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Abstract

We propose a tractable algorithm to solve stochastic growth models of structural

change. Under general conditions, structural change implies an unbalanced growth

path. This property prevents the use of local solution techniques when uncertainty is

introduced, and requires the adoption of global methods. Our algorithm relies on the

Parameterized Expectations Approximation and we apply it to a stochastic version of

a three-sector structural transformation growth model with Stone-Geary preferences.

We use the calibrated solution to show that in this class of models there exists a tension

between the long- and the short-run properties of the economy. This tension is due

to the non-homothetic components of the various types of consumption, which are

needed to fit long-run structural change, but imply a counterfactually high volatility of

services, and counterfactually low volatilities of manufacturing and agriculture in the

short-run.
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1 Introduction

Models of structural change attracted a great deal of attention in the last decades. Indeed, the

reallocation of resources along economic development out of agriculture into manufacturing

first, and into services later, appears as a robust empirical observation that occurs together

with economic growth in cross-country data. By its nature, structural change is a long run

phenomenon, so that its macroeconomic effects are observed over large time spans. For this

reason, the typical modeling strategy assumes no uncertainty in the economy.1 Departing

from this convention, a relatively small number of contributions show that this process can

have effects that are observable at the business cycle frequencies. Da-Rocha and Restuccia

(2006) use a model with agriculture and non-agriculture sectors to show that the size of the

employment share in agriculture can account for a large fraction of the differences in the

magnitude of aggregate output volatility across countries. Similarly, Moro (2012) models

an economy displaying structural transformation between manufacturing and services and

finds that in the calibrated model the rise of the value added share of services can account

for 28% of the decline in aggregate output volatility observed in the U.S. after 1980, while

Moro (2015), in the context of a similar model, finds that structural transformation can

account for at least 83% of the larger output volatility in middle-income relative to high-

income economies. Carvalho and Gabaix (2013) perform a volatility accounting exercise for

the U.S. and show that aggregate output volatility can be traced back to the change in size

of the various sectors in the economy that display heterogeneous volatilities. More recently,

Yao and Zhu (2018) use a two-sector model to show that the absence of employment-output

correlation in China is due to the large size of the agricultural sector in that country, while

Storesletten, Zhao, and Zilibotti (2019) provide a stochastic model displaying an acceleration

of structural change in booms and a deceleration in recessions.

Ideally, to analyze the short run properties of a growth model with structural change and

stochastic elements one needs to solve for the entire stochastic growth path and compute the

statistics generated by the model along such path. However, due to structural transforma-

tion, computing it presents a technical challenge. The issue arises because, under general

conditions, growth in the model is unbalanced.2 This implies that at any point in time the

model is in transitional dynamics during the relevant period of analysis, meaning that we

1See for instance Kongsamut, Rebelo, and Xie (2001), Ngai and Pissarides (2007), Kylymnyuk, Maliar,
and Maliar (2007), Duarte and Restuccia (2010), Herrendorf, Rogerson, and Valentinyi (2014), Boppart
(2014), Comin, Lashkari, and Mestieri (2015), Duernecker and Herrendorf (2016), among many others.

2Some papers in the literature discuss how some structural change models may display balanced growth
when measured in terms of a numeraire good, and unbalanced growth when measured in line with NIPA
conventions (see Duernecker, Herrendorf, and Valentinyi (2017) and Leon-Ledesma and Moro (2017)). Here
we refer to theoretical unbalanced growth in terms of the numeraire good.

2



cannot focus our study on a steady state or a balanced growth path (BGP) . When adding

uncertainty, this prevents the use of standard local solutions methods, as they involve ap-

proximations around a steady state or a BGP. Due to this technical difficulty, the existing

literature employing growth models displaying structural change in a stochastic environment

typically resorts to simplifying assumptions to find numerical solutions using local methods.3

The main contribution of this paper is to propose a tractable algorithm that allows

to solve for the entire stochastic growth path with structural transformation and capital

accumulation. In addition to the theory, we provide a Matlab toolbox that can be easily

implemented to solve a large class of stochastic structural change models.4 Our method relies

on the technique developed by Den Haan and Marcet (1990) to compute dynamic systems,

the Parameterized Expectations Approximation (PEA). The algorithm approximates the

conditional expectation that typically appears in the first order conditions of a stochastic

model as a function of the state variables. This procedure does not rely on the economy

being in steady state or on a BGP.

We apply the algorithm to a stochastic version of the multi-sector growth model presented

in Herrendorf, Rogerson, and Valentinyi (2014). While it is well known that this model fits

successfully the long run properties of structural transformation in the post-war U.S., its

ability to replicate the short run properties along the growth path is unexplored until now.5

We calibrate the model to fit long run structural transformation, aggregate consumption

growth and volatility and relative volatility of sectoral prices, finding that it can match

long-run characteristics of the data well.

