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Abstract

Although many countries give workers the right to return to their previous workplace after a tem-

porary leave period ends, little is known about the details of such policies. This study characterizes

the optimal paid job-protected leave policy using a model in which a worker has to leave his or her

job with a certain probability and chooses whether to return to work after the leave period ends. An

optimal policy, consisting of the consumption of a worker, that of a worker on leave, and the length

of the leave, maximizes social welfare subject to the resource feasibility constraint and incentive

constraint under which a worker on leave voluntarily chooses to return to work after the leave period

ends. The present study finds that when the incentive constraint does not bind, the income risk caused

by the leave should be perfectly shared among workers and workers on leave and that the leave pe-

riod balances the marginal welfare gain and loss from a slight increase in the leave period. When the

incentive constraint binds, the income risk caused by the leave is not perfectly shared among workers

and workers on leave and that workers consume more than workers on leave because the constrained-

optimal allocation has to give an incentive to workers on leave to return to work. By lengthening the

leave period, another feasible allocation improves social welfare, which implies that the length of the

leave period at the constrained-optimal allocation is too short. In addition, the study compares two

economies, one that experiences a high discount factor and the other that experiences a low discount

factor. In the former economy, the incentive constraint does not bind, whereas it does bind in the

latter economy. Comparing the constrained-optimal allocations in these two economies, I find that

workers consume more in the latter economy than in the former economy and that total consumption

during the leave period in the former economy is larger than that in the latter economy. Moreover,

as an application of the theory, the study focuses on the paid parental leave policies adopted by most

OECD countries. Using a numerical simulation, I conclude that the negative relationship between

the replacement rate, namely the ratio of cash benefits during the leave to wages while working, and

length of the leave period could result from constrained-optimal allocations.

Keywords: Paid job-protected leave policy, lack of commitment, incentive constraint, constrained-

optimal allocation, paid parental leave policy
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1 Introduction

Workers face several types of shocks that force them to leave their jobs temporarily such as pregnancy,

sickness, and caring for old parents. For these workers, many countries provide compensation during

such leave and give them the right to return to their previous workplace after the leave period ends.

However, although this policy is recognized as necessary for workers, little is known about its details.

How much should workers on leave be compensated? How long should the leave period be? To answer

these questions, this study constructs a model in which a worker stochastically changes his/her status

and theoretically characterizes an optimal paid job-protected leave policy that maximizes social welfare

under certain constraints.

This study analyzes the following model. In each period, a risk-averse worker produces output

and derives utility from consumption. At the end of each period, a shock hits a worker with a certain

probability and this worker then has to leave his/her job. If such a shock does not hit a worker, s/he

continues to work. A worker on leave derives utility from consumption and leisure. At the end of each

period, another shock hits a worker on leave with a certain probability. If this shock hits a worker on

leave, then s/he has to decide whether to return to work. In this model, the inverse of this probability is

considered as the length of the parental leave. If a worker on leave decides to return to work, then s/he

will work in the next period. If not, s/he becomes unemployed. An unemployed worker derives utility

from leisure and disutility from searching for a new job. With a certain probability, an unemployed

worker finds a new job and will start working from the next period. In this model, I focus on a steady

state in which a worker on leave decides to return to work if a shock hits him/her and define social welfare

as the sum of all workers’ values in that steady state. An allocation is defined by the consumption of a

worker, the consumption of a worker on leave, and the probability that a shock hits a worker on leave.

I characterize a constrained-optimal allocation that maximizes social welfare subject to the resource

feasibility constraint and incentive constraint in this model. A worker on leave is not usually obliged to

return to work after the leave period ends.1 Thus, an optimal allocation must give a worker on leave an

incentive to return to work.

Constrained-optimal allocations depend on whether the incentive constraint binds. When the incen-

tive constraint does not bind, the consumption of a worker and that of a worker on leave should be equal.

Since a worker is risk-averse, consumption should be unchanged based on a worker’s status. As for the

length of the leave, the optimal length should equalize the marginal welfare gain and marginal welfare

loss caused by the additional extension of the leave period. An increase in the leave period decreases

the number of workers in the steady state, which lowers aggregate output and consumption. Thus, so-

cial welfare marginally decreases. At the same time, an increase in the leave period gives a worker on

leave additional utility from leisure, which increases social welfare. The optimal length of the leave thus

equalizes the marginal welfare loss and marginal welfare gain.

