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Abstract

We study the effects of an automation-augmenting shock in an economy with match-

ing frictions and endogenous job destruction. In the model, tasks can be produced

by workers or by machines but workers have a comparative advantage in producing

advanced tasks. Firms choose the input at the time of entry. And according to the

evolution of the workers’ comparative advantage, some firms using labor prefer to

fire the worker and automate the task. In our model, an automation-augmenting

shock reduces the labor share, increases job creation, and increases job destruc-

tion. The effects on employment depend on how rapidly workers may lose their

comparative advantage: an automation-augmenting shock increases employment

in slow-changing environments but catastrophically reduces it in rapid-changing

ones.
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1 Introduction

In the last five decades, total hours worked and employment rose in developed coun-

tries, despite the ubiquitous fall in the labor share. This employment growth looks

staggering as it coexisted with the emergence of new technologies that automate pro-

duction and are supposed to displace labor. But a meticulous look at the effect of

these new technologies – namely, automation – shows that they have actually favored

employment growth: Autor and Salomons (2018) and Gregory, Salomons and Zierahn

(2018) document that these new technologies have created more jobs than they have

destroyed.1 In this paper, we ask: will automation always create more jobs than it de-

stroys or can we expect a different future?

To answer this question, we build a theoretical model that satisfies two criteria.

First, in order to be consistent with the past, an automation-augmenting shock – a

shock that increases the productivity of all machines/robots – is able to reduce the labor

share and simultaneously increase employment. And, second, in order to be insightful

about how the future may differ from the past, the model is flexible enough to generate

different outcomes from the same sort of shocks. In the literature, among the models

that explain the fall in the labor share, none offers a qualitatively flexible response of

employment. In these models, either employment always falls (Caballero and Ham-

mour, 1998; Zeira, 1998; Hornstein, Krusell and Violante, 2007; Prettner and Strulik,

2017; Acemoglu and Restrepo, 2018) or employment always increases (Guimarães and

Gil, 2019).2 Our model borrows several features from these models to offer a frame-

work that is consistent with the past and insightful about potential future scenarios.

In our model, an automation-augmenting shock reduces the labor share but may both

increase or catastrophically reduce employment.

The narrative and assumptions of our model broadly agree with those in Acemoglu

and Restrepo (2018). In our model, labor has a comparative advantage in producing

new and complex tasks and, thus, new firms tend to invest in, what we call, the manual

1Autor and Salomons (2018) study the effect of total factor productivity (TFP) shocks on employment
using data on multiple industries for 18 OECD countries since 1970. Their results indicate that TFP shocks
directly displace employment in the sectors in which it originates but this direct effect of TFP is more than
outweighed by indirect employment gains in other sectors. Gregory, Salomons and Zierahn (2018), on the
other hand, analyze the effects on employment of a more specific type of innovation: routine-replacing

technological change (RRTC) in Europe from 1999 to 2010. Still, their findings are very similar to the ones
by Autor and Salomons: the direct effect of RRTC has been to significantly reduce employment (about 1.6
million jobs) but these effects have been offset by the indirect effects of RRTC. They conclude that RRTC

has increased employment by about 1.5 million jobs. Furthermore, these two papers contrast with the
approach in, e.g., Acemoglu and Restrepo (2019b), who find that robot adoption depresses employment
and wages at the commuting-zone level. Yet, Acemoglu and Restrepo abstract from the indirect effects of
robot adoption in one commuting zone on the other commuting zones that may render a positive effect
of robot adoption at the aggregate level. Thus, Acemoglu and Restrepo abstract from the indirect positive
effects estimated by Autor and Salomons and Gregory, Salomons and Zierahn.

2These models do not propose the same mechanism or shock to explain the fall in the labor share. But

irrespective of the mechanism, they predict robust directions for employment after the shock that reduces
the labor share.
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technology and produce using only labor. Machines, however, tend to catch up with la-

bor in producing tasks. Every period, some workers lose their comparative advantage,

motivating their employers to fire them and automate the production of the tasks. In

this case, firms move to, what we call, the automated technology and produce using

only machines/robots.3

Yet, to properly take into account the idiosyncrasies of the labor market, we funda-

mentally deviate from Acemoglu and Restrepo and build a model with matching fric-

tions based on the Diamond-Mortensen-Pissarides setup. This allows us to realistically

model the long-term firm-worker relationship and bring us closer to Hornstein, Krusell

and Violante (2007) and to our previous work in Guimarães and Gil (2019).4 We, how-

ever, depart from our previous work by assuming that jobs are endogenously destroyed

as firms continuously contrast their value using the manual technology and the option

to move to the automated technology. In this sense, our model is closer to Hornstein,

Krusell and Violante because they also endogenize job destruction.5 Yet, our model

and focus also differ from theirs in important aspects. Hornstein, Krusell and Violante

build a model with vintage capital to study capital-embodied technological change.

We, on the other hand, consider the dichotomy of manual and automated technolo-

gies to study automation-augmenting shocks.

Our assumptions imply that automation-augmenting shocks affect employment by

changing both job creation and job destruction. This is an important deviation from

the literature that assumes flexible labor markets, which cannot offer insights regard-

ing how the flows in the labor market react to shocks and determine employment fluc-

tuations. And it is precisely this deviation from the literature that lends our model its

flexibility regarding the impact of automation-augmenting shocks on employment.

In all our calibrations, job creation and job destruction increase after an automation-

augmenting shock. Job destruction increases because the shock makes it more prof-

itable to invest in the automated technology and so more firms destroy jobs and au-

tomate production. Job creation increases because of one or a combination of two

mechanisms. First, as in Guimarães and Gil (2019), an automation-augmenting shock

increases job creation if firms can choose technology at the time of entry and firm-entry

corresponds to an undirected-technological-search process (as in, e.g., Benhabib, Perla

3By allowing firms to choose whether to invest in the manual or in the automated technology, our
model relates to a long literature of technology choice that we review more extensively in Guimarães and
Gil (2019). In our model and in several contributions within this literature, the technology choice de-
pends explicitly on a firm-specific (or task-specific) exogenous feature (e.g., Zeira, 1998, 2010; Acemoglu
and Zilibotti, 2001; Acemoglu, 2003; Acemoglu and Restrepo, 2018; Alesina, Battisti and Zeira, 2018; and
Guimarães and Gil, 2019). This feature then determines, ceteris paribus, the firm’s overall productivity or

cost level using each technology.
4In this regard, our paper is also close to Cords and Prettner (2019) and Leduc and Liu (2019). The for-

mer build a model with matching frictions to study how an increase in the stock of robots affects low- and

high-skill employment. The latter build a DSGE model with matching frictions to study how automation
affects the ciclicality of the labor share.

5To model endogenous job destruction, we particularly rely on Mortensen and Pissarides (1994) and
Pissarides (2000, Ch. 2).
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and Tonetti, 2017). Second, automation-augmenting shocks also promote job creation

through an alternative mechanism in our model. Because firms are forward-looking

and new tasks tend to be produced by workers, firms have a higher incentive to hire a

worker upon entry in anticipation of the greater profits when they automate produc-

tion post-entry.6

Even though both flows increase after an automation-augmenting shock, their ab-

solute and relative magnitudes crucially depend on the calibration of the model. In

some calibrations, job creation increases more than job destruction, thereby raising

employment. In other calibrations, the opposite occurs and employment falls. The

relative magnitudes of the changes in the flows depend crucially on one parameter,

which we interpret as a feature intrinsic to each task controlling for how rapidly work-

ers may lose their comparative advantage in producing it. In slow-changing environ-

ments, in which the comparative advantage of labor in producing each task is relatively

stable, job destruction barely shifts after the automation-augmenting shock. In these

conditions, job creation increases more than job destruction. Nonetheless, in rapid-

changing environments, an automation-augmenting shock leads to massive job de-

struction. This jump in job destruction is not followed by an equal jump in job creation

because the increase in labor market tightness makes it more costly to find the right

worker and allows workers to demand higher wages. In these scenarios, employment

catastrophically drops. These results show how our model can both agree and disagree

with the facts documented by Autor and Salomons (2018) and Gregory, Salomons and

Zierahn (2018). Thus, our paper conveys an important message: if current and future

jobs are made of tasks in which workers rapidly lose their comparative advantage, then

automation-augmenting shocks may have dramatically different consequences in the

future.

We also try to dissect the mechanism behind our results and we confirm that the

increase in wages after the automation-augmenting shock plays a very important role.

In tighter labor markets (as observed in our model after the shock), workers demand

higher wages for two reasons. One is that the outside option of manual firms of look-

ing for an alternative worker is more costly and another is that workers can easily find

other jobs. When we counterfactually assume that wages are orthogonal to labor mar-

ket tightness (and to the productivity of the automated technology), job creation is seri-

ously magnified to the point that employment increases for a much wider range of cal-

ibrations. Employment does, however, still fall in quite rapid-changing environments

because matching frictions also play their role. If job creation increases, it becomes

harder to find a worker suitable for the job, which increases costs and discourages fur-

ther job creation. Job destruction, on the other hand, is not much affected by matching

frictions and increases significantly in quite rapid-changing environments, leading to

the net fall in employment.

