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A b s t r a c t  

The task of this paper is the enhancement of realized volatility forecasts. We investigate 

whether a mixture of predictions (either the combination or the averaging of forecasts) can 

provide more accurate volatility forecasts than the forecasts of a single model.We estimate 

long-memory and heterogeneous autoregressive models under symmetric and asymmetric 

distributions for the major European Union stock market indices and the exchange rates of 

the Euro.  

The majority of models provide qualitatively similar predictions for the next trading day’s 

volatility forecast. However, with regard to the one-week forecasting horizon, the 

heterogeneous autoregressive model is statistically superior to the long-memory framework. 

Moreover, for the two-weeks-ahead forecasting horizon, the combination of realized 

volatility predictions increases the forecasting accuracy and forecast averaging provides 

superior predictions to those supplied by a single model. Finally, the modeling of volatility 

asymmetry is important for the two-weeks-ahead volatility forecasts.  

 

K e y w o r d s : averaging forecasts, combining forecasts, heterogeneous autoregressive, intra-

day data, long memory, model confidence set, predictive ability, realized volatility, ultra-high 

frequency. 
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1. Introduction 

 Undoubtedly, ultra-high frequency financial data have been valuable in estimating 

and forecasting volatility more accurately. The long-memory autoregressive and the 

heterogeneous autoregressive models are representative methods of volatility forecasting. 

The literature provides strong evidence that ARFIMA models introduced by Granger 

(1980), produce superior forecasts relative to those produced by conditional volatility 

GARCH models that are based on daily returns. Due both to the long memory property of 

volatility as well as its high persistence, the ARFIMA specification is suitable for estimating 

realized volatility. Among others, Andersen et al. (2003), Chiriac and Voev (2011), Deo et al. 

(2005), Koopman et al. (2005), Martens and Zein (2002), Pong et al. (2004) have applied 

various extensions of ARFIMA models to ultra-high frequency-based volatility measures. 

The structure of the Heterogeneous Autoregressive model of realized volatility is 

based on the heterogeneous market hypothesis (Müller et al., 1997), which states that in 

financial markets, investors (ultra-high frequency algorithmic traders, inter-day investors, 

institutional investors trading on a monthly basis, etc.) interact at different frequencies. Thus, 

the HAR model is able to accommodate the heterogeneous beliefs of traders; different types 

of market participants drive volatility at different frequencies. Andersen et al. (2007) show 

that volatility for equity and bond futures is adequately expressed by a HAR-GARCH model. 

In forecasting ultra-high frequency constructed volatility, various extensions of the HAR 

model have been applied by Chen and Ghysels (2011), Clements et al. (2008), Corsi and 

Reno (2012), Hua and Manzan (2013), Prokopczuk et al. (2015), Sevi (2014) and 

Degiannakis and Filis (2017). In general, the literature provides evidence in favor of the HAR 

model compared to other models such as the plain autoregressive model, the MIDAS model 

of Ghysels et al. (2007), the HEAVY model of Shephard and Sheppard (2010), the ARFIMA 

model, etc. 

Apart from modelling information of realized volatility from the past, an alternative 

approach is to extract the predictive information from the futures market. Such techniques 

have been employed mainly by policy institutions1, which are looking for the market 

expectations of the exogenous variables required for their macroeconomic model 

frameworks. Alquist and Kilian (2010) provided an interesting analysis of oil price forecasts 

based on futures prices. Their study showed that futures are not the most accurate predictor of 

the spot price of crude oil; even no-change forecasts tend to be more accurate. 

                                                 
1The interested reader is referred to Svensson (2005) for the European Central Bank, and to the IMF (2007) for 
the International Monetary Fund. 
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 Additionally, the implied volatility extracted from the option prices has been 

considered as an alternative source of measuring investor sentiment with regard to market 

volatility. Koopman et al. (2005) showed that models based on realized volatility (i.e. 

ARFIMA models) outperform models based on implied volatility. On the other hand, 

Fleming et al. (1995), Christensen and Prabhala (1998), Fleming (1998), Blair et al. (2001), 

Giot (2003), Degiannakis (2008) and Frijns et al. (2010) provided evidence that implied 

volatility is more informative when stock market volatility is being investigated. 

Although model-averaging methods for forecasting purposes date back to the works of 

Bates and Granger (1969), Granger and Newbold (1977) and Granger and Ramanathan 

(1984), the combination of volatility forecasts has not been broadly studied. Liu and Maheu 

(2009) and Wang et al. (2016) have investigated the impact of model averaging on realized 

volatility prediction accuracy, while Amendola and Storti (2008) and Hu and Tsoukalas 

(1999) have examined the performance of combining forecasts estimated from conditional 

volatility models (i.e. based on daily data). However, the performance of combined forecasts 

has not been explored for ultra-high frequency based volatility estimates. 

This paper studies whether the combination or the averaging of realized volatility 

predictions increases forecasting accuracy. It brings to light two strands of mixed predictions 

(i) selecting forecasts from a set of candidate models according to an evaluation criterion; and 

(ii) the averaging of forecasts.  

This forecasting evaluation exercise is not limited to one-day-ahead forecasts, as 

multiple-days-ahead forecasts (i.e. one-week and two-weeks-ahead forecasting horizons) 

gather investor interest as well. Moreover, we investigate the predictive accuracy under four 

different distributions for the standardized unpredictable component of the models. Briefly, 

our results conclude that: 1) The heterogeneous autoregressive framework works better than 

the long memory framework. 2) The averaged models provide superior forecasts compared to 

those of single models. 3) The modeling of volatility asymmetry is crucial in forecasting the 

ten-days-ahead realized volatility. 4) The combination of volatility forecasts according to the 

statistical properties of forecast errors provides us with more accurate two-weeks-ahead 

volatility forecasts compared to forecasts from a single model. 

The remainder of this study is structured as follows. Section 2 describes the 

estimation of the realized volatility measures, section 3 provides information for the dataset 

of the 3 stock market indices and the 3 exchange rates, while sections 4 and 5 demonstrate the 

ARFIMA and HAR estimated models and the relative forecast specifications for one-day and 

multiple-days-ahead horizons. Sections 6 and 7 present methods of combining predictions 
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according to model selection criteria and methods of computing the model-average forecasts, 

respectively. Section 8 describes a unified framework for the evaluation of all predictive 

methods. Section 9 reports the empirical results and suggests when we should apply the 

volatility forecasts of a single model, a combination of models, or the average forecast from a 

set of models. Section 10 concludes the paper and suggests areas for further research. 

2. The Realized Volatility Measure 

The financial literature assumes that the instantaneous logarithmic price  tp of an asset 

follows a diffusion process      tdWttpd log , where  t  is volatility and  tW  is the 

Wiener process. The integrated variance  
 IV

tt

2
,1 

 is the actual, but unobservable, variance over 

the interval  tt ,1  
for which we seek a proxy measure to estimate. Assuming that the number 

of points in time tends to infinity,  , we are able to approximate the integrated variance 

as  
       



 


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t
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t

IV

ba dttdttdtt
1

3

2

2

1

2222
, ... . The realized volatility for the time 

interval  tt ,1   which is partitioned in   equidistance points, 

     




 1

2

, 11
loglog

j tttt jj
PPRV  converges in probability towards the integrated volatility2, 

or     
 IV

ttttRVp
2

,, 11
lim








. Accuracy improves as the number of sub-intervals increases, or as

 , but on the other hand, at a high sampling frequency, such as 0sf , market friction 

is a source of noise due to market microstructure features (i.e. discreteness of the data, 

transaction costs, properties of the trading mechanism, bid-ask spreads, etc.). Thus, realized 

volatility is constructed in the highest sampling frequency which the intra-day autocovariance 

minimizes3; see e.g. Andersen et al. (2006), and Degiannakis and Floros (2015). The 

                                                 
2The  tp  is the latent efficient price, whereas 

jt
P is the observed price. The unobserved distance between  tp

and 
jt

P is the market microstructure noise. There exist a number of estimators for the integrated volatility that 

possess asymptotical properties which are robust for microstructure noise and jumps. However, Sévi (2014) and 
Prokopczuk et al. (2015) provided empirical evidence that the modelling of jumps does not improve the forecast 
accuracy of the simple HAR-RV model. Thus, we construct the realized volatility estimates without taking into 
consideration the presence of jumps.  
3 The inter-day variance can be decomposed into the intra-day variance,  

t
RV , and the intra-day 

autocovariances
jitit

yy
 :      


1

1 1

2 2
 

j ji jitittt
yyRVy . As the autocovariance comprises a measurement 

error, its expected value equals to zero,   0
 jitit

yyE , for 0j . 
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sequence of the sampling prices is constructed according to the previous tick method4 of 

Wasserfallen and Zimmermann (1985). 

