
Munich Personal RePEc Archive

User-Specified General-to-Specific and

Indicator Saturation Methods

Sucarrat, Genaro

BI Norwegian Business School

24 September 2019

Online at https://mpra.ub.uni-muenchen.de/96148/

MPRA Paper No. 96148, posted 27 Sep 2019 00:20 UTC

1

User-Specified General-to-Specific and

Indicator Saturation Methods
Genaro Sucarrat

Abstract General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumulative
approach to modelling that is ideally suited for conditional forecasting and counterfactual analysis,
whereas Indicator Saturation (ISAT) is a powerful and flexible approach to the detection and estimation
of structural breaks (e.g. changes in parameters), and to the detection of outliers. To these ends, multi-
path backwards elimination, single and multiple hypothesis tests on the coefficients, diagnostics
tests and goodness-of-fit measures are combined to produce a parsimonious final model. In many
situations a specific model or estimator is needed, a specific set of diagnostics tests may be required,
or a specific fit criterion is preferred. In these situations, if the combination of estimator/model,
diagnostics tests and fit criterion is not offered by publicly available software, then the implementation
of user-specified GETS and ISAT methods puts a large programming-burden on the user. Generic
functions and procedures that facilitate the implementation of user-specified GETS and ISAT methods
for specific problems can therefore be of great benefit. The R package gets, version 0.20 (September
2019), is the first software – both inside and outside the R universe – to provide a complete set of
facilities for user-specified GETS and ISAT methods: User-specified model/estimator, user-specified
diagnostics and user-specified goodness-of-fit criteria. The aim of this article is to illustrate how
user-specified GETS and ISAT methods can be implemented.

Introduction

General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumulative approach
to modelling that is ideally suited for scenario analysis, e.g. conditional forecasting and counterfactual
analysis. To this end, well-known ingredients (tests off coefficients, multi-path backwards elimination,
diagnostics tests and fit criteria) are combined to produce a parsimonious final model that passes the
chosen diagnostics. GETS modelling originated at the London School of Economics (LSE) during the
1960s, and gained widespread acceptance and usage in economics during the 1980s and 1990s. The
two-volume article collection by Campos et al. (2005) provides a comprehensive historical overview
of key-developments in GETS modelling. Software-wise, a milestone was reached in 1999, when the
data-mining experiment of Lovell (1983) was re-visited by Hoover and Perez (1999). They showed
that automated GETS modelling could improve substantially upon the then prevalent modelling ap-
proaches. The study spurred numerous new studies and developments, including Indicator Saturation
(ISAT) methods, see Hendry et al. (2008) and Castle et al. (2015). ISAT methods provide a powerful
and flexible approach to the detection and estimation of structural breaks (e.g. changes in parameters),
and to the detection of outliers.

On CRAN, there are two packages that provide GETS methods. The second, named gets, is simply
the successor of the first, which is named AutoSEARCH.1 Since October 2014 the development of
AutoSEARCH is frozen, and all development efforts have been directed towards gets together with
Dr. Felix Pretis and Dr. James Reade. An introduction to the gets package is provided by Pretis et al.
(2018). However, it does does not cover the user-specification capabilities of the package, some of
which were not available at the time.

At the time of writing (September 2019), the publicly available softwares that provide GETS and
ISAT methods are contained in Table 1. Although they offer GETS and ISAT methods for some of the
most popular models in applications, in many situations a specific model or estimator will be needed,
a specific set of diagnostics tests may be required, or a specific fit criterion is preferred. In these
situations, if the combination of estimator/model, diagnostics tests and fit criterion is not offered by
the publicly available softwares, then the implementation of user-specified GETS and ISAT methods
puts a large programming-burden on the user. Generic functions and procedures that facilitate the
implementation of user-specified GETS and ISAT methods for specific problems can therefore be of
great benefit. The R package gets, version 0.20 (September 2019), is the first software – both inside
and outside the R universe – to provide a complete set of facilities for user-specified GETS and ISAT
methods: User-specified model/estimator, user-specified diagnostics and user-specified goodness-of-
fit criteria. The aim of this article is to illustrate how user-specified GETS and ISAT methods can be
implemented.

1Both packages were created by me. Originally, I simply wanted to rename the first to the name of the second.
This, however, is inconvenient in practice I was told, so I was instead asked by CRAN to publish a “new" package
with the new name.

