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Abstract 

Accurate volatility forecasting is a key determinant for portfolio management, risk 

management and economic policy. The paper provides evidence that the sum of squared 

standardized forecast errors is a reliable measure for model evaluation when the predicted 

variable is the intra-day realized volatility. The forecasting evaluation is valid for 

standardized forecast errors with leptokurtic distribution as well as with leptokurtic and 

asymmetric distribution. Additionally, the widely applied forecasting evaluation function, the 

predicted mean squared error, fails to select the adequate model in the case of models with 

residuals that are leptokurtically and asymmetrically distributed. Hence, the realized volatility 

forecasting evaluation should be based on the standardized forecast errors instead of their 

unstandardized version. 
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1. Introduction 

The methods of models' evaluation can be categorized into three groups: i) The evaluation 

or loss functions that measure the distance between the predicted and actual values of the 

variable under investigation1. ii) The information criteria, which are based on the estimation 

of the Kullback and Leibler (1951) discrepancy2. iii) The loss functions which are dependent 

upon the aims of a specific application3.  

The paper investigates a method of models' evaluation that belongs to the first group; the 

sum of squared standardized forecast errors. The performance of the evaluation function is 

explored in case that the predicted variable is the realized volatility. The importance of 

volatility forecasting has been long established in financial literature. Volatility forecasting is 

essential for investors in predicting portfolio’s future uncertainty, forming suitable hedging 

strategies, pricing volatility indices and other derivative products, estimating their capital 

requirements, the Value-at-Risk, etc. The computation of intra-day realized volatility is based 

on the sum of squared log returns of an underlying asset over a trading day. As Andersen and 

Bollerslev (1998) first noted, the intra-day realized volatility generates the most accurate 

volatility measures. 

We compute the forecast errors for the most widely known specifications for modelling 

and forecasting intra-day realized volatility, the ARFIMA and HAR frameworks, and 

investigate whether the data-generated model achieves the lowest value of the sum of squared 

standardized forecast errors. We investigate the properties of the sum of squared standardized 

forecast errors under model specifications with i) symmetric ii) leptokurtic and iii) leptokurtic 

and asymmetric distributions. 

The most widely applied loss function in forecast evaluation is the predicted mean 

squared error, or PMSE. The PMSE evaluation function fails to provide the lowest value to 

the data-generated model in the case of leptokurtically and asymmetrically distributed 

innovations. However, its standardized version, named SPEC (standardized prediction error 

criterion) by Degiannakis and Xekalaki (2005), picks the correct model as the most accurate. 

Thus, the sum of squared standardized forecast errors is a reliable criterion for evaluating 

predictability for realized volatility models with leptokurtically and asymmetrically 

distributed residuals as well. 
                                                 
1 The most known evaluation functions for volatility forecasts are the heteroskedasticity adjusted absolute error 
(Andersen et al., 1999) and the logarithmic error (Pagan and Schwert, 1990). 
2 The most widely applied information criterion is the Schwarz’s (1978) Bayesian criterion. 
3 For example, Granger and Pesaran (2000) linked forecast evaluation with the decisions made based on the 
predictions. Engle et al. (1993) and Xekalaki and Degiannakis (2005) developed an evaluation function that 
measures the profitability of trading options. 
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The rest of the paper is organised as follows: Section 2 illustrates the theoretical 

framework of integrated variance and its estimator the realized volatility, while Section 3 

describes the most widely known specifications for forecasting realized volatility, the 

ARFIMA and HAR frameworks. Section 4 presents the steps of constructing simulated 

forecasts from symmetric, leptokurtic and/or asymmetric distributions. Section 5 investigates 

the distributional properties of the standardized forecast errors, whereas Section 6 provides 

evidence that the sum of squared standardized forecast errors is an evaluation function that 

provides information about the forecasting accuracy of models with residuals that are either 

leptokurtically or leptokurtically and asymmetrically distributed. Section 7 tests whether the 

distribution function of the forecast error is stochastically equal to the distribution function of 

the simulated stochastic process, and, Section 8 concludes the paper. 

2. Integrated and Realized Volatility 

Financial literature assumes that the instantaneous logarithmic price,  tplog , of a 

financial asset follows a simple diffusion process      tdWttpd log , where  t  is the 

volatility of the instantaneous log-returns process and  tW  is the standard Wiener process. 

Over a trading day with opening and closing times denoting as  ba, , the aggregated, or 

integrated, volatility  
   dtt

b

a

IV
ba

22
,    is a latent variable which can be consistently 

estimated by the realized volatility (i.e. theory of quadratic variation of semi-martingales, 

Barndorff-Nielsen and Shephard, 2002 and 2004). For the trading day  ba,  being partitioned 

into   equidistance points  ttt ,...,, 21 , the realized volatility converges in probability to the 

integrated volatility, as  , 
    
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batRVp 2

,lim 
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Therefore, as  
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and is asymptotically distributed,  
 
    

  IQ
ba

d
IV
bat NRV 2

,
2

, ,0    , where 

 
   

b

a

IQ
ba dtt42
, 2  is termed integrated quarticity. For Barndorff-Nielsen and Shephard’s 

(2005) realized power variation of order 2q defining as     








2

22
1

loglog
j

q
tt

q
t jj

PPRV , the 

logarithmic realized variance is asymptotically normally distributed: 
    

  
  

 1,0

3
2

loglog

24

2
, N

RVRV

RV d

tt

IV
bat 





 
. (3) 

3. Modelling Realized Volatility 

3.1. ARFIMA(k,d,l)-GARCH(p,q)  Model 

The Autoregressive Fractionally Integrated Moving Average with time varying 

Heteroscedastic Errors, or ARFIMA(k,d,l)-GARCH(p,q) model, initially developed by 

Baillie et al. (1996), is defined as: 

          

 ,1,0,~

1log11
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
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LDRVLLC

t

p

i
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q

i
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d







 





 (4) 

where 0 , d , pq bbaaa ,...,,,...,, 110  are parameters for estimation,   



k

i

i
iLcLC

1

 and 

  



l

i

i
iLdLD

1

 are polynomials with parameters lk ddcc ,...,,,..., 11  for estimation, and tz  is a 

vector process with zero mean, unit variance and its density function,  .F  is defined by a 

vector of parameters  .  