When the incentive constraint binds, the above results no longer hold. The consumption of a worker

is greater than that of a worker on leave. Hence, to give a worker on leave an incentive to return to

1According to data published by the Ministry of Health, Labour and Welfare in Japan, around 10% of female workers who

take parental leave do not return to work even after the leave period ends. For institutional background of parental leave policy

in Japan, see, for instance, Yamaguchi (2019).
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work after the leave period ends, constrained-optimal allocations have to guarantee higher utility when

a worker on leave chooses to return to work than that when s/he does not. The efficient way to achieve

this goal is to increase the consumption of a worker and decrease the consumption of a worker on leave.

This makes the consumption of a worker and that of a worker on leave different, which implies that the

constrained-optimal allocation offers imperfect income insurance. In addition, the present study shows

that a worker’s consumption when the incentive constraint does not bind is larger than that when the

incentive constraint binds.

As for the length of parental leave, the leave period at the constrained-optimum is too short in

the sense that we can find another feasible allocation whose leave period is slightly longer than the

constrained-optimal one and it raises social welfare. To give a worker on leave an incentive to return to

work, the consumption of a worker is too large. Social welfare is the sum of all the statuses of work-

ers’ utilities in a steady state. Since the number of workers in the steady state depends on the length of

the leave, a short leave period increases the number of workers, which can raise social welfare. At this

constrained-optimal allocation, another feasible allocation may raise social welfare above that achieved

by the constrained-optimal allocation even though the incentive constraint is not satisfied.

In addition, the study compares the constrained-optimal allocations in two economies, say A and

B. In economy A, the discount factor is sufficiently high that the incentive constraint does not bind

at the optimum. In economy B, the discount factor is so low that the incentive constraint binds at the

constrained optimum. It is shown that the consumption of a worker in economy B is larger than that in

economy A and that the total consumption of a worker on leave during the leave period in economy B is

smaller than that in economy A. Note that the periodic consumption of a worker on leave in economy B

is not necessarily smaller than that in economy A. This result contrasts with that in literature of providing

insurance with limited commitment (see, for instance, Chapter 20 in Ljungqvist and Sargent (2012).)

This difference comes from the model setting that the length of the leave is an endogenous variable in

this study.

As an application of the analytical exercise, I consider the paid parental leave policies adopted

mandatorily by most OECD countries. Figure 1 shows that the leave benefits in most OECD coun-

tries cover only a proportion of previous earnings and that leave benefits and the duration of the leave

have a negative relationship.2 This study shows that this feature may result from the constrained-optimal

allocations using a numerical simulation.

A paid job-protected leave policy can be considered as a type of unemployment insurance since

payment provides the main source of income for the period when a worker cannot work. Indeed, un-

employment insurance does not fully cover previous earnings, although the policy can be constrained

optimal. In optimal unemployment insurance literature, for instance, Hopenhayn and Nicolini (1997)

showed that since an unemployed worker’s effort to search for a job is unobservable, to prevent the moral

hazard problem, unemployment insurance partially covers previous earnings. Thus, they claimed that ob-

served unemployment insurance can be constrained optimal. However, this study’s important friction is

not a worker’s hidden action as in Hopenhayn and Nicolini (1997), but rather his/her incentive constraint

under which a worker on leave voluntarily returns to work after the leave period ends.3

2The average payment rate refers to the proportion of previous earnings replaced by the benefit over the length of the paid

leave entitlement for a person earning 100% of average national (2015) earnings. Length in weeks is the sum of the weeks of

paternity leave and those of parental leave available to mothers.
3In an extended model of Hopenhayn and Nicolini (1997) such as Mitchell and Zhang (2010), the same result on optimal

consumption holds.
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Figure 1: Paid leave entitlements available to mothers in April 2016 (Data source: OECD)

In this study, an agent’s lack of commitment prevents workers from sharing the income risk perfectly.

The mechanism is similar to that in Kocherlakota (1996), who considered a pure exchange economy in

which two infinitely lived agents face an income risk in every period. From an ex-ante welfare point of

view, it is socially optimal that both agents consume the same amount in all periods. That is, in every

period, a rich agent transfers some amount to a poor agent. However, since agents cannot commit to

future cooperative behavior, an agent may defect if s/he wants. To avoid such defection by agents, an

allocation has to give a rich agent an incentive not to defect. Then, the resulting allocation does not

perfectly share the income risk between two agents even though the allocation is constrained-efficient.

This study applies a similar logic to a different setting.

