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Abstract 

 

 

 This paper examines hedging in South African stock index futures market. The 

hedge ratios are estimated by six econometric techniques: the standard OLS 

regression, simple and vector error correction models, the ECM with generalised 

autoregressive heteroskedasticity (GARCH) as well as time-varying CCC-ARCH and 

Diag-BEKK ARCH models. The empirical results show that the ECM-GARCH 

model (capturing volatility clustering) provides best hedging ratios, while CCC-

ARCH is superior to OLS, ECM and VECM. We conclude that there is not a unique 

model specification for measuring hedge ratios. For each market (emerging and 

mature), a model’s comparative analysis must be conducted in order to extract the 

best performing model. 
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I. INTRODUCTION AND THEORY 

    Hedging is the most important function of futures markets. It is concerned 

with the management of risk. Theory description of hedging include Working (1953), 

Johnson (1960), Stein (1961), Rutledge (1972), Ederington (1979) and Floros and 

Vougas (2004). In general, hedging is the action taken by a buyer or seller to protect 

his/her business or assets against a change in prices, see Floros and Vougas (2004). 

From the theoretical point of view, there are three goals of hedging: risk 

minimisation, profit maximisation, and the portfolio approach, see Rutledge (1972). 

Hedging is carried out to (i) eliminate risk due to adverse price fluctuation, (ii) reduce 

risk due to adverse price moves, (iii) profit from changes in the basis, and (iv) 

maximise expected return for a given risk and minimise risk for a stated return 

(Sutcliffe, 1993).  

    Stock index futures contracts can be used to hedge the risk. Hedging uses 

futures markets to reduce risk of a cash (spot) market position. According to Hull 

(2000, p. 66), when the relationship between the cash price and the price of a futures 

contract is very close, the hedge is more effective. However, because this relationship 

is usually not perfect (spot and futures positions do not move together), the hedge is a 

cross-hedge. In this case, the hedger should trade the right number of futures contract 

to control the risk. In other words, the determination of the optimal hedge ratio1 

(minimum variance hedge ratio, or MVHR) is required. MVHR is the optimal amount 

of futures bought or sold expressed as a proportion of the cash position. It is important 

for the hedger to be able to identify the number of contracts needed to hedge the 

portfolio. Thus, the hedge ratio (HR) will be used, so one can choose the right number 

of futures contracts minimising risk. The HR is the number of futures contracts 

bought, or sold, divided by the number of spot contracts whose risk is being hedged.  

    Several measures have been proposed for the HR computation. Usually, the 

HR is estimated from an OLS regression of cash on futures prices. The method is 

introduced by Ederington (1979), and Anderson and Danthine (1980). The slope 

coefficient of the OLS regression is the MVHR, which is constant over time. An 

alternative estimation of the optimal HR is based on the phenomenon that cash and 

futures prices display volatility clustering, and, hence, GARCH models are to be 

                                                 
1 Optimal hedge ratio is derived from the optimisation of certain objective functions, such as 
minimising the variance of the return from a hedged portfolio or maximising a function of the portfolio 
return that is related to the expected utility level (Lien and Shrestha, p. 627, 2010). 
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preferred. These models are used for estimating heteroscedastic optimal hedge ratios, 

see Cecchetti et al. (1988) and Floros and Vougas (2004). Furthermore, several 

studies use error correction models (ECM) to estimate the hedge ratios, see Chou et 

al. (1996) and Lien (1996). Other papers use error correction terms with a time-

varying risk structure when analysing the spot-futures relationship, see Kroner and 

Sultan (1993), and Lien and Tse (1999). According to Lee and Chien (2010), various 

econometric models give different conclusions when estimate HR. Miffre (2004) 

shows that the conditional OLS model outperforms the OLS and GARCH models, 

while Alexander and Barbosa (2007) find no evidence that time-varying conditional 

covariance and ECM can improve upon the OLS hedge ratio. Recently, Hsu et al. 

(2008) suggest that copula-based GARCH models perform more effectively than 

OLS, CCC-GARCH and DCC-GARCH models (for more information about the 

performance of various econometric models for HR estimation see Lee and Chien, 

2010).  

    Lien and Zhang (2008) summarise theoretical and empirical research on the 

roles and functions of emerging derivatives markets and report mixed results. The 

present paper focuses on model specification and empirical comparison of several 

models for HR estimation using data from an emerging market; the South African 

futures market (FTSE/JSE 40 Index). The traditional regression model OLS, the 

ECM, the VECM, and the ECM-GARCH models as well as the dynamic CCC-ARCH 

and Diag-BEKK ARCH models are employed. According to authors’ knowledge this 

is the only empirical investigation using data from South African futures market.  

