is the payoff when player i chooses (Ci, 1) in
period t+1. Thus, both (Di, 0) and (Di, 1) are suboptimal in any period t ≥ 2.
Therefore, it is optimal for player i to follow strategy σ∗ in the cooperation
state.

Sequential rationality at the defection state

Consider any history associated with the defection state. Then, σ∗ prescribes
(Di, 0). Since we consider the belief construction similar to the one in Miyagawa
et al. (2008), player i believes that player j never deviates from prescribed
observational decision as the same as Miyagawa et al. (2008). Therefore, player i
is certain that the state of his opponent is either the transition or defection state,
and player i’s action in that period does not affect the continuation play of his
opponent. Furthermore, player i believes that player j chooses action Dj with
certainty and has no incentive to observe his opponent. Therefore, it is optimal
for player i to follow strategy σ∗ in the defection state.

Sequential rationality in the transition state

We consider any history in period t (≥ 2) associated with the transition state.
Strategy σ∗ prescribes (Di, 0) in the transition state.

Let us consider a continuation payoff when player i chooses action Ci in
period t. Let p be the belief of player i in the transition state in period t that
his opponent is in the cooperation state. If player i observes his opponent, then
(ati, o

t
i) = (Ci, Cj) is realized with probability p and the state moves to the

cooperation state (ωt+1
i ). The continuation payoff in the cooperation state in

period t+1 is bounded above by Wt+1. This is because Wt+1 is a continuation
payoff when player i chooses action Ci from ωt+1

i , and Wt+1 is strictly greater
than payoff (1 − βt+1)(1 + g), which is the upper bound of the payoff when
player i chooses action Di at ωt+1

i . Therefore, the upper bound of the non-
averaged payoff when player i chooses action Ci in period t is given by

p− (1− p)ℓ+ δpWt+1.

The non-averaged payoff when player i chooses Di is bounded above by p(1+g).
Therefore, action Di is profitable if the following value is negative.

p− (1− p)ℓ+ δpWt+1 − p(1 + g).
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We can rewrite the above value as follows.

p− (1− p)ℓ+ δpWt+1 − p(1 + g)

=(1− βt)− βtℓ− λ+ δ(1− βt)Wt+1 − (1− βt)(1 + g)

+ λ+ {p− (1− βt)} {1 + ℓ+ δWt+1 − (1 + g)}

=Wt − (1− βt)(1 + g) + λ+ {p− (1− βt)} {δWt+1 − (g − ℓ)}

=
λ

δ(1− βt−1)
+ λ+ {p− (1− βt)} {δWt+1 − (g − ℓ)} . (8)

The second equality follows from equation (6) in period t. The last equality is
ensured by (7) in period t− 1.

Using equation (7), we obtain the lower bound of δWt+1− (g− ℓ) as follows.

δWt+1 − (g − ℓ) ≥δ(1− βt+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

− (g − ℓ)

≥
ℓ

2
. (9)

The second inequality follows from βt ≤
1+g+ℓ
g+ℓ

ε′ by Lemma 2. The last inequal-

ity is ensured by ε′ ≤ 2ε. The maximum value of p is (1−βt−1)(1−βt). Taking
(9) into account, we show that (8) is negative as follows.

λ

δ(1− βt−1)
+ λ− {(1− βt)− p} {δWt+1 − (g − ℓ)}

≤
λ

δ(1− βt−1)
+ λ− (1− βt)βt−1

ℓ

2

≤
1 + g

g

1

1− 1+g+ℓ
g+ℓ

ε′
λ+ λ−

(

1−
1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

g + ℓ
ε′
ℓ

2

<0.

The second inequality is ensured by δ ∈ [δ, δ] by Lemma 2 and βt, βt−1 ∈
[

1
2
1+g−ℓ
g+ℓ

ε′, 1+g+ℓ
g+ℓ

ε′
]

. Therefore, player i prefers Di to Ci. Hence, it has been

proven that it is optimal for player i to follow strategy σ∗. The strategy σ∗ is
a sequential equilibrium.

The payoff

Finally, we show that the sequential equilibrium payoff v∗i is strictly greater
than 1 − ε. Player i chooses (Di, 0) in period 1 at the initial state. Therefore,
the equilibrium payoff v∗i is given by

v∗i = (1− δ)(1− β1)(1 + g) = {1− (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

> 1− ε.

Therefore, Proposition 1 has been proven.
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B Proof of Lemma 2

Proof of Lemma 2. To prove Lemma 2, we will use the following Lemma 3 holds.

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. Fix any discount

factor δ ∈ [δ, δ] and observation cost λ ∈ (0, λ). Then, β1 − β2 ≥ ℓ
g+ℓ

ε′ holds
and, for any t ∈ N, it holds that

0 <
ℓ

2g
<−

βt+2 − βt+1

βt+1 − βt
< 1.