However, our analysis reveals a poor performance of the model in the short-run. The

model produces a counterfactually high volatility of services and conterfactually low volatilies

of agriculture and manufacturing, even when the volatility of service TFP is substantially

lower than the other two sectors. We argue that the poor performance of the model in

terms of volatility of the individual consumption components is due to the non-homothetic

terms on services and agriculture in the utility function. Given the evolution of sectoral

prices and aggregate consumption expenditure as measured in the data, the model can only

account for the structural change in the U.S. economy when the income elasticity of services

is larger than one and that of agriculture is smaller than one. However, these elasticities

also determine the short-run behavior of the economy, by implying a high responsiveness of

services consumption and a low one of manufacturing and agriculture consumption to both

3An exception is Storesletten, Zhao, and Zilibotti (2019), as we explain below.
4To download the toolbox go to https://unh.box.com/s/x6joe5ry2gds1yaqlu2490s1hkn9cki9.
5Buera and Kaboski (2009) note that by considering a time span starting from the late 1800’s, the ability

of the model to reproduce long-run structural change is substantially reduced. However, our focus here is on
the post-war period.
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income and price shocks. As a result, the calibrated parameters imply a counterfactually

high volatility of services consumption and a counterfactually low volatility of agriculture

consumption. When we set non-homothetic parameters to zero, thus imposing a common

income elasticity equal to one in the three sectors, the performance of the model in terms

of volatility of individual consumption components improves, while the ability of the model

to fit long run structural change is dramatically reduced. The punchline is that structural

change models embed a trade-off between their short- and long-run properties. To improve

on the short-run fit of the model, one has to reduce the long-run fit.

To better illustrate the benefits of having an algorithm to compute the entire stochastic

stochastic growth path, consider the two solution methods adopted in Moro (2012) and

Moro (2015). The working tool in both works is a two-sector growth model with non-

homothetic preferences and exogenous stochastic TFP in the two sectors. However, the two

papers resort to different solution methods to analyze the business-cycle effects of structural

transformation. Moro (2012) performs standard RBC analysis around two steady states

differing in the level of TFP but not in the stochastic process for TFP shocks in the two

sectors. Due to non-homothetic preferences, a larger TFP level endogenously creates a larger

share of services in steady-state. In turn, the different size of the share of services affects

the response of endogenous variables to shocks. Thus, in this case the Euler equation is

made stationary by removing the growth component of TFP. This amounts to imposing no

future structural change in the expectation term. Moro (2015), instead, focuses on both

growth and volatility together so that, to find a solution, it simplifies the model by dropping

capital accumulation and assuming an exogenous growth rate for TFP in the two sectors.

In this model TFP is given by a deterministic growth component and a stochastic cyclical

component, and the growth path becomes a sequence of static equilibria. In this case there

is no forward looking component in the household problem (i.e. no expectation term and

no Euler equation) and the effect on investment on the cyclical properties of the economy is

excluded. The method presented here allows to avoid such simplifications and to study the

volatility properties of the multi-sector model along the entire growth path.

A third type of method used in the literature is that proposed in Storesletten, Zhao,

and Zilibotti (2019), which involves a global solution. It relies on the fact that the model

converges to a one sector economy when time goes to infinity. Their algorithm assumes

that this state is reached in finite time, and from then on the model can be computed with

standard RBC techniques. This provides an end-point, and the model can be solved using

backward induction all the way to period one. For the backward induction to work, grids for

the endogenous and exogenous state variables are needed. Our algorithm is more general, not

requiring the economy to converge to a one sector economy (in fact, our economy converges
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to a three sector economy), and does not require the use of grids for the state variables,

which makes it highly tractable.

Note that these challenges do not apply forstructural change models displaying a BGP,

like the ones in Kongsamut, Rebelo, and Xie (2001), Ngai and Pissarides (2007), Boppart

(2014) and Comin, Lashkari, and Mestieri (2015). These models display, under certain

conditions, a time invariant Euler equation so that standard techniques can be used to

analyze the short-run properties of the economy. However, the existence of balanced growth

relies on a specific set of assumptions in each model. Slight modifications of these assumptions

imply that the balanced growth path does not exist anymore, making the Euler equation

time-varying and preventing the use of standard techniques. The typical example is given by

the model resulting by merging Kongsamut, Rebelo, and Xie (2001) and Ngai and Pissarides

(2007), which are two models displaying a BGP. As discussed in Herrendorf, Rogerson, and

Valentinyi (2014), the combination of the two models fails to display a BGP.6 Thus, under

general conditions, one cannot rely on the existence of a BGP to carry out high frequency

analysis in a multi-sector model, and the algorithm presented in this paper appears as the

only available tool that avoids simplifications as the ones used in Moro (2012) and Moro

(2015).

The remainder of the paper is as follows. Section 2 describes the stochastic version of

the multi-sector growth model in Herrendorf, Rogerson, and Valentinyi (2014); section 3

presents the Parameterized Expectations Algorithm; sections 4 and 5 describe the data and

the calibration, respectively, while section 6 presents the main results of the model. Section

7 concludes.

2 Model

The model builds on Herrendorf, Rogerson, and Valentinyi (2014), expanded with stochastic

productivity shocks on the production functions. Time is discrete and there is a represen-

tative agent with preferences defined over the consumption of three goods: agriculture (a),

manufacturing (m) and services (s). The utility function is

U = E

∞
∑

t=0

βt log(Ct),

6Also, a common assumption of multi-sector models displaying a BGP is the same constant returns to
scale Cobb-Douglas technology in each sector, which makes the relative price of two goods independent of
the quantities produced of the two goods. Dropping the assumption of equal Cobb-Douglas exponent in the
two sectors would imply the non-existence of a BGP in most canonical models.
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where

Ct =

[

∑

j=a,m,s

ω
1/µ
j (cjt + c̄j)

µ−1

µ

]
µ

µ−1

, (1)

and cjt is period t consumption of good j = a,m, s. The weights ωj > 0 denote the

relative importance of sector j = a,m, s in the aggregate consumption index Ct and µ > 0

governs the elasticity of substitution. The terms c̄j introduce non-homotheticities to the

problem.