Due to the long memory property of volatility, the ARFIMA framework is suitable for 

estimating the logarithmic of the realized volatility. The volatility of volatility also exhibits 

time-variation and volatility clustering; see Corsi et al. (2008). The time varying estimate 2
th  

approximates the    24

3
2 

tt RVRV  . The GARCH component accounts for the volatility 

clustering of realized volatility. Degiannakis (2008) showed that the ARFIMA(k,d,l)-
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GARCH(p,q) model is able to provide statistically superior one trading day ahead realized 

volatility forecasts.  

3.2. HAR-RV- GARCH(p,q)  Model 

The Heterogeneous Autoregressive realized volatility GARCH, or HAR-RV-

GARCH(p,q), model relates the current trading day’s realized volatility with the daily, 

weekly and monthly realized volatilities. The autoregressive structure of the volatilities 

realized over different interval sizes replicates the different perspectives that market 

participants have on their investment horizon, which is Müller’s et al. (1997) basic idea of the 

heterogenous market hypothesis. 

Corsi et al. (2008) introduced the model as: 

            ,log22log5loglog
22

1
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






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ttt zh , 
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1
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2  , 

 ,1,0,~ Fzt  

(5) 

where pq bbaaawwww ,...,,,...,,,,,, 1103210  are the unknown parameters to be estimated.  

4. Simulating the Forecast Errors 

4.1. Symmetric Distribution 

For  
ttRV |1  denoting the one-day-ahead realized volatility forecast for day 1t , which 

was made on previous trading day t , the distance between actual and forecasted volatility, or 

forecast error, is: 
       ttttt RVRV |11|1 loglog   . (6) 

In order to generate forecast errors from the ARFIMA(0,d,1)-GARCH(1,1) model under the 

assumption of conditional normally distributed innovations, we proceed as follows: 

1. Generate random numbers from the standard normal distribution;    1,0~1 Nz T
tt  .  

2. Generate the   tRVlog  from the ARFIMA(0,d,1)-GARCH(1,1), for 

720.0ˆ,088.0ˆ,048.0ˆ,92.8ˆ,22.0ˆ,59.0ˆ
11001  baadd  4. The conditional mean 

equation is computed as5: 

                                                 
4 The values of the parameters are based on the estimation of the model for the realized volatility of the CAC40 
index; see Degiannakis and Floros (2012). 
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having computed the innovation term in its time varying heteroscedastic formation: 

tttt zhbaa 2
11

2
110

ˆˆˆ    . (8) 

3. Estimate the forecast of conditional volatility, 2
|1 tth  , the one-step-ahead logarithmic 

realized volatility,   
ttRV |1log  , the forecast errors, tt |1 :  

2
|1

2
|10

2
|1

ˆˆˆ tttttt hbaah   , (9) 
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  (10) 

      ttttt RVRV |11|1 loglog    (11) 

and the standardized forecast errors, ttz |1 , from the data-generated model: 

2
|1

|1
|1

tt

tt
tt

h
z




 


.
 

(12) 

The standardized forecast error, ttz |1 , approximates asymptotically the logarithmic realized 

variance formulation of equation (3). 

4.2. Leptokurtic Distribution 

For Student t distributed innovations with v degrees of freedom,  ;1,0~ tzt , the 

density function is 

     
   

2
1

2

2
1

22
21;



















 t

tt
zzf ,  for 2 ,  (13) 

where  .  is the gamma function. 

In order to generate forecast errors from the ARFIMA(0,d,1)-GARCH(1,1) model under 

the assumption of conditional Student t distributed innovations, we proceed as follows: 

                                                                                                                                                        
5 The infinite expansions of the fractional differencing operator, for 0d , are defined as 

   
      ...1

!2
1

!1
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1
1 2

0









 




 LdddLL
jd
djL

j

jd , see Xekalaki and Degiannakis (2010, 

p.113) and Baillie (1996, p.18). 
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1. Generate random numbers from the Student t distribution;    vtz T
tt ;1,0~1 . We 

assume that 9.5ˆ v , based on the actual data of the CAC40 realized volatility. 

2. Generate the   tRVlog  from the ARFIMA(0,d,1)-GARCH(1,1), for 

9.5ˆ,742.0ˆ,097.0ˆ,040.0ˆ,95.8ˆ,22.0ˆ,57.0ˆ
11001  vbaadd  6. The conditional 

mean and variance equations are computed as in the previous section.  

3. We estimate the one-step-ahead forecasts of conditional volatility, 2
|1tth  , the one-step-

ahead logarithmic realized volatility,   
ttRV |1log  , the forecast errors, tt |1 ,  and the 

standardized forecast errors, ttz |1 , as in the previous section. 

In Appendix I the process is also implemented for the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional GED (Generalized Error Distribution or Exponential Power 

distribution) distributed innovations.  

4.3. Leptokurtic and Asymmetric Distribution 

 The skewed Student t distribution has been introduced by Fernandez and Steel (1998). 

For  gskTzt ,;1,0~  , the density function is: 

   
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
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




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








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








msz
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if
if

g
msz

gg
s

g
msz
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s

gzf
t

t

t

t

tskT 









   (14) 

where g  and   are the asymmetry and  tail parameters of the distribution, respectively, and 

         11
2221 

 ggm  , and 1222   mggs . 