6UBER’s Initial Public Offering prospectus offers a good example of this channel. The prospectus as-
sumes that developing autonomous vehicles importantly contributes to the current valuation of the firm
by potentially allowing it to reduce their labor demand in the future. Thus, the possibility of automating
tasks in the future contributes to UBER’s investment and recruitment in the present.
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We consider two other variants of our model to further dissect the mechanism. In

one variant, we deviate from the typical assumption in models with matching frictions

that workers must stay nonemployed for at least a period after losing their jobs. This

reduces the prevalence of matching frictions and increases the pool of available work-

ers for firms investing in the manual technology. We find that relaxing this assumption

does promote greater employment but we also find that it does not have much quanti-

tative impact.

In another variant, we consider the implications of, what we call, human touch.

Even though both workers and machines can execute the same task, consumers may

deem tasks executed by humans and by machines differently due to the relevance of the

human touch. A simple case is the one of sellers and vending machines. Both broadly

sell (they perform the same task) but consumers do not necessarily find the same task

performed by one or the other perfect substitutes. In the scenario in which they are

imperfect substitutes, a widespread use of machines increases the price of the tasks

produced by workers relative to the price of the tasks produced by machines, which

largely reduces job destruction but barely changes job creation. Thus, if many of the

tasks produced in the economy are directed to consumers and they find the differenti-

ated human touch relevant, then an automation-augmenting shock is unlikely to catas-

trophically reduce employment.

Our paper also relates to Prettner and Strulik (2017), Basso and Jimeno (2018), Berg,

Buffie and Zanna (2018), and Caselli and Manning (2019) (and again with Acemoglu

and Restrepo, 2018) in that these papers also assess how automation-related shocks

may affect either wages or employment in the future. Prettner and Strulik build a life-

cycle model in which machines complement high-skill labor but substitute low-skill la-

bor. They conclude that innovation asymptotically increases automation and inequal-

ity. And in an extension, they show that innovation always reduces low-skill employ-

ment due to greater automation and the high costs of acquiring skills for some work-

ers. Basso and Jimeno assess the effect of demographical changes in a life-cycle model

in which R&D investment may be directed to innovation (new tasks) or automation

(of current tasks). They conclude that the demographic transition in the United States

and Europe promoted higher wages in the beginning of 2000’s but lower wages after-

wards. Berg, Buffie and Zanna build a model with a nested CES (constant-elasticity of

substitution) production function in which standard capital complements a compos-

ite of labor and robots; this composite assumes that labor and robots are substitutes.

They conclude that robot-augmenting shocks can only benefit labor in the very long

run. Caselli and Manning study how innovation affects real wages in economies with

constant returns to scale, constant real interest rate, and multiple types of labor. They

conclude that average wages increase as long as the price of capital falls more than that

of consumption goods. Under this condition, they also conclude that all wages increase

if the supply of labor types is perfectly elastic. But their model, as well as the models

in Basso and Jimeno and Berg, Buffie and Zanna, abstracts from the impacts of shocks

on employment as labor supply is assumed inelastic. More generally, our model differs
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from all these models because they assume perfectly competitive labor markets.

The remainder of this paper is organized as follows. We start by detailing our model

in Section 2. In Section 3, we calibrate our model and study numerically the effects of

automation-augmenting shocks. In Section 4, we dissect the mechanisms underlying

our results, including the role of the human touch. In Section 5, we conclude.

2 The Model

In the model, the aggregate output is the sum of the production of a number of tasks,

which can be produced by one of two technologies: an automated technology and a

manual technology. At the time of entry, a firm must first create a task, which amounts

to an entry cost denoted by Ω. If the firm produces the task using the automated tech-

nology, it must pay an additional κK , which can be interpreted as a robot investment. If

the firm produces the task using the manual technology, it must pay an additional κL

µ(θ)

to match with a worker and it must bargain wages with the worker.7

Entering firms that choose the manual technology must search for workers in the

labor market. A Cobb-Douglas matching function determines the number of matches

between these firms and the workers that were nonemployed at the beginning of the

period.8 This matching function has constant returns to scale, has as argument labor

market tightness, θ, is scaled by matching efficiency, χ > 0, and has an elasticity with

respect to nonemployed workers of 0 < η < 1. Thus, we write the job-filling probability

and the job-finding probability as, respectively, µ(θ) ≡ χθ−η and f(θ) ≡ χθ1−η.

Each task has a stochastic idiosyncratic productivity, z, in the interval [zmin, z̄] ac-

cording to a probability distribution function G(z). Acemoglu and Restrepo (2018) as-

sume that workers have a comparative advantage in producing more productive (higher-

indexed) tasks. We borrow this assumption and assume that the manual technology

produces zLz units of the task, while (as a normalization) the automated technology

produces zK units of the task. Thus, z represents the comparative advantage of work-

ers in producing the respective task, so that highly-productive tasks (high z) tend to

be produced by the manual technology and less-productive tasks with the automated

technology.

Firms’ technological choice depends on the task’s idiosyncratic productivity, z. In

Figure 1, we summarize the timeline of how z affects the distribution of firms between

the technologies. In Acemoglu and Restrepo (2018), labor has the highest compara-

tive advantage in producing new tasks because newly created tasks have the highest

7Our setup thus assumes the extreme case of a technology that only uses labor and a technology that

only uses capital/robots. We share this convenient assumption with, e.g., Zeira (1998, Sec. 7; 2010), Ace-
moglu and Restrepo (2018), Alesina, Battisti and Zeira (2018), and Guimarães and Gil (2019).

8The workers that lose their jobs (either exogenously or endogenously) do not produce for at least a
period. This agrees with the evidence in Hall and Kudlyak (2019).
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Figure 1: Timing of technological constrains and technology choice

index. We assume a more general environment. Of the number of new tasks created

each period, a proportion 1−λe has the highest productivity, z̄, and, thus, workers have

the maximum comparative advantage. In this case and in equilibrium, firms choose

the manual technology and produce zLz̄ units of the task. Conversely, a proportion λe

of new tasks have their productivity drawn from the distribution G(z) of productivity

levels over the interval [zmin, z̄] and firms choose technology according to the present-

discounted values of the technologies. Producing tasks with higher z is more profitable

if the firm uses the manual technology to take advantage of the higher workers’ com-

parative advantage. As a result, there is an idiosyncratic productivity cutoff, denoted by

z∗e , above which firms prefer the manual technology and below which firms prefer the

automated technology at the time of entry.

Firms that start production using the manual technology can move to the auto-

mated technology in later periods. Their technological choice depends on how the

task’s idiosyncratic productivity, z, evolves over time. If it becomes too low, manual

firms prefer to destroy the job and automate the production of the task. This line of

events further echoes the setting in Acemoglu and Restrepo (2018). In their model,

tasks previously performed by labor can be automated as the tasks’ (relative) produc-

tivity falls due to the expansion of the technological frontier over time and the implied

gradual obsolescence of existing manual tasks. We also find a similar mechanism in the

model of Hornstein, Krusell and Violante (2007). They build a model in which a unit of

vintage capital is matched with a worker. As technology evolves, firms that use the old-

est vintage of capital prefer to scrap their capital and, as in our model, destroy the job.

Yet, in the models of both Acemoglu and Restrepo and Hornstein, Krusell and Violante,
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the fall in the task’s idiosyncratic productivity (relative to the technology frontier) is de-

terministic while, in our model, we assume it to be stochastic.9 To model the evolution

of z, we build on Mortensen and Pissarides (1994). After production takes place, a pro-

portion 1− λn of manual firms sees no change in their tasks’ idiosyncratic productivity

and, thus, in their position relative to the technology frontier, z̄. But a proportion λn of

manual firms redraws the task’s idiosyncratic productivity from the same distribution

G(z) of productivity levels. If the new idiosyncratic productivity, z, is too low – below

the cutoff, which we denote by z∗ – the manual firm fires the worker and shifts from the

manual to the automated technology.10 As a result, λn controls for how rapidly workers

lose their comparative advantage, which directly affects job destruction.

These assumptions imply that shocks to the economy can change the employment

rate by affecting both job creation and job destruction. Thus, this setting allows for a

rich environment to study how automation-augmenting (rise in zK) shocks affect the

employment rate.

In writing the equations below, we omit the time subscripts as we are only inter-

ested in steady-states. Yet, within a period, there is an order of events that we must

further clarify before laying out the equations. 1) New firms pay Ω to create a task and

enter the market until a free-entry condition is satisfied. 2) A proportion λe of new

firms and a proportion λn of manual firms (re)draw the task’s idiosyncratic produc-

tivity, z. 3) Depending on the productivity draw, z, and anticipating wage bargaining,

firms decide which technology to use in the following period. If an incumbent manual

firm decides to automate the production of the task, it must fire the worker, pay κK ,

and wait a period to resume production. 4) Production takes place and manual firms

bargain wages with their workers. 5) A proportion δL of the tasks produced by active

(producing within the period) manual firms and a proportion δK of the tasks produced

by active automated firms are exogenously destroyed.