In order to incorporate estimates of asset prices during the hours that the stock 

markets are closed to volatility, we take into consideration Hansen and Lunde's (2005) 

method of combining intraday volatility with closed-to-open inter-day volatility. Hansen and 

Lunde proposed the construction of the realized volatility measure as a weighted combination 

of  ttRV ,1
 with inter-day volatility during the time that the market is closed; 

 21loglog
1  tt PP . Hence, we estimate 

       


 
 1

2

2

2

11 11
loglogloglog

j ttttt jj
PPPPRV , such as

 
 

 
  22
,

, 1
21

min IV

tttRVE





 . As 

the  
 IV

tt

2
,1 

 is unobservable, Hansen and Lunde (2005) provide the analytic solution of 

 
  

 tRVV
21 ,

min instead of 
 

 
 
  22
,

, 1
21

min IV

tttRVE





 , as both functions lead to the same solution. 

Hence, we minimize the squared distance between the realized volatility measure and 

integrated volatility, avoiding the need to define a specific relation betweenefficient prices 

and market microstructure noise. 

3. Dataset - FTSE100, DAX30, CAC40 and Euro Exchange Rates 

The database is made up of the three most liquid euro exchange rates (with the Pound, the 

Dollar and the Yen) and the three major European stock indices (FTSE100, DAX30, 

CAC40). The Euro, the Pound, the Dollar and the Yen are the four most tradable currencies. 

The blue-chip FTSE 100 from the London Stock Exchange, has a market cap of €1.8 trillion, 

the DAX30 (a market cap of €1 trillion) from the Deutsche Boerse group, is Germany's prime 

index featuring many of Europe's biggest companies, and the CAC40 (market cap of €1.2 

trillion) represents a capitalization-weighted measure of the 40 most significant companies 

listed on the Euronext Paris (formerly Paris Bourse). 

Table 1 presents information for the one-minute intra-day data of the FTSE100, 

DAX30, and CAC40 indices, as well as for the exchange rates of Euro with the British 

Pound, the US Dollar and the Japanese Yen. The data are filtered for detecting data errors due 

to computer technical failures, typing errors, sequences of zero or non-available prices due to 

databases crashes, etc. Weekends and fixed and moving holidays with thin trading activity 

have been deleted. The selection of the optimal sampling frequency  o
sf , is based on a trade-

                                                 
4 Based on the previous tick method (e.g. employ the most recently published price), we obtain a volatility 
measure that does not converge in probability to zero (see e.g. Hansen and Lunde, 2006). 



6 
 

off between accuracy and potential biases due to market microstructure frictions (last column 

of Table 1)5. The interday adjustment of Hansen and Lunde (2005) is taken into 

consideration. Figure 1 plots the annualized realized volatilities,  
tRV252  and the 

empirical density functions of  
tRV252log . 

[Insert Table 1 about here] 
[Insert Figure 1 About here] 

The logarithmic transformation of realized volatility has an ogive empirical 

distribution which approximates the Gaussian distribution. The average value of the 

annualized standard deviation for the three stock indices is 18.8% (see Table 2). The mean of 

the annualized standard deviation for the three euro exchange rates is 10.1%. The maximum 

annualized volatility observed for the FTSE100 index was 167%, on Friday, October 10, 

2008 (Global financial crisis of October 2008). On Friday, October 10, the stock markets 

crashed across Europe and Asia. London, Paris and Frankfurt dropped 10% in the first hour 

of trading and this also happened when Wall Street opened for trading. Since 1987, global 

markets have experienced some of their worst weeks in memory, and indeed in some cases, 

since the Wall Street Crash of 1929. The median value of annualized volatility ranges from 

13.3% for the FTSE100 to 17.8% for the CAC40. On the other hand, realized standard 

deviations of exchange rates do not fluctuate over time at a similar magnitude. The median 

value of annualized volatility ranges from 7.5% for the Euro/Pound rate to 10.2% for the 

Euro/Yen rate.  Maximum annualized volatility is observed for the Euro/Yen exchange rate to 

74%, on October 24, 2008 (when recession fears caused great turbulence in the Euro/Yen 

rate). Table 3 provides descriptive statistics of the annualized logarithmic realized volatility. 

Sample skewness is positive in all cases. The average of the skewness of log-standard 

deviations across the stock indices decreases to 0.3 compared to 2.9 for the realized standard 

deviations. As far as kurtosis is concerned, the average value for the log-volatilities, across 

the stock indices, is 3.1 compared to 19.5 for the realized standard deviations. Therefore, 

although the kurtosis of the indices exceeds the normal value of three, the logarithmic 

transformation case is obviously much closer to the assumption of normality. Normality 

approximation is very good for the log-volatilities of the exchange rates as well.  

[Insert Table 2 about here] 
[Insert Table 3 about here] 

 

                                                 
5We follow Andersen et al. (2006) who proposed the construction of the volatility signature plot. 
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4. Estimation of the Models 

We proceed to an estimation of two widely accepted model frameworks for the 

annualized logarithmic realized volatility,  
tRV252log . The first framework is the 

Autoregressive Fractionally Integrated Moving Average, or the ARFIMA model with time-

varying conditional innovations. The ARFIMA, initially developed by Granger (1980) and 

Granger and Joyeux (1980), captures the long-memory property of dependent variables. The 

time-variation and clustering that the volatility of realized volatility exhibits is modeled by 

extending the ARFIMA to the ARFIMA-GARCH framework proposed by Baillie et al. 

(1996). The ARFIMA( ldk ,, )-GARCH(p,q)  model for  
tRV252log is defined as: 

         

   
 ,;1,0~

1252log11
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θfz

hLBLAah
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LDRVLLC

t

ttt

ttt

tt

d













 (1) 

where   



k

i

i

iLcLC
1

,   



l

i

i

iLdLD
1

 ,   



q

i

i

iLaLA
1

,   



p

i

i

iLbLB
1

are polynomials,  .f  is 

the density function of tz  (with   0tzE ,   1tzV , θ is the vector of the parameters which 

define f ) and θ,,...,,,...,,,...,,,...,,, 11110 pqlk bbaaddccd  are the parameters to be estimated. 

The 2
th  can be considered as an estimate of the integrated quarticity  IQ

t

2 .6 

The second framework is the Heterogeneous Autoregressive, or HAR model with 

time-varying conditional innovations; e.g. of Corsi et al. (2008) and Corsi (2009). The basic 

idea is that market participants have a different perspective of their investment horizon. The 

HAR-RV-GARCH(p,q) model is an autoregressive structure of the volatilities realized over 

different interval sizes: 

                                                 

6 The asymptotic volatility of volatility,  
 IQ

tt

2

,1 
 , is termed integrated quarticity:  

   





t

t
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1
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t
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     

 

   
 ,;,1,0~

,

,252log22

252log5252log252log

22
0

2

22

1

1
3

5

1

1
2110

θfz

hLBLAah

zh

RVw

RVwRVwwRV

t

ttt

ttt

t

j

jt

j

jttt
















































 

(2) 

where   



q

i

i

iLaLA
1

,   



p

i

i

iLbLB
1

are polynomials and θ,,...,,,...,,,..., 1130 pq bbaaww are the 

parameters to be estimated.  

