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1 Introduction

Endogenous growth theory has greatly improved economists’ understanding of how technological

change generates persistent economic growth. Romer’s (1990) model of Endogenous Technological

Change, is the most influential endogenous growth model with costly R&D activities. Romer

(1990) solves a steady state (or a balanced growth path) by an ingenious conjecture and develops

important economic intuitions on the steady state, leaving the proof of the uniqueness and saddle-

point stability of the steady state open.

In the literature, some authors have talked in part about this issue. By simplifying the Romer

model, Arnold (2000a, 2000b) examines the saddle-point stability of a conjectured steady state for

the monopolistic competitive equilibrium and the social optimum respectively. This simplification

misses some important information, such as how to comprehend and write down the consumer’s

budget constraint correctly. Asada, Semmler and Novak (1998) investigates attentively the steady

state of the social optimum in the Romer model in a very complicated way. By introducing

the complementarity between the intermediate goods or externalities, other authors derive more

complex dynamics such as (expectational) indeterminacy (Benhabib, Perri and Xie, 1994; Asada,

Semmler and Novak, 1998; Evan, Honkapohja and Romer, 1998) and Hopf bifurcation (Slobodyan,

2007).

In this paper, we solve the Romer model by changing a four-dimensional dynamic system

describing the Romer economy into a three-dimensional one. This method of reduction of di-

mensionality is developed by Mulligan and Sala-i-Martin (1993) and used by Benhabib and Perli

(1994) and Benhabib, Perri and Xie (1994). We prove that the steady state exists uniquely and

is saddle-point stable in both the decentralized economy and the social planner economy. That

is, we give a complete characterization of the solution of the Romer model. Besides, due to the

welfare loss of the monopoly production of the producer durables, the equilibrium growth rate

is lower than the optimal growth rate in the Romer model. We want to examine whether the

government does play a role in reducing the welfare cost. For this purpose, we indeed introduce

a set of policy instruments which improving the monopolistic competitive equilibrium allocation

up to social optimum.

The remainder of the paper is organized as follows. In section 2, we solve the decentralized

economy of the Romer model and prove the existence, uniqueness and stability of the steady state.

In section 3, we examine the social planner economy. In section 4, we introduce a set of policy

rules in the decentralized economy to support the social optimum. Finally, Section 5 concludes.
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2 The decentralized economy of the Romer (1990) model

2.1 The model set-up and the equilibrium dynamic system

There are three sectors in the production side of the economy: a final-good sector, an intermediate-

goods sector and a research sector. The final-good sector utilizes human capital, HY t, labor, L,

and all intermediate goods, {xit, i ∈ [0, At]}, to produce the final good with the generalized Cobb-

Douglas production function, Yt = H
α
Y tL

β
∫ At
i=0 x

1−α−β
it di. The profit maximization problem of the

representative firm in the final-good sector is:

max
HY t,L,xit

Hα
Y tL

β

∫ At

i=0
x1−α−βit di− wHtHY t − wLtL−

∫ At

i=0
pitxitdi.

The marginal productivity conditions for human capital and raw labor force are1:

αHα−1
Y t L

βx1−α−βt At = wHt, H
α
Y tβL

β−1x1−α−βt At = wLt, (1)

and the (inverse) demand function for intermediate good i is

pit = H
α
Y tL

β (1− α− β)x−α−βit , i ∈ [0, At] . (2)

Each intermediate good is produced by a monopolistic firm. The decision process of any mo-

nopolistic firm can be separated into two steps. Step 1: it pays the price PAt to buy the patent

for producing intermediate good i in the competitive patents market, which is the sunk cost for

the monopolistic firm. Since the patents market is competitive, the price of new design i is the dis-

counted present value of the profits flow extracted by firm i, i.e., PAt =
∫∞
τ=t πτ exp

(
−
∫ τ
s=t rsds

)
dτ .2

Differentiating it on both sides with respect to t yields the differential equation of PAt,

·

PAt = rtPAt − πt. (3)

Step 2: in the monopoly pricing problem, monopolistic firm i rents capital (as variable costs) and

produces intermediate good i to meet the demand of the final-good sector for its products, i.e.,

(2). It is assumed that the unit cost for any intermediate good is the same η (> 0) units of capital.