2.1 Firms

An active firm using the manual technology to produce a task with idiosyncratic pro-
ductivity z has the following present-discounted value JL(z):

JL(z) = zLz − w(z) + β(1− δL)

{

(1− λn)JL(z) + λn

[

G(z∗)(βJK − κK) +

∫ z̄

z∗
JL(z)dG(z)

]}

, (1)

where we assume a discount factor of β. This firm produces zLz units of the task (and,

thus, of the output) and pays the wage w(z) to its worker. There is a probability 1 − δL
that it will keep producing in the following period. And if it does produce, its value

9We assume it to be stochastic for two reasons. One is that it is a convenient assumption that does
not demand us to keep track of how far or close a task is from being automated. The other, and more
important, is that tasks may differ on the speed at which they are automated; thus, we find it more realistic

to assume that the transition from manual to automated is random rather than deterministic.
10Naturally, some firms also draw a higher z. We can interpret this as a form of technological catching

up of the task. In any case, the most relevant aspect for the mechanism of the model is that these firms
remain manual.
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remains unchanged with a probability 1 − λn and changes due to the redraw of the

idiosyncratic productivity, z, with a probability λn. Those that draw a productivity

below z∗ prefer to fire the worker and change to the automated technology; in this

case, because they already paid Ω and it takes one period to shift technologies, their

value equals the discounted value of the automated technology, βJK , reduced of the

technology-specific cost κK . If they draw a productivity above z∗, they choose to main-

tain the manual technology; in this case, their value equals the unconditional expected

value of the manual technology between z∗ and z̄. This intuitively implies that z∗ is

determined by the following indifference condition:

JL(z
∗) = βJK − κK . (2)

The present-discounted value of the automated technology, JK , is much simpler as

its productivity is constant:

JK = zK + β(1 − δK)JK . (3)

At the time of entry, all firms pay Ω to create a new task. A proportion λe of the new

firms draws the task’s idiosyncratic productivity; the other firms start with the manual

technology with idiosyncratic productivity z̄. Among the firms that draw idiosyncratic

productivity, a proportion G(z∗e ) chooses the automated technology and the remaining

firms choose the manual technology. These assumptions allow us to write the free-

entry condition in our model:

λe

[

G(z∗e ) (βJK − κK) +

∫ z̄

z∗e

(

βJL(z)−
κL

µ(θ)

)

dG(z)

]

+ (1− λe)

(

βJL(z̄)−
κL

µ(θ)

)

= Ω,

(4)

where the present-discounted values, JK and JL(z), are discounted by β because it

takes one period for firms to start production. New firms that draw productivity are

only indifferent between either technology if their values net of the technology-specific

entry cost are equal. This occurs when the task’s idiosyncratic productivity equals z∗e :

βJL(z
∗

e )−
κL

µ(θ)
= βJK − κK . (5)

2.2 Workers

In our model, there is a unit measure of risk-neutral workers who are either employed

or nonemployed. The lifetime income of an employed worker is given by E(z):

E(z) = w(z) + β

{

(1− δL)

[

(1− λn)E(z) + λn

(

G(z∗)U +

∫ z̄

z∗
E(z)dG(z)

)]

+ δLU

}

.

(6)

E(z) increases with the wage w(z), which varies with the idiosyncratic productivity of

the task the worker is producing at the firm. E(z) falls with the probability that the job

is exogenously destroyed and the worker is back to nonemployment. In this case, the
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lifetime income is given by U . E(z) also changes with the future productivity draw of

the firm: if the new productivity draw is low – below z∗ –, the firm fires the worker and

the lifetime income returns to U ; if the new productivity draw exceeds z∗, then wages

change, shifting the lifetime income of employment.

If nonemployed, a worker enjoys income b ≥ 0 and finds a job with a probability

f(θ). In equilibrium, nonemployed workers only match with new firms to produce new

tasks. But new tasks vary in idiosyncratic productivity. A proportion 1−λe of new tasks

start with idiosyncratic productivity z̄ and, thus, are produced by labor. On the other

hand, a proportion λe of new tasks have their idiosyncratic productivity drawn from

G(z) and the firms producing the tasks only hire a worker if the draw exceeds z∗e . As a

result, we write the lifetime income of a nonemployed worker as

U = b+ β

{

f(θ)

[

(1− λe)E(z̄) +
λe

1−G(z∗e )

∫ z̄

z∗e

E(z)dG(z)

]

+ (1− f(θ))U

}

. (7)

2.3 Wage Bargaining

Workers and firms bargain over wages such that the bargained wage maximizes the

Nash product:

w(z) = argmax [E(z) − U ]φ
[

JL(z)−max

(

βJL(z)−
κL

µ(θ)
, βJK − κK

)]1−φ

, (8)

where the parameter 0 < φ < 1 measures the worker’s bargaining power. A firm that

employs a worker has two outside options. It may fire the worker and look for a new

one, which generates a value of βJL(z) −
κL

µ(θ) .11 Alternatively, it may fire the worker

and adopt the automated technology, which generates a value of βJK − κK . We infer

that there is an idiosyncratic productivity cutoff that makes the manual firm indifferent

between the two outside options, which turns out to be the same as the entry cutoff, z∗e ,

in Eq. (5). Thus, we summarize the solution to Nash bargaining as

E(z)− U =
φ

1− φ

[

JL(z)−

(

βJL(z) −
κL

µ(θ)

)]

if z̄ > z ≥ z∗e ; (9)

E(z)− U =
φ

1− φ
[JL(z)− (βJK − κK)] if zmin < z < z∗e . (10)

In both cases, workers retain a proportion φ of the surplus, which is an increasing func-

tion of the idiosyncratic productivity, z, only due to JL(z). As a result, wages increase

with z but less than proportionately. Eq. (9), for example, implies that wages increase in

proportion
φ(1−β)

φ(1−β)+1−φ
< 1 of zLz. This confirms our anticipation that greater idiosyn-

cratic productivity implies greater profits, guaranteeing that only the least productive

11Importantly, since the productivity z is idiosyncratic, it implies that if firms decide to look for another
worker, they do not have to redraw productivity. This prevents workers from capturing a large share of the
surplus generated by greater productivity.
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firms in using the manual technology prefer to use the automated technology.

Given Nash bargaining, job destruction only occurs when the surplus of the match

is negative; thus, both workers and firms deem it optimal to destroy the job. The sur-

plus of the match is only negative if it is less profitable for the firm to stay in the manual

technology than to move to the automated technology, which occurs when JL(z) <

βJK−κK . In other words, all firms that draw the task’s idiosyncratic productivity below

the cutoff z∗, fire the worker and move to the automated technology. Simultaneously,

when the task’s idiosyncratic productivity is too low, workers prefer to move to nonem-

ployment than to stay employed and earn a low wage because E(z) < U . Thus, the

cutoff z∗ satisfies E(z∗) = U or, equivalently, Eq. (2).

2.4 Equilibrium

The equilibrium of the model is defined at the aggregate level of the economy and is

characterized by the vector (θ, z∗, z∗e , w(z)), which satisfies the free-entry condition, Eq.

(4), and the two indifference conditions, Eqs. (2) and (5), and solves Nash bargaining.

2.4.1 Employment Rate and Number of Firms

We define employment as the number of workers employed at the time of production.

As usual, in equilibrium, employment is determined by the balance between the flows

from employment to nonemployment and the flows from nonemployment to employ-

ment. Using n to denote the employment rate, the flows from nonemployment to em-

ployment sum up to f(θ)(1−n): a proportion f(θ) of the nonemployed workers, (1−n),
find jobs every period. The flows from employment to nonemployment take two forms

because workers may lose their jobs exogenously and endogenously. There is a proba-

bility δL that employed workers lose their jobs for exogenous reasons. From those that

do not lose their jobs for exogenous reasons, there is a probability λn that the produc-

tivity of the task changes. And there is a probability G(z∗) that the new productivity is

below the cutoff z∗, leading the firm to move to the automated technology and fire the

worker. Thus, after some algebra, we get an equilibrium employment rate of

n =
f(θ)

f(θ) + δL + (1− δL)λnG(z∗)
. (11)

Because every manual firm employs one worker, n also represents the number of

manual firms. But the number of firms that use the automated technology is more in-

tricate: some firms immediately choose the automated technology; others start with

the manual technology and then move to the automated technology. We start by mea-

suring the former. First, only a proportion λe of new firms can choose technologies.

Second, if the firms can choose technology, they only choose the automated technol-

ogy if the idiosyncratic productivity is below the cutoff z∗e ; this occurs with a probability

G(z∗e ). Third, the proportion of those that enter and choose the manual technology is

λe(1−G(z∗e )) + 1− λe, which corresponds to the number of firms choosing the manual
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technology: f(θ)(1 − n). Thus, every period, there is
λeG(z∗e )

λe(1−G(z∗e ))+1−λe
f(θ)(1 − n) firms

that start production immediately using the automated technology.

Now we measure the other source of automated firms: those that start with the

manual technology and change technology. To measure this, we must determine the

number of firms that endogenously fire their workers every period. Given that there

are n manual firms, there is a probability δL that the job is exogenously destroyed,

there is a probability λn that the productivity of the task changes, and there is a prob-

ability G(z∗) that a firm that redraws productivity moves to the automated technol-

ogy, then the number of firms that automate the production of their respective tasks is

(1− δL)λnG(z∗)n.

Additionally, denoting nK as the stock of automated firms, there are δKnK auto-

mated firms destroyed every period. Thus, there are

nK =
(1− δL)λnG(z∗)

δK
n+

λeG(z∗e )
λe(1−G(z∗e ))+1−λe

δK
f(θ)(1− n) (12)

automated firms.