2

HP1999
(MATLAB)

Autometrics
(OxMetrics)

Grocer
(Scilab)

gets
(R)

More than 10 paths Yes Yes Yes

GETS of linear regression Yes Yes Yes Yes

GETS of variance models (log-ARCH) Yes

GETS of logit/probit/count models Yes

ISAT of linear regression Yes Yes Yes

User-specified GETS Yes

User-specified ISAT Yes

User-specified diagnostics Yes

User-specified goodness-of-fit Yes

Menu-based GUI Yes Yes

Free and open source Yes Yes Yes

Table 1: A comparison of publicly available GETS and ISAT softwares with emphasis on user-
specification capabilities. HP1999, the MATLAB code of Hoover and Perez (1999). Autometrics,
OxMetrics version 15, see Doornik and Hendry (2018). Grocer, version 1.8, see Dubois and Micheaux
(2016). gets, version 0.20, see Sucarrat (2019), and Pretis et al. (2018).

The rest of this article contains four sections. In the next section the model selection properties
of GETS and ISAT methods are summarised. This is followed by a section that outlines the general
principles of how user-specified estimation, user-specified diagnostics and user-specified goodness-
of-fit measures are implemented. Next, a section with four illustrations follows. The final section
contains a summary.

Model selection properties of GETS and ISAT methods

It is useful to denote a generic model for observation t as

m(yt, xt, β), t = 1, 2, . . . , n, (1)

where yt is the dependent variable, xt = (x1t, x2t, . . .)′ is a vector of covariates, β = (β1, β2, . . .)′ is a
vector of parameters to be estimated and n is the sample size. Two examples are the linear regression
model and the logit-model:

yt = β1x1t + · · ·+ βkxkt + ǫt, (2)

Pr(yt = 1|xt) =
1

1 + exp(−ht)
with ht = β1x1t + · · ·+ βkxkt. (3)

Note that, in a generic model m(yt, xt, β), the dimension β is usually – but not necessarily – equal
to the dimension of xt. Here, for notational convenience, they will both have dimension k unless
otherwise stated.

In (2)–(3), a variable xjt ∈ xt is said to be relevant if β j 6= 0 and irrelevant if β j = 0. Let krel ≥ 0 and
kirr ≥ 0 denote the number of relevant and irrelevant variables, respectively, such that krel + kirr = k.
GETS modelling aims at finding a specification that contains as many relevant variables as possible,
and a proportion of irrelevant variables that on average equals the significance level α chosen by the

investigator. Put differently, if k̂rel and k̂irr are the retained number of relevant and irrelevant variables
in an empirical application, respectively, then GETS modelling aims at satisfying

IE(k̂rel/krel) → 1 and IE(k̂irr/kirr) → α as n → ∞, (4)

when krel, kirr > 0. If either krel = 0 or kirr = 0, then the targets are modified in natural ways: If

krel = 0, then the target is IE(k̂rel) = 0, and if kirr = 0, then the target is IE(k̂irr) = 0. Sometimes, the

irrelevance proportion k̂irr/kirr is also referred to as gauge , whereas the relevance proportion k̂irr/kirr

is also referred to as potency .

In targeting a relevance proportion equal to 1 and an irrelevance proportion equal to α, GETS
modelling combines well-known ingredients: Multi-path backwards elimination, tests on the β j’s (both
single and multiple hypothesis tests), diagnostics tests and fit-measures (e.g. information criteria).

3

Let V(β̂) denote the estimated coefficient-covariance. GETS modelling in the package gets can be
described as proceeding in three steps:2

1. Formulate a General Unrestricted Model (GUM), i.e. a starting model, that passes a set of chosen
diagnostic tests. A regressor xj in the GUM is non-significant if the p-value of a two-sided t-test
is lower than the chosen significance level α, and each non-significant regressor constitutes the
starting point of a backwards elimination path. The test-statistics of the t-tests are computed as

β̂ j/se(β̂ j), where se(β̂ j) is the square root of the jth. element of the diagonal of V(β̂).

2. Undertake backwards elimination along multiple paths by removing, one-by-one, non-significant
regressors as determined by the chosen significance level α. Each removal is checked for validity
against the chosen set of diagnostic tests, and for parsimonious encompassing (i.e. a multiple hy-
pothesis test) against the GUM. These multiple hypothesis tests on subsets of β are implemented
as Wald-tests.

3. Multi-path backwards elimination can result in multiple terminal models. The last step of GETS
modelling consists of selecting, among the terminal models, the specification with the best fit
according to a fit-criterion, e.g. the Schwarz (1978) information criterion.

In ISAT methods, the vector xt contains at least n − 1 indicators in addition to other covariates
that are considered. Accordingly, standard estimation methods are infeasible, since the number of
variables in xt is usually larger than the number of observations n. The solution to this problem

provided by ISAT methods is to first organise xt into B blocks: x
(1)
t , . . . , x

(B)
t . These blocks need not

be mutually exclusive, so a variable or subset of variables can appear in more than one block. Next,
GETS modelling is applied to each block, which leads to B final models. Finally, a new round of GETS
modelling is undertaken with the union of the retained variables from the B blocks as covariates in a
new starting model (i.e. a new GUM). The model selection properties targeted by ISAT methods are
the same as those of GETS methods. Note, however, that since the starting model (the GUM) contains
at least n − 1 regressors, a tiny significance level – e.g. α = 0.001 or smaller – is usually recommended
in ISAT methods.