Each good can be produced with a technology that inputs capital and labor. These

technologies are

Yjt = ezjtKα
jtL

1−α
jt , 0 ≤ α ≤ 1, j = a,m, s

The shock zjt is the sum of a first order autoregressive process, plus a deterministic

component that grows with time. More specifically,

zjt = ẑjt + gjt+ Aj, ẑjt = ρj ẑj,t−1 + εjt, εjt ∼ N(0, σ2

j ), j = a,m, s,

The representative agent owns the stock of capital and rents it out to the firms. Capital

evolves according to

Kt+1 = (1− δ)Kt +Xt,

where δ ∈ [0, 1] is the rate of depreciation and Xt is investment. Denoting by pjt the price of

each good, wt the wage rate and rt the rental rate of capital, the period t budget constraint

is
∑

j=a,m,s

pjtcjt + pmtXt = wt + rtKt.

Feasibility requires the following market clearing conditions for all t:

Yat = cat, Ymt = cmt +Xt, Yst = cst, Kt =
∑

j=a,m,s

Kjt, 1 =
∑

j=a,m,s

Ljt,

where we normalized labor supply to 1.

2.1 Equilibrium

A competitive equilibrium for this economy is a list of allocations {cjt} and prices {pjt, rt, wt}

for j = a,m, s and t = 0, 1, . . . ,∞, such that the representative consumer maximizes utility

subject to the budget constraint, firms maximize profits, and all markets clear.

We normalize the price of the manufacturing good pmt to 1 each period. Profit maxi-
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mization implies that equilibrium prices must satisfy

pat = ezmt−zat , pst = ezmt−zst .

The firm first order conditions guarantee that the capital labor ratios equalize across sectors,

which simultaneously implies that, since L = 1, for all t,

Kjt

Ljt

= Kt, j = a,m, s.

This pins down the wage rate and the rental rate as a function of the stock of capital:

wt = ezmt(1− α)Kα
t , (2)

and

rt = ezmtαKα−1

t . (3)

As shown in Herrendorf, Rogerson, and Valentinyi (2014), the dynamic problem of the

consumer can be split into two: an intertemporal problem, in which the consumer makes a

saving/consumption decision, that determines aggregate consumption expenditures in each

period t; and a static problem, in which at each date t, by taking as given consumption

expenditure from the intertemporal problem, the agent chooses the consumption level of

each individual good in the consumption index. Let Et denote consumption expenditure in

period t. The static problem is

max
ca,cm,cs

log

[

∑

j=a,m,s

ω
1/µ
j (cjt + c̄j)

µ−1

µ

]
µ

µ−1

s.t.
∑

j=a,m,s

pjtcjt = Et,

with solution

cmt + c̄m =
Et +

∑

j=a,m,s pjtc̄j

P 1−µ
t

, (4)

cat + c̄a = p−µ
at

ωa

ωm

(cmt + c̄m), (5)

cst + c̄s = p−µ
st

ωs

ωm

(cmt + c̄m), (6)

where

Pt =

(

∑

j=a,m,s

ωjp
1−µ
jt

)
1

1−µ

, (7)

is the aggregate price index.
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The intertemporal problem of the consumer determines the expenditure Et each period.

Investment and consumption expenditures are linked through the feasibility condition, such

that

Et +Xt = rtKt + wt,

To derive the Euler equation, we exploit the fact that

PtCt −
∑

j=a,m,s

pj c̄j = Et, (8)

as proved in Herrendorf, Rogerson, and Valentinyi (2014). Also, inserting equations (5) and

(6) into (1) we obtain

Ct =
cmt + c̄m

ωm

[

∑

j=a,m,s

ωjp
1−µ
j

]
µ

µ−1

=
cmt + c̄m

ωm

P−µ
t . (9)

Equation (9) shows the mapping between Ct and cmt, while equations (5) and (6) show

the mapping between cmt and cat and cst. These imply that we can set Ct as the choice

variable and solve the consumer problem as

maxE
∞
∑

t=0

βt log(Ct)

s.t.

PtCt −
∑

j=a,m,s

pjtc̄j +Kt+1 − (1− δ)Kt = wt + rtKt, (10)

where we used (8) to drop individual consumption components from the intertemporal budget

constraint.

The Euler equation can then be written as

1 = βE

[

PtCt

Pt+1Ct+1

(rt+1 + 1− δ)

]

. (11)

In stationary models (either with a steady state or with a BGP and detrended) this

problem is solved by approximating the expectation function with some variant of a Taylor

expansion around a deterministic steady state. However, in a context of structural change,

growth is unbalanced so neither a steady state nor a BGP exists, and local solution methods

cannot be used.
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To see this why growth is unbalanced in the deterministic model, suppose that PtCt grows

on average at a constant rate and consider set σj = 0 for j = a,m, s. The Euler equation

becomes:

Pt+1Ct+1

PtCt

= 1 + gc,t = β(1− δ + rt+1).

For gc,t to be time invariant, rt must be also constant over time. From equation (3) this

can only happen when Kt grows at the rate gk = gm
1−α

, which implies, by equation (2), that

wt also grows at the rate gk. It follows that the term wt + rtKt −Kt+1 − (1 − δ)Kt in the

budget constraint grows at the rate gk. Using the intertemporal budget constraint in two

subsequent period, we then find that PtCt grows at the rate

gc,t =
(1 + gk)(wt + rtKt −Kt+1 − (1− δ)Kt) +

∑

j=a,m,s pjt+1c̄j

wt + rtKt −Kt+1 − (1− δ)Kt +
∑

j=a,m,s pjtc̄j
− 1.