Assume that Lemma 3 holds. Using βt, βt+1, and−βt+2−βt+1

βt+1−βt
, we can express

βt+2 as follows.

βt+2 =βt + (βt+1 − βt) + (βt+2 − βt+1)

=βt + (βt+1 − βt)

{

1−

(

−
βt+2 − βt+1

βt+1 − βt

)}

=

(

−
βt+2 − βt+1

βt+1 − βt

)

βt +

{

1−

(

−
βt+2 − βt+1

βt+1 − βt

)}

βt+1.

Therefore, if βt, βt+1 ∈ [0, 1], and ℓ
2g < −βt+2−βt+1

βt+1−βt
< 1 hold, we obtain βt+2 ∈

(min{βt, βt+1},max{βt, βt+1}) because βt+2 is a convex combination of βt and
βt+1.

Let us compare β1, β2, and β3. By Lemma 3, β1 − β2 is greater than
ℓ

g+ℓ
ε′. Furthermore, we have β2 < β3 < β1 because −

(

−βt+2−βt+1

βt+1−βt

)

∈ (0, 1)

by Lemma 3 and, then, β3 is a convex combination of β1 and β2. Next, let us
compare β2, β3, and β4. As we find, β2 is smaller than β3. Therefore, we have
β2 < β4 < β3 because β4 is a convex combination of β2 and β3. Similarly, for
any s ∈ N, it holds that (β2s <)β2s+1 < β2s−1, and β2s < β2s+2(< β2s+1).

Next, we prove Lemma 3.

Proof of Lemma 3. First, let us derive −β3−β2

β2−β1
. By (3), we have

0 = −(1− β1)g − β1ℓ+ δ(1 + g)(1− β1)(1− β2). (10)

Furthermore, by (4) and (5), we have

λ

δ(1− β1)
= −(1− β2)g − β2ℓ+ δ(1 + g)(1− β2)(1− β3) (11)

By (10) and (11), we obtain

(β2 − β1)(g − ℓ)− δ(1 + g)(1− β2) {(β3 − β2) + (β2 − β1)} =
λ

δ(1− β1)
. (12)

24 / 38



Let us consider the lower bound of β2. As ε′ ∈ [ε, 2ε] and 0 < ℓ
g
< 1 hold, we

have

β2 =
1 + g − ℓ

g
ℓ− (1 + g + ℓ) 1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ) (ε′)2

1

g + ℓ
ε′

>
3
4 (1 + g − ℓ)

3
2

1

g + ℓ
ε >

1

2

1 + g + ℓ

g + ℓ
ε′.

Next, let us consider the upper bound of β2.

β2 =
1 + g − ℓ

g
ℓ− (1 + g + ℓ) 1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ) (ε′)2

1

g + ℓ
ε′

<
1 + g − ℓ

g

1− (1+g)(1+g+ℓ)
g(g+ℓ) (ε′)2

1

g + ℓ
ε′

<
1 + g − ℓ

g

1− (1+g)(1+g+ℓ)
g(g+ℓ) ε′

1

g + ℓ
ε′ <

1 + g

g + ℓ
ε′.

The last inequality is ensured by ε′ < 2ε. Thus, we obtain

1

2

1 + g − ℓ

g + ℓ
ε′ < β2 <

1 + g

g + ℓ
ε′.

As β2 <
1+g
g+ℓ

ε′ < β1 = 1+g+ℓ
g+ℓ

ε′, we can divide both sides of (12) by β2 − β1 and

obtain −β3−β2

β2−β1
.

−
β3 − β2
β2 − β1

=
ℓ+ δ(1 + g)(1− β2)− g + λ

δ(1−β1)(β2−β1)

δ(1 + g)(1− β2)
.

As Assumption 2, β1, β2 < 1, and β2 − β1 < 0 hold, we find an upper bound of
−β3−β2

β2−β1
.

−
β3 − β2
β2 − β1

≤
δ(1 + g)(1− β2) +

λ
δ(1−β1)(β2−β1)

δ(1 + g)(1− β2)
< 1.

Taking β1 = 1+g+ℓ
g+ℓ

ε′, β2 <
1+g
g+ℓ

ε′, and −(β2 − β1) >
ℓ

g+ℓ
ε′ into account, we

have a lower bound of −β3−β2

β2−β1
as follows.

−
β3 − β2
β2 − β1

>
ℓ+ g

(

1− 1+g
g+ℓ

ε′
)

− g − ℓ

( g
1+g

+ε′)(1− 1+g+ℓ
g+ℓ

ε′)
λ
ε′

(

g
1+g

+ ε′
)

(1 + g)

>
ℓ− 1+g

g+ℓ
gε′ − ℓ

( g
1+g

+ε′)(1− 1+g+ℓ
g+ℓ

ε′)
λ
ε′

g + (1 + g)ε′

>
3
4ℓ
3
2g

>
ℓ

2g
.
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The first inequality follows from δ = g
1+g

+ ε′ > g
1+g

. The third inequality is

ensured by ε′ < 2ε and λ < λ. Therefore, we have obtained ℓ
2g < −β3−β2

β2−β1
< 1

and β3 ∈ (β2, β2). That is, β3 − β2 > 0.

