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Abstract

This study explores the dynamic effects of patent policy on innovation and income
inequality in a Schumpeterian growth model with endogenous market structure and
heterogeneous households. We find that strengthening patent protection has a positive
effect on economic growth and a positive or an inverted-U effect on income inequality
when the number of differentiated products is fixed in the short run. However, when
the number of products adjusts endogenously, the effects of patent protection on growth
and inequality become negative in the long run. We also calibrate the model to US
data to perform a quantitative analysis and find that the long-run negative effect of
patent policy on inequality is much larger than its short-run positive effect. This result
is consistent with our empirical finding from a panel vector autoregression.
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1 Introduction

A recent study by Aghion et al. (2019) provides empirical evidence to show that innova-
tion and income inequality have a positive relationship. However, innovation and income
inequality are both endogenous variables; therefore, it would be interesting to see how they
are both affected by an exogenous factor. Many growth-theoretic studies have explored the
effects of patent policy on innovation in the macroeconomy, but these studies often do not
consider its microeconomic implications on the income distribution. Therefore, this study
analyzes the effects of patent policy on innovation and inequality. Furthermore, the Schum-
peterian growth model that we develop allows us to derive how the effect of patent policy
on income inequality changes over time. The tractability of this dynamic analysis enables us
to compare the transition path of income inequality from the growth model to the impulse
response function estimated from a panel vector autoregression (VAR).
We introduce heterogeneous households into a Schumpeterian model with endogenous

market structure to explore the effects of patent protection on economic growth and income
inequality. The Schumpeterian model with endogenous market structure is based on Peretto
(2007, 2011) and features both horizontal innovation (i.e., variety expansion) and vertical
innovation (i.e., quality improvement). Although endogenous market structure gives rise
to transition dynamics in the aggregate economy, the wealth distribution of households is
stationary along the entire transition path due to the stationary consumption-output and
consumption-wealth ratios. This useful property makes our analysis tractable. Upon deriving
the autonomous dynamics of the average firm size, we are able to also derive the dynamics
of economic growth and the evolution of the income distribution.
In this growth-theoretic framework, we find that strengthening patent protection leads to

a higher growth rate and causes a positive or an inverted-U effect on income inequality when
the number of differentiated products is fixed in the short run. However, when the number
of products adjusts endogenously, the effects of patent protection on economic growth and
income inequality become negative in the long run. The intuition of the above results can
be explained as follows.
Stronger patent protection confers more market power to monopolistic firms, which then

charge a higher markup and earn more profits. As a result, strengthening patent protection
has a positive effect on innovation and economic growth in the short run. However, the
increased profitability also attracts the entry of new products, which in turn reduces the
size of the market captured by each product. Given that it is the market size of a product
that determines the incentives for quality-improving innovation,1 the entry of new products
caused by stronger patent protection stifles quality-improving innovation, which determines
long-run growth.2 These contrasting effects of patent protection on economic growth at
different time horizons have novel implications on the dynamics of income inequality.
In our model, households own different amounts of wealth. This wealth inequality gives

rise to income inequality.3 Given that asset income is determined by the rate of return
on assets and the value of assets, an increase in either the real interest rate or asset value

1See Laincz and Peretto (2006) for empirical evidence.
2See Peretto and Connolly (2007) for a theoretical explanation on why vertical innovation, instead of

horizontal innovation, drives growth in the long run.
3See Piketty (2014) for the importance of wealth inequality on income inequality.
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would raise income inequality. As a result, strengthening patent protection has the following
effects on income inequality in the short run. The positive effect of patent protection on
the equilibrium growth rate leads to a higher interest rate through the Euler equation of
the households; therefore, strengthening patent protection has a positive effect on income
inequality. This effect is also present in previous studies, such as Chu (2010) and Chu and
Cozzi (2018), who focus on quality improvement without variety expansion. In our model,
endogenous entry gives rise to a novel effect. The larger markup as a result of stronger
patent protection reduces the demand for intermediate goods, which in turn reduces the
value of assets through the entry condition of new products. Therefore, strengthening patent
protection also has a negative effect on income inequality.
The above positive and negative effects together generally give rise to an inverted-U

relationship between patent protection and income inequality in the short run. However, it
is also possible to have only a positive relationship between patent protection and income
inequality over the permissible range of the policy instrument. In the long run, the effects
of patent protection on economic growth and the real interest rate become negative due to
endogenous market structure, and hence, the relationship between patent protection and
income inequality also becomes negative. Finally, we calibrate the model to US data to
perform a quantitative analysis and find that the long-run negative effect of patent protection
on income inequality is much larger than its short-run positive effect. This dynamic pattern
of income inequality is consistent with the impulse response function estimated from a panel
VAR.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which economic growth is driven by the
invention of new products. Aghion and Howitt (1992), Grossman and Helpman (1991) and
Segerstrom et al. (1990) consider an alternative growth engine that is the innovation of
higher-quality products and develop the Schumpeterian growth model. Subsequent stud-
ies, such as Smulders and van de Klundert (1995), Peretto (1998, 1999) and Howitt (1999),
develop the second-generation Schumpeterian model with both vertical and horizon innova-
tion.4 This study contributes to the literature by developing a second-generation Schum-
peterian model with heterogeneous households to explore the effects of patent protection.
Other studies also explore the effects of patent protection on innovation in the R&D-based

growth model; see for example, Cozzi (2001), Li (2001), Goh and Olivier (2002), Furukawa
(2007), Futagami and Iwaisako (2007), Horii and Iwaisako (2007), Chu (2009, 2011), Ace-
moglu and Akcigit (2012), Iwaisako (2013), Iwaisako and Futagami (2013), Kiedaisch (2015),
Chu et al. (2016) and Yang (2018, 2019). These studies focus on models with a representative
household; therefore, they do not consider the effects of patent protection on income inequal-
ity. This study contributes to the literature by applying an R&D-based growth model with
heterogeneous households to explore the effects of patent protection on income inequality in
addition to innovation and economic growth.
Some studies in the literature consider heterogeneous workers and explore the effects of

innovation on the skill premium or more generally wage inequality; see for example, Ace-
moglu (1998, 2002), Spinesi (2011), Cozzi and Galli (2014) and Grossman and Helpman