User-specification: General principles

In the current version of the package gets, version 0.20, the functions that admit user-specified
estimation are arx, getsm, getsFun and isat.3 The user-specification principles are the same in all
four. However, if the result (i.e. a list) returned from the user-specified estimator does not have
the same structure as that returned from the default estimator ols (part of the gets package), then
arx, getsm and isat may not always work as expected. This is particularly the case with respect to
their extraction functions (e.g. print, coef, residuals and predict). User-specified diagnostics and
goodness-of-fit functions are optional. By default, getsFun and isat do not perform any diagnostics
tests, whereas the default in arx and getsm is to test the standardised residuals for autocorrelation and
Autoregressive Heteroscedasticity (ARCH). This is implemented via the diagnostics function (part of
the gets package). Also by default, all four functions use the Schwarz (1978) information criterion as
goodness-of-fit measure, which favours parsimony.

The getsFun function

The recommended, most flexible and computationally most efficient approach to user-specified GETS
modelling is via the getsFun function. Currently, it accepts up to twenty-five arguments. For the
purpose of user-specified estimation, user-specified diagnostics and user-specified goodness-of-fit
measures, the most important arguments are:

getsFun(y, x,

user.estimator = list(name = "ols"),

user.diagnostics = NULL,

gof.function = list(name = "infocrit", method = "sc"),

gof.method = c("min", "max"),

...)

The y is the left-hand side variable (the regressand), x is the regressor or design matrix, user.estimator
controls which estimator or model to use and further arguments – if any – to be passed on to the

2The way GETS modelling is implemented across softwares varies. For example, in Autometrics and Grocer the
diagnostics are not checked at each deletion.

3In the future, the plan is to also enable user-specified GETS modelling with the function getsv, which imple-
ments GETS modelling of the log-variance.

4

estimator, user.diagnostics controls the user-specified diagnostics if any, and gof.function and
gof.method control the goodness-of-fit measure used. Note that y and x should satisfy ‘is.vector(y)
== TRUE’ and ‘is.matrix(x) == TRUE’, respectively, and enter in "clean" ways: If either y or x are objects
of class, say, "ts" or "zoo", then getsFun may not behave as expected. By default, the estimator ols is
used with its default arguments, which implements OLS estimation via the qr function. The value
NULL on user.diagnostics means no diagnostics checks are undertaken by default. The following
code illustrates getsFun in linear regression (the default), and reproduces the information printed
while searching:

n <- 40 #number of observations

k <- 20 #number of Xs

set.seed(123) #for reproducibility

y <- rnorm(n) #generate Y

x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

#do gets w/default estimator (ols), store output in 'result':

result <- getsFun(y, x)

#the information printed while searching:

18 path(s) to search

Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The object named result is a list, and the code summary(results) returns a summary of its contents.
The most important entries are:

• paths: A list of vectors containing the searched paths. Each vector (i.e. path) indicates the
sequence of delection of the regressors. In the example above the first path is

$paths[[1]]

[1] 1 15 6 7 3 14 11 16 4 2 8 12 5 9 20 19 13

That is, regressor no. 1 was the first to be deleted, regressor no. 15 was the second, regressor no.
6 was the third, and so on.

• terminals: A list of vectors with the distinct terminal models of the specification search. In the
example above it is equal to

$terminals

$terminals[[1]]

[1] 10 17 18

$terminals[[2]]

[1] 10 18

That is, two terminal models. The first contains regressors 10, 17 and 18, whereas the second
contains regressors 10 and 18.

• terminals.results: A data frame with the goodness-of-fit information of the terminal models.
In the above example the entry is equal to:

$terminals.results

info(sc) logl n k

spec 1: -2.090464 47.34259 40 3

spec 2: -2.075247 45.19382 40 2

spec 1 is short for specification 1, i.e. terminal model 1, and spec 2 is short for specification 2,
i.e. terminal model 2. info(sc) indicates that the Schwarz (1978) criterion (the default) is used
as goodness-of-fit measure, whereas n and k denote the number of observations and parameters,
respectively.

• best.terminal: An integer that indicates which terminal model is the best according to the
goodness-of-fit criterion used. In the example above the value is 1.

• specific.spec: A vector of integers that indicates which regressors that are contained in the
best terminal model. In the above example it is

$specific.spec

[1] 10 17 18

That is, the best terminal model contains regressors no. 10, 17 and 18.

5

User-specified estimation

User-specified estimation is carried out via the user.estimator argument. It must be a list containing
at least one entry – a character – named name with the name of the estimator to be invoked. Optionally,
the list can also contain an item named envir, a character, which indicates the environment in which
the user-specified estimator resides. If unspecified, then the function is looked for in the global
environment (.GlobalEnv). Additional entries in the list, if any, are passed on to the estimator as
arguments.

