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Abstract 

One of the most important environmental health issues is air pollution, causing the 

deterioration of the population’s quality of life, principally in cities where the urbanization level 

seems limitless. Among ambient pollutants, carbon monoxide (CO) is well known for its 

biological toxicity. Many studies report associations between exposure to CO and excess 

mortality. In this context, the present work provides an advanced modelling scheme for real 

time monitoring of pollution data and especially of carbon monoxide pollution in city level. The 

real time monitoring is based on an appropriately adjusted multivariate time series model that is 

used in finance and gives accurate one-step-ahead forecasts. On the output of the time series, we 

apply an empirical monitoring scheme that is used for the early detection of abnormal increases 

of CO levels. The proposed methodology is applied in the city of Athens and as the analysis 

revealed has a valuable performance. 
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1. Introduction  

 Even if air quality has been significantly improved, air pollution currently remains one 

of the most important environmental health issues (Min et al., 2009). Actually, urbanization, 

which is the result of rapid economic growth, causes serious air pollution related problems in 

many areas all over the world. According to a recent estimation of the World Health 

Organization (WHO), almost 1.4 billion urban residents in the developing countries respire 

exceeding air quality guidelines (Gokhale and Khare, 2005). Based on a similar estimate of the 

United Nations, more than 600 million people in urban areas worldwide are exposed to 

dangerous levels of air pollutants, most of them traffic-generated. Subsequently, the quality of 

the air (indoors and outdoors) affects the morbidity and mortality resulting from respiratory and 

cardiovascular diseases (Han and Naeher, 2006). 

In mega cities, such as Bombay, Calcutta, Delhi, Dhaka, Karachi, Bangkok, Beijing, 

Shanghai, Jakarta and Manila, where the pollution levels often exceed the WHO air quality 

guidelines by a factor of 3 or 4, the mortality due to outdoor air pollution is ranging between 

0.4–1.1% of the total annual deaths (Gokhale and Khare, 2005). Among common air pollutants 

that draw intense concerns is carbon monoxide (CO), which is known for its biological toxicity 

(Han and Naeher, 2006). Many studies report associations between exposure to CO and 

mortality and hospital admission. Population-based and susceptible panel research findings 

suggest that CO and other traffic related pollutants may alter cardiac autonomic regulation 

through limiting oxygen carrying capacity of haemoglobin (Tao et al., 2011). 

Therefore, increased concern over the adverse health effects of air pollution has 

highlighted the need for air pollution measurements, especially in urban areas, where many 

sources of air pollutants are concentrated (Chaloulakou et al., 2003a). Specifically, ecological 

and environmental monitoring has become increasingly important. Monitoring usually involves 

sampling from several sites of a similar habitat at regular (or irregular) intervals through time. 

The purpose of monitoring is to determine where and when an impact may have occurred or, 

once detected, may still be occurring. Moreover, various statistical methods attempt to provide a 

way of identifying when an environmental system is going “out-of-control”, so as to employ 

appropriate remedial measures (Anderson and Thompson, 2004). 

In this context, the present work provides an advanced forecasting scheme for real time 

monitoring of carbon monoxide pollution in city level. The real time monitoring scheme uses an 

appropriately adjusted multivariate time series model that comes from the area of financial 

modelling. This time series model succeeds accurate one-step-ahead forecasts. These forecasts 

are then feed in a control chart which early detects abnormal increases of CO levels. Early 

signals of abnormal increases of CO levels can be used for public protection. An application of 

this scheme is presented in the city of Athens, Greece.  
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The next section highlights the main issues of the examined problem, including a 

concise overview of carbon monoxide pollution in general, as well as a more specific analysis of 

CO exposure in the greater Athens' area. The 3rd section introduces the framework for the real 

time monitoring of urban pollutants in many stations across time. A multivariate ARCH model1 

specification and the VaR measure (a very popular tool in financial literature) are employed for 

the time series modelling of the air pollution variables. Afterwards, in the monitoring phase, a 

multivariate Statistical Process Monitoring technique is illustrated including two statistics for 

detecting possible global changes and local changes. Subsequently, section 4 examines the 

application, whereas section 5 presents the concluding remarks. 