In order to generate forecast errors from the ARFIMA(k,d,l)-GARCH(p,q) model, for 

k=0, l=p=q=1, with skewed Student t conditionally distributed innovations, we proceed as 

follows: 

1. Generate random numbers from skewed Student t distribution;    gvskTz T
tt ,;1,0~1 . 

We assume that 84.5ˆ v  and 056.0ˆ g , based on the actual data of the CAC40 realized 

volatility. As random numbers from skewed Student t distribution are not available, we 

follow Degiannakis et al. (2014) in order to relate the inverse CDF of the skewed Student t 

with the inverse CDF of the skewed Student t. Thus, we generate random numbers  T
tt 1  

                                                 
6 The values of the parameters are based on the estimation of the model for the realized volatility of the CAC40 
index. 
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from the standard uniform distribution, and then compute the tz  random draw as 

   gFz tskTt ,;1  : 

  

   

    ,
1

1

1
1

;1
2

1

;1
2

,;

2

2

21

211

1

g

g

if

if

s

mggF

s

mgFg

gF

t

t

t
t

t
t

tskT

























 






 
















  (15) 

where     ;1
ttF   denotes the inverse CDF of the Student t distribution with   degrees of 

freedom. The   gF iskT ,;1   corresponds to the inverse CDF of the skewed Student-t 

distribution with   and g  denoting the tail and asymmetry parameters of the distribution, 

respectively. 

2. Generate the   tRVlog  from the ARFIMA(0,d,1)-GARCH(1,1) with 

   gvskTz T
tt ,;1,0~1 , for ,22.0ˆ,58.0ˆ

1  dd ,042.0ˆ,88.8ˆ
00  a ,739.0ˆ,094.0ˆ 11  ba

056.0ˆ,84.5ˆ  gv . The values of the parameters are based on the estimation of the model 

for the actual data of the CAC40 realized volatility. 

3. We estimate the one-step-ahead forecast values of 2
|1tth  ,   

ttRV |1log  , tt |1 , ttz |1 , as in 

the previous section. 

In total 11000 values are simulated for each time series but the first 1000 values are 

discarded, due to convergence reasons, and we keep 10000T  values of each simulated 

series. 

5. Investigating the Standardized Forecast Errors 

We proceed to the estimation of ARFIMA(0,d,1)-GARCH(1,1) model under the 

assumption that the standardized innovations are i) symmetrically; standard normal, 

 1,0~ Nzt , ii) leptokurtically; Student t,  ;1,0~ tzt  or GED,  ;1,0~ Gedzt , and iii) 

leptokurtically and asymmetrically; skewed Student t,  gskTzt ,;1,0~  , distributed. 

For the conditional normally distributed innovations, Table 1 presents the relative 

descriptive statistics, which are in line with the theoretical evidence. The one-step-ahead 

standardized forecast errors, ttz |1 , are normally distributed (kurtosis 2.95, skewness -0.03, 

and p-value of the Jarque Bera statistics equal to 0.21). The forecast errors are normally 

distributed with kurtosis 3.03, skewness -0.04, and p-value of the Jarque Bera statistics equal 
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to 0.14. The forecast of logarithmic realized volatility is approximately normally distributed 

but with a kurtosis of 3.35 and a p-value of the Jarque Bera statistic equal to zero. 

Degiannakis and Xekalaki (2005) proved that from a model with  1,0~ Nzt  innovations, the 

one-step-ahead forecast errors, ttz |1 , under the assumption of constancy of model's 

parameters over time7, are asymptotically independently standard normally distributed, 

 1,0~
...

|1 Nz
dii

tt .  

[Insert Table 1 about here] 
The above is generalized for any model framework with consistent estimators of the 

parameters' vector  Tθ , for T  denoting the sample size that has been used to estimate  tθ . If 
 Tθ  is strongly consistent for  tθ  and asymptotically normal with mean θ , then, 

    tTp θθ lim . By Slutsky’s theorem (Greene, 1997, p.118), for any continuous function 

 Txg  that is not a function of T ,    TT xpgxgp limlim  . Using Slutsky’s theorem 

  ttt zzp  |1lim . As convergence in probability implies convergence in distribution: 

 1,0~
...

|1|1 fzzzz
dii

t

d

ttt

p

tt   . Hence, we can support that ttz |1  are asymptotically Student 

t distributed, since, from the definition of convergence in probability 

     nnTTT WWWXXXP ,...,,,...,, 2121  

     nWXPnWXPnWXP nnTTT
22

22
2

11 ...   , 

which asserts that component wise convergence in probability always implies convergence of 

vectors, i.e.,  vtzz
dii

t

d

tt ;1,0~
...

|1  . 

Regarding the conditional Student t distributed innovations, Table 2 provides evidence 

that the one-step-ahead standardized forecast errors, ttz |1 , share the same distributional 

properties with the simulated draws from the Student t distribution. The kurtosis (skewness) 

for tz  and ttz |1  is 5.6583 (-0.1511) and 5.5874 (-0.1409), respectively8. Figure 1 illustrates 

                                                 
7 We assume that the rolling-sample estimated parameters of the ARFIMA-GARCH model do not change across 

time. In example, for each point t
 in time and                  tttttttt vbaadd ,,,,,, 11001 θ  we assume that    tt  θθ , 

for tt  . 
8 Descriptive statistics of the simulated variables  10000

1ttz ,  10000

1tt ,  10000

1
2

tth ,    10000

1log ttRV  ,   10000

1ttRV   and 

  10000

1
252

ttRV   from the Student t distribution, are available upon request. 
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the line graphs and frequency distribution plots of one-step-ahead simulated forecasts 

 10000
1|1  tttz ,  10000

1|1  ttt ,    10000

1|1252
 tttRV   and    10000

1|1log
 tttRV  . 