The user-specified estimator must also satisfy the following:

1. It should be of the form myEstimator(y,x,...), where y is a vector and x is a matrix. In other
words, while the name of the function is arbitrary, the first argument should be the regressand
and the second the matrix of covariates.

2. The user-defined estimator should return a list with a minimum of six items:

• n (the number of observations)

• k (the number of coefficients)

• df (degrees of freedom, used in the t-tests)

• coefficients (a vector with the coefficient estimates)

• vcov (the coefficient covariance matrix)

• logl (a goodness-of-fit value, e.g. the log-likelihood)

The items need not appear in this order. However, the naming should be exactly as indicated. If
also the diagnostics and/or the goodness-of-fit criterion is user-specified, then additional objects
may be required, see the subsections below on user-specified diagnostics and goodness-of-fit
critera. Note also that, if the goodness-of-fit criterion is user-specified, then logl can in certain
situations be replaced by another item (which needs not be named logl).

3. The user-defined estimator must be able to handle NULL regressor-matrices, i.e. situations where
either NCOL(x) is 0 or is.null(x) is TRUE. This is needed in situations where a terminal model
is empty (i.e. no regressors are retained).

To illustrate how the requirements above can be met in practice, suppose – as an example – that we
would like to use the function lm for estimation rather than ols. The first step is then to make a
function that calls lm while satisfying requirements 1 to 3:

lmFun <- function(y, x, ...){

##create list:

result <- list()

##n, k and df:

result$n <- length(y)

if(is.null(x) || NCOL(x) == 0){

result$k <- 0

}else{

result$k <- NCOL(x)

}

result$df <- result$n - result$k

##call lm if k > 0:

if(result$k > 0){

tmp <- lm(y ~ x - 1)

result$coefficients <- coef(tmp)

result$vcov <- vcov(tmp)

result$logl <- as.numeric(logLik(tmp))

}else{

result$coefficients <- NULL

result$vcov <- NULL

result$logl <- sum(dnorm(y, sd = sqrt(var(y)), log = TRUE))

}

##return result:

return(result)

}

6

The code

getsFun(y, x, user.estimator = list(name = "lmFun"))

undertakes the same specification search as earlier, but uses lmFun rather than ols.

User-specified diagnostics

User-specified diagnostics is carried out via the user.diagnostics argument. The argument must be
a list containing at least two entries: A character named name containing the name of the diagnostics
function to be called, and an entry named pval that contains a vector with values between 0 and 1, i.e.
the chosen significance level(s) for the diagnostics test(s). If only a single test is undertaken by the
diagnostics function, then pval should be of length one. If two tests are undertaken, then pval should
be of length two. And so on. An example of the argument when only a single test is undertaken is:

user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

That is, the name of the function is myDiagnostics, and the chosen significance level for the single
test that is carried out is 5%. Optionally, just as when the estimator is user-specified, the list can
contain an item named envir, a character, which indicates the environment in which the user-specified
diagnostics function resides. If unspecified, then also here is the function looked for in the global
environment (.GlobalEnv). Also here is it the case that additional items in the list, if any, are passed
on to the user-specified function as arguments.

The user-specified diagnostics function must satisfy the following:

1. It should be of the form myDiagnostics(result,...), where result is the list returned from
the estimator in question, e.g. that of the user-specified estimator (recall requirement 2 in the
previous section above).

2. It should return an m × 3 matrix that contains the p-value(s) of the test(s) in the third column,
where m ≥ 1 is the number of tests carried out. So if only a single test is carried out, then m = 1
and the p-value should be contained in the third column. An example could look like:

statistic df pval

normality NA NA 0.0734

Note that the row-names and column-names in the example are not required. However, they do
indicate what kind of information you may wish to put there for reporting purposes, e.g. by
using the function diagnostics (also part of the gets package).

To illustrate how the requirements can be met in practice, suppose we would like to ensure the
residuals are normal by testing for non-normality with the Shapiro-Wilks test function shapiro.test.
In this context, its main argument is the residuals of the estimated model. The list returned by the
user-defined estimator named lmFun above, however, does not contain an item with the residuals.
The first step, therefore, is to modify the estimator lmFun so that the returned list also contains the
residuals:

lmFun <- function(y, x, ...){

##info needed for estimation:

result <- list()

result$n <- length(y)

if(is.null(x) || NCOL(x)==0){

result$k <- 0

}else{

result$k <- NCOL(x)

}

result$df <- result$n - result$k

if(result$k > 0){

tmp <- lm(y ~ x - 1)

result$coefficients <- coef(tmp)

result$vcov <- vcov(tmp)

result$logl <- as.numeric(logLik(tmp))

