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Abstract 

A number of single ARCH model-based methods of predicting volatility are 

compared to Degiannakis and Xekalaki’s (2005) poly-model SPEC algorithm method in 

terms of profits from trading actual options of the S&P500 index returns. The results show 

that traders using the standardized prediction error criterion (SPEC) for deciding which 

model’s forecasts to use at any given point in time achieve the highest profits. 
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1 .  I n t r o d u c t i o n  

Degiannakis and Xekalaki (2007) examined the ability of the SPEC model selection 

algorithm to indicate the ARCH model that generates better volatility predictions with a 

number of statistical evaluation criteria. In the context of a simulated options market, 

Xekalaki and Degiannakis (2005) have found that the SPEC algorithm performs better than 

any other comparative method of model selection in pricing straddles with one day to 

maturity. The present manuscript evaluates the ability of the SPEC algorithm in selecting at 

each point in time an accurate volatility forecast for the remaining life of a straddle1 option. 

The forecasts of option prices are calculated by feeding the volatility estimated by the 

ARCH models into the Black and Scholes (BS) option pricing model. The obtained results 

indicate that SPEC has a satisfactory performance in selecting the ARCH models that yield 

better volatility predictions for option pricing. 

2 .  A R C H  M o d e l s  

For  1ln  ttt SSy  denoting the continuously compound rate of return from time 

1t  to t , where tS  is the asset price at time t , a set of ARCH models are estimated. The 

conditional mean is considered as a th  order autoregressive process: 
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t , and the conditional variance is commonly regarded as one of 

(i) a GARCH( qp, ) function: 
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(ii) an EGARCH( qp, ) function: 
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1 A straddle option is the purchase of both a call and a put option with the same expiration date and exercise 
price. 
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(iii) or as a TARCH( qp, ) function: 

    ,,,,2
vwu tttt , (4) 

with  22
1,...,,1 qtttu   ,  2

11  ttt d  ,  22
1,..., ptttw   ,  

qaaav ,...,, 10 ,    , 

 
pbb ,...,1 , 1td  if 0t , and 0td  otherwise. 

The prediction of the conditional variance at day it   given the information set available at 

day t  can be computed as: 
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Thus, the AR( )GARCH( qp, ), AR( )EGARCH( qp, ) and AR( )TARCH( qp, ) 

models are applied, for 4,...,0 , 2 ,1 ,0p  and 2 ,1q . 

3 .  T h e  S P E C  M o d e l  S e l e c t i o n  A l g o r i t h m  

Assume that a set of M  candidate ARCH models is available and that the most 

suitable model is sought for predicting conditional volatility. The ARCH model, with the 

lowest value of the sum of the T  most recent estimated squared standardized one-step-

ahead prediction errors, 
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ˆˆ  , can be considered for obtaining one-step-ahead 

forecasts of the conditional volatility. Assume further that the M  competing ARCH 

processes have been estimated using a rolling sample of n  observations. The SPEC 

algorithm for selecting the most suitable of the M  candidate models at each of a series of 

points in time is comprised of the following steps. 

For model m , ( Mm ,...,2,1 ) and for each point in time t ,  ,...1,  nnt , the 

vector of coefficients            )()()()( ˆ,ˆ,ˆ,ˆˆ tmtmtmtmtm
v    is estimated using a rolling 

sample of n  observations. Using the vector of coefficients   )(ˆ tm , compute 
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The most suitable model to forecast volatility at time nT   is the model m  with the 

minimum value of  m

nTR  . The algorithm is repeated for each of a sequence of points in time 

for the selection of the most appropriate model to be used for obtaining a volatility forecast 

for the next point in time. 
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4 .  M e a s u r i n g  t h e  F o r e c a s t i n g  P e r f o r m a n c e  

The BS formula to price call and put options at day 1t  given the information 

available at day t , with   days to maturity, denoted, respectively, by  
ttC |1  and  

ttP |1 , can 

be presented in the following form: 
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where, tS  is the daily closing stock price as a forecast of 1tS , trf  is the daily risk free 

interest rate, t  is the daily dividend yield, K  is the exercise price,  .N  is the cumulative 

normal distribution function and   
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tittt  is the volatility during the life of the 

option. 