    The manuscript is organised as follows: Section II shows an overview of 

econometric models employed for estimating hedge ratios. Section III describes the 

data, and Section IV presents the empirical results from the econometric models. 

Section V discusses a comparison between models and Section VI concludes the 

paper and summarises our findings. 

 

II. METHODOLOGY 

    The futures hedge ratios are mainly calculating via the OLS regression model. 

Butterworth and Holmes (2000) estimated the (ex post) MVHR using OLS, by 

regressing the first order log difference in the spot prices, tS , against the first order 

log difference in the futures prices, tF , or: 
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ttt uFbcS   

),0(~ 2Nut , 
(1) 

where 1loglog  ttt SSS , 1loglog  ttt FFF . The coefficient b is the hedge 

ratio2. 

 Nevertheless, the former model specification assumes the absence of auto-

correlation and heteroskedasticity in log-returns. There is substantial evidence in 

financial literature to suggest that financial time series do not comply with the 

assumption of uncorrelated and homoskedastic returns to financial instruments. Chou 

et al. (1996), following the method proposed by Engle and Granger (1987), estimated 

the hedge ratio, using an error correction model (ECM). Assuming the series are co-

integrated, there exists an ECM of the form: 

tttttt uSFFbacS   11111
ˆ  , 

),0(~ 2Nut , 
(2) 

where  10011
ˆˆˆ   ttt FbcS . The coefficient b is the hedge ratio.  

 In addition, one may use ECM with time varying terms in the variance 

equation (GARCH errors), or: 

tttttt uSFFbacS   11111
ˆ  , 

ttt zu   

2
11

2
110

2
  ttt uaa   

 1,0~ Nzt  

(3) 

An iterative procedure is used based upon the method of Marquardt algorithm. 

Heteroskedasticity Consistent Covariance option is used to compute quasi-maximum 

likelihood covariances and standard errors using the methods described by Bollerslev 

and Wooldridge (1992). This is normally used if the residuals are not conditionally 

normally distributed (for more details about GARCH models see Xekalaki and 

Degiannakis, 2010).  

                                                 
2 For all the models, the Newey and West (1987) heteroskedasticity and autocorrelation consistent 

standard errors are computed, as they are consistent estimators in the presence of both 

heteroskedasticity and autocorrelation of unknown form. 
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 Ghosh (1993) and Lien (1996) calculated the optimal hedge ratio using a 

VECM specification: 

tStttSt uSFaS ,1111111
ˆ    , (4) 

tFtttFt uSFaF ,1121121
ˆ    , (5) 

where 
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. The hedge ratio is calculated as 1
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where 
22

,

FS
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
   is the correlation coefficient between tSu ,  and tFu , , and S  and 

F  are the standard deviations of tSu ,  and tFu , , respectively. 

Moreover, we proceed to the estimation of the optimal hedge ratio using two 

bivariate ARCH specifications. An ARCH system of 2 regression equations is 

defined: 

 
 ,,...,,...,,

,~|

2121

1









ttttt

ttt

ttt

g

NI

uuHHH

H0u

uxBy

 (6) 

where 

























































tF

tS

t

t

t

F

S

t

t

ttt
u

u

S

F
a

a

F

S

,

,

1

1

1

1212

1111

̂




uxBy , (7) 

1tI  is the available information set,  tN H,0  is the bivariate normal distribution with 

  0u tE , conditional mean, and   ttV Hu  , conditional variance, respectively.  

 We are based on two successfully applied versions of the bivariate ARCH 

process; Bollerslev's (1990) constant conditional correlation, or CCC-ARCH, model, 

and Baba's et al. and Engle and Kroner's (1995) diagonal BEKK, or Diag-BEKK 

ARCH, model.  

In the CCC-ARCH model the conditional variance of tu  is decomposed as: 

2/12/1
ttt CΣΣH  , (8) 

where 




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Σ  is the diagonal matrix with the conditional standard 

deviations along the diagonal, and 



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C  is the matrix of conditional 
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correlations. The conditional standard deviations are computed as univariate 

GARCH(1,1) models: 

2
1,1,1

2
1,1,10,1

2
,   tStStS ua  , (9) 

2
1,1,2

2
1,1,20,2

2
,   tFtFtF ua  , (10) 

 and the conditional covariance is computed as: 

tFtStFS ,,,,   . (11) 

 The hedge ratio is calculated as 
tF

tS

tF

tFS
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In the Diag-BEKK ARCH model the conditional variance of tu  is decomposed as: 
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The conditional variances are computed as GARCH(1,1) models in forms follow: 

1,1,1
2

1,1,1,11,1,1
2

1,1,1,11,1,0
2
,    tStStS auaa , (13) 

2,2,1
2

1,2,2,12,2,1
2

1,2,2,12,2,0
2

,    tFtFtF auaa , (14) 

and the conditional covariance is computed as: 

2,2,11,,1,1,12,2,11,1,1,1,12,1,0,,    tFStFtStFS auuaa . (15) 

The hedge ratio is calculated as 
2

,

,,

tF

tFS




. For technical details about the aforementioned 

bivariate ARCH models the interested reader is referred to Xekalaki and Degiannakis 

(2010). 