}else{

result$coefficients <- NULL

result$vcov <- NULL

result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))

}

7

##residuals:

if(result$k > 0){

result$residuals <- residuals(tmp)

}else{

result$residuals <- y

}

return(result)

}

Computationally, the only modification appears under ##residuals. We can now make the user-
specified diagnostics function:

myDiagnostics <- function(x, ...){

tmp <- shapiro.test(x$residuals) #do the test

result <- rbind(c(tmp$statistic, NA, tmp$p.value))

return(result)

}

The following code undertakes GETS modelling with the user-specified estimator defined above, and
the user-specified diagnostics function using a 5% significance level for the latter:

getsFun(y, x, user.estimator = list(name = "lmFun"),

user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

Note that if the chosen significance level for the diagnostics is suffuciently high, then no specification
search is undertaken because the starting model does not pass the non-normality test. With the current
data, for example, a little bit of trial and error reveals this is the case for a level of about pval = 0.35.

User-specified goodness-of-fit

User-specified goodness-of-fit is carried out with the gof.function and gof.method arguments. The
former indicates which Goodness-of-Fit (GOF) function to use, and the second is a character that
indicates whether the best model maximises ("max") or minimises ("min") the GOF criterion in question.
The first argument is a list with a structure similar to earlier: It must contain at least one entry, a
character named name, with the name of the GOF function to call. An example is:

gof.function = list(name = "myGof"))

Optionally, also here the list can contain an item named envir, a character, which indicates the
environment in which the user-specified GOF function resides, and also here is the user-specified
function looked for in the global environment if envir is unspecified. Also as earlier, additional items
in the list are passed on to the user-specified GOF function as arguments. The default value, for
example, gof.function = list(name = "infocrit",method = "sc"), means the argument method
= "sc" is passed on to the function infocrit. The user-specified GOF function must satisfy the
following:

1. It should be of the form myGof(result,...), where result is the list returned from the estimator
in question, e.g. that of the user-specified estimator.

2. It should return a single numeric value, i.e. the value of the GOF measure in question.

To illustrate how the requirements can be met in practice, suppose we would like to use the adjusted R2

as our GOF measure in combination with our user-defined estimator. For the moment, the user-defined
estimator lmFun does not contain the information necessary to compute the adjusted R2. In particular,
it lacks the regressand y. However, this is readily added:

lmFun <- function(y, x, ...){

##info needed for estimation:

result <- list()

result$n <- length(y)

if(is.null(x) || NCOL(x)==0){

result$k <- 0

}else{

result$k <- NCOL(x)

}

8

result$df <- result$n - result$k

if(result$k > 0){

tmp <- lm(y ~ x - 1)

result$coefficients <- coef(tmp)

result$vcov <- vcov(tmp)

result$logl <- as.numeric(logLik(tmp))

}else{

result$coefficients <- NULL

result$vcov <- NULL

result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))

}

##residuals:

if(result$k > 0){

result$residuals <- residuals(tmp)

}else{

result$residuals <- y

}

##info needed for r-squared:

result$y <- y

return(result)

}

The added part appears under ##info needed for r-squared. A GOF function that returns the
adjusted R2 is:

myGof <- function(object, ...){

TSS <- sum((object$y - mean(object$y))^2)

RSS <- sum(object$residuals^2)

Rsquared <- 1 - RSS/TSS

result <- 1 - (1 - Rsquared) * (object$n - 1)/(object$n - object$k)

return(result)

}

The following code undertakes GETS modelling with all the three user-specified functions defined so
far:

getsFun(y, x, user.estimator = list(name = "lmFun"),

user.diagnostics = list(name = "myDiagnostics", pval = 0.05),

gof.function = list(name = "myGof"), gof.method = "max")

Incidentally, it leads to the same final model as when the default GOF function is used.

More speed: turbo, max.paths, parallel computing

In multi-path backwards elimination search, one may frequently arrive at a specification that has
already been estimated and tested. As an example, consider the following two paths:

$paths[[1]]

[1] 2 4 3 1 5

$paths[[2]]

[1] 4 2 3 1 5

In path 1, i.e. paths[[1]], regressor no. 2 is the first to be deleted, regressor no. 4 is the second, and so
on. In path 2 regressor no. 4 is the first to be deleted, regressor no. 2 is the second, and so on. In other
words, after the deletion of the first two variables, the set of remaining variables (i.e. 3, 1 and 5) in the
two paths is identical. Accordingly, knowing the result from the first path, in path 2 it is unnecessary
to proceed further after having deleted the first two regressors. Setting the argument turbo equal to
TRUE turns such a check on, and thus skips searches, estimations and tests that are unnecessary. The
turbo comes at a small computational cost, since the check is undertaken at each deletion. This is why
the default is turbo = FALSE. However, if the estimation time is noticeable, then turning the turbo on
can reduce the search time substantially.