Solving the monopoly pricing problem of any intermediate good i, namely, πit = max
pit,xit

pitxit−rtηxit,

we have the symmetric monopolistic pricing formula:

pit =
rtη

(1− α− β)
≡ pt, (4)

where rtη is the marginal cost for producing additional unit of any intermediate good, and

1/ (1− α− β) (> 1) is the mark-up over the marginal cost. Thus all monopolistic firms set the

1Notice that the expressions for the marginal productivity conditions have utilized the symmetric property of

the model that will be derived in the subsequent analysis.
2We omit the superscript of P iAt because of the derived symmetric property of the model.
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same monopoly price pt, produce the same amount xt (due to (2)), and earn the same monopoly

profit πt = (α+ β) ptxt. Furthermore, the total capital stock is related to the durable goods that

are actually used in production by the rule Kt =
∫ At
i=0 ηxitdi = ηxtAt.

The research sector uses the knowledge stock At and human capital HAt to produce new

knowledge, namely,
·

At = δAtHAt = δAt (H −HY t) , (5)

where the second equality follows from the fact that the sum of the human capital used in the

research sector HAt and in the final-good sector HY t must be equal to the total stock of human

capital in the economy H. Free mobility and no arbitrage require that the rental rate of human

capital must be equal in the research sector and in the final-good sector, namely,

PAtδAt = wHt = αH
α−1
Y t L

βx1−α−βt At. (6)

The representative consumer’s utility maximization problem is summerized as follows:

max
Ct,Kt

∫ ∞

t=0
e−ρt

C1−σt − 1

1− σ
dt,

subject to the flow budget constraint (FBC)3:

·

Kt = wHtHY t + wLtL+ rtKt +

∫ At

i=0
πitdi− Ct, (7)

where ρ ∈ (0, 1) is the time discount rate and 1/σ ∈ (0,+∞) is the elasticity of intertemporal

substitution (EIS). The Euler equation is:
·

Ct/Ct =
1
σ (rt − ρ). Substituting (2), (4), and Kt =

ηxtAt into the Euler equation leads to the dynamic equation of consumption

·

Ct
Ct
=
1

σ

[
(1− α− β)2 ηα+β−1Hα

Y tL
βK

−(α+β)
t A

(α+β)
t − ρ

]
. (8)

Putting (1), (2) and (4) into (7) gives us the dynamic equation of physical capital

·

Kt
Kt

= ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t −

Ct
Kt
, (9)

which is essentially the resource constraint.

3Note that HY t (rather than H) enters the budget constraint of the representative consumer. The part HY t of

the total human capital stock H is determined endogenously both by the utility-maximizing behaviors of consumers

and the profit-maximizing behaviors of the firms in the final-good sector. The other part HAt of H is pinned down

by the market-clearing condition of human capital rather than the optimum in the research sector. If we replace

HY t by H in the FBC, then there will be inconsistancy between the FBC and the resource constraint in competitive

equilibrium.
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Substituting Kt = ηxtAt into (6) and taking logrithmic derivative on both sides with respect

to t give us
·

PAt
PAt

= (α+ β − 1)

·

At
At
+ (α− 1)

·

HY t
HY t

+ (1− α− β)

·

Kt
Kt
.

Plugging (2), (4), and (6) into (3) turns out to

·

PAt
PAt

= (1− α− β)2 ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t −

δ

Λ
HY t,

where Λ = α/ (α+ β) (1− α− β). Combining the above two equations and using (5) and (9)

yield us the dynamic equation of HY t:

·

HY t
HY t

=

{
(1−α−β)(α+β)

1−α ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t +

δΛ(1−α−β)+δ
Λ(1−α) HY t −

(1−α−β)
1−α

Ct
Kt
− (1−α−β)δH

1−α

}

. (10)

The dynamic system composed of the four differential equations (5), (8), (9) and (10) describes

the equilibrium dynamics of the model economy, with two state variables (K,A), two control

variables (PA, HY ), and two initial conditions K0, A0.