4See Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)
for empirical evidence that supports the second-generation Schumpeterian model.
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(2018). This study complements them by considering wealth heterogeneity rather than
worker heterogeneity and by exploring income inequality rather than wage inequality. Some
studies in the literature consider income inequality and/or wealth inequality in the R&D-
based growth model; see for example, Chou and Talmain (1996), Zweimuller (2000), Foellmi
and Zweimuller (2006), Jones and Kim (2018) and Aghion et al. (2019). These studies
focus on the relationship between income inequality and innovation. Our study relates to
these interesting studies by exploring how patent policy influences the relationship between
innovation and inequality. Chu (2010), Chu and Cozzi (2018) and Kiedaisch (2018) also ex-
plore the effects of patent policy on innovation and inequality; however, their model features
only one type of innovation and does not feature endogenous market structure. This study
contributes to the literature by showing that endogenizing the market structure has novel
implications on the dynamic effects of patent protection on income inequality.
The rest of this study is organized as follows. Section 2 presents some stylized facts.

Section 3 presents the model. Section 4 analyzes the dynamics of the model. Section 5
explores the effects of patent policy. Section 6 concludes.

2 Stylized facts

This paper examines whether heterogeneity in the strength of patent systems affects income
inequality across countries. The Ginarte-Park index of patent rights is a standard measure
of patent strength across countries; see Ginarte and Park (1997). However, the index is not
available at an annual frequency (available at a quinquennial frequency only), which prevents
us from using the index in our panel VAR analysis. Instead, we measure patent protection
by using total patent counts, which is an annual time series being useful for a shock analysis.
We have plotted the correlation between patent count and the Ginarte-Park index in Figure
1, which is clearly positive on average, indicating that countries with stronger patent rights
tend to have higher patent counts.

Figure 1
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We compile country-level data on income inequality and patent counts. The data series
are in annual frequency, giving us an unbalanced panel of 89 countries from 1980 to 2017.
The Gini index of household income inequality comes from the Standardized World Income
Inequality Database, whereas the number of patents is taken from the World Development
Indicators of the World Bank.
We carry out a shock analysis in a panel VAR to examine the dynamic relationship

between income inequality and patents. We estimate a recursive panel VAR with a maximum
of 3 lags to capture the dynamics in the data. We identify a patent shock by applying
the usual Choleski decomposition of variance-covariance matrix of residuals. A panel VAR
extends the traditional VAR to panel data and allows for unobserved individual heterogeneity
denoted as Λn for country n. A first-order VAR model can be specified as follows:

Azn,t = Λn + Λ(L)zn,t−1 + εn,t,

where zn,t is a k × 1 vector of endogenous variables. As this equation cannot be estimated
directly due to contemporaneous correlations between zn,t and εn,t, the standard reduced
form can be derived by pre-multiplying the system by A−1 as follows:

zn,t = Γn + Γ(L)zn,t−1 + en,t,

where Γn = A
−1Λn, Γ(L) = A

−1Λ(L) and en,t = A
−1εn,t. The impulse response functions can

now be derived on the basis of the moving average representation of the system as follows:

zn,t = µn +
∑

i

Γi(L)en,t−i = µn +
∑

i

φi(L)εn,t−i,

where φi are the impulse response functions.
We estimate the panel VAR in a generalized method of moments (GMM) framework

that can better deal with unobserved country heterogeneity, especially in fixed t and large n
settings, providing consistent estimate of the mean effects across countries. We specify the
following ordering for zn,t as a 2× 1 vector of variables [patents, income inequality] in order
to identify the patent shock. The reason behind this specific recursive ordering stems from
the theoretical ordering of the variables that should run from the more exogenous variable
to the less exogenous one. The variable, patents, is ordered first and followed by income
inequality. By undertaking a panel VAR-Granger causality Wald test, we find patent count
to be exogenous among the variables.
Our aim here is to track the response of income inequality due to a shock in patents,

using a panel VAR in a bivariate setting as a benchmark: the log of patent count and
income inequality. As efficiency can be improved by including a longer set of lags in GMM
estimation, we estimate the VAR using 3 lags and plot the estimated response coefficients
up to a forecast horizon of 10 years. The panel VAR approach helps us assess the common
response for the countries to a patent shock.
Figure 2 shows the bootstrapped impulse responses to a patent shock, together with

plus/minus one standard-error confidence bands, obtained by bootstrapping (1000 draws).
For a one standard deviation positive shock in patents, income inequality initially increases
and then the median response converges to a negative level in the long run. The shaded
curves represent the confidence interval around the estimated response functions, computed
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from a typical Monte Carlo integration exercise with 1000 draws, for statistical significance.
Following Uhlig (2005) and Alessandri and Mumtaz (2019), we construct 68% confidence
bands around the median estimate. The eigenvalue stability condition graph in Figure 3
suggests that as all the eigenvalues lie inside the unit circle, the panel VAR satisfies the
stability condition. The short-run positive response and the long-run negative response of
income inequality to a patent shock also remain robust even if we extend the panel VAR to
a multivariate setting and consider an alternative measure of income inequality.5

Figure 2 Figure 3

3 A Schumpeterian growth model with heterogeneous

households and endogenous market structure

The Schumpeterian model with in-house R&D and endogenous market structure is based on
Peretto (2007, 2011). Chu et al. (2016) introduce patent protection into the Peretto model to
explore its effects on innovation and economic growth. We further introduce heterogeneous
households into the Peretto model to analyze the effects of patent protection and endoge-
nous market structure on economic growth and income inequality. Our analysis provides a
complete closed-form solution for economic growth and income inequality on the transition
path and the balanced growth path.