Next, let us derive −βt+3−βt+2

βt+2−βt+1
inductively. Suppose that ℓ

2g < −βs+2−βs+1

βs+1−βs
<

1 and βs+2 ∈ (min {βs, βs+1} ,max {βs, βs+1}) hold for period s = 1, 2, . . . , t.
We have shown that this supposition holds for t = 1. We show that ℓ

2g <

−βt+3−βt+2

βt+2−βt+1
< 1 and βt+3 ∈ (min {βt+1, βt+2} ,max {βt+1, βt+2}) hold.

By (4), (5), and (6), for any t ∈ N, we have

{

λ
δ(1−βt)

= −(1− βt+1)g − βt+1ℓ+ δ(1− βt+1)(1− βt+2)(1 + g)
λ

δ(1−βt+1)
= −(1− βt+2)g − βt+2ℓ+ δ(1− βt+2)(1− βt+3)(1 + g),

or,

−
βt+1 − βt

δ(1− βt)(1− βt+1)
λ

=− (βt+2 − βt+1)(g − ℓ) + δ(1− βt+2) {(βt+3 − βt+2) + (βt+2 − βt+1)} (1 + g).

The suppositions ensure βt+2−βt+1 ̸= 0. Divide both sides of the above equation
by βt+2 − βt+1. Then, we obtain

−
βt+3 − βt+2

βt+2 − βt+1
=

ℓ+ δ(1 + g)(1− βt+2)− g + 1

δ(1−βt)(1−βt+1)
βt+2−βt+1

βt+1−βt

λ

δ(1 + g)(1− βt+2)
. (13)

As Assumption 2 and βt+2−βt+1

βt+1−βt
< 0 hold, −βt+3−βt+2

βt+2−βt+1
is bounded above by

−
βt+3 − βt+2

βt+2 − βt+1
≤

δ(1 + g)(1− βt+2) +
1

δ(1−βt)(1−βt+1)
βt+2−βt+1

βt+1−βt

λ

δ(1 + g)(1− βt+2)
< 1.

Taking 0 < βt+1, βt+2 <
1+g+ℓ
g+ℓ

ε′ = β1, and
ℓ
2g < −βt+2−βt+1

βt+1−βt
< 1 into account,

we find the following lower bound of −βt+3−βt+2

βt+2−βt+1
.

−
βt+3 − βt+2

βt+2 − βt+1
=

ℓ+ δ(1− βt+2)(1 + g)− g + 1

δ(1−βt)(1−βt+1)
βt+2−βt+1

βt+1−βt

λ

δ(1 + g)(1− βt+2)

>

ℓ+ g
(

1− 1+g+ℓ
g+ℓ

ε′
)

− g − 1

( g
1+g

+ε′)(1− 1+g+ℓ
g+ℓ

ε′)
2 2g

ℓ

λ
(

g
1+g

+ ε′
)

(1 + g)

>
ℓ− 1+g+ℓ

g+ℓ
gε′ − 1

g
1+g

· 1
4
·2
ε′

g + (1 + g)ε′
>

3
4ℓ
3
2g

>
ℓ

2g
.

Therefore, we obtained ℓ
2g < −βt+3−βt+2

βt+2−βt+1
< 1 and βt+3 ∈ (min {βt+1, βt+2} ,max {βt+1, βt+2}).
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C Proof of Proposition 3

Proof of Proposition 3 . By (13), we have

−
βt+3 − βt+2

βt+2 − βt+1
=1−

g − ℓ

δ(1− βt+2)(1 + g)
−

1

δ2(1− βt)(1− βt+1)(1− βt+1)
βt+2−βt+1

βt+1−βt

λ.

Therefore, if g − ℓ < 0 and λ is small, then −βt+3−βt+2

βt+2−βt+1
> 1, and |βt| goes to

infinity as t goes to infinity. That is, we have obtained a necessary condition for
the efficiency result.

D Proof of Proposition 4

Proof. Fix any ε > 0. We define ε, δ, δ, and λ as follows:

ε ≡
ℓ2

54(1 + g + ℓ)2
ε

1 + ε
,

δ ≡
g

1 + g
+ ε,

δ ≡
g

1 + g
+ 2ε,

λ ≡
1

16

g

1 + g

1

1 + g + ℓ
ε2.

Fix any δ ∈
[

δ, δ
]

and λ ∈ (0, λ). We show a sequential equilibrium whose

payoff vector (v∗1 , v
∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ
− ε.

Strategy

We define a grim trigger strategy σ̃. Strategy σ̃ is represented by an automaton
that has four types of states: initial ω̃1

i , cooperation (ω̃t
i)

∞
t=2, transition ωE

i ,
and defection ωD

i . Players use the public randomization only at the initial
state.