 For the 3 stock market indices and the 3 exchange rates, the ARFIMA(0,d,1)-

GARCH(1,1), ARFIMA(1,d,1)-GARCH(1,1), HAR-RV-GARCH(1,1) and HAR-RV-

GARCH(0,1) model  specifications with innovations (i.e. unexplained component of 

conditional mean equation) that are i) normally distributed;  1,0~ Nzt ii) Student t 

distributed;  vtzt ;1,0~ ,iii) GED distributed  vGedzt ;1,0~ , and iv) skewed Student t 

distributed;  gvskTzt ,;1,0~ , are estimated. For  1,0~ Nzt , the density function is

   









2
exp

2

1 2
t

tN

z
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
. Under the assumption of conditional Student t distributed 

innovations  vtzt ;1,0~ , the density function is: 
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   

2

1
2

2
1

22

21
;























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zf ,  for 2 ,7  (3) 

where  .  is the gamma function. With conditional GED (Generalized Error Distribution or 

Exponential Power distribution) distributed innovations    vGedz
T

tt ;1,0~
1 , the density 

function is: 

    
   1
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5.0exp
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
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


v

v

t
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z
zf ,   0 ,  (4) 

where v  is the tail-thickness parameter and    112 3/2     .8For  gvskTzt ,;1,0~

the density function is:9 

                                                 
7  vθ . 
8 For more technical details on the GED, readers are referred to Box and Tiao (1973) and Johnson et al. (1995). 
9 The skewed Student t distribution has been introduced by Fernandez and Steel (1998). Degiannakis (2004), 
Giot and Laurent (2003), Lambert and Laurent (2001) estimate model frameworks with skewed Student t 
distribution. 
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where g  and   are the asymmetry and tail parameters, respectively, of the distribution10 

         11

2221 
 gg , and 1222   ggs . 

For each of the six time-series, 16 models are estimated; four model specifications 

combined with four distributional assumptions. The lag orders qpldk ,,,,  of the models have 

been selected according to Schwarz's (1978) Bayesian information criterion.11 Each of the 16 

models is re-estimated every trading day t , for T
~

 days, where T
~

1686, 1784, 2106, 2308, 

2091, 2108 for the CAC40, DAX30, FTSE100, EURUSD, EURGBP and EURJPY realized 

volatility series, respectively based on a rolling sample of constant size T


=1000 days. For 

the ARFIMA(1,d,1)-GARCH(1,1)  model, the parameter vector to be estimated at each point 

in time t  is 
              ttttttt

baaddc 110110 ,,,,,, . Thus, for each model the vector of parameters is 

re-estimated every trading day, for 1
~

,...,1,  TTTTt


 days, based on a rolling sample of 

constant size T


. 

5. Realised Volatility Forecasting 

The one-day-ahead adjusted logarithmic realized volatility,   
ttRV |1log  , and the tth |1

for the ARFIMA(1,d,1)-GARCH(1,1) model are computed as 

      
      

    
  

    
 

tt

t

j

j

t

t

tt

j

j

t

t

t

t

tt

tt

dL
jd

dj
L

jd

dj
RVc

cRV

|1
0

|
1

1
1

10|1

11
252log

1252log













































 (6) 

And 

      2
|1

2
|10|1 tt

t

tt

tt

tt hbaah   .
 

 

The  ttRV |1log   for the ARFIMA(0,d,1)-GARCH(1,1) model is computed from eq.(6) for

  01 t
c . For the HAR-RV-GARCH(1,1) model we have: 

                                                 
10  ', gvθ . 

11 TTT



~

.  



10 
 

 
                 ,252log22252log5252log

252log

|

22

1
1

1
3

5

1
1

1
210

|1

tt

j

jt

t

j

jt

t

t

tt

tt

RVwRVwRVww

RV

 

































 (7) 

and 

      2
|1

2
|10|1 tt

t

tt

tt

tt hbaah   .
 

The tth |1  for the HAR-RV-GARCH(0,1) model is computed from eq.(7) for   01 t
b .In 

ARFIMA-GARCH and HAR-RV-GARCH frameworks, the dependent variable is 

conditionally distributed as    θ;,~|252log 2
1 tttt hfIRV 
 , for tI  denoting the information 

set available at time t and t  referring to the conditional mean given tI . Therefore, the one-

trading-day-ahead annualized realized volatility equals 







  

2
|1|1|1

2

1
252logexp252 tttttt hRVRV . 

The formulas for multiple-days-ahead realized volatility forecasts ( 2n ) are constructed 

recursively based on Degiannakis et al. (2014). For example,  tntRV |log  , and tnth |  are 

computed as: 

ARFIMA(1,d,1)-GARCH(1,1) model: 

          tnt

ttt

tnt RVccRV |110| 252log1252log     (8) 

      2
|11

2
|110| tnt

t

tnt

tt

tnt hbaah    .
 

 

HAR-RV-GARCH(1,1) model: 

 
                ,252log22252log5252log

252log

22

1

1
3

5

1

1
2|110

|



































j

jnt

t

j

jnt

t

tnt

tt

tnt

RVwRVwRVww

RV


 (9) 

and 

      2
|11

2
|110| tnt

t

tnt

tt

tnt hbaah    .
 

6. Combining Forecasts 

In this section, we will investigate whether the combination of predictions can provide 

more accurate volatility forecasts compared to the use of a specific single model. Let us 

define that we have a set of M competing models. At each point in time we forecast the next 

day’s volatility based on the model with the minimum forecast error. Specifically, we 

investigate two rules (evaluation functions) for model selection based on the most recent one-

step-ahead forecast error, or     1|1| 252log252log   ttttt RVRV
 , and the most recent 
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one-step-ahead standardized forecast error, or 
1|

1|

1|




 

tt

tt

tt
h

z


. In other words, on day 1t  we 

estimate the M competing models, and for day t  we compute the one-step-ahead forecasts. 

For day 1t  we forecast the volatility based on the model m  with: 

  m

tt
Mm

2
1|

,...,1
min 

  (10) 

or 

  m

tt
Mm

z
2

1|
,...,1

min 
. (11) 

The predicted squared forecast error, in eq. (10), is the most widely accepted criterion for 

evaluating forecasting ability. The eq. (11) is the standardized predicted squared forecast 

error, whose properties have been investigated by Degiannakis and Xekalaki (2005).  

Consider a model with the generic form, which incorporates the models in eq. (1) and 

eq. (2): 

   ,,2

1

jtjtt

ttt

ttt

g

z

y

















η

βx

 (12) 

where η 12 is a vector of parameters to be estimated,  1,0~
...

Nz
dii

t ,  .2
t  represents the 

conditional variance of t , and  .g  is the functional form of the conditional variance. Under 

the assumption of constancy of parameters over time, ηηηη  T...21 , the 1\ ttz  has an 

asymptotic standard normal distribution, where   1
1|1|1|


  ttttttt yyz  ,  1

11|


  t

ttty βx  and 

1| tt  is the one-step-ahead conditional standard deviation.  

If we have Mm ,...,2,1 competing models, we may compute the  m

ttz 1|  . 

Krishnamoorthy and Parthasarathy (1951) showed that if M  variables jointly follow the 

standard normal distribution, then the joint distribution of       M

tttttt zzz 1|
2

1|
1

1| ,...,,   is the 

Multivariate Gamma. Then the distribution function of  
      M

tttttt
Mm

zzzz 1|
2

1|
1

1|
,...,1

1 ,...,,min 
  can be 

used to compare the predictability of the M  models. The cumulative distribution function of 

 1z  is the minimum multivariate gamma (MMG) distribution (see Xekalaki and Degiannakis, 

2005 and 2010). The single models are based on the statistical assumption that the 

standardized residuals are i) normally, ii) Student t, iii) GED or iv) skewed Student t 

                                                 
12 β belongs to η . 