3.1 Heterogeneous households

The economy features a unit continuum of households, which are indexed by h ∈ [0, 1]. The
households have identical homothetic preferences over consumption but own different levels

5See the robustness checks in Appendix C.
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of wealth. The utility function of household h is given by

U(h) =

∞∫

0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 determines the rate of subjective discounting and ct(h) is house-
hold h’s consumption of final good (numeraire). Household h maximizes (1) subject to

ȧt(h) = rtat(h) + wtL− ct(h). (2)

at(h) is the real value of assets owned by household h, and rt is the real interest rate.
Household h supplies L units of labor to earn a real wage rate wt.

6 From standard dynamic
optimization, the familiar Euler equation is

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct = rt − ρ, where ct ≡

∫ 1
0
ct(h)dh is aggregate consumption.

3.2 Final good

Competitive firms produce final good Yt using the following production function:

Yt =

∫ Nt

0

Xθ
t (i)[Z

α
t (i)Z

1−α
t Lt/Nt]

1−θdi, (4)

where {θ, α} ∈ (0, 1). Xt(i) denotes the quantity of non-durable intermediate good i ∈
[0, Nt], and Nt is the mass of available intermediate goods at time t. The productivity of
intermediate good Xt(i) depends on its own quality Zt(i) and also on the average quality

Zt ≡
1
Nt

∫ Nt
0
Zt(i)di of all intermediate goods capturing technology spillovers. The private

return to quality is determined by α, and the degree of technology spillovers is determined
by 1−α. The term Lt/Nt captures a congestion effect of variety and removes the scale effect
in the model.7

Profit maximization yields the following conditional demand functions for Lt and Xt(i):

Lt = (1− θ)Yt/wt, (5)

Xt(i) =

(
θ

pt(i)

)1/(1−θ)
Zαt (i)Z

1−α
t Lt/Nt, (6)

where pt(i) is the price ofXt(i). Competitive producers of final good pay θYt =
∫ Nt
0
pt(i)Xt(i)di

for intermediate goods. The market-clearing condition for labor implies Lt = L for all t.

6Our results are robust to allowing for population growth. Derivations are available upon request.
7Our results are robust to parameterizing this congestion effect as Lt/N

1−ξ
t , where ξ ∈ (0, 1). See the

discussion in footnote 12.
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3.3 Intermediate goods and in-house R&D

The monopolistic firm in industry i produces the differentiated intermediate good with a
linear technology that requiresXt(i) units of final good to produceXt(i) units of intermediate
good i ∈ [0, Nt]. Furthermore, the firm in industry i incurs φZαt (i)Z

1−α
t units of final good

as a fixed operating cost. To improve the quality of its product, the firm also devotes Rt(i)
units of final good to R&D. The innovation specification is given by

Żt(i) = Rt(i). (7)

In industry i, the monopolistic firm’s (before-R&D) profit flow at time t is

Πt(i) = [pt(i)− 1]Xt(i)− φZ
α
t (i)Z

1−α
t . (8)

The value of the monopolistic firm in industry i is

Vt(i) =

∫
∞

t

exp

(
−

∫ s

t

rudu

)
[Πs(i)−Rs(i)] ds. (9)

The monopolistic firm in industry i maximizes (9) subject to (6), (7) and (8). The current-
value Hamiltonian for this optimization problem is

Ht(i) = Πt(i)−Rt(i) + ηt(i)Żt(i), (10)

where ηt(i) is the co-state variable on (7).
We solve this optimization problem in the Appendix and derive the unconstrained profit-

maximizing markup ratio given by 1/θ. To analyze the effects of patent breadth, we introduce
a policy parameter µ > 1, which determines the unit cost for imitative firms to produce Xt(i)
with the same quality Zt(i) as the monopolistic firm in industry i.

8 A larger patent breadth
µ increases the production cost of imitative firms and allows the monopolistic producer of
Xt(i), who owns the patent, to charge a higher markup without losing her market share to
potential imitators.9 Therefore, the equilibrium price becomes

pt(i) = min {µ, 1/θ} . (11)

We assume µ < 1/θ. In this case, a larger patent breadth µ leads to a higher markup, and
this implication is consistent with Gilbert and Shapiro’s (1990) seminal insight on “breadth
as the ability of the patentee to raise price”.
We follow previous studies to consider a symmetric equilibrium in which Zt(i) = Zt

for i ∈ [0, Nt]. In this case, the size of intermediate-good firms is also identical across all
industries, such that Xt(i) = Xt.