[Insert Table 2 about here] 
[Insert Figure 1 About here] 

For the conditional GED distributed innovations, Table 3 presents the relative descriptive 

statistics. The one-step-ahead standardized forecast errors, ttz |1 , share the same distributional 

properties with the simulated draws from the GED distribution. In example the kurtosis 

(skewness) for tz  and ttz |1  are 4.1541 (-0.0344) and 4.1330 (-0.0323), respectively9. For a 

model with consistent estimators of the parameters' vector  Tθ , with a sample of size T , we 

know that     tTp θθ lim . As Slutsky’s theorem holds for any distribution and convergence 

in probability implies convergence in distribution, we can support that ttz |1  are 

asymptotically GED distributed, i.e.,  vGedzz
dii

t

d

tt ;1,0~
...

|1  . 

[Insert Table   3 about here] 
Regarding the conditional skewed Student t distributed innovations, Table 4 provides 

evidence that the one-step-ahead standardized forecast errors, ttz |1 , share the same 

distributional properties with the simulated draws from the skewed Student t distribution. The 

kurtosis (skewness) for tz  and ttz |1  are 9.6241 (-1.8996) and 9.5216 (-1.8805), 

respectively.10 For the simulated model with conditional skewed Student t distributed 

innovations, Figure 2 depicts the line graphs and frequency distribution plots of one-step-

ahead simulated forecasts  10000
1|1  tttz ,  10000

1|1  ttt ,    10000

1|1252
 tttRV   and    10000

1|1log
 tttRV  .   

[Insert Figure 2 About here] 
[Insert Table 4 about here] 

6. Sum of Squared Standardized Forecast Errors 

Three models, i.e. ARFIMA(1,d,1)-GARCH(1,1), HAR-RV-GARCH(1,1) and HAR-RV-

GARCH(0,1), have been chosen to be compared against the data-generated process, the 

ARFIMA(0,d,1)-GARCH(1,1) one. The three models share very common characteristics with 

the original data-generated model. The choice of competing models that share common 

specifications is based on our choice to make the comparison of the models a difficult task.  
                                                 
9 Plots and frequency distributions of the one-step-ahead simulated forecasts  10000

1|1  tttz ,  10000

1|1  ttt , 

  10000

1
252

ttRV  , as well as, descriptive statistics of the simulated draws  10000

1ttz ,  10000

1tt ,  10000

1
2

tth  from the 
GED distribution, are available upon request. 
10 Descriptive statistics of the simulated variables from the skewed Student t distribution, are available upon 
request. 



11 
 

We proceed to the estimation of the 4 models under the assumption that the innovations 

are i) symmetrically, ii) leptokurtically and iii) leptokurtically and asymmetrically distributed. 

The density function of tz  is considered as i) the standard normal distribution,  1,0~ Nzt , 

ii) the Student t distribution,  ;1,0~ tzt , and the Generalized Error distribution, 

 ;1,0~ Gedzt , and the iii) skewed Student t  distribution,  gskTzt ,;1,0~  . Each one of 

the 4 models is re-estimated every day, for T~ =4000 days, based on a rolling sample of 

constant size T


=1000 days. Consider for example the ARFIMA(1,d,1)-GARCH(1,1)  model; 

the parameter vector to be estimated at each point in time t is 

                 tttttttt baaddc 110110 ,,,,,, . Therefore, for each model the vector  t  is re-

estimated every trading day, for 1~,...,1,  TTTTt


 days, based on a rolling sample of 

constant size T


. Appendix II presents the formulas of computing the one-step-ahead 

forecasts of logarithmic of realized volatility and its conditional standard deviation from the 

ARFIMA(0,d,1)-GARCH(1,1), ARFIMA(1,d,1)-GARCH(1,1), HAR-RV-GARCH(1,1) and 

HAR-RV-GARCH(0,1) models. 

The most widely applied loss function in forecast evaluation is the predicted mean 

squared error, or PMSE. In the case of the one-day-ahead realized volatility forecast, the 

PMSE is the average of squared forecast errors: 

      








 
T

t
ttt

T

t
tt RVRVTTPMSE

~

1

2
|11

1
~

1

2
|1

1 loglog~~  . (16) 

The standardized version of the PMSE, named SPEC (standardized prediction error 

criterion) by Degiannakis and Xekalaki (2005) who investigated its asymptotic distribution 

for forecast errors from regression models with heteroscedastic residuals, is computed as: 

     

 

















 


T

t tt

ttt
T

t
tt h

RVRV
TzTSPEC

~

1

2

|1

|111
~

1

2
|1

1 loglog~~ 

. (17) 

We intend to investigate whether the sum of the T~  squared standardized forecast errors is 

an evaluation function that provides information about the forecasting accuracy of models 

with residuals that are leptokurtically or/and asymmetrically distributed. In the case of 

normally distributed innovations, we expect the   
T

t ttz
~

1
2

|1  evaluation function to has its 

lowest value for the data-generated model, i.e. the ARFIMA(0,d,1)-GARCH(1,1). 
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SPEC criterion defines as most appropriate model for one-step-ahead forecasting, the 

model with the lowest sum of squared one-step-ahead standardized forecast errors,   
T

t ttz
~

1
2

|1

.11 Hence, under the assumption that  Attz |1  and  Bttz |1  are normally distributed, a solid 

theoretical background exists for comparing the volatility predictive ability of a set of 

competing models based on the one-step-ahead standardized forecast errors, ttz |1 . 

Simulations will provide evidence whether the   
T

t ttz
~

1
2

|1  quantity is suitable for evaluating 

models’ predictability leptokurtically and/or asymmetrically distributed forecast errors. 

Table 5 panel A provides the descriptive statistics of the standardized one-step-ahead 

forecast errors from the models with conditionally normally distributed innovations. The 

skewness, albeit positive, is very close to zero for all the cases. The kurtosis for all the 

models is almost equal to the normal value of three. The p-values of the Jarque Bera statistic 

do not reject the null hypothesis of normally distributed standardized one-step-ahead forecast 

errors, ttz |1 .  