This rate can only be constant over time when
∑

j=a,m,s pjtc̄j grows at the rate gk.
7

However, this is never the case. To see this, note that
∑

j=a,m,s pjt+1c̄j =
∑

j=a,m,s e
zmt−zjt c̄j

so that prices have a well defined growth rate which is a function of exogenous parameters,

and so there is nothing that guarantees that the whole term grows at rate gk. In addition,

note that when gc,t is time-varying, it has to be that also rt+1 is time varying, such that

the Euler equation is satisfied in each period. Finally, if rt+1 is time varying, from (3) we

have that the capital stock does not grow at a constant rate. It follows that, in general, the

conditions for a balanced growth path do not hold.8

The absence of a steady state or a BGP in the deterministic model prevents the use of

standard local solution techniques in the stochastic version. We turn to the PEA method

developed by Den Haan and Marcet (1990) to address this issue, which we describe next.

3 The Parameterized Expectations Approximation

The PEA is an algorithm that is well suited to work in stochastic models no stationarity.

This method has been successfully applied in stationary environments where the cycles are

deviations from a constant trend, as in Maliar and Maliar (2003b), Marcet and Marshall

(1994), and Marcet and Lorenzoni (1998). In this paper we apply it to a growth environment

7Alternatively, it must be that
∑

j=a,m,s pjt+1c̄j = 0 for all t, which is the condition in Kongsamut,
Rebelo, and Xie (2001) for a balanced growth path. However, even with this condition fulfilled, there must
be homogeneous TFP growth across sectors in the model to have a balanced growth path. As this condition
is at odds with the data we disregard this particular case here.

8For the conditions under which a BGP exists in the context of the model presented here see Herrendorf,
Rogerson, and Valentinyi (2014).
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without a BGP. As such, we are aware of no other method that can address this type of

issues.

The PEA exploits the facts that (i) the value of the right hand side of equation (11) must

depend on the state variables k, za, zm and zs; and that (ii) any function can be approximated

by a polynomial of sufficiently high order.

The approximation we choose is as follows:9

log

[

1

Pt+1Ct+1

(rt+1 + 1− δ)

]

≈ Φ(kt, zat, zmt, zst), (12)

where

Φ(Kt, zat, zmt, zst) = η0 + η1f(Kt) + η2zat + η3zmt + η4zst + η5f(Kt)
2 + η6z

2

at + η7z
2

mt + η8z
2

st.

To understand the intuition behind the algorithm, assume to know the equilibrium se-

quence {Ct, Pt, rt}. Then the value of the vector η = [η0 η1 η2 η3 η4 η5 η6 η7 η8] can be

obtained via an OLS regression, where

log

[

1

Pt+1Ct+1

(rt+1 + 1− δ)

]

= Stη
′ + ǫt,

St = [1, f(Kt), zat, zmt, zst, f(Kt)
2, z2at, z

2
mt, z

2
st] and ǫt is an error term with mean 0 and

variance σ2
ǫ . Alternatively, if we had the right values for η, one could compute the right hand

side of equation 11 as

E

[

1

Pt+1Ct+1

(rt+1 + 1− δ)

]

= E
[

eΦ
]

= E
[

eη×Steǫt
]

= eη×StE [eǫt ] = eη×Ste
σ2
ǫ
2

The variables in St are known in period t, and the exponential of the error term follows

a log-normal distribution where the mean of the error term is 0 and the variance is σ2
ǫ .

The problem is that neither the sequence {Ct, Pt, rt} nor the true value for the vector η

are known. We then use the following algorithm, based on Den Haan and Marcet (1990), to

obtain the latter.

1. Guess initial values for the vector η, and an initial guess for σ2
ǫ .

9We set up the function Φ so that we can compute the expectation in a closed form solution. Alternative
specifications might require the computation of numerical expectations. For such cases, Judd, Maliar, Maliar,
and Tsener (2017) describe how to write these expectations efficiently.
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2. Given these guesses and the value of the state variables at time 0, compute C0 from

equation (11). Compute P0 from the realizations of the shocks.

3. Obtain prices w0 and r0 from equations (2 and (3) respectively, and K1 from equation

(10).

4. Given the new draw of shocks, plugging K1 and the shocks into equation (12) gives C1

and K2.

5. Continue to obtain the entire sequence of {Ct, Kt, rt, wt} in a similar way.

6. Given the sequences, compute the left hand side of equation (12) and regress via OLS

on the polynomial Φ. This will generate new estimates η̂ and σ̂ǫ.

7. Compare the values of η̂ and η and the values of σ̂ǫ and σǫ. If these are close, then we

can conclude that we have the right values of η.10 Otherwise, go to step 8.

8. Use these to update the guesses in step 1 as follows: η′ = λη + (1 − λ)η̂ and σ̂ǫ = σǫ

for some λ ∈ [0, 1).

9. Use the values of η′ and σ′

ǫ as the new guesses in step 1, and go to step 2.

Notice that the polynomial includes a function of capital, f(k). In its simplest form, we may

have f(k) = k or f(k) = log(k). However, these are not our preferred specifications. This is

because of the presence of non-homotheticities in the model. As we discuss in section 5, we

estimate c̄a < 0 and c̄s > 0. As a consequence, some terms in the capital sequence may turn

negative (in off equilibrium iterations), which makes the algorithm less likely to converge to

a feasible solution. For example, if kt is relatively small and c̄a is large in absolute value (but

negative in sign) then by equation (10) kt+1 may become negative, which is not feasible.