Most analyses of parental leave policies have been conducted by empirical work, whereas theoretical

analyses are scarce except Erosa et al. (2010) and Del-Rey et al. (2017). One of the closest works to

this study is Erosa et al. (2010). They investigated the effect of paid maternity leave policies on fertility,

leave-taking behavior, employment, and welfare using a labor search model. Although the model is rich,

it is hard to solve analytically. Thus, the study calibrated the model consistent with U.S. data, finding that

parental leave policies lead to an aggregate welfare loss even though female welfare actually increases.

However, they focused on the redistribution role of parental leave policies, whereas this study sheds light

on their insurance role. Del-Rey et al. (2017) considered a similar model with that in Erosa et al. (2010)

and showed that the effects of the length of the leave on wages and unemployment are ambiguous. Again,

Del-Rey et al. (2017) did not focus on the insurance role of parental leave policies that this study focuses

on.

The remainder of the paper is organized as follows. Section 2 describes the economic model and

Section 3 characterizes the constrained-optimal allocations. In Section 4, as an application of the analysis

so far, a paid parental leave policy is investigated. Section 5 concludes.
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2 Model

The economy is populated by a continuum of workers, distributed uniformly on the unit interval. Time

is discrete and continues forever; t = 1,2, . . . .
In every period, a worker produces y > 0, which is constant over time and is given exogenously. A

worker consumes ct and derives utility u(ct). A periodic utility function, u : R+ → R+, is assumed to be

strictly increasing, strictly concave, and continuously differentiable, and u(0) = 0. Assume that the good

is perishable and there is no storage technology. At the end of each period, a worker leaves his/her job

with probability σ ∈ (0,1], which is an exogenous variable.

A worker who leaves his or her job consumes dt and enjoys leisure in period t. Thus, s/he derives

periodic utility u(dt)+ ν . At the end of the period, with probability γ ∈ Γ := [γ,1], where γ > 0 can

take any arbitrarily small number, the leave period ends. The assumption of a lower bound of γ is only

a technical assumption that guarantees the existence of a solution to the optimization problem defined

below. The inverse of γ , 1
γ , is the expected duration of leave in this model. As shown below, γ is one

part of the paid job-protected leave policy. If the leave period ends, then a worker on leave has to decide

whether to return to work. If s/he chooses to return to work, then s/he will start working in the next

period. If not, then s/he is unemployed.

An unemployed worker consumes nothing and enjoys leisure in each period. S/he searches for a job

at search cost e ≥ 0, and at the end of the period, with probability δ ∈ (0,1), s/he finds a new job.

All the shocks in this economy are assumed to be i.i.d. across workers and over time.

For each status, a worker makes his/her decision to maximize his/her continuation value. Let Wt , Lt ,

and Qt be the values of a worker, a worker on leave, and an unemployed worker in period t, respectively.

Then, the Bellman equations for each status of a worker are given by

Wt = u(ct)+β [σQt+1 +(1−σ)Wt+1], (1)

Lt = u(dt)+ν +β [γ max{Wt+1,Qt+1}+(1− γ)Lt+1], (2)

and

Qt = ν − e+β [δWt+1 +(1−δ )Qt+1] . (3)

Hereafter, I focus on a steady state in which workers on leave choose to return to work.4 An allo-

cation is defined by (c,d,γ). Focusing on the situation in which a worker on leave chooses to return to

work once the leave period ends, an allocation, (c,d,γ), is feasible if

W× y =W× c+L×d,

4A steady state is a state in which the number of workers and that of workers on leave are constant over time and consumption

only depends on the current status of a worker.
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where5

W=
γ

σ + γ
and L=

σ

σ + γ
.

Given an allocation, (c,d,γ), Equations (1), (2), and (3) in a steady state are

W = u(c)+β [σL+(1−σ)W ], (4)

L = u(d)+ν +β [γ max{W,Q}+(1− γ)L], (5)

and

Q = ν − e+β [δW +(1−δ )Q] . (6)

Since a worker cannot commit to his/her future action, s/he can choose not to return to work even after

the leave period ends, as presented by max{W,Q} in Equation (5). An incentive constraint is defined by

W ≥ Q. (7)

I assume that when W =Q, a worker on leave chooses to return to work. A feasible allocation, (c,d,γ), is

incentive-feasible if it satisfies the incentive constraint. From Equation (6), Equation (7) can be rewritten

as

W ≥
ν − e

1−β
. (8)

Given an incentive-feasible allocation, (c,d,γ), from Equations (4) and (5),

L =
u(d)+ν +βγW

1−β (1− γ)
. (9)

Plugging Equation (9) into Equation (4),

W =
[1−β (1− γ)]u(c)+βσ [u(d)+ν ]

(1−β )(1−β +σβ + γβ )
. (10)

Applying Equation (10) to Equation (8), Equation (8) is rewritten as

u(c)+
βσ

1−β (1− γ)
[u(d)+ e]≥ ν . (11)

5Letting W and L be the number of workers and workers on leave, W and L satisfy

W= (1−σ)W+ γL,

and

W+L= 1.