 

2. Problem Identification 

2.1. Carbon monoxide pollution 

Carbon monoxide is one of the main reactive trace gases in the earth’s atmosphere: it 

influences both the atmospheric chemist O and the climate (Badr and Probert, 1994). The 

natural background levels of CO, in areas away from urban centres and human activities, are in 

the order of 60–70 ppb in the Southern Hemisphere and 120–180 ppb in the Northern 

Hemisphere (Georgoulis et al., 2002; Choi and Chang, 2006). It is an outcome of natural 

tropical forest fires and oxidation of biogenic hydrocarbon from plants while ocean is known to 

be a natural source of CO as well (Asatar and Nair, 2010). CO is primarily generated by motor 

vehicle emission, which accounts for an estimated 89% of CO emissions from anthropogenic 

sources in developed countries. Therefore, CO can be used as a marker for the contribution of 

traffic to air pollution (Bel et al., 2015, Potoglou and Kanaroglou, 2005). The atmospheric 

lifetime of CO is relatively long (3 months approximately) and it can be transported in global 

scale (Peng et al., 2007). Furthermore, CO is an intermediary in determining the future 

concentrations of many environmentally important trace gases such as methane and 

hydrochlorofluorocarbons (US EPA, 2000). Thus, carbon monoxide monitoring and modelling 

are very important issues in atmospheric pollution abatement and public health protection.  

Carbon monoxide is a colourless, odourless, and tasteless air toxin (e.g. Chen et al., 

2011). CO is one of many ubiquitous contaminants of our environment that requires prevention 

and control measures (Raub et al., 2000). The association between CO exposure and adverse 

cardiovascular outcomes has been well supported by previous findings (e.g. Min et al., 2009). 

According to the US Environmental Protection Agency (US EPA), people with cardiovascular 

disease, such as coronary artery disease, are most at risk (US EPA, 2009). The World Health 

Organization has set specific air quality guidelines for different CO exposure averaging times, 

                                                 
1 ARCH models have become vital tools for financial analysts in asset pricing, i.e. Bollerslev et al. (1988), portfolio 
construction, i.e. Engle (2002), risk management,  i.e. Christoffersen (2003), option pricing, i.e. Duan (1995), as well 
as for estimating relationships from economic theory (interest rates, i.e. Gray, 1996, inflation modelling, i.e. Engle, 
1982, business cycle synchronization, i.e. Degiannakis et al., 2014). 
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which are summarized as follows: 100 mg/m3 for 15-min exposure, 60 mg/m3 for 30-min, 30 

mg/m3 for 1-h and 10 mg/m3 for 8-h exposure. There is no long-term average guideline 

(Chaloulakou et al., 2003b). 

Since it has been recognized that carbon monoxide pollution constitutes a remarkable 

threat for the public health mainly over the densely populated cities, a number of studies have 

sought to identify common risk factors for carbon monoxide intoxication, generally by 

conducting retrospective analyses of case reports (Montoya et al., 2008). Moreover, CO can be 

used as a tracer for pollution from biomass burning and anthropogenic activities such as traffic 

(Choi and Chang, 2006). Many studies have been conducted concerning mainly urban areas 

worldwide e.g. the city of San Diego in California (Luria et al., 2005). A common goal in most 

of these studies is to better understand carbon monoxide pollution patterns using various air 

pollution models in order to estimate the spatial and/or temporal distribution of CO sources in 

each case. Among them, there are studies, analyses and reports concerning carbon monoxide 

pollution in the greater Athens area, which will be presented hereafter. 

2.2. Exposure to carbon monoxide in the Athens urban area 

Air pollution constitutes one significant environmental problem for the greater Athens 

area for more than 3 decades (e.g. Mirasgedis et al., 2008). Central residential areas are greatly 

affected by the intense traffic density in the nearby commercial areas (Diapouli et al., 2008). 

More precisely, emissions from the road transport sector are dominant, with the number of 

vehicles in circulation exceeding 2 million (Grivas et al., 2012). Other sources of atmospheric 

pollution in the Athens Basin are industry and heating. The main area of concentration of air-

polluting industry is along a south-west/north-east axis in the historic centre of the city and in 

the western suburbs. In the city of Athens almost 100% of total carbon monoxide emissions are 

attributed to mobile sources. The air quality standard for CO is established by the European 

Union at 10mg/m3, as a value never to be exceeded by 8h mean concentrations (Mavroidis et 

al., 2007).  

Modelling of carbon monoxide pollution in the Athens area has been the subject of 

several studies. Viras et al. (1996), after nine-year measurements of CO concentrations in one of 

the central air pollution monitoring sites in Athens, showed that higher levels of CO were traced 

during the cold period of the year while during the morning and the night hours the levels 

increased due to both the adverse for pollution dispersion meteorological conditions observed 

during those hours and to the intense traffic observed at the same time (the levels are lower 

during the weekends especially on Sundays). Vellopoulou and Ashore (1998) have examined 

commuters’ exposures to CO in the greater Athens region. Flouris (2006) has examined the 

specific atmospheric conditions in Athens during the summer of 2004 and the Games of 

XXXVIII Olympiad. It was mentioned that, since Athens began introducing a new generation of 
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more efficient public buses at the end of 90s and the new metro was established in 2000 the 

concentrations of CO has remained at low levels in all sectors of the greater Athens. 