At the initial state ω̃1
1 , player 1 chooses C1 with probability 1 − β1,1 and

D1 with probability β1,1. Player 1 does not observe player 2 irrespective of
his action. The transition state depends on a realized sunspot. If the realized
sunspot is greater than x̂, the state remains the same. If the realized sunspot
is not greater than x̂ and player 1 chooses C1, then the state in the next period
moves to the cooperation state ω̃2

1 . If the realized sunspot is not greater than x̂
and player 1 chooses D1, then the state in the next period moves to the defection
state ωD

1 .
At the initial state ω̃1

2 , player 2 chooses D2. Irrespective of his action,
player 2 observes player 1 with probability 1 − β2,2 and does not observe him
with probability β2,2. The transition state depends on the realized sunspot x. If
the realized sunspot is greater than x̂, the state remains the same. Suppose that
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the realized sunspot is not greater than x̂. If player 2 observes C1, then the state
in the next period moves to the cooperation state ω̃2

2 . If player 2 observes D1,
then the state in the next period is the defection state ωD

2 . If player 2 does
not observe his opponent in period 1, then the state in the next period is the
transition state ωE

2 .
At the cooperation state ω̃2

1 , player 1 chooses action C1 with probabil-
ity 1 − β1,2. When player 1 chooses action C1, he observes his opponent with
probability 1− β1,3. When player 1 chooses action D1, he does not observe. If
player 1 chooses C1 and observes C2, then the state in the next period is the
cooperation state ω̃3

1 . If player 1 chooses D1 or observes D2, then the state in
the next period is the defection state ωD

1 . If player 1 chooses C1 but does not
observe, then the state in the next period is the transition state ωE

1 .
At the cooperation state ω̃t

1(t ≥ 3), player 1 chooses action C1. Player 1
observes his opponent with probability 1 − β1,t+1. If player 1 chooses C1 and
observes C2, then the state in the next period is the cooperation state ω̃t+1

1 .
If player 1 chooses D1 or observes D2, then the state in the next period is the
defection state ωD

1 . If player 1 chooses C1 but does not observe, then the state
in the next period is the transition state ωE

1 .
At the cooperation state (ω̃t

2)
∞
t=2, player 2 chooses action C2. He observes

player 1 with probability 1−β2,t+1. If player 2 chooses C2 and observes C1, then
the state in the next period is the cooperation state ω̃t+1

2 . If player 2 chooses
D2 or observes D1, then the state in the next period is the defection state ωD

2 .
If player 2 chooses C2 but does not observe, then the state in the next period
is the transition state ωE

2 .
The output and transition functions at the transition state and the defection

state are defined in the same manner as in the proof of Proposition 1. At
the transition state ωE

i in period t, each player i chooses Di and does not
observe irrespective of his action. The state moves to the defection state ωD

i in
period t+1 when ati = Di or o

t
i = Dj is realized. If player i chooses ai = Ci and

mi = 0, the state remains the same. When player i chooses Ci and observes
Cj in period t, the state in period t + 1 moves to the cooperation state ω̃t+1

i .
At the defection state ωD

i , the state remains the same, the defection state ωD
i ,

irrespective of the action–observation pair.
The belief ψ∗

i for player i is determined in the same manner in the proof
of Proposition 1. We consider a tremble that attaches far less weight to the
deviations with respect to observations at any history hit compared with those
with respect to action for any i and any t ∈ N. The above tremble induces
the unique belief ψ∗

j for player j for each j. We denote by ψ∗ the system of
beliefs (ψ∗

1 , ψ
∗
2). The belief ψ∗ has a similar property to the one in the proof

of Proposition 1. That is, given ψ∗, player i is certain that the state of his
opponent is the defection state when player i chose Di or observed Dj in the
past.

We define (β1,t)
∞
t=1 and (β2,t)

∞
t=2. First, let us define β1,1 and β1,2. We define

ε′ ≡ δ − g
1+g

. It is obvious that ε′ ∈ [ε, 2ε] We set β1,1 = 1+g+ℓ
g+ℓ

ε′. We define
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β1,2 as follows.

β1,2 =
(1− β1,1) {δ(1 + g)− g} − β1,1ℓ

δ(1− β1,1)(1 + g)
.

Let Wi,t(t ≥ 2) be the sum of the stage game payoffs for player i from the
cooperation state ωt

i . At any cooperation state ωt+1
2 (t ∈ N), player 2 believes

that the state of his opponent is the cooperation state ωt+1
1 with probability 1−

β1,t+1, and with the remaining probability β1,t+1, the state is either ωE
1 or ωD

1 .
Therefore, W2,t+1 is given by

W2,t+1(β2,t+1, β2,t+2) =(1− β1,t+1)− β1,t+1ℓ+ δ(1− β1,t+1)(1− β1,t+2)(1 + g).