10 From (6) and pt(i) = µ, the quality-adjusted firm size is

Xt

Zt
=

(
θ

µ

)1/(1−θ)
L

Nt
. (12)

8Here we assume a diffusion of knowledge from the monopolistic firm to imitators.
9Intuitively, the presence of monopolistic profits attracts potential imitators. However, stronger patent

protection increases the production cost of imitative products and allows monopolistic firms to charge a
higher markup without losing market share to these potential imitators; see also Li (2001), Goh and Olivier
(2002), Chu (2011) and Iwaisako and Futagami (2013) for a similar formulation.
10Symmetry also implies Πt(i) = Πt, Rt(i) = Rt and Vt(i) = Vt.
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We define the following transformed variable:

xt ≡ µ
1/(1−θ)Xt

Zt
= θ1/(1−θ)

L

Nt
. (13)

xt is a state variable that is determined by the quality-adjusted firm size, which in turn
depends on L/Nt. Lemma 1 derives the rate of return on quality-improving R&D, which is
increasing in xt and µ.

Lemma 1 The rate of return to in-house R&D is given by

rqt = α
Πt
Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
. (14)

Proof. See the Appendix.

3.4 Entrants

Following previous studies, we assume that entrants have access to aggregate technology Zt
to ensure symmetric equilibrium at any time t. A new firm pays βXt units of final good to
set up its operation and enter the market with a new variety of products. β > 0 is a cost
parameter, and the cost function βXt captures the case in which the setup cost is increasing
in the initial output volume of the firm. The asset-pricing equation determines the rate of
return on assets as

rt =
Πt −Rt
Vt

+
V̇t
Vt
. (15)

The free-entry condition is given by11

Vt = βXt. (16)

Substituting (7), (8), (13), (16) and pt(i) = µ into (15) yields the return on entry as

ret =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
−
φ+ zt
xt

]
+
ẋt
xt
+ zt, (17)

where zt ≡ Żt/Zt is the growth rate of aggregate quality.

11We treat entry and exit symmetrically (i.e., the scrap value of exiting an industry is also βXt); therefore,
Vt(i) = βXt always holds. If Vt > βXt (Vt < βXt), then there would be an infinite number of entries (exits).
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3.5 General equilibrium

The equilibrium is a time path of allocations {at, ct, Yt, Xt(i), Rt(i)} and prices {rt, wt, pt(i), Vt (i)}
such that the following conditions are satisfied:

• households maximize utility taking {rt, wt} as given;

• competitive firms produce Yt and maximize profits taking {pt(i), wt} as given;

• monopolistic firms produce Xt(i) and choose {pt(i), Rt(i)} to maximize Vt(i) taking rt
as given;

• entrants make entry decisions taking Vt as given;

• the value of all existing monopolistic firms adds up to the value of the households’
assets such that NtVt =

∫ 1
0
at(h)dh ≡ at;

• the market-clearing condition of labor holds such that Lt = L; and

• the following market-clearing condition of final good holds:

Yt = ct +Nt(Xt + φZt +Rt) + ṄtβXt. (18)

3.6 Aggregation

Substituting (6) into (4) and imposing symmetry yield the following aggregate production
function:

Yt = (θ/µ)
θ/(1−θ)ZtL, (19)

which also uses markup pricing pt(i) = µ. Therefore, the growth rate of output is

Ẏt
Yt
= zt, (20)

which is determined by the quality growth rate zt.
12

4 Dynamics

In this section, we analyze the dynamics of the model. Section 4.1 presents the dynamics
of the aggregate economy. Section 4.2 summarizes the dynamics of the wealth distribution,
whereas Section 4.3 summarizes the dynamics of the income distribution.

12Parameterizing the congestion effect as L/N1−ξ
t in (4) would yield Yt = (θ/µ)θ/(1−θ)ZtN

ξ
t L in which

case the growth rate of output is given by Ẏt/Yt = zt+ ξṄt/Nt, which is nonetheless determined by the rate
of return rqt in (14) on quality-improving R&D as (22) and (23) show.
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4.1 Dynamics of the aggregate economy

We now analyze the dynamics of the economy. In the Appendix, we show that the consumption-
output ratio ct/Yt jumps to a unique and stable steady-state value. This equilibrium prop-
erty simplifies the analysis of transition dynamics and ensures the stationarity of the wealth
distribution even on the transition path.

Lemma 2 The consumption-output ratio jumps to a unique and stable steady-state value:

ct
Yt
=
βθρ

µ
+ 1− θ. (21)

Proof. See the Appendix.

Equation (21) implies that for any given µ, consumption and output grow at the same
rate given by

gt ≡
Ẏt
Yt
=
ċt
ct
= rt − ρ, (22)

where the last equality uses the Euler equation in (3). Substituting (14) into (22) yields the
growth rate of output given by

gt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (23)

which depends on the state variable xt. Then, (20) implies that the quality growth rate is
also given by

zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (24)

which is positive if and only if

xt > x ≡
µ1/(1−θ)

µ− 1

( ρ
α
+ φ

)
. (25)

Intuitively, innovation requires each firm’s market size to be large enough so that it is prof-
itable for firms to do in-house R&D. For the rest of the analysis, we assume that xt > x. In
this case, the dynamics of xt is derived in Lemma 3.

Lemma 3 The dynamics of xt is determined by an one-dimensional differential equation:

ẋt = µ
1/(1−θ)

[
(1− α)φ− ρ

β

]
−
(1− α) (µ− 1)− βρ

β
xt. (26)

Proof. See the Appendix.
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Proposition 1 Under the parameter restrictions ρ < min {(1− α)φ, (1− α)(µ− 1)/β}, the
dynamics of xt is globally stable and xt gradually converges to a unique steady-state value.
The steady-state values {x∗, g∗} are given by

x∗(µ
−

) = µ1/(1−θ)
(1− α)φ− ρ

(1− α)(µ− 1)− βρ
> x, (27)

g∗(µ
−

) = α

[
(µ− 1)

(1− α)φ− ρ

(1− α)(µ− 1)− βρ
− φ

]
− ρ > 0. (28)

Proof. See the Appendix.