If the straddle price forecast is greater than the market straddle price, the straddle is 

bought. If the straddle price forecast is less than the market straddle price, the straddle is 

sold: 

If          


tttttt CPPC |1|1 The straddle is bought at time t . (7) 

If           


tttttt CPPC |1|1 The straddle is sold at time t . (8) 

The rate of return from straddle trading is: 
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where X  denotes the transaction cost. We assume that the straddles are traded only when 

the absolute difference between the forecast and the actual straddle price exceeds the 

amount of the filter, F . Otherwise, agents are assumed to invest at the risk free rate. 

5 .  D a t a s e t s  

The data set consists of 1064 S&P500 stock index daily returns in the period from 

March 14th, 1996 to June 2nd, 2000. A rolling sample of constant size equal to 500n  is 
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considered. Hence, the first one-step-ahead volatility prediction, 2
|1

ˆ
tt , is available at time 

500t , or on March 11th, 1998. The use of a restricted sample size incorporates changes in 

the trading behavior more efficiently2.  

The S&P500 index options data were obtained from the Datastream for the period 

from March 11th, 1998 through June 2nd, 2000, totally 564 trading days. Proper data are 

available for 456 trading days. In order to minimize the biasedness of the BS formula, only 

the straddle options with exercise prices closest to the index level, maturity longer than ten 

trading days and trading volume greater than 100 were considered. Practice has shown that 

the BS pricing model tends to misprice deep-out-of-the-money and deep-in-the-money 

options, while it works better for near-the-money options (see, e.g. Daigler 1994, p. 153). 

Also, a maturity period of length no shorter than 10 trading days is considered to avoid 

mispricings attributable to causes of practical as well as of theoretical nature. 

6 .  R e s u l t s  

The day-by-day rates of return are reflective of the corresponding predictive 

performances of the models. We have on the one hand traders who always choose to use 

one and the same ARCH model for their forecasts and traders who at each point in time 

choose to use the ARCH model suggested by the SPEC algorithm on the other. 

There are 85 traders and each trader employs an ARCH model to forecast future 

volatility and straddle prices. For each trader, the daily rate of return from trading straddles 

for 456 days is computed according to (9)3. A transaction cost of $2 that reflects the bid – 

ask spread is considered. Various values for the filter F  are applied, i.e. $0, $1.25, $1.75, 

$2.00, $2.25, $2.75, $3.50. For 50.3$F , the trader using the AR(3)GARCH(0,2) 

forecasts makes the highest daily profit of 1.35% with a corresponding standard deviation 

of 15.24% and a t-ratio of 1.89 (or p-value 0.06). 

 Applying the SPEC model selection algorithm, the sum of squared standardized 

one-step-ahead prediction errors,   
T

t ttz
1

2
1|ˆ , was estimated considering various values for 

T , and, in particular,  8055T
4. Thus, it is assumed that there are 16 traders each of 

which uses on each trading day, the ARCH model picked by the SPEC algorithm to 

forecast volatility and straddle prices for the next trading day. With a filter of $3.5, the 

                                                 
2 See for example Xekalaki and Degiannakis (2005). 
3 Because of the large amount of data, tables with all the ARCH models are available upon request. 
4  cbaT   denotes c,bcbabaaT  ,...,2,, . 
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trader utilizing the SPEC algorithm with 5T  achieves the highest profit of 1.46% per day 

with a corresponding standard deviation of 15.85% and a t-ratio of 1.97 (or p-value 0.05). 

Even marginally, the SPEC(5) model selection algorithm generates higher returns than 

those achieved by  any other trader using only a single ARCH model5. Thus, the SPEC 

model selection algorithm appears to have a satisfactory performance in selecting those 

models that generate better volatility predictions. 

 One might take the view that the SPEC algorithm would favor the model that 

produces higher volatility forecasts. However, comparing the SPEC algorithm with a model 

selection algorithm that was constructed so as to select the model with the maximum sum 

of the T  most recent estimated one-step-ahead volatility forecasts (denoted by MAXVAR) 

for various values of T  revealed that this is not the case. In none of the cases did the daily 

profits achieved by traders using MAXVAR(T ) exceed the profits made by traders using 

SPEC(T ) for  8055T . Only in an average of 5% of the trading days did the 

MAXVAR(T ) algorithm pick the same models as those picked by the SPEC(T ) algorithm. 