Searching more paths may increase the relevance proportion or potency. Whether and to what
extent this happens depends on the sample size n, and on the degree of multicolinearity among the

9

regressors xt. If n is sufficiently large, or if the regressors are sufficiently uncorrelated, then searching
fewer paths will not reduce the relevance proportion. In many situations, therefore, one may consider
reducing the number of paths to increase the speed. This is achieved via the max.paths argument.
Setting max.paths = 10, for example, means a maximum of 10 paths is searched. The paths that are
searched are those of the 10 most insignificant variables (i.e. those with the highest p-values) in the
starting model.

When implementing ISAT methods, the function isat undertakes a multi-round form of GETS
modelling. In the first round the variables are split into B blocks, and then GETS modelling is
undertaken on each block. This is a socalled "embarassingly parallel" problem. To make isat search in
parallel during the first round, simply set the argument parallel.options equal to an integer greater
than 1. The integer determines how many cores/threads to use, and the command detectCores() can
be used to find out how many cores/threads that are available on the current machine. Remember,
it is not recommended to use all the cores/threads available. Within isat, parallel-computing is
implemented with the makeCluster and parApply functions from the package parallel.

User-specified GETS and ISAT methods: Illustrations

GETS modelling of Generalised Linear Models (GLMs)

The function glm enables the estimation of a large number of specifications within the class of Gener-
alised Linear Models (GLMs). Here, it is illustrated how GETS modelling can be implemented with
GLMs. To fix ideas, the illustration is in terms of the logit-model.

Let yt ∈ {0, 1} denote the regressand of the logit-model given by

Pr(yt = 1|xt) =
1

1 + exp(−ht)
, ht = β′

xt. (5)

Next, consider the following set of data:

n <- 40 #number of observations

k <- 20 #number of Xs

set.seed(123) #for reproducibility

y <- round(runif(40)) #generate Y

x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

In other words, one regressand yt ∈ {0, 1} which is entirely independent of the 20 regressors in xt.
The following function enables GETS modelling of logit-models:

logitFun <- function(y, x, ...){

##create list:

result <- list()

##n, k and df:

result$n <- length(y)

if(is.null(x) || NCOL(x)==0){

result$k <- 0

}else{

result$k <- NCOL(x)

}

result$df <- result$n - result$k

##call glm if k > 0:

if(result$k > 0){

tmp <- glm(y ~ x - 1, family = binomial(link="logit"))

result$coefficients <- coef(tmp)

result$vcov <- vcov(tmp)

result$logl <- as.numeric(logLik(tmp))

}else{

result$coefficients <- NULL

result$vcov <- NULL

result$logl <- result$n*log(0.5)

}

10

##return result:

return(result)

}

To undertake the GETS modelling:

getsFun(y, x, user.estimator=list(name="logitFun"))

Two variables are retained, namely x5t and x11t, at the default significance level of 5%. To reduce the
chance of retaining irrelavant variables, the significance level can be lowered to, say, 1% by setting
t.pval = 0.01.

To implement GETS modelling for a different GLM model, only two lines of code needs to be
modified in the user-defined function above. The first is the line that specifies the family, and the
second is the one that contains the log-likelihood associated with the empty model (i.e. the line
‘result$logl <-result$n*log(0.5)’).

Creating a gets method (S3) for the "lm" class of models

The package gets provides the generic function gets. This enables the creation of GETS methods (S3)
for models of arbitrary classes. Here, this is illustrated for models of class "lm". Our aim is to be able
to do the following:

mymodel <- lm(y ~ x)

gets(mymodel)

That is, to first estimate a model of class "lm", and then to conveniently undertake GETS modelling by
simply applying the code gets(.) to the named object mymodel. To this end, a function named gets.lm

that relies on getsFun will be created. In doing so, a practical challenge is how to appropriately deal
with the intercept. Indeed, as we will see, a notable part of the code in the user-defined function
will be devoted to the intercept. Another practical aspect is whether to use lm or ols whenever a
model is estimated by OLS (both employ the QR decomposition). The latter is simpler codewise and
computationally faster, so we opt for the latter. The function is:

gets.lm <- function(object, ...){

##make y:

y <- as.vector(object$model[, 1])

yName <- names(object$model)[1]

##make x:

x <- as.matrix(object$model[, -1])

xNames <- colnames(x)

if(NCOL(x) == 0){

x <- NULL

xNames <- NULL

}else{

if(is.null(xNames)){

xNames <- paste0("X", 1:NCOL(x))

colnames(x) <- xNames

}

}

##is there an intercept?:

if(length(coef(object)) > 0){

cTRUE <- names(coef(object))[1] == "(Intercept)"

if(cTRUE){

x <- cbind(rep(1, NROW(y)), x)

xNames <- c("(Intercept)", xNames)

colnames(x) <- xNames

}

}

##do gets:

myspecific <- getsFun(y, x, ...)