The differential equation in (26) shows that given an initial value x0, the state variable
xt gradually converges to its steady-state value denoted as x

∗, which also determines N∗ =
θ1/(1−θ)L/x∗. On the transition path, the market size of each product determines the rate of
quality-improving innovation and the equilibrium growth rate gt according to (23). When
xt evolves toward the steady state, gt also gradually converges to its steady-state value g

∗.
The steady-state values of {x∗, g∗} are derived in Proposition 1.

4.2 Dynamics of the wealth distribution

In this section, we show that for any given xt at any time t, the wealth distribution is
stationary and determined by its initial distribution that is exogenously given at time 0.
It is useful to recall that the aggregate economy features transition dynamics determined
by the evolution of xt. However, the wealth distribution is stationary despite the transition
dynamics in the aggregate economy because the consumption-output ratio ct/Yt is stationary,
which in turn implies that the consumption-wealth ratio ct/at is also stationary as shown in
the proof of Lemma 2.
Aggregating (2) across all households yields the following aggregate asset-accumulation

equation:
ȧt = rtat + wtL− ct. (29)

Let sa,t(h) ≡ at(h)/at denote the share of wealth owned by household h. Then, the growth
rate of sa,t(h) is given by

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
−
ȧt
at
=
ct − wtL

at
−
sc,t(h)ct − wtL

at(h)
, (30)

where wtL = (1 − θ)Yt and sc,t(h) ≡ ct(h)/ct. Given that ċt(h)/ct(h) = ċt/ct = rt − ρ, the
consumption share sc,t(h) of any household h ∈ [0, 1] is stationary such that sc,t(h) = sc,0(h),
which is endogenous. Proposition 2 derives the dynamics of sa,t(h) and shows that the wealth
distribution of households is also stationary (i.e., sa,t(h) = sa,0(h), which is exogenously
given at time 0). This stationarity is due to the stationary consumption-output ct/Yt and
consumption-wealth ct/at ratios along the transition path of the aggregate economy.

12



Proposition 2 The dynamics of sa,t(h) is given by an one-dimensional differential equation:

ṡa,t(h) = ρ[sa,t(h)− sa,0(h)]. (31)

Also, the wealth distribution is stationary and remains the same as the initial distribution.

Proof. See the Appendix.

4.3 Dynamics of the income distribution

In this section, we show that the income distribution is endogenous and nonstationary but
still analytically tractable. Although the wealth distribution is stationary, the transition
dynamics in the aggregate economy (in particular, the transition dynamics of the real interest
rate) gives rise to an endogenous evolution of the income distribution. Therefore, once we
trace out the transition dynamics of the real interest rate, we can also trace out the transition
dynamics of income inequality.
Income received by household h is given by

It(h) = rtat(h) + wtL. (32)

Aggregating (32) yields the aggregate level of income as

It = rtat + wtL. (33)

Let sI,t(h) ≡ It(h)/It denote the share of income received by household h. Then, we have

sI,t(h) =
rtat(h) + wtL

rtat + wtL
=

rtat
rtat + wtL

sa,0(h) +
wtL

rtat + wtL
. (34)

The coefficient of variation of income is defined as13

σI,t ≡

√∫ 1

0

[sI,t(h)− 1]2dh =
rtat

rtat + wtL
σa, (35)

where σa ≡
√∫ 1

0
[sa,0(h)− 1]2dh is the coefficient of variation of wealth that is exogenously

given at time 0. Equation (35) shows that income inequality σI,t is increasing in the asset-
wage income ratio rtat/(wtL) given that wealth inequality drives income inequality in our
model.14 Proposition 3 derives the equilibrium expression for σI,t at any time t. Let’s define
a composite parameter Θ ≡ (1− θ)/(θβ).

Proposition 3 The degree of income inequality at any time t is given by

σI,t =
1

1 + µΘ/rt
σa =

1

1 + µΘ/(ρ+ gt)
σa. (36)

Proof. See the Appendix.

13In Appendix B, we show that the Gini coefficient of income is also given by σI,t =
rtat

rtat+wtL
σa, where

σa is the Gini coefficient of wealth.
14See Madsen (2017) for evidence that asset returns are an important determinant of income inequality.
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5 Effects of patent breadth on growth and inequality

This section analyzes the effects of patent breadth µ on economic growth gt and income
inequality σI,t. Equation (23) shows that the initial impact of a larger µ on the growth
rate gt is positive because xt is fixed in the short run. This is the standard positive profit-
margin effect, captured by (µ−1)/µ1/(1−θ) in (23), of patent breadth on monopolistic profits
and innovation as in previous studies, such as Li (2001) and Chu (2011), which feature an
exogenous market structure. However, in our model, the market structure is endogenous
and the number of firms gradually adjusts. The higher profit margin attracting entry of new
products reduces the market size xt of each product and the rate of return r

q
t on quality-

improving innovation as (14) shows. In the long run, this negative entry effect dominates the
positive profit-margin effect such that the new steady-state growth rate g∗ in (28) is lower
than the initial steady-state growth rate; see Figure 4 for an illustration in which patent
breadth increases at time t. In summary, endogenous market structure gives rise to opposite
short-run and long-run effects of patent protection on growth as in Chu et al. (2016).