A way around this is to assume that the capital stock has a lower bound, equal to a

small positive number.11 However, this presents a problem when the bound is active for

most elements in the capital sequence, since this reduces the rank of the matrix S making it

non-invertible. A solution to this problem arises from rearranging the budget constraint as

follows:

Kt+1 −
∑

j=a,m,s

pjtc̄j = rtKt + wt + (1− δ)Kt − PtCt

10The measure of distance between η, σǫ and η̂, σ̂ǫ that we use is
∑9

i=1
(ηi − η̂i)

2 + (σǫ − σ̂ǫ)
2 and the

tolerance level is 5× 10−7.
11This lower bound should only be active in iterations other than the final one.
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This suggests the use of the function

f(Kt) = log

(

Kt −
∑

j=a,m,s

pjt−1c̄j

)

We find that this simple modification reduces the problem of encountering negative ele-

ments in the series for capital and speeds up computing times greatly.12

To improve the efficiency of the algorithm we adopt the upper and lower bounds discussed

in Maliar and Maliar (2003a). We start with an upper bound that is 10% larger than our

initial guess for η and a lower bound that is 10% below. This modifies Step 8 as follows:

η′ = max(lb,min(ub, λη + (1− λ)η̂))

where lb stands for lower bound and ub for upper bound. Initially, lb = η − 0.1|η| and

ub = η + 0.1|η|, and we relax these bounds each iteration by a constant equal to 0.5. We

choose to make these increases as a constant amount because when the estimate is close to

zero, a proportional relaxation of the bound will have little impact. These bounds prevent

the system from changing too much and so make the algorithm faster and more likely to

converge.

Setting the initial guess for η is challenging, since the wrong guess can prevent the al-

gorithm from converging. We find that setting the initial guess as η = [1,−1, 0, 0, 0, 0, 0, 0]

works reliably. This follows the suggestion in Marcet and Marshall (1994) and Marcet and

Lorenzoni (1998), in that the function Φ must be invertible with respect to capital in the

initial guess.

Finally, a potential concern is represented by the value to choose for λ. A smaller λ speeds

up the algorithm, but makes it less likely to converge to a solution. To address this issue

we start with a relatively low value of λ (equal to 0.5), and then keep the simulations that

successfully converged to a (calibrated) solution. To address the remaining ones, we increase

λ successively until all simulations converge.

4 Data

Our data comes from the National Income and Product Accounts (NIPA) published by the

Bureau of Economic Analysis (BEA), from the year 1947 until 2010, at an annual level. Using

12The algorithm using log(k) without non-homotheticity terms also converges, but in general requires a
larger value of λ, increasing computing time, with many iterations involving matrices with less than full rank,
although final iterations always have full rank matrices. The results under this alternative are practically
identical.

12



these data Herrendorf, Rogerson, and Valentinyi (2014) construct series for consumption and

prices of each type of good (agriculture, manufacturing and services), both in terms of value

added and final expenditures. We use these constructed data in our calibration. In particular,

we use final expenditure because it requires less manipulation than value added measures,

and most of it is readily available from the BEA. While we refer to their paper for the detail

of the procedure for building the data, here we mention how each sector in the model maps

to the data.

Most data comes from NIPA Tables 2.4.3 “Real Personal Consumption Expenditures by

Type of Product, Quantity Indexes” and Table 2.4.5 “Personal Consumption Expenditures

by Type of Product”. Within these tables, agriculture is “food and beverages purchased for

off-premises consumption”, manufacturing includes“durable goods”, and“non-durable goods”

excluding “food and beverages purchased for off-premises consumption”. Services includes

“services” and “government consumption expenditures”.

5 Calibration and Simulations

As is standard in the real business cycle literature, we set the model period to be one quarter.

Note, however, that our data is annual, as we use the dataset in Herrendorf, Rogerson, and

Valentinyi (2013). Thus, when comparing data and model, we annualize the results from

the model. Also, the calibration requires knowledge of relative prices and consumption

expenditure in the first and last quarter of the sample period. Our data, being annual,

means that we do not have these for the first and last quarters. To address this we assume

that the prices and expenditures in these quarters are the annual prices and expenditures in

the years 1947 and 2010 respectively.

Several parameters are calibrated according to the existing literature. Since one period

in the model corresponds to one quarter, we set β = 0.99, while we impose α =0.3 to match

a capital share of 30%. We set the depreciation of capital δ equal to 0.015, which implies an

annual depreciation rate of about 6%.

The main parameters to calibrate pertain to the utility function, and we follow Herren-

dorf, Rogerson, and Valentinyi (2013) in calibrating them. The expenditure shares can be

expressed as

sjt =
pjtcjt
Et

=
ωjp

1−µ
jt

∑

i=a,m,s ωip
1−µ
it

(

1 +
∑

i=a,m,s

pitc̄i
Et

)

−
pjtc̄j
Et

.

Given the actual expenditures on each sector, the parameters ωj, c̄j for j = a,m, s and µ

can be estimated via non-linear least squares. Notice that we can at most use the shares of

two sectors, not three, because the three add up to 1 and make the system linearly dependent.
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We further impose that ωj ≥ 0 for all j = a,m, s ,
∑

j=a,m,s ωj = 1 and µ > 0. To estimate

the parameters without these constraints, we make the following transformations

µ = eb0 , ωa =
1

1 + eb1 + eb2
, ωm =

eb1

1 + eb1 + eb2
, ωs =

eb2

1 + eb1 + eb2
,

and estimate the parameters b0, b1, b2. Furthermore, we follow Kongsamut, Rebelo, and

Xie (2001) in imposing c̄m = 0.13 We obtain slightly different estimates than Herrendorf,

Rogerson, and Valentinyi (2013), because we normalize total consumption expenditures to

be equal to 1 in the starting period, 1947. This normalization only affects the calibrated

values of the Aj’s and c̄j’s, for j = a,m, s.