At the initial state, player 2 is indifferent between m2 = 1 and m2 = 0. There-
fore, β1,3 is given by

λ

x̂δ(1− β1,1)
=W2,2(β1,2, β1,3)− (1− β1,2)(1 + g).

At any cooperation state, player 2 is indifferent betweenm2 = 1 andm2 = 0.
Therefore, for any t ∈ N, β1,t+2 is given by

λ

δ(1− β1,t)
=W2,t+1(β1,t+1, β1,t+2)− (1− β1,t+1)(1 + g). (14)

Next, we define (β2,t)
∞
t=2. We define β2,2 so that player 1 is indifferent

between choosing (C1, 0) and (D1, 0) at the initial state. That is, β2,2 is given
by the equation below.

−ℓ+ x̂δ(1− β2,2)(1 + g) = 0.

Player 1 randomizes (C1, 0) and (D1, 0) at the cooperation state ω̃2
1 . Hence,

β2,3 is given by the following equation.

(1− β2,2)− β2,2ℓ+ δ(1− β2,2)(1− β2,3)(1 + g) = (1− β2,2)(1 + g).

In the cooperation state ω̃t
1 (t ≥ 2), player 1 believes that the state of

his opponent is the cooperation state with probability 1 − β2,t. Therefore,
W1,t(t ≥ 2) is given by

W1,t(β2,t, β2,t+1) =(1− β2,t)− β2,tℓ+ δ(1− β2,t)(1− β2,t+1)(1 + g).

Furthermore, player 1 randomizes (C1, 1) and (C1, 0) at the cooperation state ω̃2
1 .

At the cooperation state ω̃2
1 , player 1 believes that the state of player 2 is ω̃2

2

with probability 1 − β2,2. Therefore, β2,4 is determined as the solution of the
following equation.

λ

δ(1− β2,2)
=W1,3(β2,3, β2,4)− (1− β2,3)(1 + g).
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In addition, player 1 randomizes (C1, 1) and (C1, 0) at the cooperation
state ω̃t

1 (t ≥ 3). At the cooperation state ω̃t
1 (t ≥ 3), player 1 believes that

the state of player 2 is ω̃t
2 with probability 1 − β2,t. We choose β2,t+1 as the

solution of the equation below so that player 1 is indifferent between choosing
(C1, 1) and (C1, 0).

λ

δ(1− β2,t)
=W1,t+1(β2,t+1, β2,t+2)− (1− β2,t+1)(1 + g). (15)

Taking into account the definition of δ, (β1,t)
∞
t=2 and (β2,t)

∞
t=2 are chosen as

follows.

β1,1 =
1 + g + ℓ

g + ℓ
ε′

β1,2 =
(1− β1,1) {δ(1 + g)− g} − β1,1ℓ

δ(1− β1,1)(1 + g)

β1,3 =
(1− β1,2) {δ(1 + g)− g} − β1,2ℓ−

λ
x̂δ(1−β1,1)

δ(1 + g)(1− β1,2)
,

β1,t+2 =
(1− β1,t+1) {δ(1 + g)− g} − β1,t+1ℓ−

λ
δ(1−β1,t)

δ(1 + g)(1− β1,t+1)
, ∀ t ≥ 2.

β2,2 =
x̂δ(1 + g)− ℓ

x̂δ(1 + g)

β2,3 =
(1− β2,2) {δ(1 + g)− g} − β2,2ℓ

δ(1 + g)(1− β2,2)

β2,t+2 =
(1− β2,t+1) {δ(1 + g)− g} − β2,t+1ℓ−

λ
δ(1−β2,t)

δ(1 + g)(1− β2,t+1)
, ∀ t ≥ 2.

Finally, we choose x̂. We define x̂ as the solution below.

x̂δ(1 + g)− ℓ

x̂δ(1 + g)
=

1 + g + ℓ

g + ℓ
ε′.

When x̂ = ℓ
g
, the left-hand side is greater than the right-hand side.

ℓ
g
(1 + g)ε′

ℓ
g
δ(1 + g)

=
1

δ
ε′ >

1 + g + ℓ

g + ℓ
ε′.

Furthermore, if x̂ = ℓ
δ(1+g) , then the left-hand side is smaller than the right-hand

side. Therefore, x̂ ∈
(

ℓ
δ(1+g) ,

ℓ
g

)

is well defined.

By similar discussion in Lemma 2, we have

1

2

1 + g − ℓ

g + ℓ
ε′ < β1,t <

1 + g + ℓ

g + ℓ
ε′, ∀t ∈ N, and

1

2

1 + g − ℓ

g + ℓ
ε′ < β2,t+1 <

1 + g + ℓ

g + ℓ
ε′, ∀t ∈ N.
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Following the proof of Proposition 1, we show sequential rationality and that
the equilibrium payoff vector (v∗1 , v

∗
2) satisfies v

∗
1 = 0 and v∗2 ≥ 1+g+ℓ

1+ℓ
− ε.