 Considering the squared daily returns as a proxy for the unobserved actual variance, 

a set of statistical criteria to measure the closeness of the forecasts to the realizations are 

also estimated: 

Squared Error of Conditional Variance (SEVar): 
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 Absolute Error of Conditional Variance (AEVar): 
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 Squared Error of Conditional Standard Deviation (SEDev): 
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 Absolute Error of Conditional Standard Deviation (AEDev): 
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 Heteroscedasticity Adjusted Squared Error of Cond. Variance (HASEVar): 
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 Heteroscedasticity Adjusted Absolute Error of Cond. Variance (HAAEVar): 
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5 For any value for the filter, the SPEC algorithm generates the highest returns, but the p-value is the lowest 
for F=$3.5. The Sharpe ratios, which are available upon request, were also calculated giving similar results. 
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 Heteroscedasticity Adjusted Squared Error of Cond. St. Deviation (HASEDev): 
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 Heteroscedasticity Adjusted Absolute Error of Cond. St. Deviation (HAAEDev): 
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 Logarithmic Error of Conditional Variance (LEVar): 
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Applying the SPEC model selection algorithm, the sum of squared standardized one-step-

ahead prediction errors,   
T

t tttt1

2
|1

2
|1

ˆˆ  , was estimated considering various values for T . 

Therefore, each of the model selection criteria is computed considering various values for 

T , and, in particular,  801010T . Selecting a strategy based on any of several competing 

methods of model selection naturally amounts to selecting the ARCH model that, at each of 

a sequence of points in time, has the lowest value of the evaluation function. 

In none of the cases, did the daily returns come out to be higher than the returns 

achieved by the SPEC algorithm. Table 1 presents the daily rate of returns based on the 

ARCH models selected by the ten model selection methods6. The HAAEVar selection 

algorithm, for 40T , yielded the highest daily profit (1.24%) with a t-ratio of 1.65. 

7 .  C o n c l u s i o n  a n d  S u g g e s t i o n s  f o r  F u r t h e r  R e s e a r c h  

The results of our study showed that the SPEC algorithm outperformed all of the 

single ARCH model-based methods as well as a set of other methods of model selection. 

This is in agreement with Xekalaki and Degiannakis’s (2005) findings from a comparative 

study of ARCH model selection algorithms performed on the basis of simulated options 

data, who also showed that the SPEC algorithm for 5T  achieved the highest rate of 

return.  

The validity of the variance forecasts depends on which option pricing formula is 

used. Even if one could find the model, which predicts the volatility precisely, it is well 

known that the BS formula does not describe the dynamics of pricing the options perfectly. 

In future research, the estimation of ARCH-based option pricing models such that of Duan 

(1995) and Heston and Nandi (2000) is suggested. 

                                                 
6 Detailed tables for the daily rate of return from trading straddles based on the ARCH models selected by the 
ten model selection methods are available upon request. 
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The SPEC algorithm does increase the volatility prediction accuracy and can be 

considered as a tool in picking the model that would yield the best volatility prediction. 

However, the SPEC algorithm provides profits significantly greater than zero under a 

perfect framework of no commissions. Only the bid-ask spread was taken into account7. 

Under realistic transaction charges for a trader and market impact costs, the daily profits are 

wiped out. If someone could really gain 1.46% per trading day after commissions, the 

presented results would make a good case for market inefficiency or at least for a huge 

temporary inefficiency. 
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Table 1. The net rate of return, computed as in equation (9), from trading 
straddles on the S&P500 index based on the SPEC algorithm and the model 
selection algorithms presented in equations (12)-(20), with $2.00 transaction 
costs and a $3.5 filter. The column titled sample size refers to the sample size, 
T, for which the corresponding model selection algorithm leads to the highest 
rate of return.  

Model Selection Method Sample size Mean t-ratio 

SPEC T=5 1.46% 1.97 

SEVar T = 40 0.61% 0.80 

AEVar T = 60 0.76% 1.03 

SEDev T = 60 0.74% 0.97 

AEDev T = 60 0.81% 1.08 

HASEVar T = 10 1.10% 1.47 

HAAEVar T = 40 1.24% 1.65 

HASEDev T = 20 0.90% 1.18 

HAAEDev T = 30 1.12% 1.45 

LEVar T = 80 0.75% 1.00 
 