Panel B of Table 5 provides the descriptive statistics of the standardized one-step-ahead 

forecast errors from the models with conditionally Student t distributed innovations. The 

skewness of ttz |1  is positive and much higher than in the case of the models with normally 

distributed innovations. The kurtosis is much close to 4.5 for all the models but the HAR-RV-

GARCH(0,1). 

Table 5 Panel C provides the descriptive statistics of the standardized one-step-ahead 

forecast errors from the models with conditionally GED distributed innovations. The 

skewness of ttz |1  is negative for all the models (the skewness of the simulated forecasts 

 T
tttz
~

1|1   is -0.03; see Table 3). For all the models, the kurtosis is much close to 4.1, which is 

the kurtosis of the simulated forecasts  T
tttz
~

1|1  . 

Panel D of Table 5 provides the descriptive statistics of the standardized one-step-ahead 

forecast errors from the models with conditionally skewed Student t distributed innovations. 

                                                 
11 If we denote the realized volatility forecasts produced by models A and B as  

 
AttRV |1  and  

 
BttRV |1 , 

respectively, then the forecasts are comparable (in terms of forecasting ability) through testing the null 
hypothesis that the models produce statistically equivalent predictions against the alternative hypothesis that 
model A produces more accurate predictions than model B (see also  Xekalaki and Degiannakis, 2010). The 

statistic    







T

t
Att

T

t
Btt zz

~

1

2
|1

~

1

2
|1  has known distributional form, the Correlated Gamma Ratio distribution. 
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The skewness of ttz |1  is much higher, in absolute values, compared to the models with 

symmetric forecast errors. Noticeable is also the kurtosis of ttz |1  from the models with 

conditionally skewed Student t distributed innovations, which is at least twice higher 

compared to the models with symmetric forecast errors. 

[Insert Table 5 about here] 

According to Tables 6 and 7, which present the values of   
T

t tt

~

1
2

|1
 and   

T

t ttz
~

1
2

|1  

evaluation functions, respectively, the data-generated ARFIMA(0,d,1)-GARCH(1,1) model 

has the lowest value for both loss functions under all the assumptions for the distribution of 

the standardized innovations except for the skewed Student t distribution. In the case of the 

leptokurtically and asymmetrically distributed innovations, the unstandardized version of the 

SPEC criterion, i.e. the PMSE evaluation function, has the same value for both the 

ARFIMA(0,d,1)-GARCH(1,1) and ARFIMA(1,d,1)-GARCH(1,1) models. Hence, the 

simulation exercises provide evidence in favor to the use of   
T

t ttz
~

1
2

|1  evaluation function as a 

method of volatility forecasting evaluation for models with standardized residuals that are 

leptokurtically and asymmetrically distributed. A case that does not hold for the widely 

applied PMSE evaluation function.  

[Insert Table 6 about here] 
[Insert Table 7 about here] 

Figure 3 plots the time-varying estimates of the vector of parameters, 

               ttttttt baadd 11001 ,,,,, θ , of the ARFIMA(0,d,1)-GARCH(1,1) model for normally 

distributed innovations. The values of  tθ  change over time, although they are close to the 

theoretical values  720.0,088.0,048.0,92.8,22.0,59.0 θ  of the data-generated process. 

The time-varying attitude of  tθ  is in accordance to Degiannakis et al. (2008) who provide 

evidence that the rolling-sampled parameter estimates  of volatility models are indeed time 

varying. 

[Insert Figure 3 About here] 
Figure 4 plots the time-varying estimates of the vector of parameters, 

                 tttttttt vbaadd ,,,,,, 11001 θ , of the ARFIMA(0,d,1)-GARCH(1,1) model for Student 

t distributed innovations. The values of  tθ  change over time, although they are close to the 

theoretical values  9.5,742.0,097.0,040.0,95.8,22.0,57.0 θ  under the data-generated 

process. We note that the  tθ  is more volatility (in terms of time-varying attitude) under the 
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leptokurtic distribution (of the data generated process) than under the normal distribution; 

specially the    tt aa 10 ,  and  tb1  parameters. Regarding the model with the GED distributed 

innovations, the values of  tθ  follows a similar pattern; they are time varying but close to the 

theoretical values  33.1,735.0,094.0,043.0,92.8,22.0,59.0 θ  under the data-generated 

process. 

[Insert Figure 4 About here] 
Figure 5 plots the time-varying estimates of the vector of parameters, 

                   ttttttttt gvbaadd ,,,,,,, 11001 θ , of the ARFIMA(0,d,1)-GARCH(1,1) model for 

skewed Student t distributed innovations. The values of  tθ  change over time, although they 

are close to the theoretical values  056.0,84.5,739.0,094.0,042.0,88.8,22.0,58.0 θ  under 

the data-generated process. It is worth noting that  tθ  is slightly less volatility (in terms of 

time-varying attitude) under the leptokurtic and asymmetric distribution (of the data 

generated process) than under the normal distribution. For the models with skewed Student t 

conditionally distributed residuals, Figure 6 plots the time series of the data-generated  
1tRV  

against the forecasts  
ttRV |1 , and the standardized forecast errors, ttz |1 . 

[Insert Figure 5 About here] 
[Insert Figure 6 About here] 

7. Stochastic Equality of Forecast Errors’ Simulated and Empirical Distribution  

In this section, we test whether the distribution function of the one-step-ahead 

standardized forecast errors,  ttz |1 , is stochastically equal to the distribution function of the 

simulated stochastic process  tz .12 According to Table 8, the standardized forecast errors do 

have the same distribution with the theoretical (simulated) residuals in the case of the i) 

symmetric and ii) leptokurtic distributions. However, the standardized forecast errors do not 

follow the same distribution with the simulated residuals when these have been generated by 

the leptokurtic and asymmetric distribution; i.e.  gvskTzt ,;1,0~ . 