 

III. DATA DESCRIPTION 

 This study employs 1043 trading days on the FTSE/JSE Top 40 stock index 

and stock index futures contract for the period 2 January 2002 to 28 February 2006. 

Closing prices for the spot index were obtained from DataStream International, while 

closing futures prices were obtained from the official webpage of the South African 

Futures Exchange, or SAFEX (http://www.safex.co.za).  

 FTSE/JSE Top 40 stock index consists of the largest 40 companies ranked by 

full market capitalisation (value) that is before the application of any weighting in the 

All Share Index. The futures contract is the FTSE/JSE’s Top 40 future nearest to 

expiration, assuming a rollover to the next contract expiration.  Analysis is confined 
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to the nearby contract because almost all trading volume is in the near month so that 

liquidity is much great in that contract compared with the far contract.   

 The futures contracts are quoted in the same units (South African Rand) as the 

underlying index without decimals, with the price of a futures contract or contract size 

being the quoted number (index level) multiplied by the contract multiplier, which is 

R10 for the contract. Futures expiry months are March, June, September and 

December. The stock index futures contract is cash-settled and marked to market on 

the last trading day, which is at 15:40 South African time on the third Thursday in the 

delivery or expiration month. The formal futures exchange was established in 1988 as 

well as the SAFEX clearing company. For more details about the South African 

market, see Motsa (2006) and Floros (2009).  

 Figures 1 and 2 present the plots of logarithmic FTSE/JSE Top 40 stock index 

and stock index futures, respectively. Figures 3 and 4 show the behaviour of returns of 

both indices over time, indicating volatility clustering or pooling in FTSE/JSE Top 40 

spot and futures returns. 

                                              << Figure 1 about here >> 

                                              << Figure 2 about here >> 

                                              << Figure 3 about here >> 

                                              << Figure 4 about here >> 

  

IV. EMPIRICAL RESULTS 

    First, we apply unit root tests for log-stock prices and log-futures prices for 

FTSE/JSE Top 40. Augmented Dickey and Fuller (1979), or ADF test statistic, and 

Phillips and Perron (1988), or PP test statistic, indicate that both series are I(1). 

Cointegration are used to confirm whether there exists such a cointegrating structure 

between spot and futures markets. Johansen’s (1988, 2004) approach suggests that 

spot and futures are cointegrated, with one cointegration relationship3. Thus, there 

exists a linear combination of the South African spot and futures prices. 

A. The Conventional Approach - OLS Regression 

 The optimal hedge ratio can be derived from the regression in equation (1), 

where the returns to holding spot asset are regressed on the returns to holding the 

hedging instruments. Table 1 presents the results for FTSE/JSE Top 40 index. The 

hedge ratio is 0.9043, and it is significantly less than unity. 

                                                 
3 The results obtained from the ADF, PP and Johansen tests are available upon request. 
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                                              << Table 1 about here >> 

B. An Error Correction Approach 

 In our case, S and F are cointegrated, and therefore, the optimal hedge ratio 

can be calculated from an error correction model, see equation (2). We apply an ECM 

to obtain alternative estimates for the hedge ratio, so we can compare them with the 

ones obtained from the conventional method. The results are reported in Table 2. 

                                                << Table 2 about here >> 

 The results show a hedge ratio of 0.9150 for FTSE/JSE Top 40. The hedge 

ratio coefficient in the hedge equation (ECM) is significantly less than unity at any 

level of significance. Comparing estimated hedge ratio, we conclude that the hedge 

ratio estimated by equation (2) is greater than the one estimated by equation (1). This 

implies that the conventional model under-estimates the number of futures contracts 

needed to hedge the spot portfolio. This is not in line with Floros and Vougas (2004), 

who provided evidence that in the case of the Greek stock market the FTSE/ASE-20 

hedge ratio estimated by the ECM is less than that obtained from the OLS method. 

C. An Error Correction Approach with GARCH Errors 

 The ECM specification, in equation (3), is also taken into consideration under 

the assumption of time varying conditional variance. The coefficient b equals to 

0.9212. 