Solving these equations gives W and L.
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Social welfare is defined by the sum of all workers’ values in a steady state. Formally, given an

incentive-feasible allocation, (c,d,γ), social welfare is measured by

γ

σ + γ
W +

σ

σ + γ
L =

γ

σ + γ

u(c)

1−β
+

σ

σ + γ

u(d)+ν

1−β
.

An incentive-feasible allocation, (c,d,γ), is constrained optimal if (c,d,γ) is a solution to the problem:

max(c,d,γ)∈F

γ

σ + γ

u(c)

1−β
+

σ

σ + γ

u(d)+ν

1−β

s.t. Equation (11),

where F := {(c,d,γ) ∈ [0,y]2 × Γ : (c,d,γ) is feasible} is a set of feasible allocations. To avoid the

non-existence of the solution to the above problem, define ν by

ν := max
(c,d,γ)∈F

{

u(c)+
βσ

1−β (1− γ)
[u(d)+ e]

}

.

Since the objective function is continuous in (c,d,γ) and F is non-empty and compact, from the Weier-

strass theorem, ν is well defined. Hereafter, I assume that ν ∈ (0,ν ].

Lemma 2.1. A constrained-optimal allocation exists.

Proof. Since the objective function is continuous in (c,d,γ) and the constraint set is non-empty and

compact, from the Weierstrass theorem, a solution exists. Q.E.D.

3 Characterization of the constrained-optimal allocations

To characterize the constrained-optimal allocations, consider the following problem:

max(c,d,γ)
γ

σ + γ

u(c)

1−β
+

σ

σ + γ

u(d)+ν

1−β

s.t.
γ

σ + γ
y =

γ

σ + γ
c+

σ

σ + γ
d, (12)

u(c)+
βσ

1−β (1− γ)
[u(d)+ e]≥ ν . (13)

Letting λ and µ be Lagrange multipliers to Equations (12) and (13), respectively, set the Lagrangean as

L :=
γ

σ + γ

u(c)

1−β
+

σ

σ + γ

u(d)+ν

1−β
+λ

{

γ

σ + γ
(y− c)−

σ

σ + γ
d

}

+µ

{

u(c)+
βσ

1−β (1− γ)
[u(d)+ e]−ν

}

.
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The first-order necessary conditions for an interior solution are

γ

σ + γ

u′(c)

1−β
−λ

γ

σ + γ
+µu′(c) = 0, (14)

σ

σ + γ

u′(d)

1−β
−λ

σ

σ + γ
+µ

βσ

1−β (1− γ)
u′(d) = 0, (15)

σ

(σ + γ)2

u(c)

1−β
−

σ

(σ + γ)2

u(d)+ν

1−β
+λ

σ

(σ + γ)2
(y− c+d)

−µ
β 2σ

[1−β (1− γ)]2
[u(d)+ e] = 0, (16)

γ

σ + γ
(y− c)−

σ

σ + γ
d = 0, (17)

µ

{

u(c)+
βσ

1−β (1− γ)
[u(d)+ e]−ν

}

= 0.

3.1 When the incentive constraint does not bind

First, consider the case in which an interior solution satisfies the incentive constraint with strict inequality.

The solution in this case is considered as that if a worker could commit to returning to work after the

leave period ends.

Since the incentive constraint holds with strict inequality, in the first-order conditions, µ = 0. Let

(c∗,d∗,γ∗,λ ∗,µ∗) be a solution in this case. Then, Equations (14) and (15) imply

λ ∗ =
u′(c∗)

1−β
=

u′(d∗)

1−β
> 0.

Since u is strictly concave, c∗ = d∗. Plugging c∗ = d∗ into Equation (17),

c∗ = d∗ =
γ∗

σ + γ∗
y.

This implies that when the incentive constraint does not bind, at the optimum, an income risk caused by

a shock should be fully insured and that consumption should be smoothed across the different statuses of

a worker.