Figure 4: Transitional effects of patent breadth on economic growth

The above contrasting effects of patent protection on economic growth at different time
horizons have novel implications on income inequality, which is determined by the rate of
return on assets and the value of assets as (35) shows. The initial impact of a larger patent
breadth µ has both a positive effect and a negative effect on income inequality σI,t. The
positive effect arises because a larger patent breadth initially increases the growth rate gt
and the interest rate rt as in Chu (2010) and Chu and Cozzi (2018), who focus on quality
improvement without endogenous entry. In our model, endogenous entry gives rise to a
negative effect on income inequality because a larger patent breadth reduces the demand for
intermediate goods Xt, which in turn reduces asset value via the entry condition in (16).
These positive and negative effects together generally give rise to an inverted-U relationship
between patent protection and income inequality in the short run. However, it is also possible
to yield only a positive relationship between patent protection and income inequality over
the permissible range of patent breadth µ. In the long run, the effect of a larger patent

14



breadth on the growth rate gt and the interest rate rt becomes negative due to endogenous
market structure. Therefore, increasing patent breadth causes a negative effect on income
inequality in the long run; see Figure 5 for an illustration in which case 1 (case 2) refers to a
small (large) increase in patent breadth at time t. Proposition 4 summarizes these results.

Proposition 4 Strengthening patent protection has the following effects on economic growth
and income inequality at different time horizons: (a) it causes a positive effect on economic
growth and a positive or an inverted-U effect on income inequality in the short run; and (b)
it causes a negative effect on both economic growth and income inequality in the long run.

Proof. See the Appendix.

Figure 5: Transitional effects of patent breadth on income inequality

5.1 Quantitative analysis

In this section, we calibrate the model to aggregate US data in order to perform a quantitative
analysis. The model features the following parameters: {α, ρ, θ, β, φ, µ}. We follow Iacopetta
et al. (2019) to set the degree of technology spillovers 1 − α to 0.833. We set the discount
rate ρ to 0.03 and the markup µ to 1.40, which is at the upper bound of the range of
values reported in Jones and Williams (2000). Then, we calibrate {θ, β, φ} by matching
the following moments in the US economy. First, labor income as a share of output is 60%.
Second, the consumption share of output is 64%. Third, the growth rate of output per capita
is 2%. Table 1 summarizes the calibrated parameter values.

Table 1: Calibrated parameter values

α ρ θ β φ µ
0.167 0.040 0.400 4.667 0.499 1.400

15



We simulate the effects of patent breadth µ on the quality-adjusted firm size xt, the
growth rate gt and income inequality σI,t. The baseline value of markup µ is 1.40, and we
raise µ by 0.01 to 1.41. Figure 6 presents the transitional path of the quality-adjusted firm
size xt. Figure 7 presents the transitional path of the growth rate gt. Figure 8 presents the
transitional path of income inequality σI,t in terms of percent changes from its initial value.
When patent protection strengthens, the growth rate increases from 2.00% to 2.17%, which
in turn raises income inequality by 2.43% on impact. Gradually, more products enter the
market, resulting into a gradual decrease in the quality-adjusted firm size xt from 3.50 to
3.39. This smaller firm size leads to a decrease in the steady-state growth rate to 1.77%,
which in turn decreases income inequality by 4.80% in the long run. Therefore, the negative
effect of patent breadth on income inequality in the long run is much larger in magnitude
than its positive effect in the short run. This result is consistent with the stylized facts
documented in Section 2.

Figure 6: Transitional path of the firm size
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Figure 7: Transitional path of the growth rate

Figure 8: Transitional path of income inequality

In this numerical exercise, we consider a conservatively low discount rate ρ and a relatively
large markup µ. Considering a larger ρ or a smaller µ would lead to an even more significant
decrease in economic growth g and income inequality σI in the long run. In the following
tables that report results for ρ ∈ {0.03, 0.04, 0.05} and µ ∈ {1.20, 1.30, 1.40},15 we present
the equilibrium growth rates and the percent changes in income inequality on impact when

15Here we recalibrate the other parameters {θ, β, φ} to match the same moments as before.
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µ increases by 0.01 and also when the economy reaches the new balanced growth path. The
tables show that strengthening patent protection can lead to a decrease in the steady-state
growth rate to as low as 0.79% and a decrease in income inequality by as much as 16.74%
in the long run. Therefore, we present the relatively conservative results under ρ = 0.03 and
µ = 1.40 as our benchmark.

Table 2: Effects of patent protection on economic growth

Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 2.28% 2.34% 2.40% 1.20 1.15% 0.97% 0.79%
1.30 2.22% 2.26% 2.31% 1.30 1.64% 1.56% 1.48%
1.40 2.17% 2.21% 2.25% 1.40 1.77% 1.72% 1.67%

Table 3: Effects of patent protection on income inequality

Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 4.18% 4.28% 4.35% 1.20 −16.19% −16.52% −16.74%
1.30 3.19% 3.27% 3.32% 1.30 −7.24% −7.39% −7.49%
1.40 2.43% 2.49% 2.54% 1.40 −4.80% −4.90% −4.96%