12 
 

distributed. On the other hand, the combined forecasts according to the   m

tt
Mm

z
2

1|
,...,1

min 
 criterion 

for normally distributed standardized residuals have a known and explicitly derived 

distribution form; the minimum multivariate gamma. Based on simulated evidence, 

Degiannakis and Livada (2016) expanded the research on the non-normally distributed 

standardized residuals. However, the combined forecasts according to the   m

tt
Mm

2
1|

,...,1
min 

  

criterion do not have a known distribution function, despite the fact that almost all the 

forecasting evaluations conducted in the financial literature, are based on the non-

standardized residuals, 1| tt . Hence, the combined forecasts according to the   m

tt
Mm

z
2

1|
,...,1

min 
 

criterion are compatible with the assumptions behind the each of the models that comprise it, 

whereas this is not the case for the   m

tt
Mm

2
1|

,...,1
min 

  criterion. 

 

7. Averaging Forecasts 

Next, we proceed with model-average forecasts in order to assess whether the average 

forecast could improve forecasting accuracy. We consider the model-average forecasts of all 

the models with the same distributional assumption: 

   





 
M

m

m

tnt

distr

tnt RVMAV
1

|
1

| 252 , (13) 

where 4M  and skTGedtNdistr ,,,  denotes the conditional distribution of the models. 

In addition, we construct the overall average forecast of all the competing models and 

residual distributions. 

 





 
M

m

m

tnttnt RVMAV
1

|
1

| 252 , (14) 

where 16M . 
 
8. Evaluating Model Predictability 

The 16 models are re-estimated every trading day t , for T
~

 days, where T
~

1686, 1784, 

2106, 2308, 2091, 2108 for the CAC40, DAX30, FTSE100, EURUSD, EURGBP and 

EURJPY realized volatility series. The rolling window approach with a fixed window length 

of 1000T


 days is utilized for incorporating changes in trading behaviour more efficiently. 
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The total number of observations is TTT


 ~
. The forecasting accuracy of the models is 

measured with the mean predictive squared error (MPSE)13: 

 
      




 
T

t

nt

m

tnt

m

n RVRVTMPSE

~

1

2

|
1 252252

~  . (15) 

The superscript  m  denotes the model Mm ,...,2,1  and the subscript  n  denotes the n -

days-ahead forecast for 10,5,1n . Patton (2011) argues that the use of proxies for true 

volatility induces distortions in the model ranking for certain loss functions. He proposes that 

mean squared error is a loss function which is robust to noisy volatility proxies and will lead 

to an unbiased model ordering. Therefore, we report the results under the MPSE loss 

function. 

Beyond the 16 models, we have defined 2 methods of combining forecasts (in section 

6). Each method is applied to the models with i) normally; ii) Student t; iii) GED; and iv) 

skewed Student t distributed innovations. Hence, 8 techniques of combining forecasts are 

investigated in total. 

Additionally, in section 7, we have constructed 5 model-average forecasts. These are the 

model-average forecasts of the 4 models with the same distributional assumption, as well as 

the overall average forecast of all 16 competing models. 

Among the statistical methods which evaluate the predictions from a variety of models, 

the most widely accepted are: The Diebold and Mariano (1995) test for pairwise 

comparisons, the Equal Predictive Accuracy test of Clark and West (2007) for nested models, 

and the Reality Check for Data Snooping (White, 2000) and the Superior Predictive Ability 

test (Hansen, 2005) for multiple comparisons against a benchmark model. Recently, Hansen 

et al. (2011) introduced the Model Confidence Set (MCS) test, which evaluates a number of 

forecasting models simultaneously, not against a benchmark model. The MCS method does 

not assume the existence of any predefined true data generating process. Its major advantage 

is the comparison of forecasts, not necessarily estimated by models, which acknowledges the 

limitations of the data. Thus, uninformative data yield a confidence set with many models 

whereas informative data yield a set of just a few models.The MCS is employed in order to 

determine the set of models that is made up of the best ones. The term “best” is defined 

according to our evaluation function MPSE. The MCS compares the prediction accuracy of 

                                                 

13 The mean predictive absolute error,  
     




 
T

t

nt

m

tnt

m

n RVRVTMPAE

~

1
|

1 252252
~ 

, is also applied. 

Results are qualitatively similar and available upon request. 
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an initial set of 0
M  models and investigates, at a predefined level of significance, 

which models survive the elimination algorithm. For  m

tL  denoting the evaluation functions 

of model m  on day t , and      m

t

m

t

mm

t LLd
 , being the evaluation differential for 0, Mmm  , 

the hypothesis that is being tested is: 

   0: ,
,0 mm

tM dEH , (16) 

for Mmm  , , 0
MM   against the alternative    0: ,

,1 mm

tM dEH  for some Mmm , . 

For example, in the case of the MPSE evaluation function,       2| 252252 
nt

m

tnt

m

t RVRVL   . 

The elimination algorithm based on an equivalence test and an elimination rule employs the 

former to investigate the MH ,0  for 0
MM   and the latter to identify the model m  to be 

removed from M in case MH ,0  is rejected. 

9. Investigating Predictive Accuracy 

The main purpose of our study is to explore the possible sources that help us enhance our 

realized volatility forecasts. Let us keep in mind that we have investigated the predictive 

accuracy of model frameworks with different autoregressive structures (i.e. long-memory 

autoregressive against heterogeneous autoregressive), and different distributions for the 

standardized residuals (i.e. normal against skewed Student t). Then, we explore whether the 

use of a single model can be improved upon by the implementation of a method that 

combines forecasts (section 6) or by the averaging of forecasts (section 7). To sum up, the 

hypotheses that we investigate are: 1) The heterogeneous autoregressive (HAR) framework is 

expected to work better than the long memory (ARFIMA) framework. 2) The averaged 

models are expected to provide superior forecasts compared to those of the single models; 

either HAR or ARFIMA. 3) Is the modeling of volatility asymmetry crucial in forecasting 

realized volatility? 4) Does the combination of volatility forecasts according to the statistical 

properties of forecast errors provide more accurate volatility forecasts? The forecasting 

evaluation exercise is not limited to the one-day-ahead forecasts, as we also explore the 

predictive ability for the 5-days and10-days-ahead horizons. 

9.1. One-day-ahead Predictive Accuracy 

 Table 4 provides the values of the mean predictive squared error,  
 m

MPSE 1
310 . For 

each one of the stock indices and the exchange rates, the first four rows provide the 

 
 m

MPSE 1
310  statistics for the four models and the four distributional assumptions. The fifth 
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(sixth) row presents the  
 distr

MPSE 1  statistics from combining the forecasts of the four models 

under the same distribution according to the criterion   m

tt
Mm

2
1|

,...,1
min 

 (   m

tt
Mm

z
2

1|
,...,1

min 
). The seventh 

row presents the  distr

ttAV |1  statistics resulting from averaging the forecasts of the four models 

under the same distribution, whereas the last row provides the overall averaging forecast,

ttAV |1 . The relative p-values of the MCS test are presented in Table 5. For each of the 

realized volatility series, Figure 2 plots the 
 m

ttRV |1252  and the discrepancy between

 
1252 tRV and 

 m

ttRV |1252   for the forecast methods with the minimum value of  
 m

MPSE 1 . 

Overall, we cannot infer in favor of a specific method of constructing one-day-ahead realized 

volatility forecasts. The p-values in Table 5 conclude that most of the prediction methods 

(single models, combined forecasts and averaged models) belong to the confidence set of the 

best performing models. The lowest value of the  
 m

MPSE 1 statistic is achieved by a single 

model, the ARFIMA(1,d,1)-GARCH(1,1), in the case of the DAX30 and the Euro/Pound 

rate, whereas one of the combined methods has the lowest  
 m

MPSE 1 value for the other four 

indices. 