From Equation (14), λ ∗ = u′(c∗)
1−β . Plugging this into Equation (16), γ∗ satisfies

u′(
γ∗

σ + γ∗
y)y = ν . (18)

Since u is strictly concave, γ∗ is uniquely determined by this equation. An increase in γ raises the number

of workers in the economy, which increases output and consumption. At the same time, an increase in γ

shortens the leave period, which loses the opportunity of enjoying leisure. At the optimum, the marginal

welfare gain from an increase in γ and the marginal welfare loss from that are equalized, as implied by

Equation (18).
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Proposition 3.1. Suppose that (c∗,d∗,γ∗) is an interior, constrained-optimal allocation that satisfies the

incentive constraint with strict inequality. Then, (c∗,d∗,γ∗) satisfies

c∗ = d∗ =
γ∗

σ + γ∗
y,

and

u′(
γ∗

σ + γ∗
y)y = ν .

Under (c∗,d∗γ∗), the incentive constraint, Equation (13), is

[

1+
σβ

1−β (1− γ∗)

]

u(c∗)+
βσ

1−β (1− γ∗)
e ≥ ν . (19)

Note that c∗ and γ∗ are independent of β . Since
σβ

1−β (1−γ∗) is increasing in β , one case in which the

incentive constraint does not bind is when β is sufficiently high (i.e., a worker is sufficiently patient).

3.2 When the incentive constraint binds

Next, characterize a constrained-optimal allocation when the incentive constraint binds. Let (c∗∗,d∗∗,λ ∗∗,µ∗∗)
denote an interior, constrained-optimal allocation in this case. Since the incentive constraint does not

bind, µ∗∗ > 0. From Equations (14) and (15),

λ ∗∗ = u′(c∗∗)

[

1

1−β
+µ∗∗ σ + γ∗∗

γ∗∗

]

= u′(d∗∗)

[

1

1−β
+µ∗∗ σ + γ∗∗

σ

βσ

1−β (1− γ∗∗)

]

> 0. (20)

Since β ∈ (0,1) implies 1
γ∗ >

β
1−β (1−γ∗∗) ,

1

1−β
+µ∗∗ σ + γ∗∗

γ∗∗
>

1

1−β
+µ∗∗ σ + γ∗∗

σ

βσ

1−β (1− γ∗∗)
.

For Equation (20) holding,

u′(c∗∗)< u′(d∗∗)

must hold. Since u is strictly concave, c∗∗ > d∗∗ holds.

From Equation (15), Equation (16) can be rewritten as

σ

(σ + γ∗∗)2

u(c∗∗)

1−β
−

σ

(σ + γ∗∗)2

u(d∗∗)+ν

1−β
+

u′(d∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗)

+µ∗∗ βσ

1−β (1− γ∗∗)

{

u′(d∗∗)

σ + γ∗∗
(y− c∗∗+d∗∗)−

β

1−β (1− γ∗∗)
[u(d∗∗)+ e]

}

= 0.

From this equation, the following lemma holds.
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Lemma 3.1.

σ

(σ + γ∗∗)2

u(c∗∗)

1−β
<

σ

(σ + γ∗∗)2

u(d∗∗)+ν

1−β
−

u′(d∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗) (21)

holds at the constrained optimum.

Proof. See the Appendix. Q.E.D.

An implication of Equation (21) is that by lengthening the leave period, another feasible allocation

improves social welfare. In this sense, γ∗∗ is too large.6 The explanation is as follows. Suppose γ slightly

decreases from γ∗∗. This decreases the number of workers and increases the number of workers on leave.

The first term on the left-hand side of Equation (21) is the marginal welfare loss when the number of

workers decreases, while the term on the right-hand side of Equation (21) is the marginal welfare gain

when the number of workers on leave increases. A change in γ also changes output and consumption.

A decrease in the number of workers lowers total output by y and the total consumption of workers by

c∗∗, whereas an increase in the number of workers on leave increases the total consumption of workers

on leave, d∗∗. Overall, a decrease in γ reduces total resources by σ
(σ+γ∗∗)2 (y− c∗∗+ d∗∗). To satisfy the

feasibility constraint, some workers have to consume less than before. The second term on the right-

hand side of Equation (21) represents the marginal welfare loss if the consumption of workers on leave

uniformly decreases by σ
(σ+γ∗∗)2 (y− c∗∗+ d∗∗). This implies that (c∗∗,d,γ), where γ is slightly smaller

than γ∗∗ and d is set to satisfy the feasibility constraint, raises social welfare above that achieved by

(c∗∗,d∗∗,γ∗∗).
A summary of the findings so far is as follows.