Sequential rationality at the defection state

Let us confine our attention to show sequential rationality. At the defection
state, player i is certain that the state of his opponent is the defection state, and
the opponent chooses (Dj , 0) with certainty from the current period onwards.
Player i has no incentive to choose Ci or mi = 1. Therefore, it is optimal for
player i to choose (Di, 0).

Sequential rationality at the initial state and the coopera-
tion state

Let us consider a cooperation state ω̃t
i(t ≥ 2). Once player i chooses Di, the

strategy σ∗ prescribes Di every period, irrespective of his observation result.
Therefore, at any cooperation state, each player i has no incentive to choose
(Di, 1).

First, let us consider player 1’s sequential rationality at the initial state ω̃1
1 .

The definition of β2,2 ensures that player 1 is indifferent between (C1, 0) and
(D1, 0). It is obvious that player 1 has no incentive to observe player 2 because
player 2 chooses action D2 with certainty.

Next, let us consider the decision of player 1 at cooperation states. At
the cooperation state ω̃2

1 , the stage-behaviors (C1, 1), (C1, 0) and (D1, 0) are
indifferent by the definitions of β2,3 and β2,4. At the cooperation state ω̃t+2

1 (t ≥
1), the definition of β2,t+4 ensures that (C1, 1) and (C1, 0) are indifferent. In
addition, the equation (15) in period t + 1 implies that the payoff W1,t+2 for
choosing action C1 is greater than the payoff (1−β2,t+2)(1+g) when he chooses
action D2. It is optimal for player 1 to follow the strategy σ̃ at cooperation
states (ω̃1,t)

∞
t=2.

Lastly, let us consider player 2’s choice at the initial state ω̃1
2 . By the defini-

tion of β1,3, player 2 is indifferent between choosing (C2, 1) and (C2, 0). Player 2
does not prefer action D2 because player 1 never observes him. Next, let us con-
fine our attention to player 2’s choice at the cooperation state ω̃t

2 (t ≥ 2). By the
definition of β1,t+2, player 2 is indifferent between choosing (C2, 1) and g (C2, 0).
If player 2 chooses (D2, 0), his payoff is (1 − β1,t)(1 + g). The inequality (14)
in period t − 1 ensures that the payoff W2,t for choosing C1 is greater than
(1− β1,t)(1 + g). That is, action D2 is suboptimal.

Thus, it is optimal for both players to follow strategy σ̃ in the cooperation
state.

Sequential rationality in the transition state

We consider sequential rationality at any period t (≥ 2) associated with the
transition state.
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First, let us consider the transition state for player 1 in period t (t ≥ 3). Let
p be the probability with which player 1 believes that the state of his opponent
is the cooperation state. Therefore, the upper bound of the payoff when player 1
chooses action C1 in period t is given by

p− (1− p)ℓ+ δpW1,t+1.

Furthermore, the payoff for (D1, 0) is bounded above by p(1 + g). Therefore,
(D1, 0) is profitable if the following value is negative.

p− (1− p)ℓ+ δpW1,t+1 − p(1 + g).

Using (15), we can rewrite the above value as follows.

p− (1− p)ℓ+ δpW1,t+1 − p(1 + g)

=(1− β2,t)− β2,tℓ− λ+ δ(1− β2,t)W1,t+1 − (1− β2,t)(1 + g)

+ λ+ {p− (1− β2,t)} {1 + ℓ+ δW1,t+1 − (1 + g)}

=
λ

δ(1− β2,t−1)
+ λ− {(1− β2,t)− p} {δW1,t+1 − (g − ℓ)} . (16)

The second equality follows from equation (15) for t− 1.
Furthermore, the payoff δW1,t+1 is greater than that for choosing (D1, 0).

Therefore, the payoff δW1,t+1 is bounded below by

δW1,t+1 − (g − ℓ) ≥δ(1− β2,t+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

− (g − ℓ)

≥
ℓ

2
. (17)

The second inequality follows from δ = g
1+g

+ ε′ and β2,t+1 ≤ 1+g+ℓ
g+ℓ

ε′.

The maximum value of p in period t (t ≥ 3) is (1− β2,t−1)(1− β2,t). Taking
(17) into account, the value of (16) has the following upper bound.

λ

δ(1− β2,t−1)
+ λ− {(1− β2,t)− p} δW1,t+1

<
1 + g

g

λ

1− β2,t−1
+ λ− (1− β2,t−1)β2,t

ℓ

2

<
1 + g

g

λ

1− 1+g+ℓ
g+ℓ

ε′
+ λ−

(

1−
1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

1 + g + ℓ
ε′
ℓ

2

<0.

The second inequality follows from 1
2
1+g−ℓ
1+g+ℓ

ε′ < β2,t−1, β2,t <
1+g+ℓ
g+ℓ

ε′. There-

fore, choosing (D1, 0) is optimal at the transition state ωE
1 .