2.4.2 Output and the Labor Share

To quantify output, we only need to sum the output produced by manual and auto-

mated firms because we assume that tasks are perfect substitutes. The output of auto-

mated firms is zKnK as all these firms produce zK . But it is not as simple to determine

the output of manual firms because they are not distributed according to G(z) from z∗

to z̄. To measure output, we need to distinguish between three groups of manual firms:

we need to calculate how many manual firms produce tasks with productivity (i) z̄ from

the moment they were created and have not redrawn productivity afterwards, (ii) above

z∗e (by means of draws or redraws of z), and (iii) between z∗ and z∗e (by means of redraws

of z). We denote the latter two as n∗

e and n∗, respectively. And we obtain the number of

firms producing tasks with productivity z̄ from inception as the residual: n− n∗

e − n∗.

There are two ways in which a manual firm may produce a task with idiosyncratic

productivity above z∗e and belong to n∗

e: either the productivity of the task was drawn

at the time of entry or it was later redrawn in the interval [z∗e , z̄]. The number of man-

ual firms that draw productivity at the time of entry is
λe(1−G(z∗e ))

λe(1−G(z∗e ))+1−λe
f(θ)(1− n). This

follows from two factors. First, every period, f(θ)(1− n) new manual firms are created.

Second, these firms split between those that do not draw productivity (in proportion

1 − λe of all new firms) and those that draw productivity and prefer the manual tech-

nology (in proportion λe(1−G(z∗e )) of all new firms). Furthermore, the number of man-

ual firms that redraw productivity and obtain z above z∗e is (1 − δL)λn(1 −G(z∗e )) given

that a proportion 1 − δL of manual firms survive exogenous shocks and a proportion

λn redraw productivity. But some of these firms were already included in n∗

e; thus, the

net inflow of firms by redrawing productivity into n∗

e is only (1−δL)λn(1−G(z∗e ))(n−n∗

e).
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There are also two ways in which a manual firm leaves n∗

e: either the firm ends ex-

ogenously or it draws productivity below z∗e . These exit flows sum to δL+(1−δL)λnG(z∗e ).
Combining the flows into and out of n∗

e implies after a few derivations:

n∗

e =
(1− δL)λn(1−G(z∗e ))n

δL + (1− δL)λn
+

λe(1−G(z∗e ))f(θ)(1−n)
λe(1−G(z∗e ))+1−λe

δL + (1− δL)λn
. (13)

We can apply a similar logic to find the firms that produce tasks with idiosyncratic pro-

ductivity between z∗ and z∗e . Making the necessary adjustments and taking into ac-

count that no firm starts in the manual technology with productivity between z∗ and

z∗e , we obtain

n∗ =
(1− δL)λn

δL + (1− δL)λn

(G(z∗e )−G(z∗))n. (14)

Having established the number of firms, we quantify output as

y = nKzK + (n− n∗ − n∗

e)zLz̄ + n∗

e

1

1−G(z∗e )

∫ z̄

z∗e

zdG(z) + n∗
1

G(z∗e )−G(z∗)

∫ z∗e

z∗
zdG(z),

(15)

in which we multiply the number of firms in each group by its respective average out-

put. The labor share then is ratio of the number of workers in each group of manual

firms (recall that every manual firm employs one worker) multiplied by its respective

average wage relative to output:

LS =
(n− n∗ − n∗

e)w(z̄) + n∗

e
1

1−G(z∗e )

∫ z̄

z∗e
w(z)dG(z) + n∗ 1

G(z∗e )−G(z∗)

∫ z∗e
z∗

w(z)dG(z)

y
.

(16)

3 Results

3.1 Calibration

We calibrate the model to monthly US data and summarize our benchmark calibration

in Table 1. We set β = 0.996, which implies an annual discount rate of 4.91%. We

follow Petrongolo and Pissarides (2001) and set η = 0.5. We also set φ = 0.5. In our

model, firms draw the task’s idiosyncratic productivity from a uniform distribution, i.e.,

G(z) = z−zmin

z̄−zmin
, in which z̄ = 0.25 and zmin = 0.15.12 To calibrate b, we assume it is 70%

of the productivity of the firm that draws z = zmin + z̄+zmin

2 . This is similar to what

we find in many studies in the literature (including Hall and Milgrom (2008), Pissarides

12This implies that the most productive manual firms are 67% more productive than the least productive
manual firms, which is slightly below the empirical estimates in, e.g, Syverson (2011) and OECD (2017) for
all firms in manufacturing. Yet, if λe > 0, some of the firms that enter the market choose the automated
technology and our calibration generally implies that zK is much lower than zLzmin. Furthermore, we
abstract from workers’ skill differences and assortative matching, which can exacerbate the estimated
firms’ productivity differences.
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(2009), and Coles and Kelishomi (2018)) that assume that b ≈ 0.7zL in models with

homogeneous firms.

Table 1: Benchmark Calibration

Discount factor: β = 0.996
Matching function elasticity: η = 0.5
Workers’ bargaining power: φ = 0.5
Minimum productivity draw: zmin = 0.15
Maximum productivity draw: z̄ = 0.25
Nonemployment income: b = 0.7zL

(

zmin + z̄+zmin

2

)

Rate of automated-firm destruction: δK = 0.01
Cost of Capital/Robot: κK = 0.01
Job-filling Cost: κL = 0.01
Matching Efficiency: χ = 0.1

To calibrate the exogenous probability of manual firm destruction, δL, we impose

that the steady-state probability that a firm-worker match breaks equals the average

job destruction rate in the US from 1948 to 2010 (Shimer, 2012); thus JD ≡ δL + (1 −

δL)λnG(z∗) = 0.036. For the automated technology, we assume it is δK = 0.01. We do

not impose any particular value for λe and λn; instead we analyze how different values

of these two parameters change our results. To increase the range of λe and λn, we set

κK = 0.01. We also arbitrarily set κL = 0.01 and χ = 0.1, but run sensitivity analysis.

Finally, we set zL, zK , and Ω such that our steady-state matches three targets. We

target the prime-age (aged 25-54) workers’ employment rate and the labor share in the

US from 1977 until 2018;13 this implies that n = 0.78 and LS = 0.61. We also target

G(z∗e ) = 0.5 such that half of the productivity draws exceed the entry cutoff. But, since

this target is arbitrarily set, we run sensitivity analysis on this target.

3.2 Employment: Is the Future like the Past?

Looking into the last four decades, recent empirical studies on the effects of TFP and

routine-replacing technological shocks point to a net increase in employment (e.g., Au-

tor and Salomons, 2018; Gregory, Salomons and Zierahn, 2018). These studies docu-

ment that the direct labor-displacing (job destruction) effect has been outweighed by

indirect effects that ultimately lead to job creation. But do these results hold under all

circumstances? In other words, can the future be different? To answer this question,

we assess the effects of an automation-augmenting shock under various calibrations

of our model. We conclude that our results are highly dependent on the calibration:

13We target the employment rate of prime-age workers because our model abstracts from demographic
changes.
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Figure 2: The effect of higher zK under λe = 1 and different values of λn
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Note: This figure shows the effects of an automation-augmenting shock in the case in which all firms

draw the tasks’ productivity at the time of entry, λe = 1, and for different probabilities that this pro-
ductivity changes, λn. The left-panel shows the percentage change in employment, n. The right-
panel shows the percentage change in the job-finding rate, f(θ), and in the job-destruction rate,
JD ≡ δL + (1− δL)λnG(z∗). The shock to zK is of 1%.

employment may both increase or dramatically fall.

Figure 2 summarizes our main results. On the left, this figure plots how an increase

of 1% in the productivity of the automated technology, zK , changes employment, n,

when all firms draw productivity at the time of entry (λe = 1) and under different val-

ues of λn. Clearly, the probability that workers lose their comparative advantage and

are endogenously fired – controlled by λn – affects the response of employment to an

automation-augmenting shock (rise in zK). In the case of (very) low λn, our model

in this paper is very close to the model we used in Guimarães and Gil (2019). Conse-

quently, the results are quite similar in the two models: when λn is close to zero, man-

ual firms rarely automate the production of the tasks, and a rise in zK slightly increases

employment. If, however, we assume larger values of λn, an automation-augmenting

shock may lead to sizable losses in employment: if λn = 0.15,14 manual firms are more

likely to automate the production of the tasks after the shock, and employment falls

2.5%, that is, two and a half times the magnitude of the shock to zK .

Shocks in the economy affect employment through changes in both job creation

and job destruction. Thus, to shed more light on the mechanisms in our model, we

decompose the two effects of an automation-augmenting shock of 1% on employment

on the right-hand side of Figure 2. In particular, we show how the job-finding prob-

ability, f(θ), (which indicates job creation) and the job-destruction probability, JD ≡

δL+(1−δL)λnG(z∗), react to the automation-augmenting shock (also as a function of λn

and in the case of λe = 1). To understand how a rise in zK affects employment, let’s first

consider the extreme case of λn = 0. This case implies that tasks that start as manual are

14λn = 0.15 implies that the tasks’ productivity is redrawn, on average, approximately every six months.
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never automated: tasks have constant idiosyncratic productivity, z, meaning that work-

ers never lose their comparative advantage; thus, firms have no incentive to shift from

the manual to the automated technology in equilibrium. As a result, λn = 0 also implies

that job destruction is constant and unaffected by the automation-augmenting shock.