The test of whether the forecast errors have the distribution function of the simulated 

residuals is repeated for the unstandardized version of the residuals. Hence, we test the null 

hypothesis that the distribution function of the one-step-ahead forecast errors,  tt |1 , is 

stochastically equal to the distribution function of the simulated stochastic process  t . 

                                                 
12 The Mann and Whitney (1947) proposed the U statistic for testing the null hypothesis that two random 
variables with continuous cumulative distribution functions f and g have stochastically equal distributions 
against the alternative hypothesis that one distribution is stochastically smaller than the other. 
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However, the functional form of the conditional, on information set at time 1t , distribution 

of  t  is known (the functional form of the unconditional distribution of  t  is unknown). 

The results are presented in Table 9. The forecast errors do have the same distribution with 

the theoretical residuals in the case of the i) symmetric and ii) leptokurtic distributions, but 

not in the case of the iii) leptokurtic and asymmetric distribution. However, in the case of the 

GED distributed innovations, the level of significance is much lower for 

     T
tt

T

ttt gfH
~

1

~

1|10 :   
 than for  

     T
tt

T

ttt zgzfH
~

1

~

1|10 :  
. For the ARFIMA(1,d,1)-

GARCH(1,1), HAR-RV-GARCH(1,1) and HAR-RV-GARCH(0,1) models, the null 

hypothesis is not rejected at 10% level of significance. 

[Insert Table 8 about here] 
[Insert Table 9 about here] 

8. Conclusion 

We generated simulated realized volatility series from an ARFIMA-GARCH framework 

assuming that the residuals are conditionally i) standard normally distributed, ii) Student t 

distributed, iii) GED distributed and iv) skewed Student t distributed. For a model with 

consistent estimators of the parameters' vector, we can assume that the standardized forecast 

errors, ttz |1 , convergence asymptotically in distribution to the theoretical distribution of the 

innovations; i.e if  vtz
dii

t ;1,0~
...

 then  vtzz
dii

t

d

tt ;1,0~
...

|1  . 

Then, we estimated the ARFIMA(0,d,1)-GARCH(1,1), ARFIMA(1,d,1)-GARCH(1,1), 

HAR-RV-GARCH(1,1) and HAR-RV-GARCH(0,1) models under the assumption that the 

innovations are i) normally ii) Student t  ii) GED and iv) skewed Student t distributed. The 

models were estimated for the data-generated values of the logarithmic realized volatility. 

Each one of the models is re-estimated every day, for T~ =4000 days, based on a rolling 

sample of constant size T


=1000 days. In all the cases, the data-generated model, the 

ARFIMA(0,d,1)-GARCH(1,1), had the lowest value of the sum of squared standardized 

forecast errors. 

Therefore, simulations provide evidence that the SPEC predictability criterion can be 

applied to the evaluation of models with residuals which are leptokurtically, or even 

leptokurtically and asymmetrically, distributed. Therefore, the SPEC evaluation function is 

indeed a framework under which the forecasting evaluation is valid for forecast errors a) with 

leptokurtic distribution (such as the standardized Student t distribution and the generalized 

error distribution), as well as b) with leptokurtic and asymmetric distribution (such as the 
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skewed Student t distribution). On the contrary, the unstandardized version of the SPEC 

criterion, the PMSE evaluation function, does not provide the lowest value to the data-

generated model in the case of the leptokurtically and asymmetrically distributed innovations. 

Additionally, the forecast errors (both standardized and unstandardized) do have the 

same distribution with the simulated residuals in the case of the i) symmetric and ii) 

leptokurtic distributions. On the other hand, the forecast errors do not follow the same 

distribution with the simulated residuals when these have been generated by the skewed 

Student t distribution. Finally, for GED distributed innovations, the level of significance of 

the U statistic is much lower for the unstandardized forecast errors than for the standardized 

forecast errors. 

The aim of the paper is to offer evidence that the SPEC criterion is a useful tool for 

investigating which model provides better forecasts of intra-day realized volatility. Accurate 

estimate of future volatility is a key determinant in quantitative finance. The Basel 

Committee has introduced the VaR estimate in order to measure the minimum capital which 

is required as a protection against the banks’ exposure to financial risks; the correct 

estimation of the VaR requires accurate volatility forecast. Bernake and Gertler (2001) and 

Rigobon and Sack (2003) central bankers were also interested in volatility prediction as asset 

price volatility provides information regarding the state of the economy and future levels of 

inflation. 
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Figures and Tables 

Table 1. Descriptive statistics of the simulated forecasts  10000
1|1  tttz ,  10000

1|1  ttt ,  10000

1
2

|1  ttth , 

   10000

1|1log
 tttRV  ,   10000

1|1  tttRV   and   10000

1|1252
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) model 

with conditional normally distributed innovations. 
Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
 10000

1|1  tttz  -0.001 0.008254 2.223529 -2.31394 0.633784 -0.03528 2.95129 

 10000
1|1  ttt  -0.0011 0.004094 1.12287 -1.31951 0.31714 -0.04557 3.032832 

 10000

1
2

|1  ttth  0.250415 0.237684 0.920853 0.175809 0.052679 1.949053 10.76465 

   10000

1|1log
 tttRV   -8.93211 -8.94201 -6.16747 -11.8029 0.72967 0.061653 3.346143 

  10000

1|1  tttRV   0.000197 0.00013 0.003434 4.70E-06 0.000227 4.510531 37.04997 

  10000

1|1252
 tttRV   0.201168 0.180794 0.930279 0.034418 0.095331 1.70828 8.219353 

 