                                                << Table 3 about here >> 

D. A Vector Error Correction Approach 

 If spot and futures prices are cointegrated, we can use a Vector Error 

Correction Model (VECM) to estimate hedge ratio. The hedge ratio is calculated as 

2

,

F

FS
h




 . From equations (4) and (5), FS ,  is the covariance coefficient between the 

innovations tSu ,  and tFu , , and S  and F  are the standard deviations of tSu ,  and 

tFu , , respectively. Thus, the hedge ratio from VECM is calculated as 

9143.0
000140.0

000128.0
2

, 
F

FS
h




. The estimation of the model is presented in Table 4. 

The hedge ratio estimated from VECM, is close to the one obtained from ECM. In the 

studies of  Ghosh (1993) and Floros and Vougas (2004) the hedge ratios estimated 

from VECM were greater than the ones obtained from OLS and ECM specifications. 

                                                << Table 4 about here >> 
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E. The CCC-ARCH Model 

 The fifth model for estimating hedge ratio is by employing VECM model with 

time varying conditional variances and covariance. To incorporate both short- and 

long-run information of data, we model the mean equation (first moment) with an 

error correction model, and in addition, we take into account heteroscedastic 

variances and covariances (to capture volatility clustering), by modelling the 

conditional variance matrix with Bollerslev's (1990) constant conditional correlation 

framework. 

 Table 5 reports the results from CCC-ARCH model. Figure 5 plots the hedge 

ratios across time. The average hedge ratio is 0.9169 for FTSE/JSE Top 40 index.  

                                             << Table 5 about here >> 

                                              << Figure 5 about here >> 

F. The Diag-BEKK ARCH Model 

 The last model for estimating hedge ratio is the DIAG-BEKK ARCH model. 

Table 6 reports the estimation of the Diag-BEKK ARCH model. Figure 6 plots the 

hedge ratios across time. The average hedge ratio is 0.9074 for FTSE/JSE Top 40 

index. Hence, the hedge ratio estimated by CCC-ARCH model is greater than the one 

obtained from that model. So, the hedge ratio estimated by CCC-ARCH model should 

be more efficient in reducing risk of spot prices. 

                                                << Table 6 about here >> 

                                              << Figure 6 about here >> 

 

V. MODELS COMPARISON 

 Table 7 shows the hedge ratios estimated from the six econometric models. 

The hedge ratio estimated by the ECM-GARCH model performs better in terms of 

hedging. It is greater than the ones obtained from OLS, ECM and VECM. Hence, 

hedgers need more futures contracts to reduce the market risk of their cash portfolios 

(their losses are going to be reduced substantially). So, the hedge ratio estimated by 

ECM-GARCH model should be more efficient in reducing risk of spot prices. 

Furthermore, this implies that all other constant models (OLS, ECM and VECM) 

under-estimate the number of futures contracts needed to hedge spot prices. 

Therefore, hedge ratio estimated by ECM-GARCH significantly improves hedging. 

Our results show that it is superior to hedge ratios obtained from  all other constant 



10 | P a g e  
 

models, and therefore this hedge ratio should provide better hedging (ECM-GARCH 

performs well in terms of variance reduction).  

 Furthermore, we find that the dynamic hedge ratios obtained from the CCC-

ARCH and Diag-BEKK ARCH models have a sample mean less than unity, but 

greater than the constant hedge ratios obtained from the traditional OLS and ECM. In 

particular, the hedge ratio estimated from CCC-GARCH is greater than those from 

OLS, ECM and VECM, while the hedge ratio obtained from the Diag-BEKK ARCH 

is greater than that from the simple OLS and ECM. These estimates suggest that the 

naive 1:1 hedging strategy is inappropriate; this is in line with Yang and Allen (2004). 

We should note that the hedge ratio series obtained from CCC-ARCH and Diag-

BEKK ARCH are time varying hedge ratios, which, in turn, incorporates a time-

varying conditional correlation coefficient between the spot and futures prices and, 

hence, generates more realistic time-varying hedge ratios (Yang and Allen, 2004). 

Even though the sample mean hedge ratio form the  Diag-BEKK ARCH model is 

smaller in magnitude from the ones obtained from the traditional constant models 

(ECM, VECM and ECM-GARCH), the average time-varying hedge ratio is just an 

indicative figure which doesn’t represent the actual hedge ratios from all time periods.  

The fact that time-varying models capture time-varying hedge ratios with success, 

shows that these dynamic models are somewhat superior to the traditional models (in 

particular to the OLS, ECM and VECM). Similarly, the mean of the time-varying 

CCC-GARCH hedge ratio is larger than those derived from the simple OLS, the ECM 

and the VECM, which means that the constant hedge ratios would lead to a smaller 

than optimal hedging position (Sim and Zurbruegg, 2001).  