The same is not true for job creation. A rise in zK increases the value of the automated

technology, leading to a reallocation effect: some entering firms steer away from the

manual technology and invest instead in the automated technology (z∗e increases); for

a given number of entering firms, job creation shrinks. But an automation-augmenting

shock also increases the expected value of a firm, which incentivizes firm entry.15 The

free-entry condition, Eq. (4), is only satisfied if the value of the manual technology

drops, which occurs in our model through higher wages and, most importantly, greater

labor market tightness. A tighter labor market is synonym of greater job-finding prob-

ability and, necessarily, higher job creation. Therefore, if λe = 1, the aggregate effect

of greater firm entry exceeds the reallocation effect implied by the increase in z∗e and,

thus, an automation-augmenting shock increases job creation.16 This, together with

the constant job destruction (λn = 0), increases employment.

If λn > 0, a rise in zK affects both job-finding and job-destruction probabilities.

As before, the job-finding probability increases because a rise in zK boosts entry more

than it boosts reallocation at the time of entry. Because firms are forward-looking, they

have an even higher incentive to create jobs and invest in the manual technology (when

λn > 0 than when λn = 0) in anticipation of the greater profits when they automate

production. But the job-destruction probability also increases: as machines are more

productive, firms that use the manual technology are motivated to shift to the auto-

mated one. This translates into a higher z∗, reducing the average time of a worker-firm

match. Because λn is the probability that the firm redraws the productivity of the task,

a higher λn increases the number of manual firms drawing low productivity (for a given

z∗), leading to even greater job destruction. If λn is large enough, then the increase in

job destruction surpasses the increase in job creation, implying less employment.17

The rise in zK may lead to greater employment even if we mute the channel in

Guimarães and Gil (2019) and set λe = 0. The bottom three lines of Table 2 show the

effects of higher zK on the employment, job-finding probability, and job-destruction

probability (besides output and the labor share) when λe = 0 and λn equals 0.01, 0.05,

15The expected value of a firm (prior to entry) surges because a higher zK directly increases the expected
value of the automated firms and, ceteris paribus, indirectly increases the expected value of manual firms.
The latter occurs because the productivity of the tasks produced with manual technology is heteroge-
neous and the firms drawing the least productive of these tasks prefer the automated technology when zK
increases (z∗e increases).

16The same mechanism can be found in Guimarães and Gil (2019) and relies on the assumption of an
undirected-technological search process as in Benhabib, Perla and Tonetti (2017).

17The increase in z∗ exacerbates the rise on the left-hand side of Eq. (4) as firms only destroy jobs if it is
more profitable for them (JL(z) increases for all z; see Eq. (1)). Thus, a higher increase in job destruction
must be accompanied by an even tighter labor market. But, as we will show in Section 4.1, λn affects job
destruction by more than job creation because the automation-augmenting shock increases wages and
the prevalence of matching frictions.
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or 0.15. To allow for a direct comparison, the top four lines of Table 2 show the same

experiments when λe = 1 (and we include the case of λn = 0 for completeness). If

λe = 0, all tasks demand labor when created, as in Acemoglu and Restrepo (2018), and

firms may only take advantage of the increased productivity if they automate the pro-

duction of the task. Thus, it is remarkable that an increase in zK – the productivity of

a technology that can only be used after a job is destroyed – is still capable of leading

to greater employment under a slightly positive λn (see the line regarding λe = 0 and

λn = 0.01 in Table 2). Indeed, in the case of λe = 0, an increase in zK continues to affect

both job creation and job destruction. First, it continues to promote greater firm entry

and job creation because of the increase in the value of the automated technology, as

an outside option of the firms using the manual technology. But different from the case

of λe > 0, if λe = 0, workers only benefit from larger firm entry because all firms start

as manual and must hire a worker. Second, an automation-augmenting shock implies

that firms have a higher opportunity cost of employing the worker and, thus, prefer to

shift earlier to the automated technology (z∗ increases). This increases job destruction.

If λn is low, the job-creation effect dominates; but if λn is large, the job-destruction

effect dominates.18

Our results show how our model may both agree and disagree with the empirical

findings in Autor and Salomons (2018) and Gregory, Salomons and Zierahn (2018). Un-

der some calibrations, job creation increases more than job destruction, agreeing with

their findings that employment increased after productivity enhancements in the past.

But under other calibrations, job destruction increases more than job creation and em-

ployment may significantly fall. Thus, this suggests that the future of employment may

differ from the past. Our model calls the attention specifically to λn, which we interpret

as a feature intrinsic to tasks that characterizes how rapidly workers lose their compar-

ative advantage. In an economy in which workers rapidly lose their comparative ad-

vantage (rapid-changing environments) and with matching frictions, employment falls

after an automation-augmenting shock. In this economy, jobs last for less periods and

18It is not possible to pin down analytically why this result obtains in the case of λe = 0. But there
are two aspects that offer a hint on why it happens. First, when λn is low, the weight of endogenous job
destruction on total job destruction, JD, is very low: a change in z∗ barely alters JD if λn is low. Yet, λn

does not change the elasticity of f(θ) with respect to θ. Second, if we use Eqs. (1) and (6) both measured
at z̄ and z∗ together with the firing cutoff equation, Eq. (2), and free-entry condition, Eq. (4), we obtain

κL

βµ(θ)
= (1− φ)

[

βJK − κK +
zL(z̄ − z∗)

1− β(1− δL)(1− λn)

]

− Ω

(

1

β
− φ

)

.

To properly assess assess how z∗ and θ affect each other, we need another equation relating them. But

the equation above shows that the labor market becomes tighter when the productivity of the automated
technology goes up (JK increases). This is a direct effect that takes into account that without a change
in z∗, the increase in zK directly increases the value of the firm in the cases in which the task is already
automated. This naturally increases the value of a job and, thus, job creation. This equation also shows
that a rise in z∗ reduces θ (because jobs last for less periods) and that the elasticity of θ with respect to
z∗ increases with λn (we confirm this numerically given that zL and δL are used to reach our steady-state
targets). Thus, for a given change in θ, if λn is low, z∗ cannot change much to satisfy this equation. Fur-
thermore, any change in z∗ has a minor effect on JD. But if λn is higher, z∗ has to fluctuate more to satisfy
this equation and has a larger impact on JD, shifting the ranking of the forces at play.



18 GUIMARÃES & GIL

Table 2: The effect of an increase of 1% in zK

λe λn ∆y ∆LS ∆n ∆f(θ) ∆JD

1 0 0.87 -0.52 0.17 0.76 0.00
1 0.01 1.04 -0.70 0.12 0.76 0.19
1 0.05 2.01 -1.85 -0.20 0.82 1.73
1 0.15 7.00 -8.26 -2.49 1.25 13.00

0 0.01 0.11 -0.06 0.01 0.19 0.15
0 0.05 0.56 -0.58 -0.20 0.55 1.45
0 0.15 2.74 -4.34 -2.20 0.97 11.30

Note: This table shows the effects of an automation-augmenting shock under various combinations of

the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that it
is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities. The
next five columns show the percentage change in the output, labor share, employment, job-finding

probability, and job-destruction probability. The shock to zK is of 1%.

the increase in labor market tightness makes it more costly to hire the right worker for

the task and allows workers to enjoy greater wages. These effects prevent job creation

from keeping pace with job destruction. Therefore, if the nature of the new and current

jobs is different from the past – particularly, if tasks feature a higher λn in the future

than in the past and, thus, tasks rapidly become liable to be automated – the same pro-

ductivity shock of the past may have dramatically different consequences in the future.

3.3 Sensitivity Analysis

In this section, we assess how different calibrations of our model change the outcomes

of an automation-augmenting shock of 1%. We consider eight experiments, and in each

experiment we recalibrate one parameter (or target) of the model. We conclude that

none of the experiments changes the qualitative predictions of our model. In all cases,

both job creation and job destruction increase after an automation-augmenting shock

(except in the case of λn = 0, in which case the job-destruction probability is constant

by assumption). And the change in the job-destruction probability is still more sensi-

tive toλn than the change in the job-finding probability. This implies a negative relation

between the change in employment after the rise in zK and λn: if λn is low, employment

increases; on the contrary, if λn is high, employment falls.