Next, let us consider the transition state for player 2 in period 2. Then,
player 2 believes that the state of his opponent is the cooperation state ω̃2

1 with
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probability 1− β1,1. If player 2 chooses C2, the continuation payoff is bounded
above by

(1− β1,1)W2,2 − β1,1ℓ.

However, the payoff of choosing (D2, 0) is given by (1 − β1,1)(1 − β1,2)(1 + g).
Therefore, it is optimal for player 2 to choose (D2, 0) if the following value is
negative.

(1− β1,1)W2,2 − β1,1ℓ− (1− β1,1)(1− β1,2)(1 + g).

Or, equivalently

(1− β1,1) {W2,2 − (1− β1,2)(1 + g)} − β1,1ℓ

=(1− β1,1)
λ

δ(1− β1,1)
− β1,1ℓ

=
λ

δ
− β1,1ℓ < 0.

Therefore, it is optimal for player 2 to choose (D2, 0).
Finally, let us consider the transition state for player 2 in period t (t ≥ 3).

Let us denote by p the probability with which player 2 believes that the state of
his opponent is a cooperation state. Then, the upper bound of the payoff when
player 2 chooses action C2 in period t is given by

p− (1− p)ℓ+ δpW2,t+1.

The payoff for (D2, 0) is given by p(1+ g). Therefore, (D2, 0) is profitable if the
following value is negative.

p− (1− p)ℓ+ δpW2,t+1 − p(1 + g).

We can rewrite the above value as follows.

p− (1− p)ℓ+ δpW2,t+1 − p(1 + g)

=(1− β1,t)− β1,tℓ− λ+ δ(1− β1,t)W2,t+1 − (1− β1,t)(1 + g)

+ λ+ {p− (1− β1,t)} {1 + ℓ+ δW2,t+1 − (1 + g)}

=W2,t − (1− β1,t)(1 + g) + λ+ {p− (1− β1,t)} {δW2,t+1 − (g − ℓ)}

=
λ

δ(1− β1,t−1)
+ λ− {(1− β1,t)− p} {δW2,t+1 − (g − ℓ)} . (18)

The third equality follows from equation (14) for t− 1.
Furthermore, δW2,t+1 is bounded below by

δW2,t+1 − (g − ℓ) ≥δ(1− β1,t+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

− (g − ℓ)

≥
ℓ

2
.
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The second inequality follows from δ = g
1+g

+ ε′ and β1,t+1 ≤ 1+g+ℓ
g+ℓ

ε′.

The maximum value of p in period t is (1 − β1,t−1)(1 − β1,t). Taking (17)
into account, we can show that (18) is negative as follows.

λ

δ(1− β1,t−1)
+ λ− {(1− β1,t)− p} δW2,t+1

≤
λ

δ(1− β1,t−1)
+ λ− (1− β1,t)β1,t−1

ℓ

2

≤
1 + g

g

1

1− 1+2g
2g ε′

λ+ λ−

(

1−
1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

1 + g + ℓ
ε′
ℓ

2

<0.

The second inequality is ensured by β1,t, β1,t−1 ∈
(

1
2
1+g−ℓ
1+g+ℓ

ε′, 1+g+ℓ
g+ℓ

ε′
)

. There-

fore, player 2 prefers D2 to C2 at the transition state.
Hence, it has been proven that it is optimal for both players to follow strat-

egy σ̃. The strategy σ̃ is a sequential equilibrium.

The payoff

Finally, let us consider the equilibrium payoff. The equilibrium payoff for
player 1 is 0 because player 1 weakly prefers (D1, 0) in period 1.

Similarly, player 2 weakly prefers (D2, 0) in period 2. Thus, his equilibrium
payoff v∗2 is given by

v∗2 ≥(1− δ)(1− β1,1) {(1 + g) + x̂δ(1− β1,2)(1 + g)}+ (1− x̂)δv∗2

=
(1− δ)(1− β1,1) {(1 + g) + x̂δ(1− β1,2)(1 + g)}

1− (1− x̂)δ

=
(1− β1,1) {1 + x̂δ(1− β1,2)}

1 + x̂ δ
1−δ

(1 + g).

Taking x̂ ∈
(

ℓ
δ(1+g) ,

ℓ
g

)

into consideration, we obtain a lower bound of v∗2 below.

v∗2 >
(1− β1,1)

{

1 + ℓ
1+g

(1− β1,2)
}

1 + ℓ
g

δ
1−δ

(1 + g)

>

(

1− 1+g+ℓ
g+ℓ

ε′
)(

1 + g + ℓ− 1+g+ℓ
g+ℓ

ε′ℓ
)

1 + ℓ
g

g+ε′

1−(1+g)ε′

>
1 + g + ℓ

1 + ℓ
− ε.