2.2 Saddle-point stability of the balanced growth path

To study the transitional dynamics implied by the model, we reduce the dimensionality of the

problem from four to three by a change of variable very similar to those used in Mulligan and

Sala-i-Martin (1993), Benhabib and Perli (1994), and Benhabib, Perli and Xie (1994). Thus we

define yt ≡ η(1−α−β)/(α+β)Kt/At and qt ≡ Ct/Kt. Since
·
yt/yt =

·

Kt/Kt −
·

At/At and
·
qt/qt =

·

Ct/Ct −
·

Kt/Kt, we have:

·
yt
yt
= y

−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (11)

·

HY t
HY t

=
(1− α− β) (α+ β)

1− α
y
−(α+β)
t Hα

Y tL
β+

δΛ (1− α− β) + δ

Λ (1− α)
HY t−

1− α− β

1− α
qt−

1− α− β

1− α
δH,

(12)

·
qt
qt
=

(
(1− α− β)2

σ
− 1

)

y
−(α+β)
t Hα

Y tL
β −

ρ

σ
+ qt. (13)

This is a reduced three-dimensional dynamic system in yt, HY t and qt; its dynamics is equivalent

to that of the original four-dimensional system in the sense that its steady states correspond to

the BGPs of the original four-dimensional model. Then the unique steady state (BGP) is solved

as
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y∗ =

[
H∗α
Y L

β (1− α− β)2 (1 + σΛ)

ρ+ δHσ

] 1

α+β

, H∗
Y =

Λ(ρ+ δHσ)

δ (1 + σΛ)
, q∗ =

(ρΛ− δH) (1− α− β)2 + (ρ+ δHσ)

(1− α− β)2 (1 + σΛ)
.

(14)

Substituting (14) into (5), we solve the equilibrium growth rate on the BGP as

g∗ =
δH − ρΛ

1 + σΛ
, (15)

which is exactly the conjectured equilibrium BGP in Romer (1990).

Before studying the stability of the equilibrium BGP, we talk about the parameter values in

the model. Due to H∗
Y ∈ (0, H), we know from (14) that

δH − ρΛ > 0. (16)

For the convergence of the objective function on the BGP, we need to impose the restriction

ρ+ (1− σ) g∗ > 0, impliying that

σ >
δH − ρ (1 + Λ)

δH
. (17)

Hence if the equilibrium BGP in Romer model makes sense, then the two restrictions on parameter

values, (16) into (17), will be implicitly assumed.

Then we examine the stability of the BGP. For this purpose, we define zt ≡ y
−(α+β)
t Hα

Y tL
β,

w1 ≡ (1− α− β) (α+ β) / (1− α) and w2 ≡ (1− α− β)
2 /σ−1. Linearizing the three-dimensional

dynamic system composed of (11)-(13) around the steady state (14), we obtain the Jacobian ma-

trix evaluated at the steady state, namely,

J =






− (α+ β) z∗
(
αz∗

H∗
Y
+ δ
)
y∗ −y∗

− (α+ β)w1z
∗H

∗
Y

y∗ αw1z
∗ + δΛ(1−α−β)+δ

Λ(1−α) H∗
Y −1−α−β

1−α H∗
Y

− (α+ β)w2z
∗ q∗

y∗ αw2z
∗ q∗

H∗
Y

q∗




 .

It is easy to konw that

det (J) = −
δ (α+ β) (1− α− β)2 (1 + 1/σΛ)

1− α
z∗q∗H∗

Y = Π
3
i=1λi < 0. (18)

The negative determinant of the Jacobian matrix establishes that two possibilities will occur: (i)

there is one negative eigenvlue and two other eigenvalues with negative real parts; (ii) there is

one negative real eigenvalue and two other eigenvalues with positive real parts. Now we examine

the sign of the trace of the Jacobian matrix,

trace (J) =

(ρ+ δHσ)






[
2− 2α− β + α (α+ β) + Λ (1− α− β)2

]

− (δH − ρΛ) (1− α) (1− α− β)






(1 + σΛ) (1− α) (1− α− β)
=

3∑

i=1

λi. (19)
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Obviously, the denominator of the trace (J) is positive. Then the sign of trace (J) is identical to

its numerator. And the positivity of the numerator is equivalent to the inequality

σ >
(1− α) (1− α− β)

A
−

ρ

δH

[
1 +

Λ (1− α) (1− α− β)

A

]
≡ Ξ, (20)

where

A ≡ 2− 2α− β + α (α+ β) + Λ (1− α− β)2 > 0.