##which are the retained regressors?:

11

retainedXs <- xNames[myspecific$specific.spec]

cat("Retained regressors:\n ", retainedXs, "\n")

##return result

return(myspecific)

}

We can now do GETS modelling on models of class "lm" by simply applying the code ‘gets(...)’ on
the object in question. The following code first stores the estimated model of class "lm" in an object
named startmodel, and then applies the newly defined function gets.lm to it:

startmodel <- lm(y ~ x)

finallm <- gets(startmodel)

The information from the specification search in stored in the object called finallm, and during the
search the following is printed:

18 path(s) to search

Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Retained regressors:

X2 X11 X17

In other words, the retained regressors are no. 2, 11 and 17.

Regression with ARMA error

The function arima can be used to estimate a linear regression with deterministic regressors and an
error-term that follows an ARMA. An example is

yt = β′
xt + ǫt, ǫt = φ1ǫt−1 + θ1ut−1 + ut, ut ∼ WN(0, σ2

u),

where xt is a vector of deterministic regressors and WN is short for White Noise. The error ǫt is thus
governed by an ARMA(1,1). Let xt denote a (deterministic) step-shift variable in which the step-shift
occurs at observation 30, i.e. xt = 1(t ≥ 30). Next, consider the Data Generation Process (DGP) given
by

yt = 4xt + ǫt, ǫt = 0.4ǫt−1 + 0.1ut−1 + ut, ut ∼ N(0, 1), t = 1, . . . , n

with n = 60. In other words, the series yt is non-stationary and characterised by a large location shift
at t = 30. Figure 1 illustrates the evolution of yt, which is obtained with the following code:

set.seed(123) #for reproducibility

eps <- arima.sim(list(ar = 0.4, ma = 0.1), 60) #epsilon

x <- coredata(sim(eps, which.ones = 30)) #step-dummy at t = 30

y <- 4*x + eps #the dgp

plot(y, col = "blue", lwd = 2)

By just looking at the graph, it seems clear that there is a location shift, but it is not so clear that it in
fact occurs at t = 30. I now illustrate how the arima function can be used in combination with getsFun

to automatically search for where the break occurs. The idea is to do GETS modelling over a set of
step-indicators that cover the period in which the break visually appears to be in. Specifically, the aim
is to apply GETS modelling to the following starting model with 11 regressors:

yt =
11

∑
i=1

βi · 1{t≥24+i} + ǫt, ǫt = φ1ǫt−1 + θ1ut−1 + ut.

To this end, we first need to make the user-specified estimator:

myEstimator <- function(y, x){

##create list:

result <- list()

##estimate model:

if(is.null(x) || NCOL(x)==0){

result$k <- 0

tmp <- arima(y, order = c(1,0,1)) #empty model

}else{

12

Figure 1: The graph of yt.

result$k <- NCOL(x)

tmp <- arima(y, order = c(1,0,1), xreg = x)

result$coefficients <- tmp$coef[-c(1:3)]

result$vcov <- tmp$var.coef

result$vcov <- result$vcov[-c(1:3),-c(1:3)]

}

##rename and re-organise things:

result$n <- tmp$nobs

result$df <- result$n - result$k

result$logl <- tmp$loglik

return(result)

}

Note that the estimator has been put together such that the ARMA(1,1) specification of the error ǫt is
fixed. As a consequence, the specification search is only over the regressors. The following code first
creates the 11 step dummies, and then undertakes the GETS modelling:

xregs <- coredata(sim(eps, which.ones = 25:35)) #11 step-dummies

getsFun(y, xregs, user.estimator = list(name = "myEstimator"))

Two step-dummies are retained, namely those of t = 30 and t = 35.

Faster ISAT when n is large

ISAT methods are computationally intensive, since at least n − 1 indicators are included as regressors.
Accordingly, as n grows large, purpose-specific estimators can greatly reduce the computing time. One
way of building such an estimator is by using tools from the package Matrix, see Bates and Maechler
(2018). The code below illustrates this. First it loads the library, and then it creates a function named
olsFaster that re-produces the structure of the estimation result returned by the function ols with
method = 3, but with functions from Matrix. The code is:

library(Matrix)

olsFaster <- function(y, x){

out <- list()

out$n <- length(y)

if (is.null(x)){ out$k <- 0 }else{ out$k <- NCOL(x) }

13

out$df <- out$n - out$k

if (out$k > 0) {

x <- as(x, "dgeMatrix")

out$xpy <- crossprod(x, y)

out$xtx <- crossprod(x)

out$coefficients <- as.numeric(solve(outxtx,outxpy))

out$xtxinv <- solve(out$xtx)

out$fit <- out$fit <- as.vector(x %*% out$coefficients)