2.3. Environmental monitoring 

Pollution variables exhibit high time correlation. Thus, various time series models have 

been studied in the literature for forecasting air-pollution data. In an effort to forecast daily air-

pollution concentrations, many researchers have developed daily forecasting models. The need 

for accurate modelling of air pollution has driven researchers to both statistical and artificial 

intelligent (mainly neural networks) methods (Prybutok et al., 2000). Conventional statistical 

models include among others linear models, SARIMA models, Kalman Filters, etc. Linear 

models were first fitted by Aron and Aron (1978) in order to predict CO levels. Sahu and 

Mardia (2005) applied a Bayesian Kriged Kalman model for short-term forecasting of air 

pollution levels. Kumar and Jain (2010) study forecasting methods based on ARIMA models. 

Donnelly et al. (2015) propose a real time air quality forecasting using integrated parametric 

and nonparametric regression techniques.  

An interesting fact is that many papers are looking in both time and spatial domain. For 

example, Bowman et al. (2009) proposed a spatiotemporal model for predicting air-pollution 

data. 

Many authors have proposed artificial intelligent techniques. Kukkonen et al. (2003) 

gave an extensive evaluation of neural networks for predicting air-pollution concentrations, 

compared with appropriate deterministic modelling systems. Niskaa et al. (2004) used neural 

network model for forecasting air-pollution time series using a parallel genetic algorithm. Kurt 

et al. (2008) presented an online air pollution forecasting system using neural networks. Pisoni 

et al. (2009) used polynomial NARX models for predicting ozone levels. Dıaz-Robles (2008) 

used a hybrid ARIMA and artificial neural networks model to forecast particulate matter in 

urban areas of Chile. Ibarra-Berastegi (2010) focused on the prediction of hourly levels up to 8h 

ahead for five pollutants (SO2, CO, NO2, NO and O3) and six locations in the area of Bilbao 

(Spain) using neural networks (NNs). 

Moreover, many researchers proposed statistical process monitoring (SPM) techniques 

for continuously evaluating air-pollution measurements. Vaughana and Russella (1983) 

proposed monitoring point sources of pollution using control charts. Fasso (1998) proposed one-

sided multivariate testing techniques for environmental monitoring. Pettersson (1998) used 

multivariate SPM techniques (Hotelling's T
2) for monitoring biodiversity. A cumulative sum 

type of methodology for environmental monitoring was presented by Manly and Mackenzie 

(2000). Corbett and Pan (2002) proposed the use of CUSUM chart as a tool to monitor 

emissions data so that abnormal changes can be detected in a timely manner. Yoo et al. (2008) 

enhanced process monitoring for wastewater treatment systems for using control charts. Pan and 

Chen (2008) presented a control chart for autocorrelated data using autoregressive fractionally 
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integrated moving-average model to monitor the long-memory air quality data. Morrison (2008) 

used control charts to interpret environmental monitoring data.  

In the methodological section that follows, we illustrate a unified framework 

incorporating time series modelling and control charting for establishing a real time CO 

monitoring scheme. Since the paper proposes a sequel of steps, the procedure is directly 

transferable into different contexts of monitoring pollution variables. The proposed framework 

is divided in two layers. In the 1st layer we define the multivariate modelling of dynamic (across 

time and regions) relationship among pollution variables. Hence, we state the appropriate 

framework of modelling the conditional mean, variance, confidence interval, and correlation of 

variables under investigation. In the 2nd layer, we apply a monitoring scheme to explore the 

early detection of abnormal increases of CO levels either globally or locally. 

 

3. A Framework for Real Time Monitoring of Urban Pollution 

In the light of the aforementioned discussion, it is clear that an automated mechanism, 

able to signal when the forecasted next day CO levels are evaluated as high would be very 

useful. Thus, in this section, a proactive framework for real time monitoring is proposed, with 

the application of an appropriate time series modelling, along with a suitable process monitoring 

procedure, which will provide a model that estimates dynamically the next day’s CO levels as 

well as their variances and covariances. The dynamic specification enhances our availability to 

proceed to accurate estimates of next day’s confidence interval based on the most recently 

available information. The framework consists of both an air-pollution forecasting layer 

borrowed from area of finance as well as a monitoring technique that automatically signals 

alarms. 

3.2 Framework layer I: Time series model 

3.2.1. Multivariate time series modelling of air pollution 

In the following paragraphs, a multivariate framework is defined, known as multivariate 

Autoregressive Conditional Heteroskedasticity (ARCH) modelling. The intention is to provide 

daily dynamic estimates of the level, variance and correlation for the air pollution variables.  

For   tntt xx ,,1 ...x  denoting the  1n  vector with the n  variables on a daily 

frequency, the   tt L xy  1  denotes the daily differences of tx . The multivariate discrete time 

real-valued stochastic process
 ty  can be decomposed into two parts, the predictable component, 

  tttE μy 1 , and the unpredictable component (or innovation process), ttt μyε  .  