The shock parameters to calibrate are gj, Aj, ρj and σ2
j . Because of a lack of suitable

targets, we set ρj = ρ = 0.9 for j = a,m, s. We experiment with different assumptions

on ρj finding that the results barely change. We calibrate σj to match the volatility of the

relative (to manufacturing) prices of agriculture and services, and the volatility of aggregate

consumption. We obtain these volatilities in the data by detrending each series using an HP

filter with smoothing parameter 100, and compute the standard deviation of the residual.

We perform several simulations of the model to derive our results. The next set of

parameters vary for each simulation. We set Aa, As, ga and gs such that, given the realizations

of the shocks ẑjt for all j and t, the relative prices of agriculture and services match the data

both in 1947 and in 2010.

To see how this works, recall that pat = ezmt−zat and pst = ezmt−zst . Taking logs

log pjt = zmt − zjt = ẑmt − ẑjt + (gmt − gjt)t+ Am − Aj, j = a, s

Given the relative prices for 1947 and 2010 and the values of ẑat, ẑmt, ẑst, gmt and Am

we obtain the values of gat, gst, Aa and As. These are pa,1947 = 0.62, ps,1947 = 0.32, pa,2010 =

1.11, ps,2010 = 1.12. We set Am and gm so that the consumption expenditure matches the

data in 1947 and 2010 (recall we normalize consumption expenditure to be 1 in 1947). To do

this, we measure the consumption expenditure using chain weighted prices, as in the data.14

Specifically, we proceed as follows. We compute the growth rate in chain weighted total

consumption expenditures between 1947 and 2010. This gives a growth factor of 8.106 over

the entire period. Given a value for Am, we compute the value for gm that would deliver this

growth. We do this via a bisect method, with bounds between 0.0020 and 0.0035. Next, we

set the value of Am so that the consumption expenditure in the first quarter of 1947 is 1,

13Herrendorf, Rogerson, and Valentinyi (2013) find that ignoring this constraint hardly changes the good-
ness of fit. See their footnote 7.

14That is, in the model we compute real consumption expenditure using a chain-weighted Fisher index, in
the same fashion the corresponding variable in the data is constructed.
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according to our normalization. Again, we do this via a bisect method, with bounds between

-1.95 and -1.60.

It is noteworthy that the bisect methods work very accurately. This highlights an impor-

tant feature of the PEA itself. Numerous studies starting from Den Haan and Marcet (1990)

and furthered by Marcet and Lorenzoni (1998) show how parsimonious this method is when

applied to stationary series. The success of the bisect method in this paper shows that this

parsimony extends to non-stationary processes as well. To see this, we highlight that, in

general, bisect methods only work well under strong continuity and monotonicity assump-

tions. However, there is no assumption that guarantees either continuity or monotonicity in

this case. To see this, notice how the calibration algorithm works:

1. Start with guesses Am0 and gm0 and set Am = Am0 and gm = gm0. Set Aa, As, ga and

gs as described above.

2. Run Steps 1 through 9 in section 3.

3. Check growth of consumption expenditures. If this is larger than the data, reduce gm.

If it is lower, increase gm. Otherwise, leave gm as it is and focus on Am by moving on

to Step 4.

4. If consumption expenditures in period 1 are larger than 1, reduce Am, and if they are

less than in the data, increase it. Once they are equal, set Am0 = Am and go back to

Step 1.

5. Once both the expenditure in period 1 and the growth of expenditure match the data,

the calibration algorithm ends.

This calibration algorithm is only guaranteed to work when Step 2 (which is the step running

the PEA) is monotonic and continuous, meaning that the PEA estimates of the vector η do

not change substantially when either Am or gm change marginally. There is no theory that

guarantees that this is the case here. In practice however, we find that the calibration

algorithm runs efficiently in calibrating all simulations under different specifications.

We should mention that this success is not guaranteed regardless of the choice of certain

variables. Mainly, the choices of the tolerance level for how“close” the estimates η and η̂ and

σǫ and σ̂ǫ are, matter. The tighter this tolerance, the likelier the success of the calibration.

The downside is that a very tight tolerance level reduces speed. We find that a tolerance

level of 5 × 10−7 works well. The second key element that determines the success is λ, the

weight on the old guesses for the η′s in Step 8. The larger the λ, the likelier the success.

Again, the cost is time. Our solution is to start with a relatively low value for λ. This
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successfully calibrates a large number of simulations. For the remaining ones, we increase λ.

We continue this way until all simulations are successfully calibrated. The Matlab Toolbox

provided does this automatically.15

We perform 1,000 simulations of the model, and calibrate a specific gm and Am for each

one. The relevant period of analysis is 1947 through 2010, which amounts to 256 quarters. To

minimize dependency on initial conditions (i.e., the initial capital stock k0) we simulate the

economies for 400 periods and drop the initial 144 periods to have to 256 periods (quarters)

as in the time span considered. We set k0 = 0.4, which determines a relatively smooth

and increasing series of capital. Starting from a different initial level does not change the

analysis when we drop the initial 144 periods.16 The calibrated values are very similar

across simulations. On average, ga = 0.001, gm = 0.0024 and gs = −0.0025, with standard

deviations across simulations of 0.00015, 0.00007 and 0.00015, respectively. The mean values

for the A’s are Aa = −1.01, Am = −1.18 and As = 0.03, with standard deviations 0.047, 0.021

and 0.045, respectively.

Table 1 shows the calibrated parameters. The values for gj and Aj reported are averages

across simulations.