}else{ out$fit <- rep(0, out$n) }

out$residuals <- y - out$fit

out$residuals2 <- out$residuals^2

out$rss <- sum(out$residuals2)

out$sigma2 <- out$rss/out$df

if (out$k > 0) { out$vcov <- as.matrix(out$sigma2 * out$xtxinv) }

out$logl <- -out$n * log(2 * out$sigma2 * pi)/2 - out$rss/(2 * out$sigma2)

return(out)

}

Depending on the data and hardware/software configuration, the estimator may lead to a consid-
erably speed-improvement. In the following example, the function system.time suggests a speed
improvement of about 20% on the current hardware/software configuration:

set.seed(123) #for reproducibility

y <- rnorm(1000)

x <- matrix(rnorm(length(y)*20), length(y), 20)

#w/ols:

system.time(finalmodel <- isat(y, mxreg = x, max.paths = 5))

#w/olsFaster:

system.time(finalmodel <- isat(y, mxreg = x, max.paths = 5,

user.estimator = list(name = "olsFaster")))

Summary

In many applications a specific model or estimator is needed, a specific set of diagnostics tests may
be required, or a specific fit criterion is preferred. In these situations, the implementation of user-
specified GETS and ISAT methods puts a large programming-burden on the user if the combination
of estimator/model, diagnostics tests and fit criterion is not already offered by publicly available
software. This article has outlined how recent additions to the package gets greatly simplifies the
development of user-specified GETS and ISAT methods. The package is the first software – both inside
and outside the R universe – to provide a complete set of facilities for user-specified GETS and ISAT
methods.

Acknowledgements

I am grateful to Felix Pretis, James Reade, participants at the UseR! 2019 conference (Toulouse, July),
the Statistics Norway seminar (May, 2018) and the Norges Bank seminar (April, 2018) for their helpful
comments, suggestions and questions.

Bibliography

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2018. URL https:

//CRAN.R-project.org/package=Matrix. R package version 1.2-15. [p12]

J. Campos, D. F. Hendry, and N. R. Ericsson, editors. General-to-Specific Modeling. Volumes 1 and 2.
Edward Elgar Publishing, Cheltenham, 2005. [p1]

J. Castle, J. Doornik, D. F. Hendry, and F. Pretis. Detecting Location Shifts During Model Selection by
Step-Indicator Saturation. Econometrics, 3:240–264, 2015. DOI 10.3390/econometrics3020240. [p1]

J. A. Doornik and D. F. Hendry. Empirical Econometric Modelling - PcGive 15. Timberlake Consultants
Ltd., London, 2018. [p2]

14

E. Dubois and E. Micheaux. Grocer 1.72: an econometric toolbox for Scilab. http://dubois.ensae.
net/grocer.html, 2016. [p2]

D. F. Hendry, S. Johansen, and C. Santos. Automatic selection of indicators in a fully saturated
regression. Computational Statistics, 23:317–335, 2008. DOI 10.1007/s00180-007-0054-z. [p1]

K. D. Hoover and S. J. Perez. Data Mining Reconsidered: Encompassing and the General-to-Specific
Approach to Specification Search. Econometrics Journal, 2:167–191, 1999. Dataset and code: http:
//www.csus.edu/indiv/p/perezs/Data/data.htm. [p1, 2]

M. C. Lovell. Data Mining. The Review of Economics and Statistics, 65:1–12, 1983. [p1]

F. Pretis, J. Reade, and G. Sucarrat. Automated General-to-Specific (GETS) Regression Modeling and
Indicator Saturation for Outliers and Structural Breaks. Journal of Statistical Software, 86:1–44, 2018.
[p1, 2]

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6:461–464, 1978. [p3, 4]

G. Sucarrat. gets: General-to-Specific (GETS) Modelling and Indicator Saturation (ISAT) Methods, 2019. URL
https://CRAN.R-project.org/package=gets. R package version 0.20. https://CRAN.R-project.
org/package=gets. [p2]

Genaro Sucarrat
BI Norwegian Business School
Nydalsveien 37, 0484 Oslo
Norway
genaro.sucarrat@bi.no

	User-Specified General-to-Specific and Indicator Saturation Methods
	Introduction
	Model selection properties of GETS and ISAT methods
	User-specification: General principles
	The getsFun function
	User-specified estimation
	User-specified diagnostics
	User-specified goodness-of-fit
	More speed: turbo, max.paths, parallel computing

	User-specified GETS and ISAT methods: Illustrations
	GETS modelling of Generalised Linear Models (GLMs)
	Creating a ````gets method (S3) for the ````"lm" class of models
	Regression with ARMA error
	Faster ISAT when n is large

	Summary
	Acknowledgements