 .1tE  corresponds to the conditional mean given the information set 1tI  available at 

time 1t . By   tttV Hy 1  we define the conditional covariance matrix of the innovation 

process. In a general form the underline framework can be presented as: 
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where  .,.N  is multivariate normal density function,  .g  is a function of the lagged values of 

conditional covariance matrix and the innovation process, and tz  is an i.i.d. vector process such 

that   0z tE  and   Izz 
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In order to capture the autocorrelation that characterizes ty , the conditional mean is 

formulated as an AR( k ) model: it
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denotes the Hadamard product, i  is a vector of ones, and 0c , ic  are matrices with parameters to 

be estimated. The conditional covariance matrix is defined according to Bollerslev’s et al. 

(1988) Diag-VECH( qp, ) framework, which has been modified in order to capture the 

asymmetric relationship between the unpredictable component of conditional mean and the 

conditional covariance2. Thus, by incorporating the Glosten’s et al. (1993) asymmetric GARCH 

model, we define the Diag-aVECH( qp, ) framework: 
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where 
0A

~
, iA

~
, iΓ

~
 and iB

~
 are matrices with parameters to be estimated. The Diag-

aVECH( qp, ) specification is preferable compared to models whose success depends on their 

ability to estimate extremely large time varying covariance matrices; i.e. Engle's (2002) 

Dynamic Conditional Correlation (DCC) model. Moreover, the Diag-aVECH is guaranteed to 

be positive definite and involves the estimation of less number of parameters than other 

multivariate ARCH models; i.e. Engle and Kroner's (1995) BEKK model, Engle's et al. (1986) 

VECH model, etc.  

The asymmetric Diag-VECH model is estimated assuming that the non-diagonal 

elements of 1

~
,

~
AA0 , 1

~Γ  and 1

~
B  are time varying. Such a specification has the flexibility to 

estimate time-varying covariances. Otherwise, in case of constant non-diagonal elements of 

1

~
,

~
AA0 , 1

~Γ  and 1

~
B , a time-varying correlation due to the time-varying standard deviations 

would lead to an increase(decrease) in correlations in less(more) volatile periods. For details 

                                                 
2 The information criteria strongly suggest the estimation of the asymmetric Diag-VECH model. 
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about multivariate ARCH models, the interested reader is referred to Xekalaki and Degiannakis 

(2010, chapter 11). 

3.2.2. Value-at-Risk measure 

Having provided a dynamic multivariate model, we can proceed to the estimation of the 

one-step ahead α% confidence interval. The confidence intervals' estimation is based on the 

notion of the Value-at-Risk (VaR) measure; the most widely used risk measure in financial 

literature. 

Given a confidence level  1,0a , the VaR measure is given by the smallest number l  

(in the real numbers set  ) such that the probability that the loss L  exceeds l  is at most a1 : 

  alLPlVaR
a

t  1:inf)( . (3) 

Based on our dynamic framework in eq.(1) the time t VaR given the information 

available at previous time t-1 and a 95% lower confidence interval can be presented as: 

  ,1,0; 2
1|,%51|,

%)95(
1|,   ttitttitti zfVaR   (4) 

where  1,0;%5 tzf  denotes the lower 5% percentile of the standard normal distribution, 
1|, tti  

is the conditional mean estimate (
th

i  element of vector tμ ) and 2
1|, tti  is the conditional 

variance estimate.  

Our purpose is to estimate a 95% upper confidence interval (using the above definition). 

Thus, we replace in eq.(4) the  1,0;%5 tzf  with  1,0;%95 tzf . In this context, %)95(
1|, ttiCI  interprets 

the 95% upper level confidence interval for the next day’s air pollution level, i.e. the maximum 

value of the air pollution on a daily basis and at a 95% confidence level: 

    .1,0; 2
1|,%951|,1,

%)95(
1|,   ttitttititti zfxCI   (5) 

 

3.3 Framework layer II: Monitoring technique 

After modelling the time series attitude of CO pollution in the city, the next step is to 

establish the process monitoring procedure, using techniques belonging to the toolbox of SPM 

(Montgomery, 2007).  

In the following paragraphs, we propose and exhibit appropriate monitoring techniques. 

The proposed time series model has the ability of one-step ahead forecasting of the 95% upper 

level confidence interval for the next day levels of the air pollution variables under surveillance. 

In order to define the two monitoring techniques, we use the 95% upper bound defined in the 

previous sub-section (
%)95(
1|, ttiCI ). 