We set λ, the weight on the estimates for the polynomial approximating the right hand

side of the Euler equation, initially to 0.5. Given this value, the algorithm was able to

successfully calibrate and 984 simulations. For the remaining 16 we increased λ to 0.75,

which added 12 more successful simulations. We then increased it to λ = 0.875 which

included 2 more simulations, λ = 0.9375 included one more, and λ = 0.96875 added the last

simulation. Appendix A shows details of the estimation results in the PEA algorithm.

6 Results

The model performs well in terms of replicating structural change in the data. Figure 1

shows the evolution of value added shares of the three sectors for one of the 1,000 simulations

(dashed red lines), together with the corresponding figures in the data (solid blue lines). All

simulations perform very similarly in terms of structural change.17 The good performance of

the model in replicating long run-structural change is well know from the work of Herrendorf,

Rogerson, and Valentinyi (2013). Here we confirm that a stochastic version of the model

15Specifically, the codes start off with a value of λ determined by the user (we use 0.5) and updates this
value by adding halfway through 1. Thus, starting with 0.5, the next iteration has 0.75, then 0.875, then
0.9375, and so on.

16However, as we find when working with no non-homotheticities below, a value of k0 very far from this
may prevent a successful calibration.

17In Figure 1 we report the first of the 1,000 simulations.
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Parameter Target Value

α Labor share of 70% 0.3000
β Annual Interest rate of 4% 0.9900
δ Annual depreciation rate of 6% 0.1500
µ Non-linear least squares estimation 0.8478
ωa Non-linear least squares estimation 0.0210
ωm Non-linear least squares estimation 0.1690
ωs Non-linear least squares estimation 0.8100
c̄a Non-linear least squares estimation -0.2730
c̄m Normalization 0.0000
c̄s Non-linear least squares estimation 2.2714
ρ Normalization 0.9000
ga Match agriculture relative price in 2010 0.0001
gm Match consumption expenditure in 2010 0.0024
gs Match services relative price in 2010 -0.0025
Aa Match agriculture relative price in 1947 -1.0137
Am Match consumption expenditure in 1947 -1.8271
As Match services relative price in 1947 0.0348
σa Match volatility of relative price of agriculture 0.0035
σm Match volatility of total consumption 0.0116
σs Match volatility of relative price of services 1× 10−5

Table 1: Calibration
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still fits the structural change data closely once calibrated to post-war U.S. data.

1940 1950 1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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Simulation 1

Services

Manufacturing

Agriculture

Figure 1: Structural Change in the Model and the Data.

We now turn to the business cycle performance of the model, which can be analyzed for

the first time along the growth path in this class of models thanks to the PEA presented in

this paper. Recall that to calibrate the stochastic components of the model we target the

volatility in prices (relative to manufacturing) and in real aggregate consumption. These

volatilities are reported in the first column of Table 2, while the second column reports the

ability of the model in replicating these targets. While the model cannot exactly match the

three volatilities, it accounts for a large fraction of them. In the less performing case of

the three targets, the relative price of services, the model accounts for 84% of the volatility

observed in the data. Figure 2 shows graphically the departures from trend of per-capita

real consumption and relative prices in the data, along with the corresponding results of the

simulation.

The last three lines of Table 3 report the volatility of individual consumption components,

which are not used as targets in the calibration, in the data and in the model. Figure 3

compares these volatilities graphically. Along this metric, the model displays a remarkably
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Standard deviation of Data Model

Real Consumption per-capita 0.0180 0.0190
Relative Price of Agriculture 0.0198 0.0192
Relative Price of Services 0.0154 0.0184
Agricultural Consumption 0.9827 0.2529

Manufacturing Consumption 2.0604 0.4856
Services Consumption 1.1876 1.5128

Table 2: Model vs Data
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Figure 2: Volatility of Aggregate Consumption Expenditures and Relative Prices

poor performance. The volatility of agriculture is 0.98 in the data, compared to 0.26 in the

model (a 27% account), that of manufacturing is 2.06 in the data compared to a 0.51 in

the model (a 25% account), while that of services is 1.19 in the data versus a 1.56 in the

model (a 131% account). Thus, the model predicts a large volatility of services and a small

volatility of agriculture and manufacturing when compared to the data.

The poor performance of the model in terms of sectoral volatility is due to the non-

homothetic terms c̄j, j = a,m, s. To see this, use equations (4) through (8) to write the

demand function for good j as

cjt = ωj

(

pjt
Pt

)

−µ

Ct − c̄j, j = a,m, s.

Approximating income by aggregate consumption Ct, the income elasticity is
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Figure 3: Volatility of Sectoral Consumption

∂cjt
∂Ct

Ct

cjt
=

ωj

(

pjt
Pt

)

−µ

Ct

ωj

(

pjt
Pt

)

−µ

Ct − c̄j

, (13)

and the elasticity of substitution between cjt and Ct is,

∂(cjt/Ct)

∂(pjt/Pt)

pjt/Pt

cjt/Ct

=
−µωj

(

pjt
Pt

)

−µ

ωj

(

pjt
Pt

)

−µ

− c̄j/Ct

. (14)

These equations show that for the manufacturing sector, with c̄m = 0, the income elastic-

ity is 1 and the elasticity of substitution is −µ. They also show that a large c̄j increases both

the income and the substitution elasticities. The long-run features of the economy require

a large income elasticity for the service sector (making services a luxury good), and a small

one for the agricultural sector (making them necessity goods). This is achieved by setting

c̄a < 0 and c̄s > 0. This implies a small elasticity of substitution of the agricultural sector,

and a large one for the service sector. Thus, even when service prices are less volatile than

prices in agriculture relative to the aggregate price index, the large elasticity of substitution

implies much larger changes in the consumption of services than of agriculture relative to

aggregate consumption.