6 Conclusion

This study introduces heterogeneous households into a Schumpeterian growth model with
endogenous market structure. Although endogenous market structure causes the aggregate
economy to feature transition dynamics, the wealth distribution of households is stationary,
which in turn allows us to derive the dynamics of the income distribution. In summary, we
find that strengthening patent protection increases economic growth and causes a positive or
an inverted-U effect on income inequality in the short run when the number of differentiated
products is fixed. However, when the number of products adjusts endogenously, the effects
of patent protection on economic growth and income inequality eventually become negative.
This finding highlights the importance of endogenous market structure, which gives rise to
different effects of patent policy on innovation and inequality at different time horizons.
Therefore, previous studies that neglect the endogenous adjustment of the market structure
may have identified only the short-run effects of patent policy on innovation and inequality.
Finally, to maintain the tractability of the dynamics of income inequality, we have focused
on the effects of the aggregate economy on the evolution of the income distribution, with-
out allowing for a potential feedback effect from the income distribution to the aggregate
economy. We leave this interesting extension to future research.
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Appendix A: Proofs

Proof of Lemma 1. The current-value Hamiltonian for monopolistic firm i is given by
(10). To introduce the upper bound µ on price pt (i), we modify (10) as follows:

Ht (i) = Πt (i)−Rt (i) + ηt (i) Żt (i) + ωt (i) [µ− pt (i)] , (10’)

where ωt (i) is the multiplier on pt (i) ≤ µ. Substituting (6)-(8) into (10’), we can derive

∂Ht (i)

∂pt (i)
= 0⇒

∂Πt (i)

∂pt (i)
= ωt (i) , (A1)

∂Ht (i)

∂Rt (i)
= 0⇒ ηt (i) = 1, (A2)

∂Ht (i)

∂Zt (i)
= α

{

[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lt
Nt
− φ

}

Zα−1t (i)Z1−αt = rtηt (i)− η̇t (i) . (A3)

If pt (i) < µ, then ωt (i) = 0. In this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the
constraint on pt (i) is binding, then ωt (i) > 0. In this case, we have pt (i) = µ, proving
(11). Given that we assume µ < 1/θ , pt (i) = µ always holds. Substituting (A2), (13) and
pt (i) = µ into (A3) and imposing symmetry yield (14).

Proof of Lemma 2. Substituting (16) into the total asset value at = NtVt yields

at = NtβXt = (θ/µ)βYt, (A4)

where the second equality uses θYt = Nt(µXt).
16 Differentiating (A4) with respect to t yields

Ẏt
Yt
=
ȧt
at
= rt +

wtL

at
−
ct
at
, (A5)

where the second equality uses (2) with at ≡
∫ 1
0
at(h)h and ct ≡

∫ 1
0
ct(h)dh. Using (3) for rt,

(5) for wt, and (A4) for at, we can rearrange (A5) to obtain

ċt
ct
−
ȧt
at
=
ct
at
−

[
ρ+

µ (1− θ)

βθ

]
, (A6)

the right-hand side of which is increasing in ct/at with a strictly negative y-intercept. There-
fore, ct/at must jump to the steady state. Then, we have (21), noting (A4).

Proof of Lemma 3. Substituting zt = rt − ρ = r
e
t − ρ into (17) yields

ẋt
xt
= ρ−

µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
−
φ+ zt
xt

]
, (A7)

where we have also used the expression of zt in (24) to obtain (26).

16We derive this by using pt(i) = µ and Xt(i) = Xt for θYt =
∫ Nt

0
pt(i)Xt(i)di.
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Proof of Proposition 1. One can rewrite (26) simply as ẋt = d1 − d2xt. This linear
system for xt has a unique (non-zero) steady state that is globally (and locally) stable if

d1 ≡ µ1/(1−θ)
[
(1− α)φ− ρ

β

]
> 0, (A8a)

d2 ≡
(1− α) (µ− 1)− βρ

β
> 0, (A8b)

from which we obtain ρ < min {(1− α)φ, (1− α)(µ− 1)/β}. Then, ẋt = 0 yields the steady-
state value x∗ = d1/d2, which gives (27). Substituting (27) into (23) yields (28).

Proof of Proposition 2. Manipulating (2) yields

ȧt(h)

at(h)
= rt +

wtL

at(h)
−
ct(h)

at(h)
. (A9)

Then, the growth rate of sa,t(h) ≡ at(h)/at is

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
−
ȧt
at
=
wtL− ct(h)

at(h)
−
wtL− ct
at

, (A10)

which becomes

ṡa,t(h) =
ct − wtL

at
sa,t(h)−

sc,t(h)ct − wtL

at
. (A11)

We use (5) for wt, (21) for ct/Yt and (A4) for at/Yt in (A11) to derive

ṡa,t(h) = ρsa,t(h)− sc,t(h)
βθρ+ µ (1− θ)

βθ
+
µ (1− θ)

βθ
. (A12)

To achieve stability of sa,t(h), ṡa,t(h) = 0 must hold for any t ≥ 0 because sa,t(h) is a pre-
determined variable and its coefficient is positive. We can achieve this if and only if sc,t(h)
jumps into a stationary level at t = 0 that ensures sa,t(h) to be stationary. Then, we have

sc,0(h) =
βθρsa,0(h) + µ (1− θ)

βθρ+ µ (1− θ)
, (A13)

and sc,t(h) = sc,0(h) for any t ≥ 0. Substituting (A13) into (A12) yields (31).