Our experiments do, however, change the results quantitatively. And among our

eight experiments, two have particularly large quantitative effects that we show in Pan-

els B and C of Table 3. These two panels show how a rise in zK affects employment,

job-finding probability, and job-destruction probability in economies with z̄ = 0.225
(instead of z̄ = 0.25) and with a Pareto distribution of productivity draws (instead of a

uniform distribution), respectively. As in Table 2, we consider various combinations of

λn and λe. And to ease comparability with the results of our model using the baseline

calibration (reported in Table 2), we reproduce those results in Panel A of Table 3.
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Table 3: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: z̄ = 0.225 C: Pareto D: η = 0.4

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.19 0.87 0.00 0.31 1.41 0.00 0.21 0.95 0.00
1 0.01 0.12 0.76 0.19 0.13 0.86 0.25 0.21 1.21 0.24 0.17 0.95 0.19
1 0.05 -0.20 0.82 1.73 -0.29 0.93 2.28 -0.51 1.28 3.66 -0.16 1.04 1.78
1 0.15 -2.49 1.25 13.00 -3.23 1.51 16.89 -6.62 2.82 35.97 -2.49 1.58 13.37

0 0.01 0.01 0.19 0.15 0.03 0.34 0.21 -0.00 0.13 0.14 0.02 0.24 0.15
0 0.05 -0.20 0.55 1.45 -0.27 0.69 1.93 -0.35 0.73 2.32 -0.17 0.69 1.47
0 0.15 -2.20 0.97 11.30 -2.83 1.18 14.57 -5.08 2.05 26.87 -2.19 1.22 11.53

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that

it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.
The next columns show the percentage change in the employment, job-finding probability, and job-
destruction probability under a slightly different calibration in each panel. The shock to zK is of 1%.

Panel A presents the baseline results; Panel B presents the results assuming a lower maximum produc-
tivity draw; Panel C presents the results assuming a Pareto distribution of productivity draws; Panel D
presents the results assuming a lower elasticity of the matching function.

Economies with a tighter range of productivity draws (low z̄ or high zmin) experi-

ence larger changes in the flows after the rise in zK and also tend to experience larger

changes in employment than in our baseline economy. We also find a similar result in

the case of the Pareto distribution. If the cumulative distribution of productivity draws

is of the form G(z) = 1 −
(

zmin

z

)ξ
, a higher ξ (which concentrates productivity draws

near the minimum) increases the effects of the shock.19 The intuition is simple. If we

reduce z̄ or increase ξ, the distribution of productivity draws becomes more concen-

trated and, thus, the same change in z∗ and z∗e alters the optimal decision of a larger

proportion of firms. In these circumstances, the same rise in zK amplifies the required

change in labor market tightness, θ, to balance the free-entry condition, Eq. (4), and –

most importantly – motivates a much larger proportion of manual firms to destroy jobs

and automate the production of the tasks. Therefore, these experiments paint an even

bleaker picture than our baseline: depending on the calibration, the fall in employment

after the shock can be as catastrophic as 6.5-fold the magnitude of the shock.

In Panel D of Table 3, we consider the case of a smaller matching function elasticity,

η = 0.4 (instead of η = 0.5). We consider this case as it reduces the elasticity of the hir-

ing costs, κL

µ(θ) =
κLθ

η

χ
, relative to labor market tightness, θ. As a result, we would expect

greater flows in the labor market, particularly for job creation, to balance the free-entry

condition, Eq. (4). We show that this does occur but the final impact of reducing η on

employment is whimsy because it also magnifies job destruction.20 Finally, we con-

sider the cases of a higher cost of capital, κK , lower workers’ bargaining power, φ, lower

19In Panel C of Table 3, we assume that ξ = 5. In all our experiments with the Pareto distribution, we
continue assuming that firms that do not draw productivity at the time of entry start with productivity z̄.

20In Section 4.1, we explain that the good effects of a lower η on job creation also promote higher wages,
which motivate firms to destroy jobs and automate the production of the tasks.
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proportion of firms that draw productivity below the entry cutoff, G(z∗e ), higher job-

filling costs, κL, and higher matching efficiency, χ. The results of these experiments are

detailed in Tables A1 and A2, which we relegate to the Appendix A as they barely affect

the results of our model.

3.4 Output and Labor Share

Although our focus in this paper is on the effects of automation-augmenting shocks on

employment, we can use our model to gather insights about the effect of these shocks

on output and the labor share. Table 2 shows that an automation-augmenting shock in-

creases output and reduces the labor share and that λn amplifies both changes. Thus,

the scenarios in which employment falls coincide with an even larger increase in out-

put and fall in the labor share. We find that these results follow from mainly four factors.

First, the automation-augmenting shock directly increases output and directly reduces

the relative contribution of labor for output. Second, firm entry is amplified by λn:

higher λn increases the probability that the firm will take advantage of the higher pro-

ductivity in the automated technology, increasing the incentives for firm entry, which

markedly increases output. Third, this increased entry is more concentrated on firms

that use the automated technology, lowering the labor share. And fourth, a higher λn

incentivizes firms to fire workers and destroy jobs, also dropping the labor share.

The fact that our model is able to simultaneously reduce the labor share and in-

crease employment is particularly important as this is the pattern observed in most

developed countries. Using data for these countries, Autor and Salomons (2018) docu-

ment that TFP shocks have been employment-augmenting but labor-share displacing.

In the literature, most of the models that are able to explain the fall in the labor share

predict lower employment (e.g., Caballero and Hammour, 1998; Zeira, 1998; Hornstein,

Krusell and Violante, 2007; Prettner and Strulik (2017); Acemoglu and Restrepo, 2018).

To the best of our knowledge, until now, only our previous model in Guimarães and Gil

(2019) was able to account for the two patterns (lower labor share and increased em-

ployment) simultaneously after only one shock. Yet, our previous model robustly pre-

dicts an increase in employment after an automation-augmenting shock, which pre-

vents it from giving insights about how the future may differ from the past. Our model

in Section 2 is also consistent with the documented patterns in Autor and Salomons

but is flexible enough to provide scenarios in which different outcomes may arise from

the same sort of shocks.

4 Dissecting the Mechanism

4.1 Ad hoc Function for Wages

Our baseline model shows that after an automation-augmenting shock, employment

increases if λn is low and falls if λn is large. We find that both job creation and job de-

struction increase after a rise in zK (unless λn = 0, in which case the job destruction

rate is fixed). But, the change in the job-destruction rate increases much more with λn
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than the change in the job-finding rate. One factor that may explain this behavior is the

wage response. In all our calibrations, wages increase due to the rise in the job-finding

probability and in the value of the manual firm (which increases namely due to a better

outside option to move to the automated technology). Yet, the worker’s productivity

remains unchanged, implying that the rise in zK squeezes the operational profits in the

manual technology. So we ask: if wages were only a function of the task’s productivity,

how would the job-creation and job-destruction margins react to an increase in zK?

To answer this question, we build a new version of the model in which we replace

Nash bargaining with an ad hoc functional form for wages: w(z) = (1 − φnb)b + φnbzLz

(0 < φnb < 1). Wages are the weighted sum of a constant term and the tasks’ produc-

tivity. In this case, the improvement in the worker’s and firm’s outside option have no

effect on the wage. Importantly, a rise in zK has no effect on wages.

Panel B of Table 4 shows how employment, job-finding probability (indicator of

job creation), and job-destruction probability change after an automation-augmenting

shock of 1% under various combinations of λe and λn.21 For convenience, Panel A of the

same table reproduces the results for the same experiments using our baseline model

of Section 2. The main takeaway from Panel B is that employment increases for all the

combinations we consider of λe and λn, which is in stark contrast with the results re-

ported in Panel A. By further contrasting Panels A and B, we see that the job-finding rate

increases much more while the job-destruction rate increases less in this version of the

model than in the baseline one. Thus, if wages are orthogonal to zK and θ, firms have a

much greater incentive to hire a worker as their operational profits remain unchanged.

Furthermore, and by the same token, firms have less incentives to fire the worker and

move to the automated technology.

Panel B of Table 4 also shows that the change in the job-destruction rate contin-

ues to increase much more with λn than the change in the job-finding rate. The net

effect is that the change in employment tends to be negatively related with λn, which

suggests that for sufficiently high λn, employment may still drop after an automation-

augmenting shock. We confirm this in parallel experiments: employment falls if λe = 1
andλn ≥ 0.26, as well as if λe = 0 andλn ≥ 0.23, because job destruction increases more

than job creation after the rise in zK . It is natural that the job destruction rate increases

with λn as this rate becomes more sensitive to endogenous factors. Yet, at first sight, it

is unclear why the job-finding probability increases less than the job-destruction prob-

ability given that there are also greater incentives to create new tasks and jobs if λn is

high.