[Insert Table 4 about here] 
[Insert Table 5 about here] 

[Insert Figure 2 About here] 
   

9.2. Five-days-ahead Predictive Accuracy 

 Table 6 shows the mean predictive squared forecast error, or  
 m

MPSE 5
310  for the 

five-trading-days-ahead realized volatility forecasts. According to Table 7, which presents the 

MCS p-values, the picture is clearer in the case of one-calendar-week-ahead forecasting. A 

limited number of prediction methods belong to the confidence set of the best performing 

models. Specifically, for the DAX30 index, just one model, the HAR-RV-GARCH(1,1)-skT, 

belongs to the set of confidence models (for a 20% level of significance). A similar case 

holds for the Euro/Pound rate, with the same model under the normal distribution (HAR-RV-

GARCH(1,1)-n) constructing the most accurate volatility forecasts. For the FTSE100 stock 

index and the Euro/Dollar exchange rate, the MCS is comprised of three models, all of which 

have a heterogeneous autoregressive form. In general, for five-trading-days volatility 

forecasting, the heterogeneous autoregressive model is superior to the long memory 

framework. Additionally, the combined forecasts and the averaged models fail to provide 
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superior volatility forecasts for the one-calendar-week-ahead forecasting horizon (only for the 

CAC40 index and the Euro/Yen rate, the   m

tt
Mm

2
1|

,...,1
min 

  or   m

tt
Mm

z
2

1|
,...,1

min 
 methods of combined 

forecasts belong to the MCS). Figure 3 plots the 
 m

ttRV |5252  , and the forecast error

    m

ttt RVRV |55 252252  
 for the predictive methods with the minimum  

 m
MPSE 5 . 

[Insert Table 6 about here] 
[Insert Table 7 about here] 

[Insert Figure 3 About here] 
   

9.3. Ten-days-ahead Predictive Accuracy 

Tables 8 and 9 illustrate the relative information for the two-calendar-weeks-ahead 

forecasts. Overall, in the ten-days-ahead forecasting horizon, the necessity for employing 

combined forecasts and averaged models arises. According to Table 9, for all the realized 

volatility series under investigation the combined forecasts according to the   m

tt
Mm

2
1|

,...,1
min 

  and

  m

tt
Mm

z
2

1|
,...,1

min 
 criteria belong to the confidence set of the best performing methods of 

forecasting. Moreover, the estimation of the models with skewed Student t distributed 

standardized residuals is crucial in providing superior realized volatility forecasts. The 

financial literature has delivered strong evidence in favor of modeling the asymmetric and 

leptokurtic character of the log-returns distribution (see for example Degiannakis et al., 

2014). For multiple-steps-ahead forecasting, the asymmetric character of realized volatility 

must be considered as well. From the different behavior of the leptokurtic distributions 

(Student t and GED) and the asymmetric and leptokurtic one (the skewed Student t), we 

observe that the modeling of volatility asymmetry is important for longer forecasting 

horizons. For each of the six realized volatility series, Figure 4 plots the 
 m

ttRV |10252  , and 

the discrepancy between 
 

10252 tRV and 
 m

ttRV |10252   for the forecast methods with the 

minimum value of  
 m

MPSE 10 . 

[Insert Table 8 about here] 
[Insert Table 9 about here] 

[Insert Figure 4 About here] 
For purposes of robustness, we have investigated the forecasting performance based on 

the mean predictive absolute error. The results are qualitatively similar. Thus, we do not 
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report the Tables with the values of the evaluation function and the relevant MCS p-values, 

which are available to the readers upon request. 

 

10. Conclusion 

 Our major task is to investigate whether we can enhance our realized volatility 

forecasts. The forecasting evaluation is conducted for one-day-ahead, one-calendar-week-

ahead and two-calendar-weeks-ahead horizons. The ARFIMA-GARCH and HAR-RV-

GARCH models are estimated for the major European Union stock market indices 

(FTSE100, DAX30, CAC40) and for the exchange rates of the Euro with the British Pound, 

the US Dollar and the Japanese Yen under the assumption that the standardized innovations 

are i) normally; ii) Student t;  ii) GED; and iv) skewed Student t distributed. Additionally, we 

explore whether the use of a single model can be improved upon through the implementation 

of a method that combines forecasts or by the averaging of the forecasts.  

The overall findings can be summarized as follows. For one-day-ahead volatility 

forecasts, most prediction methods (single models, combined forecasts and averaged models) 

belong to the confidence set of the best performing models. For five-trading-days-ahead 

forecasting horizon, the heterogeneous autoregressive model is superior to the long-memory 

framework model. Moreover, the combined forecasts and the averaged models fail to provide 

superior volatility forecasts. For the ten-trading-days-ahead forecasting horizon, the 

  m

tt
Mm

2
1|

,...,1
min 

  and   m

tt
Mm

z
2

1|
,...,1

min 
 criteria deliver the most accurate volatility forecasts. Also, the 

averaged models provide superior forecasts compared to those of single models. 

Additionally, the modeling of volatility asymmetry (the use of the skewed Student t 

distribution) is important for the ten-days-ahead volatility forecasts. 

Thus, for longer forecasting horizons, more complicated forecasting frameworks are 

required. Combined forecasts and averaged models are methods considered to be adequate 

for volatility forecasting purposes; a crucial finding for investors, portfolio managers, risk 

managers, policy makers, etc. 

Avenues for future research may include the enrichment of the methods under 

comparison (i.e. weights anti-proportional to the forecasting errors) or the confirmation of the 

findings for other datasets, i.e. commodities, non-European stock indices, etc. It would also 

be interesting to explore whether we can enhance the forecasting accuracy for other measures 

of volatility, such as the realized kernels and bi-power variation, or from information 

extracted from futures and options.  
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Tables 

Table 1. Information for the intra-day data. 

Index 

Number of 
intra-day 

(1 minute) 
observations 

Number 
of 

trading 
days 

First day Last day 

Optimal 

sampling 

frequency,  o
sf  

CAC 40 1,403,509 2,708 13th June 2000 12th January 2011 7minutes 
DAX 30 1,433,751 2,806 3rd January  2000 12th January 2011 13minutes 
FTSE100 1,576,347 3,128 20th August 1998 12th January 2011 7minutes 
EURUSD 4,622,271 3,330 20th April 1998 24th January 2011 20minutes 
EURGBP 4,302,166 3,113 4th January 1999 21st January 2011 20minutes 
EURJPY 4,399,091 3,131 4th January 1999 24th January 2011 20minutes 

 
Table 2. Descriptive statistics of annualized one-trading-day inter-day adjusted realized daily 

volatility,  
tRV252 . 

Index Mean1 Median1 Maximum1 Minimum1 Std.Dev1 Skewness Kurtosis 
CAC 40 20.6 17.8 148.1 4.1 12.5 2.5 14.6 
DAX 30 20.4 17.0 136.2 3.3 13.3 2.6 14.3 
FTSE100 15.4 13.3 166.9 2.9 10.2 3.5 29.7 
EURUSD 10.2 9.5 67.5 1.8 4.4 2.2 16.0 
EURGBP 8.2 7.5 41.1 2.4 3.6 2.2 13.1 
EURJPY 11.9 10.2 74.2 2.6 6.7 2.6 14.5 

1The numbers are expressed in percentages. 
 

Table 3. Descriptive statistics of annualized inter-day adjusted logarithmic realized 

volatility,  
tRV252log . 

Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
CAC 40 2.88 2.88 5.00 1.40 0.52 0.27 3.01 
DAX 30 2.85 2.83 4.91 1.18 0.55 0.34 3.16 
FTSE100 2.58 2.59 5.12 1.05 0.54 0.29 3.18 
EURUSD 2.25 2.25 4.21 0.56 0.39 0.13 3.65 
EURGBP 2.02 2.01 3.72 0.86 0.39 0.37 3.37 
EURJPY 2.35 2.33 4.31 0.94 0.48 0.39 3.31 
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Table 4. The mean predictive squared error  
 m

MPSE 1
310 , of the four models for 

conditionally i) normally; ii) Student t; ii) GED; and iv) skewed Student t 

distributed innovations. The  
 distr

MPSE 1 i) from combining the forecasts of the four 

models under the same distribution according to the criteria   m

tt
Mm

2
1|

,...,1
min 

 and 

  m

tt
Mm

z
2

1|
,...,1

min 
; ii) from averaging the forecasts of the four models under the same 

distribution (  distr

ttAV |1 ); and iii) of the overall averaging forecast (
ttAV |1 ). 