The second inequality follows from the upper bound of β1,1 and β1,2. Therefore,
Proposition 4 has been proven.
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E Proof of Theorem 1

Proof. Let us fix n such that:

n ≥
8 + 2g

ε
.

We use the same technique as in Lemma 1. We divide the repeated game into
n distinct repeated games. The first repeated game is played in period 1, n+1,
2n+1 . . . , the second repeated game is played in period 2, n+1, 2n+2 . . . , and
so on. Each repeated game can be regarded as a repeated game with discount
factor δn.

By Corollary 4.1, there exists a sequential equilibrium strategy σ̃ whose

payoff vector v∗ = (v∗1 , v
∗
2) is sufficiently close to payoff vector v̂∗ =

(

0, 1+g+ℓ
1+ℓ

)

and satisfies |v∗i − v̂i| <
1
n

when discount factor δn is sufficiently large. We
can also find a sequential equilibrium strategy σ∗ whose payoff vector v∗∗ =
(v∗∗1 , v∗∗2 ) satisfies |v∗∗i − 1| < 1

n
when discount factor δn is sufficiently large by

Proposition 2.
Let us assume that v1 ≤ v2. We choose sufficiently large discount factor δ

so that we can use Corollary 4.1 and Proposition 4, and the discount factor δ
satisfies the following condition:

1− δ

1− δn
≤

2

n
.

The desired payoff vector v can be expressed uniquely as a convex combina-
tion of v∗, v∗∗ and (0, 0) as below.

v = α1δv
∗∗ + α2δv

∗ + (1− α1 − α2) · 0.

(1, 1)

(−ℓ, 1 + g)

(1 + g,−ℓ)

(0, 0)

(

0, 1+g+ℓ
1+ℓ

)

(

1+g+ℓ
1+ℓ

, 0
)

v

v∗

v∗∗

Figure 2: v, v∗, v∗∗
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Let us define n1 and n2 as follows.

n1 ≡ argmin
n∈N∪{0}

∣

∣

∣

∣

1− δn

1− δn
− α1

∣

∣

∣

∣

, n2 ≡ argmin
n∈N∪{0}

∣

∣

∣

∣

δn1 − δn1+n

1− δn
− α2

∣

∣

∣

∣

.

Then, n1 and n2 satisfy
∣

∣

∣

∣

1− δn1

1− δn
− α1

∣

∣

∣

∣

≤

(

1− δ

1− δn
≤

)

2

n
,

∣

∣

∣

∣

δn1 − δn1+n2

1− δn
− α2

∣

∣

∣

∣

≤
2

n
.

Let us consider the following strategy σ̃F . In the first n1-th games, players
play strategy σ̃. From the n1 + 1-th game to the n1 + n2-th game, players play
strategy σ∗. From the n1+n2+1-th to n-th game, players play the stage game
Nash equilibrium repetitively. The strategy σF is a sequential equilibrium.

The payoff vFi for player i is given by

vFi =
(1− δn1)v∗i + (δn1 − δn1+n2)v∗∗i + (δn1+n2 − δn) · 0

1− δn

Then, we have
∣

∣

∣

∣

1− δn1

1− δn
v∗i − α1v̂

∗
i

∣

∣

∣

∣

=

∣

∣

∣

∣

α1(v
∗
i − v̂∗i ) +

(

1− δn1

1− δn
− α1

)

v̂∗i +

(

1− δn1

1− δn
− α1

)

(v∗i − v̂∗i )

∣

∣

∣

∣

≤ε′ +
2

n
(1 + g) +

2

n
ε′ =

2(2 + g)

n

≤
1

n
+

2

n
(1 + g) +

1

n
=

2(2 + g)

n
.

Similarly, we have
∣

∣

∣

∣

δn1 − δn1+n2

1− δn
v∗∗i − α2 · 1

∣

∣

∣

∣

=

∣

∣

∣

∣

α2(v
∗∗
i − 1) +

(

δn1 − δn1+n2

1− δn
− α2

)

+

(

δn1 − δn1+n2

1− δn
− α2

)

(v∗∗i − 1)

∣

∣

∣

∣

≤
4

n
.

Therefore, we obtain
∣

∣

∣

∣

(1− δn1)v∗i + (δn1 − δn1+n2)v∗∗i + (δn1+n2 − δn) · 0

1− δn
− vi

∣

∣

∣

∣

≤

∣

∣

∣

∣

1− δn1

1− δn
v∗i − α1v̂

∗
i

∣

∣

∣

∣

+

∣

∣

∣

∣

δn1 − δn1+n2

1− δn
v∗∗i − α2 · 1

∣

∣

∣

∣

≤
8 + 2g

n
≤ ε.

We obtain that the payoff vector v can be approximated by a sequential equi-
librium payoff vector when v1 ≤ v2 holds.

By symmetricity of the game, it is straightforward that the payoff vector v
can be approximated by a sequential equilibrium payoff vector when v1 ≥ v2
holds as well.
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