Table 2. Descriptive statistics of the simulated forecasts  10000
1|1  tttz ,  10000

1|1  ttt ,  10000

1
2

|1  ttth , 

   10000

1|1log
 tttRV  ,   10000

1|1  tttRV   and   10000

1|1252
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional Student t distributed innovations. 
Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
 10000

1|1  tttz  -0.0023 -0.0054 4.9808 -6.8937 0.7884 -0.1409 5.5874 

 10000
1|1  ttt  -0.0020 -0.0030 3.6115 -3.2702 0.4549 -0.0343 6.2032 

 10000

1
2

|1  ttth  0.3367 0.2779 4.5527 0.1655 0.2072 5.7260 66.8227 

   10000

1|1log
 tttRV   -8.9864 -8.9813 -5.0461 -13.0483 0.9820 -0.0448 3.7699 

  10000

1|1  tttRV   0.0003 0.0001 0.0377 0.0000 0.0010 20.8712 596.7707 

  10000

1|1252
 tttRV   0.2141 0.1778 3.0828 0.0094 0.1627 4.9274 53.4953 
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Table 3. Descriptive statistics of the simulated forecasts  10000
1|1  tttz ,  10000

1|1  ttt ,  10000

1
2

|1  ttth , 

   10000

1|1log
 tttRV  ,   10000

1|1  tttRV   and   10000

1|1252
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional GED distributed innovations. 
Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
 10000

1|1  tttz  -0.0121 -0.0135 3.2236 -3.0122 0.6349 -0.0323 4.1330 

 10000
1|1  ttt  -0.0065 -0.0065 1.9926 -2.0189 0.3200 -0.0262 4.6875 

 10000

1
2

|1  ttth  0.2530 0.2294 2.0695 0.1667 0.0845 4.7806 54.6941 

   10000

1|1log
 tttRV   -9.0366 -9.0194 -6.6818 -12.4825 0.7313 -0.2072 3.2359 

  10000

1|1  tttRV   0.0002 0.0001 0.0030 0.0000 0.0002 4.1283 34.3137 

  10000

1|1252
 tttRV   0.1901 0.1743 0.8658 0.0144 0.0870 1.4680 7.0810 

 

Table 4. Descriptive statistics of the simulated forecasts  10000
1|1  tttz ,  10000

1|1  ttt ,  10000

1
2

|1  ttth , 

   10000

1|1log
 tttRV  ,   10000

1|1  tttRV   and   10000

1|1252
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional skewed Student t distributed innovations. 
Index Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
 10000

1|1  tttz  -0.2256 -0.0465 0.9439 -7.3900 0.7732 -1.8805 9.5216 

 10000
1|1  ttt  -0.1314 -0.0246 0.9225 -5.2528 0.4520 -2.2679 12.5460 

 10000

1
2

|1  ttth  0.3435 0.2563 6.6065 0.1686 0.3017 6.2399 63.9382 

   10000

1|1log
 tttRV   -11.180 -10.981 -8.549 -17.7158 1.1823 -0.8576 3.8813 

  10000

1|1  tttRV   0.00002 0.00002 0.00028 0.00000 0.00003 2.4539 11.8073 

  10000

1|1252
 tttRV   0.0676 0.0622 0.2661 0.0006 0.0387 0.8389 3.7846 
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Table 5. Descriptive statistics of the standardized one-step-ahead prediction errors, ttz |1 , from 
the four models. The dependent variable   tRVlog  has been generated by the 
ARFIMA(0,d,1)-GARCH(1,1) under (i) normally distributed innovations, for 

720.0ˆ,088.0ˆ,048.0ˆ,92.8ˆ,22.0ˆ,59.0ˆ
11001  baadd  , (ii) Student t distributed 

innovations, for 9.5ˆ,742.0ˆ,097.0ˆ,040.0ˆ,95.8ˆ,22.0ˆ,57.0ˆ
11001  vbaadd  , 

(iii) GED distributed innovations, for 
33.1ˆ,735.0ˆ,094.0ˆ,043.0ˆ,92.8ˆ,22.0ˆ,59.0ˆ

11001  vbaadd  , and (iv) skewed 

Student t distributed innovations, for ,22.0ˆ,58.0ˆ
1  dd ,042.0ˆ,88.8ˆ

00  a

,739.0ˆ,094.0ˆ 11  ba 056.0ˆ,84.5ˆ  gv . 
Model Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 

Panel A: normally distributed innovations 
1 0.000 0.000 3.610 -3.650 1.005 0.032 3.061 
2 0.000 0.000 3.630 -3.630 1.007 0.035 3.067 
3 0.003 0.010 3.810 -3.470 1.008 0.038 3.057 
4 0.002 0.020 4.000 -3.420 1.008 0.022 3.124 

Panel B: Student t distributed innovations 
1 0.004 0.006 6.697 -4.563 1.005 0.089 4.547 
2 0.001 0.007 6.739 -4.566 1.005 0.088 4.550 
3 0.017 0.020 6.960 -4.730 1.007 0.075 4.520 
4 0.019 0.024 7.062 -5.123 1.009 0.108 4.982 

Panel C: GED distributed innovations 
1 0.012 0.015 4.327 -5.031 1.002 -0.023 4.132 
2 0.013 0.015 4.346 -5.051 1.003 -0.022 4.125 
3 0.015 0.014 4.349 -4.896 1.006 -0.015 4.053 
4 0.015 0.015 4.272 -4.928 1.007 -0.016 4.069 

Panel D: skewed Student t distributed innovations 
1 -0.005 0.229 1.746 -9.544 1.011 -2.002 10.829 
2 -0.004 0.230 1.747 -9.263 1.007 -1.971 10.474 
3 -0.017 0.221 1.713 -8.684 1.021 -1.897 9.768 
4 -0.036 0.209 2.262 -8.761 1.026 -2.158 11.614 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), Model 3: 
HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
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Table 6. The sum of the squared one-day-ahead forecast errors,   
T

t tt

~

1
2

|1
, (PMSE 

loss function) of the four models for conditionally i) normally ii) Student t iii) GED 
and iv) skewed Student t distributed innovations. 