     

Model 
for

 1,0~ Nzt  

for

 vtzt ;1,0~  

for

 vGedzt ;1,0~  

for 

 gvskTzt ,;1,0~  

CAC 40 
1 43.30 44.03 44.05 43.95 
2 43.01 43.68 43.85 43.57 
3 43.33 43.91 44.06 43.67 
4 43.21 43.68 44.06 43.55 

  m

tt
Mm

2
1|

,...,1
min 

  42.99 43.39 43.57 43.49 

  m

tt
Mm

z
2

1|
,...,1

min 
 42.93 43.71 43.47 43.62 

 distr

ttAV |1  43.07 43.69 43.88 43.54 

ttAV |1  43.53 

DAX30 
1 49.14 49.08 49.19 49.04 
2 48.78 - 48.48 48.56 
3 49.72 49.58 49.51 49.42 
4 49.38 49.48 49.51 49.32 

  m

tt
Mm

2
1|

,...,1
min 

  48.63 49.03 48.73 48.67 

  m

tt
Mm

z
2

1|
,...,1

min 
 48.84 49.00 48.74 48.90 

 distr

ttAV |1  49.13 49.16 49.05 48.94 

ttAV |1  49.06 

FTSE100 
1 38.16 38.42 38.41 38.27 
2 38.12 38.33 38.37 38.24 
3 38.27 38.48 38.58 38.35 
4 38.01 38.42 38.58 38.33 

  m

tt
Mm

2
1|

,...,1
min 

  37.76 38.08 38.44 38.03 

  m

tt
Mm

z
2

1|
,...,1

min 
 37.92 38.22 38.39 38.09 

 distr

ttAV |1  37.99 38.29 38.37 38.18 

ttAV |1  38.20 

EURUSD 

1 7.94 7.89 7.90 7.88 
2 7.88 7.87 7.87 7.86 
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3 7.89 7.89 7.89 7.88 
4 7.89 7.89 7.89 7.88 

  m

tt
Mm

2
1|

,...,1
min 

  7.83 7.82 7.81 7.82 

  m

tt
Mm

z
2

1|
,...,1

min 
 7.83 7.83 7.81 7.83 

 distr

ttAV |1  7.88 7.86 7.87 7.86 

ttAV |1  7.87 

EURGBP 

1 4.97 4.89 4.96 4.95 
2 5.04 4.85 4.92 4.87 
3 4.91 4.92 4.93 4.93 
4 4.90 4.92 4.93 4.92 

  m

tt
Mm

2
1|

,...,1
min 

  4.94 4.91 4.89 4.93 

  m

tt
Mm

z
2

1|
,...,1

min 
 4.94 4.92 4.91 4.95 

 distr

ttAV |1  4.92 4.88 4.91 4.90 

ttAV |1  4.90 

EURJPY 

1 16.69 16.78 16.71 16.78 
2 16.29 16.35 16.32 16.37 
3 16.34 16.43 16.35 16.34 
4 16.47 16.49 16.35 16.46 

  m

tt
Mm

2
1|

,...,1
min 

  16.16 16.25 16.14 16.19 

  m

tt
Mm

z
2

1|
,...,1

min 
 16.29 16.38 16.27 16.29 

 distr

ttAV |1  16.38 16.44 16.36 16.41 

ttAV |1  16.40 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: HAR-
RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 5. The p-values of the model confidence set for the one-day-ahead volatility 
forecasts. 

     

Model 
for 

 1,0~ Nzt  

for 

 vtzt ;1,0~  

for 

 vGedzt ;1,0~  

for  

 gvskTzt ,;1,0~  

CAC 40 
1 0.8300* 0.141* 0.182* 0.2095* 
2 0.9426* 0.3472* 0.3472* 0.3750* 
3 0.7648* 0.1628 0.0704 0.5000* 
4 0.9206* 0.2821* 0.0704 0.5000* 

  m

tt
Mm

2
1|

,...,1
min 

  0.9426* 0.3710* 0.5000* 0.5000* 

  m

tt
Mm

z
2

1|
,...,1

min 
 1.0000* 0.3710* 0.5000* 0.5000* 

 distr

ttAV |1  0.9426* 0.1665* 0.1115 0.3710* 

ttAV |1  0.2799* 

DAX30 
1 0.6668* 0.7245* 0.6668* 0.7620* 
2 0.5442* - 1.0000* 0.8249* 
3 0.1348* 0.2064* 0.2432* 0.2956* 
4 0.3532* 0.2502* 0.2432* 0.4122* 

  m

tt
Mm

2
1|

,...,1
min 

  0.8760* 0.5298* 0.8760* 0.8760* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.6971* 0.5298* 0.8760* 0.6668* 

 distr

ttAV |1  0.1789 0.3540* 0.2482* 0.4122* 

ttAV |1  0.2698* 
 

FTSE100 
1 0.7213* 0.1985* 0.3507* 0.5901* 
2 0.7213* 0.5058* 0.4539* 0.5614* 
3 0.5614* 0.2338* 0.1507* 0.4539* 
4 0.7746* 0.2822* 0.1507* 0.5614* 

  m

tt
Mm

2
1|

,...,1
min 

  
1.0000* 0.5614* 0.1963* 0.5901* 

  m

tt
Mm

z
2

1|
,...,1

min 
 

0.7746* 0.4539* 0.2672* 0.6583* 
 distr

ttAV |1  0.7746* 0.2656* 0.3538* 0.5614* 

ttAV |1  0.4539* 

EURUSD 

1 0.1413* 0.6615* 0.2659* 0.7095* 
2 0.7124* 0.8461* 0.8461* 0.8461* 
3 0.4022* 0.2984* 0.3698* 0.5062* 
4 0.4022* 0.2722* 0.3698* 0.5062* 

  m

tt
Mm

2
1|

,...,1
min 

  0.8461* 0.8461* 0.9085* 0.8461* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.7815* 0.8461* 1.0000* 0.8461* 
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 distr

ttAV \1  0.2710* 0.5153* 0.4020* 0.6718* 

ttAV |1  0.4022* 
 

EURGBP 

1 0.2047* 0.3359* 0.1676* 0.2396* 
2 0.2479* 1.0000* 0.2958* 0.0726 
3 0.2559* 0.2047* 0.1465* 0.2396* 
4 0.2958* 0.2396* 0.1465* 0.2396* 

  m

tt
Mm

2
1|

,...,1
min 

  
0.2559* 0.2479* 0.3359* 0.2047* 

  m

tt
Mm

z
2

1|
,...,1

min 
 

0.2479* 0.1793* 0.2403* 0.0758 
 distr

ttAV |1  0.2479* 0.2958* 0.1793 0.2479* 

ttAV |1  0.2396* 

EURJPY 

1 0.3720* 0.2357* 0.3885* 0.2663* 
2 0.6182* 0.5901* 0.5901* 0.5901* 
3 0.5901* 0.3558* 0.5724* 0.5901* 
4 0.3319* 0.2815* 0.5724* 0.3634* 

  m

tt
Mm

2
1|

,...,1
min 

  0.6182* 0.2940* 1.0000* 0.6182* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.4907* 0.2123* 0.4907* 0.4907* 

 distr

ttAV |1  0.5230* 0.1091 0.5649* 0.3988* 

ttAV |1  0.2822* 

* denotes that the model belongs to the confidence set of the best performing models. The 

interpretation of the MCS p-value is analogous to that of a classical p-value; a  a1  confidence 

interval that contains the ‘true’ parameter with a probability of no less than  a1 . 
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Table 6. The mean predictive squared error  
 m

MPSE 5
310 , of the four models for 

conditionally i) normally; ii) Student t; ii) GED; and iv) skewed Student t 

distributed innovations. The  
 distr

MPSE 5 i) from combining the forecasts of the four 

models under the same distribution according to the criteria   m

tt
Mm

2
1|

,...,1
min 


 

and 

  m

tt
Mm

z
2

1|
,...,1

min 
; ii) from averaging the forecasts of the four models under the same 

distribution (  distr

ttAV |5 ); and iii) of the overall averaging forecast (
ttAV |5 ). 