Due to (16), we have

δH − ρ (1 + Λ)

δH
− Ξ =

δH − ρΛ

δH

1 + Λ (1− α− β)2

A
> 0. (21)

Combining equations (17) and (21), we know that (20) holds, which tells that the trace of the

Jacobian matrix is pisitive. Hence case (ii) holds. The number of the stable eigenvalue is equal

to the number the state variable, which establishes that the BGP is saddle-point stable. Given

the initial values of the state variables, the economy converges to the unique steady state along

the uniqe stable manifold.

3 Social planner economy and social optimum

3.1 Optimal growth path

In this section we present the optimal optimum of the Romer (1990) by reviewing the social

planner economy. The social planner maximizes the representative agent’s objective function

max
Ct,Kt

∫ ∞

t=0
e−ρt

C1−σt − 1

1− σ
dt,

subject to the social resource constraint

·

Kt = η
α+β−1Hα

Y tL
βK

1−(α+β)
t A

(α+β)
t − Ct,

and the knowledge accumulation equation

·

At = δAt (H −HY t) ,

with the given initial values of capital and knowledge (K0, A0). Applying Pontryagin’s maxi-

mum principle and arranging these necessary conditions, we derive the following four-dimensional

dynamic system with respect to Ct, Kt, At and HY t as follows:

·

Ct
Ct
=
1

σ

[
(1− α− β) ηα+β−1Hα

Y tL
βK

−(α+β)
t A

(α+β)
t − ρ

]
, (22)
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·

Kt
Kt

= ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t −

Ct
Kt
, (23)

·

At
At
= δ (H −HY t) , (24)

·

HY t
HY t

=
(1− α− β) + β/α

(1− α)
δHY t −

(1− α− β)

1− α

Ct
Kt

+
(α+ β) δH

1− α
. (25)

Using the reduction of dimension similar to the above section and setting yt ≡ η
(1−α−β)/(α+β)Kt/At

and qt ≡ Ct/Kt, we obtain the following equivalent three-dimensional dynamic system:

·
yt
yt
= y

−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (26)

·

HY t
HY t

=
(1− α− β) + β/α

(1− α)
δHY t −

(1− α− β)

1− α
qt +

(α+ β) δH

1− α
, (27)

·
qt
qt
=

(
(1− α− β)

σ
− 1

)
y
−(α+β)
t Hα

Y tL
β −

ρ

σ
+ qt. (28)

3.2 Stability of the BGP

The steady state (or BGP) of the social planner economy is solved as

Ho
Y =

ρ− δH (1− σ)

δ (σ + β/α)
, yo =

[
Ho
Y L

β (1− α− β) (β + ασ)

βρ+ δHσ (α+ β)

] 1

α+β

, qo =

{
ρ [α (1− α− β) + β]−

δH (α+ β) (1− α− β − σ)

}

(1− α− β) (β + ασ)
,

(29)

with the optimal growth rate

go =
δH − ρΘ

σΘ+ (1−Θ)
, (30)

where Θ ≡ α/ (α+ β). Due to Ho
Y ∈ (0, H) and ρ + (1− σ) go > 0, we need to impose the

following two assumptions:

δH > ρΘ, σ > 1−
ρ

δH
. (31)

Define zt ≡ y
−(α+β)
t Hα

Y tL
β, φ1 ≡ (1− α− β + β/α) / (1− α), φ2 = (1− α− β) / (1− α), and

φ3 ≡ (1− α− β) /σ − 1. To examine the stability property of the steady state, we linearize the

dynamic system (26)-(28) around the steady state (29) and derive the Jacobian matrix

Jo =






− (α+ β) zo
(
αzo

Ho
Y
+ δ
)
yo −yo

0 δ$1H
o
Y −$2H

o
Y

− (α+ β)$3z
o qo

yo α$3z
o qo

Ho
Y

qo




 .