Model (i) (ii) (iii) (iv) 
1 1024.0 1846.2 947.9 2010.8 
2 1028.2 1849.7 950.1 2010.8 
3 1044.9 1877.4 957.1 2054.2 
4 1045.1 1878.7 957.1 2077.2 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), 
Model 3: HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
 

Table 7. The sum of the squared standardized forecast errors,   
T

t ttz
~

1
2

|1 , (SPEC 
loss function) of the four models for conditionally i) normally ii) Student t iii) GED 
and iv) skewed Student t distributed innovations. 

Model (i) (ii) (iii) (iv) 
1 4039.2 4035.5 4011.9 4045.0 
2 4053.0 4036.3 4021.2 4052.7 
3 4059.9 4057.0 4046.9 4167.9 
4 4058.8 4075.2 4055.8 4211.5 

Model 1: ARFIMA(0,d,1)-GARCH(1,1), Model 2:  ARFIMA(1,d,1)-GARCH(1,1), 
Model 3: HAR-RV-GARCH(1,1), Model 4: HAR-RV-GARCH(0,1). 
 
 
 

Table 8. The p-values for testing 
     T

tt
T

ttt zgzfH
~

1

~

1|10 :  
. 

Distribution of tz  Model of ttz |1  p-values 

 1,0N  ARFIMA(0,d,1)-GARCH(1,1) 0.659 
 ARFIMA(1,d,1)-GARCH(1,1) 0.657 
 HAR-RV-GARCH(1,1) 0.580 
 HAR-RV-GARCH(0,1) 0.566 

 vt ;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.993 
 ARFIMA(1,d,1)-GARCH(1,1) 0.897 
 HAR-RV-GARCH(1,1) 0.540 
 HAR-RV-GARCH(0,1) 0.547 
 vGed ;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.406 
 ARFIMA(1,d,1)-GARCH(1,1) 0.470 
 HAR-RV-GARCH(1,1) 0.110 
 HAR-RV-GARCH(0,1) 0.178 

 gvskT ,;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.000 
 ARFIMA(1,d,1)-GARCH(1,1) 0.000 
 HAR-RV-GARCH(1,1) 0.000 
 HAR-RV-GARCH(0,1) 0.000 
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Table 9. The p-values for testing 
     T

tt
T

ttt gfH
~

1

~

1|10 :   
. 

Conditional on 1tI
Distribution of t  

Model of tt |1  p-values 

 1,0N  ARFIMA(0,d,1)-GARCH(1,1) 0.909 
 ARFIMA(1,d,1)-GARCH(1,1) 0.905 
 HAR-RV-GARCH(1,1) 0.797 
 HAR-RV-GARCH(0,1) 0.799 

 vt ;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.937 
 ARFIMA(1,d,1)-GARCH(1,1) 0.967 
 HAR-RV-GARCH(1,1) 0.464 
 HAR-RV-GARCH(0,1) 0.488 
 vGed ;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.102 
 ARFIMA(1,d,1)-GARCH(1,1) 0.097 
 HAR-RV-GARCH(1,1) 0.078 
 HAR-RV-GARCH(0,1) 0.085 

 gvskT ,;1,0  ARFIMA(0,d,1)-GARCH(1,1) 0.000 
 ARFIMA(1,d,1)-GARCH(1,1) 0.000 
 HAR-RV-GARCH(1,1) 0.000 
 HAR-RV-GARCH(0,1) 0.000 
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Figure 1. Time series plots and frequency distributions of simulated forecasts  10000
1|1  tttz , 

 10000
1|1  ttt ,   10000

1|1252
 tttRV   and    10000

1|1log
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional Student t distributed innovations. 
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1|1  tttz , standardized forecast errors  10000
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Figure 2. Time series plots and frequency distributions of simulated forecasts  10000
1|1  tttz , 

 10000
1|1  ttt ,   10000

1|1252
 tttRV   and    10000

1|1log
 tttRV  , from the ARFIMA(0,d,1)-GARCH(1,1) 

model with conditional skewed Student t distributed innovations. 
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Figure 3. The parameter estimates of the ARFIMA(0,d,1)-GARCH(1,1) model across time. 
The dependent variable   tRVlog  has been generated by the ARFIMA(0,d,1)-GARCH(1,1) 
under normally distributed innovations, for 

720.0ˆ,088.0ˆ,048.0ˆ,92.8ˆ,22.0ˆ,59.0ˆ
11001  baadd  . 

Model 1 - ARFIMA(0,d,1)-GARCH(1,1) 
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Figure 4. The parameter estimates of the ARFIMA(0,d,1)-GARCH(1,1) model across time. 
The dependent variable   tRVlog  has been generated by the ARFIMA(0,d,1)-GARCH(1,1) 
under Student t distributed innovations, for 

9.5ˆ,742.0ˆ,097.0ˆ,040.0ˆ,95.8ˆ,22.0ˆ,57.0ˆ
11001  vbaadd  . 

Model 1 - ARFIMA(0,d,1)-GARCH(1,1) 
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Figure 5. The parameter estimates of the ARFIMA(0,d,1)-GARCH(1,1) model across time. 
The dependent variable   tRVlog  has been generated by the ARFIMA(0,d,1)-GARCH(1,1) 
under skewed Student t distributed innovations, for ,22.0ˆ,58.0ˆ
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Figure 6. The data generated  
1tRV  against the forecasts  

ttRV |1 , and the standardized 

forecast errors, ttz \1 . The models are estimated for conditionally skewed Student t 
distributed residuals. 
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