     

Model 
for 

 1,0~ Nzt  

for 

 vtzt ;1,0~  

for 

 vGedzt ;1,0~  

for  

 gvskTzt ,;1,0~  

CAC 40 
1 54.26 55.81 56.07 55.07 
2 51.34 52.16 52.76 51.55 
3 39.06 39.14 39.61 38.66 
4 39.17 39.49 39.61 39.20 

  m

tt
Mm

2
1|

,...,1
min 

  40.75 40.90 41.40 40.57 

  m

tt
Mm

z
2

1|
,...,1

min 
 40.79 40.98 41.45 40.52 

 distr

ttAV |5  42.89 43.79 44.24 43.25 

ttAV |5  43.53 

DAX30 
1 59.43 58.84 59.23 58.39 
2 57.34 - 56.34 56.27 
3 42.95 42.60 42.60 42.41 
4 42.73 42.61 42.60 42.41 

  m

tt
Mm

2
1|

,...,1
min 

  44.51 44.50 44.46 44.11 

  m

tt
Mm

z
2

1|
,...,1

min 
 44.60 44.55 44.45 44.19 

 distr

ttAV |5  48.48 49.53 48.10 47.69 

ttAV |5  48.18 

FTSE100 
1 44.53 44.99 45.16 44.57 
2 43.71 44.07 44.40 43.75 
3 32.16 32.50 32.85 32.20 
4 31.97 32.62 32.85 32.38 

  m

tt
Mm

2
1|

,...,1
min 

  34.34 34.73 35.01 34.49 

  m

tt
Mm

z
2

1|
,...,1

min 
 34.34 34.80 34.98 34.42 

 distr

ttAV |5  36.48 
 

37.06 
 

37.32 
 

36.75 
 

ttAV |5  36.90 

EURUSD 

1 8.04 7.94 8.00 7.92 



29 
 

2 7.97 7.95 7.95 7.93 
3 6.10 6.12 6.11 6.10 
4 6.10 6.12 6.11 6.10 

  m

tt
Mm

2
1|

,...,1
min 

  6.91 6.91 6.90 6.91 

  m

tt
Mm

z
2

1|
,...,1

min 
 6.92 6.91 6.90 6.91 

 distr

ttAV |5  6.86 6.84 6.85 6.83 

ttAV |5  6.84 

EURGBP 

1 5.18 4.96 5.15 5.11 
2 5.57 4.97 5.19 5.00 
3 4.11 4.14 4.16 4.14 
4 4.12 4.16 4.16 4.17 

  m

tt
Mm

2
1|

,...,1
min 

  4.63 4.57 4.63 4.57 

  m

tt
Mm

z
2

1|
,...,1

min 
 4.62 4.59 4.64 4.63 

 distr

ttAV |5  4.55 4.44 4.51 4.48 

ttAV |5  4.48 

EURJPY 

1 20.90 20.96 20.88 20.70 
2 18.85 18.73 18.70 18.57 
3 14.04 14.09 13.98 13.90 
4 14.47 14.30 13.98 14.19 

  m

tt
Mm

2
1|

,...,1
min 

  14.66 14.87 14.78 14.64 

  m

tt
Mm

z
2

1|
,...,1

min 
 14.66 14.87 14.77 14.61 

 distr

ttAV |5  16.11 16.08 15.93 15.89 

ttAV |5  16.00 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: HAR-
RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 

 

  



30 
 

Table 7. The p-values of the model confidence set for the one-week-ahead 
volatility forecasts. 

     

Model 
for 

 1,0~ Nzt  

for 

 vtzt ;1,0~  

for 

 vGedzt ;1,0~  

for  

 gvskTzt ,;1,0~  

CAC 40 
1 0.0042 0.0034 0.0034 0.0036 
2 0.0088 0.007 0.0065 0.008 
3 0.0913 0.0201 0.0142 1.0000* 
4 0.054 0.0002 0.0142 0.0013 

  m

tt
Mm

2
1|

,...,1
min 

  0.2779* 0.2529* 0.0142 0.2779* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.2779* 0.1444* 0.0116 0.2779* 

 distr

ttAV |5  0.2529* 0.0106 0.013 0.1229* 

ttAV |5  0.0156 

DAX30 
1 0.0068 0.0073 0.0068 0.0094 
2 0.0072 - 0.0073 0.0073 
3 0.1034* 0.1263* 0.0295 1.0000* 
4 0.0163 0.0004 0.0295 0.9648* 

  m

tt
Mm

2
1|

,...,1
min 

  0.1462* 0.1462* 0.1462* 0.1462* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.1363* 0. 1462* 0.1462* 0.1462* 

 distr

ttAV |5  0.029 0.1363* 0.1263* 0.1462* 

ttAV |5  0.0586 
 

FTSE100 
1 0.005 0.005 0.005 0.005 
2 0.005 0.005 0.005 0.005 
3 0.4261* 0.0033 0.0041 0.4261* 
4 1.0000* 0.0006 0.0041 0.005 

  m

tt
Mm

2
1|

,...,1
min 

  
0.005 0.0031 0.0031 0.005 

  m

tt
Mm

z
2

1|
,...,1

min 
 

0.005 0.0031 0.0031 0.005 
 distr

ttAV |5  0.0284 0.005 0.005 0.0072 

ttAV |5  0.005 

EURUSD 

1 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 
3 1.0000* 0.0000 0.0233 0.8058* 
4 0.0315 0.0000 0.0233 0.5904* 

  m

tt
Mm

2
1|

,...,1
min 

  0.0000 0.0000 0.0000 0.0000 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.0000 0.0000 0.0000 0.0000 
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 distr

ttAV |5  0.0000 0.0000 0.0000 0.0000 

ttAV |5  0.0000 

EURGBP 

1 0.0002 0.0001 0.0001 0.0002 
2 0.0003 0.0003 0.0003 0.0003 
3 1.0000* 0.0139 0.0028 0.0228 
4 0.1635 0.0041 0.0028 0.0003 

  m

tt
Mm

2
1|

,...,1
min 

  0.0139 0.0139 0.0139 0.0139 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.0139 0.0139 0.0139 0.0139 

 distr

ttAV |5  0.0108 0.0139 0.0125 0.0139 

ttAV |5   0.0128   

EURJPY 

1 0.0017 0.0017 0.0017 0.0017 
2 0.0017 0.0018 0.002 0.0038 
3 0.0392 0.0326 0.2601* 1.0000* 
4 0 0 0.2601* 0.0392 

  m

tt
Mm

2
1|

,...,1
min 

  0.2601* 0.0085 0.2601* 0.2601* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.2601* 0.0095 0.2601* 0.2601* 

 distr

ttAV |5  0.0104 0.0039 0.095 0.0982 

ttAV |5  0.0326 

* denotes that the model belongs to the confidence set of the best performing models. 
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Table 8.The mean predictive squared error  
 m

MPSE 10
310 , of the four models for 

conditionally i) normally; ii) Student t; ii) GED; and iv) skewed Student t 

distributed innovations. The  
 distr

MPSE 10 i) from combining the forecasts of the four 

models under the same distribution according to the criteria   m

tt
Mm

2
1|

,...,1
min 

 and 

  m

tt
Mm

z
2

1|
,...,1

min 
; ii) from averaging the forecasts of the four models under the same 

distribution (  distr

ttAV |10 ); and iii) of the overall averaging forecast (
ttAV |10 ). 