Proposition 3.2. Suppose that (c∗∗,d∗∗,γ∗∗) is an interior, constrained-optimal allocation that satisfies

the incentive constraint with equality. Then,

1. c∗∗ > d∗∗.

2. Ignoring the incentive constraint, social welfare achieved by (c∗∗,d∗∗,γ∗∗) can be improved by

another feasible allocation, (c,d,γ), that satisfies γ < γ∗∗.

Regarding the implementation of constrained-optimal allocations in the economy, for instance, set

the lump-sum tax levied on workers to τ := y− c and the length of the leave to 1
γ , where c and γ are the

constrained-optimal consumption of workers and length of the leave characterized in this subsection.

3.3 Comparison with the constrained-optimal allocations

In this subsection, I compare (c∗,d∗,γ∗) with (c∗∗,d∗∗,γ∗∗). To do this, consider two economies in which

all the exogenous variables besides β are the same. The discount factor in one economy, say economy

A, is so high that Equation (19) holds, while the discount factor in the other economy, say economy B, is

too low to satisfy Equation (19). Thus, the constrained-optimal allocation in economy A is characterized

by (c∗,d∗,γ∗) and that in economy B is characterized by (c∗∗,d∗∗γ∗∗).

6Of course, this another feasible allocation breaks the incentive constraint.
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First, consider c∗ and c∗∗. Since u′(c∗∗)< u′(d∗∗), Equation (21) implies

σ

(σ + γ∗∗)2

u(c∗∗)

1−β
+

u′(c∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗)<

σ

(σ + γ∗∗)2

u(d∗∗)+ν

1−β
. (22)

The strict concavity of u and c∗∗ > d∗∗ implies

u(c∗∗)−u(d∗∗)−u′(c∗∗)(c∗∗−d∗∗)> 0. (23)

Applying Equation (23) to Equation (22), I obtain

u′(c∗∗)y < ν .

Since u′(c∗)y = ν from Equation (18),

u′(c∗∗)< u′(c∗)

holds. The strict concavity of u implies c∗∗ > c∗.

Next, consider (d∗,γ∗) and (d∗∗,γ∗∗). From Equation (17), the constrained-optimal allocations sat-

isfy

y− c =
σ

γ
d.

Thus, c∗∗ > c∗ implies

σ

γ∗
d∗ = y− c∗ > y− c∗∗ =

σ

γ∗∗
d∗∗. (24)

Since σ > 0, Equation (24) is equivalent to

d∗

γ∗
>

d∗∗

γ∗∗
.

What does this equation mean? Since 1
γ is the expected duration of the leave and d is the consumption

of workers on leave in each period, d
γ is interpreted as the total consumption of workers on leave during

the leave period. Which of d∗ and d∗∗ is larger is inconclusive. However, if total consumption during the

leave period is considered, that when the incentive constraint does not bind is larger than that when the

incentive constraint binds.

A summary of the findings in this subsection is as follows.

Proposition 3.3. Suppose there are two identical economies except β and that the discount factor in one

economy is so high that Equation (19) holds, whereas that in the other economy is too low to satisfy

Equation (19). Then,

1. c∗∗ > c∗.

2. d∗

γ∗ >
d∗∗

γ∗∗ .

This result does not necessarily imply that d∗ > d∗∗. Consider the following numerical example. The

periodic utility function is u(x) = x0.9

0.9 , σ = 0.1, y = 2, ν = 2, and e = 0. β can take a value between 0.95

and 0.99. Figure 2 illustrates c and d with different β values, showing that d∗∗ for low β is larger than

d∗ = 1. From Proposition 3.3 (2), this implies γ∗ < γ∗∗.
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Figure 2: Simulation result of the length of the leave and replacement rate

4 Application to paid parental leave policies

In this section, as an application of the previous theoretical work, I consider paid parental leave policies.

4.1 Constrained-optimal allocations

Mandatory paid parental leave policies have been introduced in most OECD countries. Cash benefits can

mitigate the financial hardship associated with foregone earnings during leave. In some countries such

as those in Europe and Japan, these cash benefits are financed by the tax revenue collected from workers.

Thus, from an ex-ante point of view, cash benefits serve as unemployment insurance. Job-protected leave

can save job search costs even though workers temporarily leave their job. This is an important role in

the labor market in an economy in which a worker who quits his/her job cannot find a new job quickly.