Proof of Proposition 3. By (35), we have

σI,t =
1

1 + [wtL/(rtat)]
σa. (A14)

Using (5) for wt and (A4) for at/Yt, we obtain

wtL

rtat
= µ

(
1− θ

βθ

)
1

rt
, (A15)

where rt = ρ+ gt. Combining (A14) and (A15) yields (36).
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Proof of Proposition 4. With rqt = rt, it is straightforward to show from (14) that for
a given xt, rt is increasing in µ ∈ (1, 1/θ). Thus, the short-run effect of µ on rt = gt + ρ is
positive. To see the short-run effect of µ on inequality, we use (A14) and (A15) to write

σI,t =
(rt/µ)

(rt/µ) + Θ
σa, (A16)

noting rt = gt + ρ. It shows that σI,t is increasing in rt/µ, in which
17

rt
µ
=
α

µ

[
µ− 1

µ1/(1−θ)
xt − φ

]
, (A17)

which uses (14) and rqt = rt. For a given xt, we can show that

d

dµ

(
rt
µ

)
> 0⇔ (µ− 1)−

φµ1/(1−θ)

xt
−
1− µθ

1− θ
≡ κ(xt, µ) < 0. (A18)

It is useful to note that for a given xt, κ(xt, µ) is a monotonically increasing function in both
xt and µ.

18 At both ends of the original domain of µ ∈ (1, 1/θ), the signs of κ(xt, µ) are
opposite such that

lim
µ→1

κ(xt, µ) = −

(
φ

xt
+ 1

)
< 0 (A19a)

and

lim
µ→1/θ

κ(xt, µ) =

(
1− θ

θ

)[
1−

αφ

αφ+ ρ

x

xt

]
> 0, (A19b)

noting x/xt < 1. As shown in Figure 9, there uniquely exists a threshold value of µ, denoted
as µ̂(xt) ∈ (1, 1/θ), such that the effect of µ on σI,t is positive for a sufficiently small
µ ∈ (1, µ̂(xt)) and negative for a sufficiently large µ ∈ (µ̂(xt), 1/θ). This implies that the
unconstrained short-run effect of µ on σI,t follows an inverted-U shaped. However, to ensure
x∗ > x, there is an upper bound of µ, that is,

µ < 1 + β (αφ+ ρ) ≡ µ. (A20)

Thus, if µ < µ̂(xt), then only the positive part of an inverted-U effect appears in the feasible
range of µ ∈ (1, µ).

17The lower bound of the right-hand side of (A17) at xt = x, defined in (25), is strictly positive, which
implies rt/µ > 0.
18
κ(xt, µ) being increasing in xt is obvious. As for µ, note

d

dµ
κ(xt, µ) =

1

1− θ

1

xt

[
xt − x

(
αφ

αφ+ ρ

)(
1−

1

µ

)]
> 0,

in which the inequality always holds due to xt > x in (25).
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Figure 9: Proof of Proposition 4

Finally, concerning the long-run effects of µ, we differentiate (28) with respect to µ to
derive

d

dµ
g∗ = −

αβρ [(1− α)φ− ρ]

[(1− α)(µ− 1)− βρ]2
< 0, (A23)

showing the negative effect of µ on the long-run growth rate g∗. Given that r∗ = g∗ + ρ, an
increase in µ leads to a decrease in the long-run interest rate r∗ and also a decrease in the
steady-state ratio r∗/µ. Therefore, the long-run effect of µ on income inequality σI,t is also
negative.
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Appendix B: Gini coefficient

Income received by household h is given by

I(h) = ra(h) + wL = sa(h)ra+ wL, (B1)

where the identity index h is uniformly distributed between 0 and 1. We now order the
households in an ascending order of income. The Gini coefficient of income is given by
σI = 1− 2bI , where

bI ≡

∫ 1

0

LI(h)dh. (B2)

The Lorenz curve LI(h) of income is given by

LI(h) ≡

∫ h
0
I(χ)dχ

∫ 1
0
I(χ)dχ

=
ra
∫ h
0
sa(χ)dχ+ wL

∫ h
0
1dχ

ra+ wL
, (B3)

where
∫ h
0
1dχ = h and

∫ h
0
sa(χ)dχ is the Lorenz curve La(h) of wealth. To see this,

La(h) ≡

∫ h
0
a(χ)dχ

∫ 1
0
a(χ)dχ

=

∫ h
0
a(χ)dχ

a
=

∫ h

0

sa(χ)dχ. (B4)

Substituting (B3) and (B4) into (B2) yields

bI =
ra

ra+ wL

∫ 1

0

La(h)dh+
wL

ra+ wL

∫ 1

0

hdh, (B5)

where
∫ 1
0
hdh = 0.5 and

∫ 1
0
La(h)dh ≡ ba. Recall that the Gini coefficient of wealth is given

by σa = 1− 2ba. Therefore, substituting (B5) into σI = 1− 2bI yields the Gini coefficient of
income given by

σI =
ra

ra+ wL
σa, (B6)

which is the same as (35) except that σa is now the Gini coefficient of wealth.
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Appendix C: Robustness checks of the panel VAR

In this appendix, we present some robustness checks to our panel VAR in section 2.
First, we extend the bivariate setting to a multivariate setting by including per capita GDP
growth in the analysis. Figure 10 presents the impulse response function. The initial impact
of income inequality in response to a patent shock continues to be positive and significant.
Furthermore, we continue to see a significant negative response for a 10 year forecast horizon.
The result also holds even if we exclude non-resident patents from the patent counts data.

Figure 10

We further test the relation by changing the inequality measure. Instead of using the
Gini index of inequality in household market (pre-tax, pre-transfer) income, we now consider
the Gini index of inequality in household disposable (post-tax, post-transfer) income. The
impulse response function using this inequality measure is shown in Figure 11. With the
disposable-income-based Gini index, we find a similar response as the benchmark in Figure 2.
Furthermore, regardless of the measure of inequality, the initial positive response disappears
in the subsequent periods, converging to a negative response in the long run.

Figure 11
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