     

Model 
for 

 1,0~ Nzt  

for 

 vtzt ;1,0~  

for 

 vGedzt ;1,0~  

for  

 gvskTzt ,;1,0~  

CAC 40 
1 62.42 64.46 64.83 63.37 
2 57.24 57.90 58.61 56.98 
3 56.57 56.04 56.03 55.55 
4 56.36 55.78 56.03 55.21 

  m

tt
Mm

2
1|

,...,1
min 

  50.81 51.18 51.51 50.51 

  m

tt
Mm

z
2

1|
,...,1

min 
 51.05 51.44 51.68 50.75 

 distr

ttAV |10  52.19 52.85 53.37 52.07 

ttAV |10  52.61 

DAX30 
1 66.76 65.87 66.50 65.03 
2 63.34 - 61.64 61.73 
3 57.81 57.34 57.22 57.14 
4 57.56 57.27 57.22 57.06 

  m

tt
Mm

2
1|

,...,1
min 

  52.75 53.43 52.10 52.26 

  m

tt
Mm

z
2

1|
,...,1

min 
 52.76 53.45 52.13 52.27 

 distr

ttAV |10  57.32 57.43 56.61 56.04 

ttAV |10  56.82 

FTSE100 
1 49.51 50.06 50.32 49.48 
2 48.21 48.58 49.26 48.10 
3 46.77 46.33 46.82 46.15 
4 46.54 46.19 46.82 45.97 

  m

tt
Mm

2
1|

,...,1
min 

  42.66 43.06 44.06 42.65 

  m

tt
Mm

z
2

1|
,...,1

min 
 42.79 43.13 44.07 42.83 

 distr

ttAV |10  44.08 44.35 44.77 44.00 

ttAV |10  44.29 

EURUSD 

1 8.15 7.98 8.11 7.95 
2 8.04 7.99 8.01 7.95 
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3 7.82 7.78 7.79 7.78 
4 7.82 7.78 7.79 7.78 

  m

tt
Mm

2
1|

,...,1
min 

  7.75 7.70 7.72 7.72 

  m

tt
Mm

z
2

1|
,...,1

min 
 7.75 7.70 7.72 7.70 

 distr

ttAV |10  7.62 7.57 7.600 7.55 

ttAV |10  7.58 

EURGBP 

1 5.38 5.04 5.35 5.27 
2 5.86 5.00 5.34 5.05 
3 4.82 4.81 4.82 4.80 
4 4.80 4.80 4.82 4.79 

  m

tt
Mm

2
1|

,...,1
min 

  4.88 4.83 4.89 4.90 

  m

tt
Mm

z
2

1|
,...,1

min 
 4.88 4.83 4.90 4.90 

 distr

ttAV |10  4.90 4.70 4.81 4.75 

ttAV |10  4.77 

EURJPY 

1 23.90 23.97 23.89 23.60 
2 20.10 19.80 19.87 19.55 
3 19.60 19.38 19.51 19.32 
4 19.70 19.53 19.51 19.44 

  m

tt
Mm

2
1|

,...,1
min 

  17.67 17.74 17.90 17.49 

  m

tt
Mm

z
2

1|
,...,1

min 
 17.72 17.79 17.96 17.32 

 distr

ttAV |10  19.05 18.94 18.90 18.71 

ttAV |10  18.89 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: HAR-
RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 9. The p-values of the model confidence set for the two-weeks-ahead 
volatility forecasts. 

     

Model 
for 

 1,0~ Nzt  

for 

 vtzt ;1,0~  

for 

 vGedzt ;1,0~  

for  

 gvskTzt ,;1,0~  

CAC 40 
1 0.0032 0.0019 0.0013 0.0024 
2 0.1185* 0.038 0.0135 0.1185* 
3 0.0000 0.0265 0.0979 0.1353* 
4 0.0000 0.0039 0.0979 0.1873* 

  m

tt
Mm

2
1|

,...,1
min 

  
0.4061* 0.0453 0.0514 1.0000* 

  m

tt
Mm

z
2

1|
,...,1

min 
 

0.0514 0.0244 0.0514 0.2924* 
 distr

ttAV |10  0.4061* 0.0098 0.0081 0.5175* 

ttAV |10  0.008 

DAX30 
1 0.0134 0.0373 0.0208 0.0459 
2 0.0346 - 0.0953 0.0953 
3 0.0023 0.0056 0.0066 0.0082 
4 0.0039 0.0064 0.0066 0.0106 

  m

tt
Mm

2
1|

,...,1
min 

  0.1087* 0.0457 1.0000* 0.8506* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.1087* 0.0457 0.3532* 0.8506* 

 distr

ttAV |10  0.0128 0.0457 0.0889 0.3194* 

ttAV |10  0.0235 

FTSE100 
1 0.0068 0.0039 0.0057 0.0162 
2 0.0475 0.0379 0.0244 0.0475 
3 0.0001 0.0231 0.0088 0.0523 
4 0.0477 0.0053 0.0088 0.0666 

  m

tt
Mm

2
1|

,...,1
min 

  0.9371* 0.0477 0.1193* 1.0000* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.5783* 0.016 0.1193* 0.7157* 

 distr

ttAV \10  0.2766* 0.0142 0.0084 0.7157* 

ttAV |10  0.0065 

EURUSD 

1 0.0022 0.0115 0.0026 0.0196 
2 0.0058 0.0106 0.0078 0.0189 
3 0.0022 0.0254 0 0.092 
4 0.0029 0.4305* 0 0.4305* 

  m

tt
Mm

2
1|

,...,1
min 

  0.4514* 0.4937* 0.4937* 0.4937* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.4491* 0.4937* 0.4937* 0.4937* 

 distr

ttAV |10  0.0655 0.3283* 0.0799 1.0000* 
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ttAV |10  0.092 

EURGBP 

1 0.0005 0.0005 0.0008 0.0015 
2 0.0011 0.0041 0.0065 0.0015 
3 0.0173 0.2862* 0.1594* 0.4597* 
4 0.4597* 0.4597* 0.1594* 0.4597* 

  m

tt
Mm

2
1|

,...,1
min 

  0.2862* 0.2862* 0.2862* 0.2374* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.2862* 0.2862* 0.2862* 0.2374* 

 distr

ttAV |10  0.2082* 1.0000* 0.2862* 0.4597* 

ttAV |10  0.2862* 

EURJPY 

1 0.0034 0.0037 0.0037 0.0042 
2 0.1247* 0.1911* 0.1911 0.2605* 
3 0.0016 0.0243 0.0219 0.0383 
4 0.0037 0.003 0.0219 0.0243 

  m

tt
Mm

2
1|

,...,1
min 

  0.3199* 0.0546 0.1911* 0.3199* 

  m

tt
Mm

z
2

1|
,...,1

min 
 0.3199* 0.2640* 0.1352* 1.0000* 

 distr

ttAV |10  0.034 0.0066 0.0357 0.3199* 

ttAV |10  0.0183 

* denotes that the model belongs to the confidence set of the best performing models. 
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Figures 

Figure 1.The annualized realized volatility,  
tRV252 , the daily prices tP ,*and the empirical density 

function of  
tRV252log  

CAC 40 (13th June 2000to 12th January 2011) 
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Euro to British Pound exchange rate (4th January 1999 to 21st January 2011) 
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* The figures in the left column present the daily prices (dash line presented in the LHS axis) and the 
annualized realized volatility (solid line presented in the RHS axis). The figures in the right column present 

the empirical density function of   
tRV252log .  
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Figure 2. The 
 m

ttRV |1252  , the discrepancy between 
 

1252 tRV and 
 m

ttRV |1252  for the 

forecasting methods with the minimum value of  
 m

MPSE 1 . 
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Figure 3. The 
 m

ttRV |5252  , the discrepancy between 
 

5252 tRV and 
 m

ttRV |5252   for the 

forecasting methods with the minimum value of  
 m

MPSE 5 . 
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Figure 4. The 
 m

ttRV |10252  , the discrepancy between 
 

10252 tRV and 
 m

ttRV |10252   for the 

forecasting methods with the minimum value of  
 m

MPSE 10 . 
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