Before we proceed to the establishment of the monitoring procedure, there are several 

issues that have to be pointed out. One issue is that we have multivariate data. Another issue is 
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that there is a correlation among the components of the vector with the CO measurements. In 

light of this, we are going to make use of suitable multivariate SPM methods (Wierda, 1994, 

Bersimis et al., 2007) in order to define an appropriate procedure. Another issue is that we 

would like to monitor the multivariate CO levels in a way that it can be directly associated to 

the health safety limits. Specifically, the evolution of CO would be of no interest, in case that 

the CO level was independent of human health. Thus, the control procedure must have the 

ability of signalling alarms in case that the next day predicted CO levels are close or beyond the 

limits given by WHO. 

WHO gives the following time-weighted average exposures for CO levels: (a) 100 

mg/m3 (87 ppm) for 15 min, (b) 60 mg/m3 (52 ppm) for 30 min, (c) 30 mg/m3 (26 ppm) for 1 h, 

(d) 10 mg/m3 (9 ppm) for 8 h, (e) for indoor air quality 7 mg/m3 (6 ppm) for 24 h. These values 

have been determined by WHO in such a way that a carboxyhaemoglobin (COHb) level of 2.5% 

is not exceeded, even when a regular subject engages in light or moderate exercise. 

A first solution would be to monitor the consecutive %)95(
1|, ttiCI  against an appropriate 

limit provided by WHO. However, this would not assess the spatiotemporal dynamics of the CO 

values. Thus, we propose two different techniques that take into account the spatiotemporal 

dynamics of the CO. 

The first monitoring technique will assess a possible global change of the multivariate 

time series while the second one will aim to the component of the time series with the largest 

change. Both the monitoring techniques will be based on control charting appropriately statistics 

against appropriate control limits. 

3.3.1. Monitoring the time series for a global change 

The challenge of aiming towards a global change is to introduce an appropriate statistic 

that will take into account all the components of the time series as well as their correlation. 

Additionally, the statistic has to be compared against a constant limit, as it is usual in the 

statistical process control literature. For this reason, we introduce the following statistic: 
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which corresponds to first principal component after applying Dynamic Principal Component 

Analysis (DPCA) on the vector tv  containing the values 
%)95(
1|, ttiCI , for ni ,...,2,1  (assuming 

that we study n  variables) and the associated l  time lagged values of tv . The application of 

DPCA on the 
%)95(
1|, ttiCI  establishes an index of global change. High values of 

tT ,1  corresponds to 

global high values of 
%)95(
1|, ttiCI , i.e. next day a% bound are high (even extremes). 

DPCA is an extension of PCA method that takes into account the serial correlation, by 

augmenting each observation vector with the previous l observation vectors. Chen and Liu 
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(2002) introduced the use of DPCA in industrial multivariate monitoring. The 
tT ,1
 is plotted 

against a limit (CL1) that can be obtained using a training data set during Phase I and the 

corresponding empirical distribution. Phase I in the statistical process monitoring literature 

corresponds to a retrospective analysis, which is applied to assess if the process is in control 

since the first sample was collected. Once this is accomplished, the control chart is used to 

define what is meant by statistical in-control. Then Phase II follows, where the control charts 

are employed to verify if the process remains in control in the future. 

The 
tT ,1
 is used to monitor the pollution time series for a global change since it 

incorporates information from all the variables analyzed. 

3.3.2. Identifying a local change 

In case we restrict our interest in identifying the most extreme changed element of the 

time series under study, we propose the use of the statistic:  











 

ii

tti

i
t

h

CI
T

%)95(
1|,

,2 max , ,...2,1t , ni ,...,2,1 , (7) 

where 
iih  is the th

i  diagonal element of matrix tH . The 
tT ,2
 gives the highest next day 

forecast bound standardized with its dispersion. High values of 
tT ,2
 corresponds to abnormally 

high movements of a measurement. As we exhibit later the above monitoring statistics can be 

used effectively for monitoring air-pollution data. The 
tT ,2  is plotted against a limit (CL2) that 

can be obtained using a training data set during Phase I and the corresponding empirical 

distribution. 

 

4. Monitoring CO Levels 

In this section, after describing the data at hand, we apply the framework presented in the 

previous section for monitoring CO levels.  

4.1. CO data 

The data at hand are the daily CO measurements of Athens, Greece. The  16  vector 

)'...( ,6,1 ttt xxx  contains CO measurements from six different places of Athens (at time 

t=1,2,…). These measurements are acquired using the Athens’ air quality network, which 

consists of sixteen stations recording air pollution data every 15 minutes. The daily CO level is 

computed as the average of the intra-day observations. The notion of averaging the intra-day 

CO levels relies on the attempt to model the average exposure to air pollution. CO monitoring is 

very important, especially in a daily basis, which can be seen considering that the US EPA 

National Ambient Air Quality Standards (NAAQS)  has adopted for CO a standard of 35 ppm 

as a 1-h average and just 9 ppm as an 8-h average. Generally, continuous CO exposure to levels 
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less than 10 mg/m3 should not cause carboxy-hemoglobin (COHb) levels more than 2% in 

normal non-smokers. This is because high CO concentrations can cause acute CO intoxication 

since CO is combined with the hemoglobin of human blood to produce carboxy-hemoglobin 

(COHb), and therefore disrupts the transfer of oxygen to human tissues causing hypoxia. 