7



Under Assumption (31), we find that the determinant of the Jacobian matrix Jo is negative,

det (Jo) = −
δ (α+ β) [1− α− β + β (1− α− β) / (ασ)]

1− α
zoqoHo

Y < 0,

and the trace of the Jacobian matrix Jo is positive,

trace (Jo) =
σ − 1

σ

βρ+ δHσ (α+ β)

β + ασ
+
ρ

σ
+
(1− α− β)α+ β

1− α

ρ− δH (1− σ)

β + ασ
> 0,

which establish that there is a stable eigenvalue corresponding to the unique state variable yt of

the dynamic system (26)-(28). Therefore the steady state (or BGP) of the social planner economy

of the Romer model is also a local saddle.

4 Policy analysis

It is easy to know from (15) and (30) that the optimal growth rate is larger than the equilibrium

growth rate, i.e., go > g∗, which displays that monopoly brings about welfare cost in the de-

centralized economy. Whether there exist appropriate policy instruments improving equilibrium

growth, we will give a definite answer to this question.

Similar to Arnold (2000), we assume that the government has two policy instruments at its

disposal: subsiding each intermediate-good producer s (> 0) dollars per dollar of revenues and

paying a fraction 1− θt of the R&D outlays in the research sector. Then the profit-maximization

problem of any intermediate good i is changed into

πsit = maxxit
(1 + s)Hα

Y tL
β (1− α− β)x1−α−βit − rtηxit.

The monopoly pricing formular is solved as

pst =
1

(1− α− β) (1 + s)
rtη, (32)

where 1/ (1− α− β) (1 + s) is the new mark-up. Thus all monopolistic firms earn the same profit

πt = (1 + s) (α+ β) ptxt. Since the research sector only affords the share θt ∈ (0, 1) of the wage

cost of the human capital employed in the research sector, the no-arbitrage condition of the

allocation of human capital is changed as

PAtδAt = θtwHt = θtαη
α+β−1Hα−1

Y t L
βK1−α−β

t Aα+βt . (33)

The flow budget constraint of the representative consumer is changed as follows

·

Kt = wHtHY t + wLtL+ rtKt +

∫ At

i=0
πitdi− Ct − Tt, (34)
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where Tt is the lump-sum tax. Thus the Euler equation is also

·

Ct
Ct
=
1

σ
(rt − ρ) . (35)

The balanced budget constraint of the government is

s

∫ At

i=0
pitxitdi = Tt. (36)

Combining (2), (32), and (35) gives us the dynamic equation of consumption

·

Ct
Ct
=
1

σ

[
(1 + s) (1− α− β)2 ηα+β−1Hα

Y tL
βK

−(α+β)
t A

(α+β)
t − ρ

]
. (37)

Plugging (1), (32), and the balanced budget of the government into (34) yields

·

Kt
Kt

= ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t −

Ct
Kt
. (38)

Substituting (33) and (32) into the differential equation
·

PAt = rtPAt − πt leads to

·

PAt
PAt

= (1 + s) (1− α− β)2 ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t −

(1 + s) δ

Λ

HY t
θt
. (39)

Taking logrithmic derivatives with respect to t on both sides of (33) and combining it with (5),

(38) and (39), we know that

·

HY t
HY t

=






1
1−α

·

θt
θt
+ (1−α−β)

1−α [1− (1− α− β) (1 + s)] ηα+β−1Hα
Y tL

βK
−(α+β)
t A

(α+β)
t

− (1−α−β)
1−α

Ct
Kt
− (1−α−β)δH

1−α +
[
(1− α− β) + 1+s

Λθt

]
δHY t
1−α





. (40)

Using the same definition as Section 2, we obtain the following dynamic system about (y,Hy, q)

as follows:

·
yt
yt
= y

−(α+β)
t Hα

Y tL
β − qt − δ (H −HY t) , (41)