We conjecture that matching frictions are behind this pattern. As the labor market

tightness, θ, increases, the costs of a firm to match with a worker also increase, reduc-

ing incentives for job creation. We can test this conjecture by checking how our results

21To calibrate the model with the ad hoc wage, we start by determining zL and b using our baseline
model under each calibration. Once determined zL and b, we obtain φnb together with zK , Ω, and δL to
reach our targets for the employment rate, labor share, job-destruction rate, and G(z∗e ).
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Table 4: The effect of an increase of 1% in zK – Model comparison

A: Baseline B: Ad hoc wage C: Low friction D: CES (ǫ = 5)

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 1.53 7.36 0.00 0.19 0.76 0.00 0.13 0.59 0.00
1 0.01 0.12 0.76 0.19 1.50 7.37 0.17 0.15 0.76 0.18 0.10 0.57 0.11
1 0.05 -0.20 0.82 1.73 1.36 7.94 1.38 -0.16 0.87 1.69 -0.04 0.54 0.71
1 0.15 -2.49 1.25 13.00 0.71 12.82 9.21 -2.28 1.49 12.49 -0.25 0.54 1.66

0 0.01 0.01 0.19 0.15 0.40 2.02 0.18 0.01 0.19 0.15 0.01 0.16 0.10
0 0.05 -0.20 0.55 1.45 1.04 6.46 1.46 -0.17 0.58 1.44 -0.08 0.44 0.78
0 0.15 -2.20 0.97 11.30 0.51 11.99 9.42 -2.05 1.17 10.96 -0.34 0.52 2.07

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that
it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.
The next columns, divided in four panels, show the percentage change in the employment, job-finding
probability, and job-destruction probability. In each panel, we use a different version of our model.
The shock to zK is of 1%.

change with different calibrations of the matching function elasticity, η. If η is low, then

the costs of a firm to match with a worker are less sensitive to the labor market tight-

ness ( κL

µ(θ) = κLθ
η

χ
). Thus, matching frictions are less relevant for job creation and we

should observe greater job creation after an automation-augmenting shock. Using our

baseline model, in Section 3.3, we concluded that η barely affects how employment re-

acts to the increase in zK . Yet, Figure 3 shows a different result if we use our model

with the ad hoc wage equation; in fact, it confirms our conjecture that matching fric-

tions prevent a greater increase in employment. This figure plots how the job-finding

and job-destruction rates change after the automation-augmenting shock for a range

of values of λn and using our model with the ad hoc wage equation. On both panels,

λe = 1. The difference between the panels lies only in the value of η: the left-panel

assumes η = 0.4; the right-panel assumes η = 0.5. Confirming our conjecture, job cre-

ation increases much more after the rise in zK if η = 0.4 than if η = 0.5. Interestingly,

η barely affects the change in job destruction. Thus, employment reacts more after an

automation-augmenting shock if η = 0.4. But why are the results so different when

we use Nash bargaining and when we use our ad hoc equation? The reason seems to

lie in the outside option of workers, U . If the job-filling probability, µ(θ) = χθ−η, is

less sensitive to changes in labor market tightness, θ, then the job-finding probability,

f(θ) = χθ1−η, is more sensitive. Thus, given that U and f(θ) are positively related (see

Eq. 7), ceteris paribus a lower η increases the elasticity of U relative to θ, allowing all

workers to demand greater wages. Our ad hoc wage, however, prevents the operational

profit of manual firms to be affected by U , leading to the different results.

Our experiments with the model assuming the ad hoc equation work as counterfac-

tuals to understand the dynamics in our original model. But these experiments do not

seem to be a good account of how an automation-augmenting shock is likely to unfold

in the future. Unless the historical positive relationship between labor market tight-

ness and wage increments definitely breaks in the future, the automation-augmenting
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Figure 3: The effect of higher zK under λe = 1 and different values of λn and η
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Note: This figure shows the effects of an automation-augmenting shock using our model with the ad
hoc wage equation. In both panels, we assume that all firms draw the tasks’ productivity at the time of
entry, λe = 1, and different probabilities that this productivity is redrawn afterwards, λn. Both panels
show the percentage change in the job-finding probability and in the job-destruction probability. In
Panel A, η = 0.4; in panel B, η = 0.5. The shock to zK is of 1%.

shock will increase wages, which may promote the sizable negative employment effects

that we obtain using our baseline model.

4.2 Lower Frictions

Our baseline model suggests that, as λn increases, it becomes easier to fire a worker

than to hire a worker due to matching frictions, because the latter increase wages and

the costs to find a suitable worker. Matching frictions in our model come from the

matching function but also come from our assumption that workers who lose jobs stay

unemployed for at least a period (month). Although this is a typical assumption in

models with matching frictions and finds support in the evidence (Hall and Kudlyak,

2019), we can argue that in an economy that experiences a surge in labor market flows,

this assumption may be too restrictive. In such an economy, it is likely that workers

find jobs even within a month from losing them and start production immediately.22

Relaxing this assumption may be important in our model: in an economy that experi-

ences a surge in job destruction, the pool of available workers to match with firms may

become too narrow, raising the relevance of matching frictions. Thus, we ask: what are

the predictions of our model if workers can look for jobs and start production immedi-

ately after losing their jobs?

22Christiano, Eichenbaum and Trabandt (2016) make a similar assumption. They build a model with
matching frictions but calibrate each period as a quarter, whereas tipically these models are calibrated
with monthly data. Because in US data many workers find jobs and start production within a quarter, it
would be too restrictive to assume that workers who lose jobs need to wait for the quarter to end to restart
production. In our case, the probability to find jobs may increase so much that it can be equally restrictive.
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Panel C of Table 4 answers this question and, by contrasting the results in this panel

with those in Panel A, confirms our prediction. In an economy that experiences an

automation-augmenting shock and in which workers who lose jobs can look for other

jobs and restart production immediately, matching frictions become less relevant and

the job-finding probability increases more with λn. The implication of this is that em-

ployment becomes less negatively correlated with λn; yet, and even though this model

also generates a smaller increase in the job destruction rate than the baseline, the change

in employment continues to fall significantly with λn.

The lack of firepower of this experiment is not completely surprising. First, our sen-

sitivity analysis with η in Section 3.3 shows that our results are not much sensitive to

the calibration of the matching function. This suggests that the degree of matching

frictions are not much quantitatively relevant in our model.23 Second, the change in

the pool of nonemployed workers imposed by the rise in the job-destruction rate is not

so great. Even in the case of λe = 1 and λn = 0.15, the rise in the job-destruction rate

displaces only an additional 0.0037 proportion of the workforce per period. Given our

steady-state target of nonemployment of 1 − n = 0.22, the number of workers looking

for jobs is not much affected.

4.3 CES Aggregator

In our baseline model, we assume that the tasks produced by workers and by machines

are perfect substitutes. In this section, we instead build a model assuming that – from

the perspective of consumers – they are imperfect substitutes. Our motivation for this

setup is to take into account that consumers may deem differently a task produced

by a machine or by a worker, a factor that we call human touch. For example, both a

vending machine and a seller sell goods and, thus, they broadly perform the same task.

Nonetheless, consumers may value the task differently on the basis of who is perform-

ing it. The worker (seller) can offer a more personal (human touch) to the task whereas

the machine (vending machine) offers an impersonal service. This naturally renders

machine and worker imperfect substitutes, from the perspective of the consumer. An

ubiquitous use of the automated technology may, then, change the relative price of

the tasks produced by machines and workers as consumers look for the differentiated

offer of the manual technology. Our goal, then, is to assess how the presence of the hu-

man touch (imperfect substitutability) affects the wrestle between the job-finding and

job-destruction margins in determining how an automation-augmenting shock affects

employment. In particular, can this setup reverse our prediction that economies with

high λn experience lower employment after an automation-augmenting shock? Or are

there any relevant quantitative implications?

We implement this model by assuming a CES aggregator of the outputs of the tasks

produced by automated and manual technologies, where y is an index of final con-

23This follows from the fact that the wage increases with the automation-augmenting shock (see the
discussion in Section 4.1) and the remaining parameters adjust to balance the steady-state of our model
and reach our steady-state targets.
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sumption (i.e., a bundle of goods and services demanded by consumers). In this setup,

the elasticity of substitution is ǫ, and this model nests our baseline model if ǫ = ∞. In

particular, the CES takes the following form:

y =

[

y
ǫ−1

ǫ

K + y
ǫ−1

ǫ

L

]
ǫ

ǫ−1

, (17)

where yK and yL are the sum of the outputs produced using each type of technology:

yK = zKnK ,

yL = zL

[

(n− n∗ − n∗

e)z̄ + n∗

e

1

1−G(z∗e )

∫ z̄

z∗e

zdG(z) + n∗
1

G(z∗e )−G(z∗)

∫ z∗e

z∗
zdG(z).

]

Assuming competitive markets in the intermediate goods yK and yL and a profit-maximizing

final-good producer, we get:

pK = y
−

1

ǫ

K y
1

ǫ , (18)

pL = y
−

1

ǫ

L y
1

ǫ . (19)

Thus, a rise in zK leads to an increase in yK , which reduces the price of the tasks pro-

duced using the automated technology. Furthermore, it also leads to a rise in y, which

converts into a higher price of the tasks produced using the manual technology. These

two effects clearly affect the motivation to create jobs as well as to fire workers and au-

tomate the production of tasks (destroy jobs).

Panel D of Table 4 shows the effects of an automation-augmenting shock in the

model with the CES assuming ǫ = 5 and under the various combinations of λe and

λn. Assuming that the outputs of the two technologies are imperfect substitutes does

not change our results qualitatively. In economies with high λn, employment still falls.

Yet, our setup with a CES affects the results quantitatively: it reduces the elasticities in

the model because the total impact of the shock, pKzK , is lower reflecting the fall in the

price of the automated good, pK , after the rise in zK .