The six stations that are used in this study are Athinas area (city center), Geoponiki area 

(city center), Marousi (North suburb), Nea Smyrni (Southeast suburb), Patision area (city 

center), and Peristeri (Southwest suburb). These six stations represent the central area of Athens, 

which is the most heavily polluted area. The dataset is available for 2922 days. 

4.2 Modelling daily CO levels 

In the sequel, the AR( k )Diag-aVECH( qp, ) model framework is formulated to 

provide daily dynamic estimates of the variance and correlation for the 6 air pollution variables; 

for tx  denoting the  16  vector with the 6 variables on a daily frequency. The lag orders of 

both conditional mean, k , and conditional variance, qp, , have been investigated according to 

Akaike's (1973) and Schwarz's (1978) Bayesian information criteria.  

The predictable component is defined as a 4th order autoregressive, or AR(4), model in 

order to capture the autocorrelation structure in ty  (the correlograms of all the variables highly 

indicate the existence of short memory autocorrelation). The lag orders of the Diag-

aVECH( qp, ) framework are defined, by the information criteria, to 1 qp . Thus, the 

proposed model is the six-dimensional multivariate AR(4)-Diag-aVECH(1,1) model: 
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Each 
th

i  diagonal element of tH  is estimated as: 
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whereas, each  thji,  non-diagonal element is computed as: 
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where 
1, tid  denotes the indicator function, i.e. 11, tid  if 01, ti , and 01, tid  otherwise. 

The diagonal elements of  tH  express the estimates of air pollution variables’ conditional 

variance. Having estimated the elements of the time-varying covariance matrix, consequently, 

the time-varying correlations between 
th

i  and th
j  variables can be estimated as: 
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The proposed model specification has been tested for residuals’ serial correlation with 

Lütkepohl’s (2007) multivariate Q-statistic and for presence of ARCH effects in the residuals 

with Tse’s (2002) test. The model demands the estimation of 30 parameters for the conditional 

mean vector, as well as, the estimation of 84 parameters, or  nn 12  , for 6n , for the 

computation of the conditional variance-covariance matrix3.  

4.3. Estimating time-varying 95% upper bound confidence intervals and correlations 

Based on the generic dynamic framework in eq.(1) the day's t  conditional mean given 

the information available at previous day 1t  is estimated as an AR(4) process (from 1st row of 

eq.(8)): 
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 (12) 

The conditional variance is estimated from eq.(9) as: 

  2
1|1,,

2
1|1,1,,,,

2
1|,

~~
  ttiiittitiiiiiiitti bdaa  .

 (13) 

Moreover, we construct a confidence bound for the  tx  vector. Hence, we adapt eq.(5) 

in order to quantify the 95% upper bound of the next day’s air pollution, %)95(
1|, ttiCI . The values of 

the 6 air pollution variables, on a daily basis, against the 95% upper level confidence interval, 

estimated by the AR(4)-Diag-aVECH(1,1) model are given in Figure 1. From Figure 1 it is 

noticeable that there are periods of high volatility, which are followed by periods of low 

volatility. Financial literature notes this effect as volatility clustering. In the case of air pollution 

the time series clustering expresses the seasonality. Mandelbrot (1963) was the first who noticed 

the volatility clustering in stock market data, noting down that “Large changes tend to be 

followed by large changes, of either sign, and small changes tend to be followed by small 

changes”. As Engle (1982) first noted, the volatility clustering effect has been successively 

captured by ARCH modelling. 

[Please Insert Figure 1 About Here] 

Table 1 provides the 95% failure rate, i.e. the percentage of upper level confidence 

interval’s violations, and the Kupiec's (1995) test. A violation occurs if the estimated 95% upper 

bound confidence interval is less than the actual value of the air pollution; or %)95(
1|,,  ttiti CIx . The 

percentage of violations is computed as 
t

T
t IN

~
1  , for 1

~
tI  if %)95(

1|,,  ttiti CIx  and 0
~ tI  if 

%)95(
1|,,  ttiti CIx . Kupiec’s (1995) test examines the null hypothesis that the observed violation 

rate, TN , is statistically equal to the expected violation rate,  =5%. The likelihood ratio 

statistic is chi-squared distributed with one degree of freedom. The likelihood ratio (LR) 

statistic equals to: 

                                                 
3 Due to the large number of coefficients, their estimates are not reported, but they are available upon request. 
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(14) 

The LR test indicates that for all the air pollution variables the AR(4)-Diag-

aVECH(1,1) model estimates accurately the 95% upper bound confidence interval. The p-values 

do not reject the null hypothesis that the observed violation rate is statistically equal to the 

expected violation rate. 