·

HY t
HY t

=






1
1−α

·

θt
θt
+ (1−α−β)

1−α [1− (1− α− β) (1 + s)] y
−(α+β)
t Hα

Y tL
β

−1−α−β
1−α qt −

1−α−β
1−α δH +

[
(1− α− β) + 1+s

Λθt

]
δHY t
1−α





, (42)

·
qt
qt
=

[
(1− α− β)2

σ
(1 + s)− 1

]

y
−(α+β)
t Hα

Y tL
β + qt −

ρ

σ
. (43)

To obtain the same allocation as the one of optimal growth path, we compare the dynamic

system with (41)-(43) with the one with (11)-(13). Obviously, if (1 + s) (1− α− β)2 /σ − 1 =

(1− α− β) /σ − 1, i.e., s = (α+ β) / (1− α− β), then (43) is the same as (13). Substituting
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s = (α+ β) / (1− α− β) into (42) and comparing it with (10), we know that they are the same

thing if θt follows the following differential equation

·

θt
θt
=

(
β

α
−
1 + s

Λθt

)
δHY t + δH. (44)

Then the steady state of the dynamic system composed of (41)-(44) can be solved as follows:

H∗∗
Y =

ρ− δH (1− σ)

δ (σ + β/α)
, y∗∗ =

(
H∗∗
Y L

β (1− α− β) (β + ασ)

βρ+ δHσ (α+ β)

) 1

α+β

,

θ∗∗ =
ρ− δH (1− σ)

δHσ + β
α+βρ

, q∗∗ =
ρ [α (1− α− β) + β]− δH (α+ β) (1− α− β − σ)

(1− α− β) (β + ασ)
.

Then the associated equilibrium growth rate is derived as the optimal growth rate, namely,

g∗∗ = go =
δH − ρΘ

σΘ+ (1−Θ)
, (45)

where Θ ≡ α/ (α+ β). Note that under the implied parameter values in the social planner

economy, we have θ∗∗ ∈ (0, 1). Therefore, we have found out a monopolistic competition with a

set of policy rules (s, θt, Tt) satisfying (36) and (44), which supports the social optimum allocation.

5 Conclusion

In this note, by utilizing the reduction of dimensionality, we prove the existence, uniqueness

and saddle-point stability of the steady state (or BGP) of the Romer (1990) model in both the

decentralized economy and social planner economy. That is, given the initial values of the state

variable, there is a unique stable manifold converging to the unique steady state. Based on

this result, we find out a set of policy instruments to reduce the welfare cost of the monopoly

production for the producer durables up to social optimum.

References

[1] Arnold, G., 2000(a). Stability of the Market Equilibrium in Romer’s Model of Endogenous

Technological Change: a Complete Characterization. Journal of Macroeconomics 22 (1), 69-

84.

[2] Arnold, G., 2000(b). Endogenous Technological Change: a Note on Stability. Economic Theory

16, 219-226.

[3] Asada, T., W. Semmler and J. Novak, 1998. Endogenous Growth and the Balanced Growth

Equilibrium. Research in Economics 52, 189-212.

10



[4] Benhabib, J., and Perli, R., 1994. Uniqueness and Indeterminacy: on the Dynamics of En-

dogenous Growth. Journal of Economic Theory 63, 113-142.

[5] Benhabib, J., R. Perli and D. Xie, 1994. Monopolistic Competition, Indeterminacy and

Growth. Ricerche Economiche 48, 279-298.

[6] Evans, G.W., S. Honkapohja and P. Romer, 1998. Growth Cycles. American Economic Review

88, 495-515.

[7] Mulligan, C.B., and Sala-i-Martin, X., 1993. Transitional Dynamics in Two-sector Models of

Endogenous Growth. Quarterly Journal of Economics 108, 739-773.

[8] Romer, P., 1990. Endogenous Technological Change. Journal of Political Economy 98(5), 71-

102.

[9] Slobogyan, S., 2007. Indeterminacy and Stability in a Modified Romer Model. Journal of

Macroeconomics 29, 169-177.

11