Income elasticities also play a role in shaping the volatility of consumption components.
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As income of the representative household increases with TFP growth in the long-run, these

non-homothetic terms induce, given prices, an increase in the share of services and a decline

in the shares of manufacturing and agriculture. However, in the short-run, these income

elasticities also imply that services consumption responds to income shocks more than manu-

facturing consumption which, in turn, responds more than agriculture consumption, creating

a volatility of individual components of consumption that is at odds with the data.

The above result suggests that structural change models embed a tension between their

long- and short-run properties. To put it differently, to improve the short-run performance

of the model, one should reduce the magnitude of non-homothetic components. However,

in doing this, and given the evolution of prices in the data, one reduces the performance

of the model in the long-run. To see this, we run a version of the model in which we

set the non-homothetic terms to zero, i.e. c̄a = c̄m = c̄s = 0, while leaving all the other

parameters values as in the calibration. Figure 4 reports the performance of the model in

reproducing long-run structural change, while Table 3 reports the volatility statistics.18 The

fit of the model is now poor in terms of long-run consumption shares. The rise of services

goes from 78% to 81% compared to 49% to 73% in the data. However, in terms of volatility

of individual components of consumption, the model displays a better performance. The

volatility of agriculture is 0.98 in the data, compared to 1.22 in the model (a 124% account),

while that of services is a remarkably similar 1.19 in the data versus a 1.17 in the model.

Note that the volatility of aggregate consumption is now substantially smaller than in the

data (0.14 vs 0.18), suggesting that the non-homothetic terms create overall more volatility

in the economy, although this is not distributed appropriately in equilibrium among the

various sectors.19

7 Conclusions

In this paper we address a problem that has stalled the literature on structural transforma-

tion when it comes to stochastic settings. Standard real business cycle solution techniques

rely on the existence of a stationary process for consumption, and use this stationarity to

approximate a stochastic Euler equation. The problem arises because in a large class of mod-

els of structural change, the process for consumption is not stationary. This paper proposes

18To make the exercise as clean as possible we only change the value of the parameters c̄a and c̄s. The
fit would slightly improve by re-estimating the parameters µ and ωj , j = a,m, s. In doing this we obtain a
slightly better match of average shares, but their evolution over time is similar to that reported in Figure 4.
The results are available upon request.

19When setting non-homotheticities to zero in the counterfactual, we also lower k0, the level of capital 144
periods before the first period in our sample, from 0.4 to 0.05. Starting with k0 = 0.4 does not change the
results, but produces a U-shape series for the capital stock during the periods we discard.
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Standard deviation of Data Model

Real Consumption per-capita 0.0180 0.0139
Relative Price of Agriculture 0.0198 0.0192
Relative Price of Services 0.0154 0.0184
Agricultural Consumption 0.9827 1.2190

Manufacturing Consumption 2.0604 0.6103
Services Consumption 1.1876 1.1684

Table 3: Model without non-homotheticity vs Data
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Figure 4: Structural Change in the Model with No Non-Homotheticities
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an algorithm based on the PEA method by Den Haan and Marcet (1990) as an alternative.

This method does not linearize around a constant, so does not require the process to be

stationary. It relies on the knowledge that state variables determine the expected growth

rates, and as such finds a function that will successfully map these state variables into the

expectations in the Euler equation. In other words, the procedure finds the time-invariant

approximation of the expectation function, even if the stochastic variable inside that func-

tion is non-stationary and as such is time-varying. We show that the algorithm works very

smoothly and so it appears as a robust tool to solve stochastic structural change models. To

complement the theory, we provide a Matlab Toolbox than can be used to compute these

equilibria in similar settings.

We use the solution of the model calibrated to post-war U.S. data to show that structural

change models embed a tension between their long- and short-run properties. To fit long-

run consumption shares, these models require a value of the non-homothetic parameters

that imply a counterfactually high volatility of services and counterfactually low volatilies

of manufacturing and agriculture in the short-run. This result suggest that more theoretical

work is needed to have structural change models that can fit concurrently short- and long-run

properties of an economy along its growth path.
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Appendix

A Details - Estimation Results in the PEA Algorithm

The polynomial Φ(K, za, zm, zs) approximates closely the right hand side of equation (11).

The R2 is 1 in all simulations when approximating to 4 decimal points, with a standard

deviation of 4× 10−6. The mean and standard deviations of estimates of the PEA algorithm

across simulations are reported in Table 4. These estimates are significant in most simula-

tions. The last column of Table 4 shows the percentage of simulations displaying significant

estimates at the 95% confidence level.

Estimate Mean of estimates S.D. of estimates % significant
across simulations across simulations at 95% level

Constant 0.5656 4.8075 65%
f(k) -0.2793 0.0133 100%
za 0.2544 9.6322 66%
zm -0.3227 1.7727 86%
zs 1.2679 0.2178 100%

f(k)2 -0.0518 0.0048 100%
z2a 0.1497 4.9162 64%
z2m -0.0212 0.9114 63%
z2s 0.5422 0.0899 100%
σ2
ǫ 3× 10−10 1× 10−10 –

R2 1.0000 4× 10−6 –

Table 4: Mean and Standard Deviations across simulations of the PEA Algorithm estimates

Focusing on the standard deviations of the PEA estimates, the model shows relatively

large standard deviations for the constant and the shocks, but relatively small ones for

the functions of capital. This is not surprising, since large differences in shocks across

simulations imply substantially different effects of those shocks on the expectations term. It

is encouraging to obtain consistent estimates for capital, the endogenous state variable in

the model, featuring very low standard deviations, and always significant coefficients.
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