[Please Insert Table 1 About Here] 

Figure 2 presents the time-varying correlations between the 6 air pollution variables 

having estimated according to eq.(11). From Figure 2, it is noticeable that the values of air 

pollution are not always highly correlated among the six places of Athens. In the majority of the 

time the cross-correlation of air pollution among the 6 areas of Athens is highly positive. 

However, there are cases that the correlation approaches zero levels.  

[Please Insert Figure 2 About Here] 

4.4. Monitoring procedure 

In this sub-section, we apply the monitoring procedures proposed above. The 

application will be done in two phases. We will use the data acquired during the first two years 

as a Phase I sample in order to estimate the control limits and then we apply this limits in the 

future VaR values. 

4.4.1. Monitoring the time series for a global change 

The 
tT ,1 , t=1,2,…, is calculated by applying DPCA on the vector tv  containing the 

%)95(
1|, ttiCI  values, for i=1,2,…,6,  and the associated time lagged values of tv . The parameter l  

was set equal to 4 after appropriate experimentation with criterion the robustness of the 

monitoring procedure (keeping the false alarm rate in a pre-specified level). Since the parameter 

l  was found to be equal to 4, it coincides with the estimated AR model (which is supported by 

the literature, as DPCA extracts autoregressive based components).  

Using the statistic 
tT ,1 , t=1,2,…, someone can argue that due to the summing nature of 

DPCA the approximate distribution of 
tT ,1  is normal. The values of 

tT ,1  for the first 500 

observations are presented in Figure 3a. However, this assumption is not validated in practice.  

Nevertheless, the two modes appearing in the distribution give us evidence that 

probably the distribution of 
tT ,1  is a mixture of two distributions with different parameters. In 

the literature review section, we referred to the fact that during the winter (cold periods) the 

values of CO are larger than the corresponding CO values during summer (Viras et al., 1996). 

This fact motivated us to analyze the 
tT ,1  separately for winter and summer (appropriately 

assigning the other two seasons to either summer or winter using as a criterion the 10 year mean 
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temperature). The distribution of 
tT ,1
 for the first 500 observations (summer and winter are 

separated) is presented in the Figure 3b as we may see the distribution of 
tT ,1
 after summer and 

winter are separated can be approximated by a normal distribution with appropriate parameters. 

Thus, someone can choose to calculate appropriate limits for 
tT ,1
 either using a normal 

approximation or the empirical distribution estimated by a Phase I sample. However, the quality 

of approximation of the proposed statistic due to the nature of our data depends on a plethora of 

exogenous variables; i.e. temperature, humidity, air speed, etc. Henceforth, we propose the use 

of the empirical distribution. 

In Figure 3c, we present the control chart for the phase I data set. The control limits 

were set to be equal with the upper 2% percentile of the empirical distributions of 
tT ,1
(winter 

[pointed out with 1] and summer [pointed out with 2] are separated). We adapt different control 

limits for each season because of the different distributional properties of 
tT ,1
 in these two 

seasons.  

[Please Insert Figure 3 About Here] 

The 
tT ,1
 is used to monitor the pollution time series for a global change since it 

incorporates information from all the variables analyzed. In Phase II, when the 
tT ,1
 exceeds the 

limit a signal is alarmed indicating a global high concentration (i.e. the DPCA1 which 

represents a weighted mean of the values recorded by the six stations appropriately adjusted by 

the values of the same variables in a time window equal to 4, indicate high values in all 

variables measured). This way of thinking is enhanced by the fact that extreme values of 
tT ,1  are 

associated by global extremes of the %)95(
1|, ttiCI , i=1,2,3,4,5,6 (high values of %)95(

1|, ttiCI warning that 

the CO values of next will be, with high probability, large or even extreme). By observing both 

Figures 3c and 3d we may conclude that the 
tT ,1  is plotted beyond the limits only rarely, which 

coincides with the previous studies that state that CO levels in broader Athens area are only 

rarely exceed safety limits. 

4.4.2. Identifying a local change 

Using the statistic tT ,2  and following the same way of thinking for 
tT ,2  we may identify 

an extremely local change since tT ,2  identifies the most extreme variable (CO measurement of 

one out of the 6 different areas of Athens). The 
tT ,2  is plotted against a limit (CL2) which is 

acquired using the same spirit as in the case of 
tT ,1  during Phase I and the corresponding 

empirical distribution (see Figure 4). If 
tT ,2  exceeds the limit a signal is alarmed indicating a 
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specific variable/area that shows extreme variation. By observing both Figures 4a and 4b one 

may conclude that the 
tT ,2
 is plotted beyond the limits only rarely. 