The cash benefits and leave period vary across OECD countries. In Figure 3, which is the same

figure as Figure 1, the horizontal axis stands for the length of the leave and the vertical axis stands for

the replacement rate, which is the ratio of cash benefits during the leave to wages while working. Each

(red) * expresses an OECD country and the (blue) line is the approximated line.7 The data show a

negative relationship between the length of the leave and replacement rate. Why do they show negative

7The equation of the line is y =−0.1609x+67.845.
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relationship?

This observation may result from the implementation of constrained-optimal policies, and the key

parameter is σ . To show this, consider the following numerical example. The periodic utility function is

u(x) = x0.9

0.9 , β = 0.99, y = 2, ν = 2, and e = 0. σ can take a value between 0.025 and 0.05. The values of

σ and β are taken from Erosa et al. (2010),8 and the other values are chosen arbitrarily. The replacement

rate is measured by d
c

and the length of the leave is measured by 1
γ in the model. Figures 4 and 5 plot the

simulation result.

Figure 4 shows the extent to which c and d vary as σ changes. In this case, c∗ = d∗ = 1, and d∗∗ > d∗

holds when the incentive constraint binds. In Figure 5, as σ rises, a point moves from the bottom right

to the top left. As σ increases, the incentive constraint does not bind. Thus, once the replacement rate

reaches one, only the length of the leave shortens.

Assuming OECD countries typically share similar points, this simulation result suggests that the neg-

ative relationship between the average payment rate and length of the leave could result from constrained-

optimal allocations and that the key parameter across countries is the probability that a worker leaves

his/her job temporarily, σ , as discussed next.

For countries whose average payment rate is one, the length of the leave also varies. To derive this

result, from Equation (18), different σ values lead to different γ∗ values, while d∗/c∗ is constant at one.

More precisely, as σ rises, so does γ∗. When σ is too low, the incentive constraint, that is, Equation

(11), is more likely to bind. In the social welfare function, more weight is placed on workers’ welfare

than the welfare for workers on leave. Therefore, as σ falls, the gap between c∗∗ and d∗∗ increases and

thus d∗∗/c∗∗ lowers. In Equation (11), a smaller γ raises the left-hand side of Equation (11). Thus, γ∗∗

becomes smaller, or 1
γ∗∗ becomes larger as σ becomes smaller. This explains why σ is my focus here.

4.2 Do workers voluntarily choose to leave their job?

Even if a shock that makes a worker leave his or her job hits, a worker may choose not to leave his or

her job voluntarily in some cases. For instance, when a worker has the opportunity to have a child, s/he

may not choose to leave because the value of a worker is higher than that of a worker on leave. In this

subsection, I show that at the constrained optimum, a worker voluntarily chooses to leave his/her job

when a shock hits.

Proposition 4.1. Suppose an interior constrained-optimal allocation. Then, a worker voluntarily chooses

to leave his or her job at the constrained optimum, that is, L ≥W at the constrained optimum.

Proof. See the Appendix. Q.E.D.

5 Conclusion

This study examines a paid job-protected leave policy using a simple dynamic model in which a key

friction is that a worker on leave cannot commit to returning to work after the leave period ends. There-

fore, the optimal policy has to give a worker on leave an incentive to return to work. Optimal paid

job-protected leave policies are characterized by whether the incentive constraint binds.

8To be precise, the lower value of σ is σ(4) and the higher value of σ is σ(1).
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Figure 3: Paid leave entitlements available to mothers in April 2016 (Data source: OECD)

When the incentive constraint does not bind, the consumption of a worker and that of a worker on

leave should be equal; that is, the income risk caused by the leave should be shared among workers. The

length of the leave is set to equalize the marginal welfare gain and marginal welfare loss from a marginal

increase in the length of the leave. When the incentive constraint does not bind, the consumption of a

worker is greater than that of a worker on leave to satisfy the incentive constraint. Thus, the imperfect

risk sharing caused by the leave might be constrained optimal. As for the length of the leave, at the

constrained optimum, it is too short in the sense that social welfare can be improved by lengthening the

leave period, although this allocation does not satisfy the incentive constraint.

Furthermore, the present study compares constrained-optimal allocations when the discount factor is

sufficiently high to satisfy the incentive constraint strictly with those when the discount factor is too low

to satisfy the incentive constraint. I show that the consumption of a worker when the incentive constraint

does not bind is larger than that when the incentive constraint binds. Regarding the consumption of

workers on leave and length of the leave, it is shown that total consumption during the leave period when

the incentive constraint does not bind is larger than that when the incentive constraint binds. This, how-

ever, does not necessarily imply that the periodic consumption of a worker on leave when the incentive

constraint does not bind is larger than that when the incentive constraint binds.