One interesting outcome reported in Panel D of Table 4 is that our setup with the

CES constrains job destruction much more than job creation. To shed light on this, on

the left panel of Figure 4, we plot how the job-destruction probability, JD, and job-

finding probability, f(θ), change with the elasticity of substitution, ǫ, under the case of

λe = 1 and λn = 0.15. On the right-hand side of the same figure, we plot the prices

of the tasks produced by each type of technology also as a function of ǫ. The shock is,

as usual, an automation-augmenting shock of 1%. Undoubtedly, the job-destruction

margin is much more affected by the elasticity of substitution to the point that the shift

of the two margins almost converges if ǫ = 2. (Recall that in the baseline, ǫ = ∞, the

job-finding probability increases 1.32% and the job-destruction probability increases

13.11%). There are two aspects that can explain this. First, an automation-augmenting
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Figure 4: The effect of higher zK under λe = 1, λn = 0.15, and different values of ǫ
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Note: This figure shows the effects of an automation-augmenting shock using our model with the CES

aggregator. To produce these results, we assume that all firms draw the tasks’ productivity at the time
of entry, λe = 1, and that on average about every six months this productivity is redrawn afterwards,
λn = 0.15. The left-panel shows the percentage change in the job-finding probability and in the job-
destruction probability. The right-panel shows the percentage change in the price of tasks produced
using the manual technology and in the price of the tasks produced using the automated technology.
The shock to zK is of 1%.

shock reduces pK and, thus, curbs down the increase in machines’ productivity, pKzK .

This naturally reduces the incentives to destroy jobs and automate tasks after the rise

in zK . It also reduces the incentives to create jobs as the shock has a lower impact on

the value of firms. Yet, the same automation-augmenting shock increases pL and, thus,

increases workers’ productivity, pLzLz. This balances the effect (of lower pKzK) on job

creation but further reduces the motivation to destroy jobs and automate tasks. As we

increase ǫ, the fall in pK and the rise in pL become smaller; thus, the incentives to au-

tomate and destroy jobs increase significantly while job creation changes much less as

the effects of the two prices tend to almost balance out.

These mechanisms help explain why in calibrations with high λn (keeping ǫ fixed),

the assumption of imperfect-substitutability between the two outputs, yK and yL, (re-

sults reported in Panel D of Table 4) affects job-destruction much more than job cre-

ation. Economies with high λn experience greater reallocation from the manual to the

automated technology after an automation-augmenting shock. Greater reallocation

then implies a greater rise in the number of firms using the automated technology, nK ,

and, thus, in the output produced using the automated technology, yK . In this setup

with the CES, the greater rise in yK further drops pK and further increases pL, leading

to lower incentives to fire workers and, thus, a greater drop in job destruction when

contrasted with the baseline results. The two effects of pK and pL tend to balance the

change in job creation, leading to the smaller relative drop in job creation when com-

pared with the baseline.

These experiments with the CES aggregator show that consumers have an impor-
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tant role in determining the effects of automation-augmenting shocks on employment.

If a large proportion of the tasks are directed to consumers, their preference for the hu-

man touch may severely reduce the negative effects of automation-augmenting shocks

on employment.

5 Concluding Remarks

In this paper, we build a model to assess how an automation-augmenting shock – a

generalized increase in the productivity of machines/robots – affects employment. This

model relies on multiple previous contributions (Mortensen and Pissarides, 1994; Horn-

stein, Krusell and Violante, 2007; Acemoglu and Restrepo, 2018; and Guimarães and

Gil, 2019) to satisfy two criteria. First, it is consistent with the past documented by Au-

tor and Salomons (2018) and Gregory, Salomons and Zierahn (2018): an automation-

augmenting shock can simultaneously reduce the labor share and increase employ-

ment. Second, our model is flexible enough to offer insights on how the future may

differ from the past: depending on the calibration, an automation-augmenting shock

may increase or decrease employment.

In our model, an automation-augmenting shock enlarges labor market flows. On

the one hand, it promotes greater job destruction because the automated technology

(that only uses robots) becomes more attractive than the manual technology (that only

uses labor). On the other hand, due to either a sort of complementarity at the time of

entry (as in Guimarães and Gil, 2019) or because hiring a worker is a crucial first step

in starting the production of a task (as in Acemoglu and Restrepo, 2018), firm entry

and job creation also increase. Yet, this robust increase in labor market flows predicted

by our model contrasts with US data showing a downward trend in flows for the last

decades (Davis and Haltiwanger, 2014). This documented trend is even more relevant

given that the fall in labor market flows occurred in a period of increased automation

and investment in robots (Prettner and Strulik, 2017; Acemoglu and Restrepo, 2019a,

Guimarães and Gil, 2019). But a closer look into the changes in labor market flows

across US sectors reveals that, even though labor market flows fell in all sectors, they

fell unevenly across them. Particularly, Decker et al. (2014) document that labor market

flows fell much more in retail and services sectors than in finance and manufacturing

sectors – the sectors that arguably were more susceptible to automation. We can inter-

pret these patterns in light of two trends: a general trend reducing labor market flows

in all sectors (e.g., demographics as argued by Engbom, 2019) and a trend increasing

labor market flows in some sectors (with greater pervasiveness of automation). Our

model abstracts from the general trend and only takes into account the positive contri-

bution of automation-augmenting shocks to labor market flows.

Using our model, we sort the cases in which employment increases after an automation-

augmenting shock and those in which it falls. In environments in which the compar-

ative advantage of workers in producing a task is relatively stable – slow-changing en-

vironments – the increase in job creation dominates the increase in job destruction.
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Therefore, in slow-changing environments, employment increases. On the contrary,

in environments in which the comparative advantage of workers changes frequently

– rapid-changing environments – an automation-augmenting shock leads to massive

job destruction that clearly offsets the increase in job creation. In these environments,

employment catastrophically falls.

We also find that the fall in employment in rapid-changing environments crucially

depends on the relevance and prevalence of what we call human touch. Human touch

refers to a consumers’ preference for diversity in the producer/provider of the task it-

self: in a world with widespread usage of machines to offer multiple services to con-

sumers, they may value the differentiated service of a human. If that is the case, an

automation-augmenting shock (and ensuing spread of usage of machines/robots) in-

creases the price of the tasks produced by workers relative to those produced by the

machines/robots. This curtails job destruction, reducing the fall in employment.

Our paper then clarifies how the future may differ from the past. If the compara-

tive advantage of workers in producing new tasks starts to vanish more rapidly than

in the past, then automation-augmenting shocks will curb down employment rather

than increase it. The extent of this fall will naturally depend on demand and, partic-

ularly, consumers’ preferences. If many of the tasks produced in an economy are sold

directly to consumers and they have a preference for the human touch, then the fall

in employment will unlikely be catastrophic. But if most of the tasks are part of a vast

value chain to produce a final good or if consumers have no preference for the human

touch, then the fall in employment in the future may be catastrophic.
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A Further robustness checks

Table A1: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: κK = 0.1 C: φ = 0.4 D: G(z∗e ) = 0.4

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.16 0.75 0.00 0.16 0.71 0.00 0.22 1.02 0.00
1 0.01 0.12 0.76 0.19 0.12 0.75 0.20 0.12 0.72 0.18 0.17 0.95 0.18
1 0.05 -0.20 0.82 1.73 -0.22 0.83 1.84 -0.18 0.81 1.65 -0.16 0.94 1.70
1 0.15 -2.49 1.25 13.00 -2.62 1.27 13.64 -2.38 1.31 12.54 -2.40 1.42 12.75

0 0.01 0.01 0.19 0.15 0.01 0.20 0.16 0.01 0.17 0.15 0.00 0.15 0.13
0 0.05 -0.20 0.55 1.45 -0.21 0.56 1.51 -0.19 0.53 1.41 -0.18 0.59 1.41
0 0.15 -2.20 0.97 11.30 -2.26 0.97 11.59 -2.14 0.99 11.02 -2.16 1.11 11.23

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability
that it is redrawn afterwards, λn. The first two columns show the calibration of these two probabili-
ties. The next columns show the percentage change in the employment, job-finding probability, and
job-destruction probability under a slightly different calibration in each panel. The shock to zK is of
1%. Panel A presents the baseline results; Panel B presents the results assuming a higher cost of capi-

tal/robot; Panel C presents the results assuming a lower workers’ bargaining power; Panel D presents
the results assuming a lower proportion of productivity draws below the entry cutoff.

Table A2: The effect of an increase of 1% in zK – Sensitivity Analysis

A: Baseline B: κL = 0.1 C: χ = 0.2

λe λn ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD ∆n ∆f(θ) ∆JD

1 0 0.17 0.76 0.00 0.17 0.76 0.00 0.17 0.76 0.00
1 0.01 0.12 0.76 0.19 0.13 0.76 0.19 0.12 0.76 0.19
1 0.05 -0.20 0.82 1.73 -0.20 0.82 1.72 -0.20 0.82 1.77
1 0.15 -2.49 1.25 13.00 -2.48 1.25 12.93 -2.53 1.25 13.20

0 0.01 0.01 0.19 0.15 0.01 0.19 0.15 0.01 0.19 0.15
0 0.05 -0.20 0.55 1.45 -0.19 0.55 1.44 -0.20 0.56 1.47
0 0.15 -2.20 0.97 11.30 -2.19 0.97 11.27 -2.22 0.97 11.39

Note: This table shows the effects of an automation-augmenting shock under various combinations
of the probability that the task’s productivity is drawn at the time of entry, λe, and the probability that
it is redrawn afterwards, λn. The first two columns show the calibration of these two probabilities.

The next columns show the percentage change in the employment, job-finding probability, and job-
destruction probability under a slightly different calibration in each panel. The shock to zK is of 1%.
Panel A presents the baseline results; Panel B presents the results assuming higher job-filling costs;
Panel C presents the results assuming a higher matching efficiency.