[Please Insert Figure 4 About Here] 

5. Conclusion 

The paper establishes and presents a SPM framework for monitoring the effects of CO 

air-pollution variable, over a network of stations. This framework combines the use of value-at-

risk modelling and control charting, for detecting extreme pollution events. The application to 

Athens data reveals that the proposed methodology can provide accurate and robust results 

without excess false alarms. In particular, it is able to identify whether temporal exceeding come 

from a specific station (location) or it is attributed to a specific pollutant. 

The operation steps of the proposed framework are briefly the following: The next 

day’s estimated CO levels are estimated. Afterwards, using these forecasts, the next day’s CO 

levels are being monitored and, in case that the actual CO levels are near or beyond a threshold 

level or limit, a signal alarms. Specifically, based on these forecasts, the complete area under 

examination (in our case the Athens area) is being monitored. At the same time, using the same 

forecasts and even if the actual CO level is not near or beyond a threshold level or limit in the 

examined area, particular regions of this area are checked. According to our knowledge, this is 

the first time that such a modelling framework is applied in environmental application.  

To sum up, the proposed model consists of both an air-pollution forecasting layer 

borrowed from the area of finance as well as it constitutes a monitoring technique that 

automatically signals alarms all integrated in a complete framework.  

Regarding its usefulness, this is evidently significant, since early signals of abnormal 

increases of CO levels can be used for public protection. It has been recognized that carbon 

monoxide pollution constitutes a remarkable threat for the public health mainly over the densely 

populated cities. According to the US Environmental Protection Agency (US EPA) AQI -Air 

Quality Index, “people with cardiovascular disease, such as coronary artery disease, are most at 

risk. They may experience chest pain and other cardiovascular symptoms if they are exposed to 

carbon monoxide, particularly while exercising. People with marginal or compromised 

cardiovascular and respiratory systems (for example, individuals with congestive heart failure, 

cerebrovascular disease, anemia, or chronic obstructive lung disease), and possibly young 

infants and fetuses, also may be at greater risk from carbon monoxide pollution. In healthy 

individuals, exposure to higher levels of carbon monoxide can affect mental alertness and 

vision”. Therefore, it is quite obvious that carbon monoxide monitoring and modelling are very 

important issues public health protection and warning.  

The proposed monitoring method of air pollution can be utilized in real-time, as it can 

be applied for subsequent points in time (i.e. daily observations) and requires rational 
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computing time (i.e. less than a minute in an I7 Pentium). Moreover, it is flexible as it could be 

easily adapted depending on the demands of the monitoring, as well as it could be standardized 

and, consequently, incorporated in relevant atmospheric pollution monitoring devices and 

software. The program codes for estimating the proposed multivariate framework, the upper 

confidence interval, the Kupiec test, etc. are available to the readers upon request. 
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Figures & Tables 

Figure 1. The values of the 6 air pollution variables, on a daily basis, against the 95% upper 
level confidence interval, estimated by the AR(4)-Diag-aVECH(1,1) model. 
(x1: Athinas Station, x2: Geoponiki Station, x3: Marousi Station, x4: Nea Smyrni Station, x5: 
Patision Station, x6: Peristeri Station). 
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Figure 2. The daily time-varying correlations between the 6 air pollution variables estimated by the 
AR(4)-Diag-aVECH(1,1) model. Each figure plots the line graphs of time-varying correlation between 
variables xi and xj, for i=1,…,6, j=2,…,6, and j>i. i.e. CORR_01_02 denotes the dymamic correlation 
bewteen x1 and x2 

(x1: Athinas Station, x2: Geoponiki Station, x3: Marousi Station, x4: Nea Smyrni Station, x5: Patision 
Station, x6: Peristeri Station). 
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Figure 3. The distribution of 
tT ,1
 and the phase I and phase II control charts. 
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Figure 3a. The 

tT ,1
 (DPCA1) distribution Figure 3b: The 

tT ,1
 (DPCA1) distribution 

separately for Winter and Summer days 

  
Figure 3c. Phase I control chart for 

tT ,1
 Figure 3d. Phase II control chart for 

tT ,1
 

 
 

Figure 4. The phase I (left panel) and phase II (right panel) control charts for 
tT ,2 . 

  
Figure 4a. Phase I control chart for 

tT ,2  Figure 4b. Phase II control chart for 
tT ,2  
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Table 1. AR(4)-Diag-aVECH(1,1) model. 95% confidence interval’s violations and the p-value of 
the LR statistic. 

Air pollution variable % of violations p-value of LR statistic 

tx ,1
 4.25% 0.116 

tx ,2
 4.38% 0.117 

tx ,3
 5.17% 0.679 

tx ,4
 4.87% 0.726 

tx ,5
 4.35% 0.097 

tx ,6
 5.00% 0.990 

 
 