Based on the theoretical analysis, I examined whether the paid parental leave policies in OECD

countries are constrained optimal. Using a numerical simulation, I showed that the negative relationship
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Figure 4: Simulation results of c and d

between the length of the leave and replacement rate could result from constrained-optimal paid parental

leave policies and that the key parameter is the probability that a worker takes parental leave.

Since the model used in this study is simple, it can be extended in many directions. One interesting

extension of the model could be to add a worker’s savings as Ábrahám and Laczó (2018) extended

Kocherlakota (1996) and Mitchell and Zhang (2010) extended Hopenhayn and Nicolini (1997).

A Appendix

A.1 Proof of Lemma 3.1

Proof. To claim σ
(σ+γ∗∗)2

u(c∗∗)
1−β − σ

(σ+γ∗∗)2

u(d∗∗)+ν
1−β + u′(d∗∗)

1−β
σ

(σ+γ∗∗)2 (y−c∗∗+d∗∗)< 0, suppose, by way of

a contradiction, that

σ

(σ + γ∗∗)2

u(c∗∗)

1−β
−

σ

(σ + γ∗∗)2

u(d∗∗)+ν

1−β
+

u′(d∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗)≥ 0.

Since µ∗∗ > 0,

u′(d∗∗)

σ + γ∗∗
(y− c∗∗+d∗∗)−

β

1−β (1− γ∗∗)
[u(d∗∗)+ e]≤ 0. (25)
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Figure 5: Simulation results of the length of the leave and replacement rate

Since the incentive constraint binds,

u(c∗∗)+
βσ

1−β (1− γ∗∗)
[u(d∗∗)+ e] = ν ≥ u(c∗∗)+

σ

σ + γ∗∗
u′(d∗∗)(y− c∗∗+d∗∗),

where Equation (25) is applied to the second inequality. From this equation

σ

(σ + γ∗∗)2

u(c∗∗)

1−β
−

σ

(σ + γ∗∗)2

u(d∗∗)+ν

1−β
+

u′(d∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗)

≤
σ

(σ + γ∗∗)2

u(c∗∗)

1−β
−

σ

(σ + γ∗∗)2

u(d∗∗)+u(c∗∗)+ σ
σ+γ∗∗ u′(d∗∗)(y− c∗∗+d∗∗)

1−β

+
u′(d∗∗)

1−β

σ

(σ + γ∗∗)2
(y− c∗∗+d∗∗)

= −
σ

(σ + γ∗∗)2

1

1−β

[

u(d∗∗)+
σ

σ + γ∗∗
u′(d∗∗)(y− c∗∗+d∗∗)−u′(d∗∗)(y− c∗∗+d∗∗)

]

= −
σ

(σ + γ∗∗)2

1

1−β

[

u(d∗∗)−
γ∗∗

σ + γ∗∗
u′(d∗∗)(y− c∗∗+d∗∗)

]

= −
σ

(σ + γ∗∗)2

1

1−β

[

u(d∗∗)−
γ∗∗

σ + γ∗∗
u′(d∗∗)

σ + γ∗∗

γ∗∗
d∗∗

]

< 0,
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where the feasibility condition is applied to the fourth equality and the strict concavity of u implies the

last inequality. This is a contradiction. Thus, Equation (21) holds. Q.E.D.

A.2 Proof of Proposition 4.1

Proof. Using Equations (9) and (10), L ≥W is equivalent to

u(d)+ν ≥ u(c). (26)

First, consider the case in which the incentive constraint does not bind. From Proposition 3.1, c∗ = d∗

holds. Since ν > 0, Equation (26) holds with strict inequality.

Suppose the incentive constraint binds. Thus,

u(c∗∗)+
βσ

1−β (1− γ∗∗)
[u(d∗∗)+ e] = ν

holds. Since u(·)≥ 0,
βσ

1−β (1−γ∗∗) > 0, and e ≥ 0,

u(c∗∗)+
βσ

1−β (1− γ∗∗)
[u(d∗∗)+ e] = ν ≥ u(c∗∗)

holds. Since u(d∗∗)> 0,

u(d∗∗)+ν > u(c∗∗)

holds, which completes the proof. Q.E.D.
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