                                                << Table 7 about here >> 

 

VΙ. SUMMARY AND CONCLUSIONS 

    Futures contracts can be a very effective risk management instrument due to 

its high liquidity and low transaction cost (Lien and Shrestha, 2010). When using 

stock index futures for hedging (a technique to minimise risk), we require estimates of 

the so-called hedge ratio. Various approaches for risk minimisation lead to different 

estimation approaches and conclusions for the (optimal) hedge ratio. According to 

Ghosh (p. 751, 1993), "Underestimating the optimal hedge ratio results in a 

suboptimal hedge of the cash portfolio. Improved optimal hedge ratios appear to 

reduce considerably the risk of the risk minimizing portfolio. This means loss from a 
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suboptimal hedge is significantly reduced and helps to reduce the impact of the costs 

of hedging". 

 In this paper, we focus on model specification and empirical comparison for 

(optimal) hedge ratio estimation using data from South African futures market (an 

emerging market). We examine the behaviour of futures prices from FTSE/JSE Top 

40 index by employing six econometric methods, which include: the traditional OLS 

regression model, ECM, ECM-GARCH, VECM, CCC-ARCH, and Diag-BEKK 

ARCH models. The empirical results show that GARCH framework is superior to 

traditional hedging models (OLS, ECM and VECM). It is found that the traditional 

models underestimate the number of futures contracts, needed to hedge the spot 

portfolio. In other words, portfolio managers can incur significant loss by using 

traditional (constant) models. 

 In particular, we find that hedge ratio, estimated by ECM-GARCH, is greater 

than the hedge ratio estimated by the other methods. We show that the FTSE/JSE Top 

40 index hedge ratio estimated by ECM-GARCH significantly improves hedging. It is 

superior to the other models implying better hedging; therefore, the hedge ratio 

derived from ECM-GARCH is more effective in controlling and reducing risk of the 

cash portfolio (Ghosh and Clayton, 1996). This indicates that a financial analyst or 

trader whose portfolio includes the South Africa stock market should select the 

optimal spot portfolio to be hedged and minimise risk exposure by estimating the 

ECM-GARCH model. 

 This hedge ratio is more efficient than those estimated by all other techniques; 

we also confirm that the constant hedge ratio derived from OLS is unable to recognise 

the trend in the spot and futures changes (Park and Switzer, 1995). The ECM-

GARCH performs better than the other hedge ratios in terms of capturing conditional 

variances (spot and futures changes). We show that hedgers in South African stock 

index futures are able to estimate the number of futures contracts needed using an 

ECM-GARCH model to reduce losses as well as overall costs of hedging.  

 However, we should note that the hedging strategy using the time-varying 

model (CCC-ARCH) is superior to the traditional methods (OLS, ECM and VECM). 

This is in line with Park and Switzer (1995). In particular, the mean of the time-

varying hedge ratios is larger than that derived from the simple models above, which 

means that the simple hedge ratios would lead to a smaller than optimal hedging 

position (Sim and Zurbruegg, 2001).  
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 Hence, we reach to a different conclusion in comparison to other similar 

studies; e.g. the Greek emerging market, see Floros and Vougas, 2004. Therefore, 

there is not a unique model specification for all the markets. For each market 

(emerging and mature), a model’s comparative analysis must be conducted in order to 

extract the best performing model. 

 Future research should evaluate the hedging effectiveness of the constant and 

time-varying hedge ratios, measured in terms of ex-ante and ex-post risk-return trade-

off at various forecasting horizons, for several emerging markets across geographies 

and regions. 
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Table 5. Estimated parameters of the CCC-ARCH model. The coefficient to standard error ratios are 

reported in brackets. 
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Table 6. Estimated parameters of the Diag-BEKK ARCH model. The coefficient to standard error ratios 

are reported in brackets. 
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Table 7. Hedge ratios estimated from the six models. 
OLS  0.9043 

ECM 0.9150 

ECM-GARCH 0.9212 

VECM 0.9143 

CCC-ARCH 0.9169 

Diag-BEKK ARCH 0.9074 
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Figure 1: Logarithmic Stock Index Figure 2: Logarithmic Stock Index Futures 
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Figure 3: Stock Index Returns 
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Figure 4: Stock Index Futures Returns 
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Figure 5. Hedge ratio across time from CCC-ARCH model. The hedge ratio is 

calculated as 
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Figure 6. Hedge ratio across time from Diag-BEKK ARCH model. The hedge ratio is 

calculated as 
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