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Abstract 

Autoregressive conditional heteroscedasticity (ARCH) models have successfully 

been applied in order to predict asset return volatility. Predicting volatility is of great 

importance in pricing financial derivatives, selecting portfolios, measuring and managing 

investment risk more accurately. In this paper, a number of ARCH models are considered 

in the framework of evaluating the performance of a method for model selection based on 

a standardized prediction error criterion (SPEC). 

According to this method, the ARCH model with the lowest sum of squared 

standardized forecasting errors is selected for predicting future volatility. A number of 

statistical criteria, that measure the distance between predicted and inter-day realized 

volatility, are used to examine the performance of a model to predict future volatility, for 

forecasting horizons ranging from one day to one hundred days ahead. The results reveal 

that the SPEC model selection procedure has a satisfactory performance in picking that 

model that generates “better” volatility predictions. A comparison of the SPEC algorithm 

with a set of other model evaluation criteria yields similar findings. It appears, therefore, 

that it can be regarded as a tool in guiding one’s choice of the appropriate model for 

predicting future volatility, with applications in evaluating portfolios, managing financial 

risk and creating speculative strategies with options. 

Keywords and Phrases: ARCH Models, Correlated Gamma Ratio Distribution, 

Model Selection, Predictability, SPEC Algorithm, Volatility Forecasting. 

1 .  I n t r o d u c t i o n  

To evaluate their accuracy, volatility forecasts have to be compared with realized 

volatility, which cannot be observed. In the literature, it is common practice to refer the 

observed squared returns as the actual volatility. In this paper, a number of evaluation 

criteria are used to examine the ability of the SPEC model selection algorithm introduced 



   

2 

 

by Degiannakis and Xekalaki (2005) to indicate the ARCH model that generates “better” 

volatility predictions, for a forecasting horizon ranging from one day to one hundred 

trading days ahead.  

Degiannakis and Xekalaki (2001) and Xekalaki and Degiannakis (2005) examined 

the performance of the SPEC algorithm through the use of economic loss functions. 

Degiannakis and Xekalaki (2001) made a comparative study among a set of ARCH model 

selection algorithms in order to examine which method yields the highest profits by trading 

straddles based on ten-days to forty-days-ahead variance forecasts. The results showed that 

the SPEC algorithm achieved the highest rate of return. In the context of a simulated option 

market, Xekalaki and Degiannakis (2005) have found that the SPEC algorithm performs 

better than any other comparative method of model selection in forecasting one-day-ahead 

conditional variance. 

In this paper, we consider evaluating the SPEC method through the implementation 

of statistical loss functions. Specifically, the performance of the SPEC algorithm is 

examined through measuring the closeness of the volatility forecasts to the inter-day 

realizations. The results show that the SPEC model selection procedure has a satisfactory 

performance in selecting that ARCH model that tracks realized volatility closer, for a 

forecasting horizon ranging from 16 days to 36 days ahead. So, it is possible to use this 

model selection method in financial applications requiring volatility forecasts for a period 

longer than one day, such as option pricing or risk management. The majority of studies 

investigate the volatility forecasting accuracy for daily horizons, despite the fact that the 

practitioners require predictions of lower frequency (the Basle Committee on Banking 

Supervision (Basle Committee on Banking Supervision, 1998) for the use of Value-at-Risk 

methods requires the estimation of 10-days-ahead volatility predictions, whereas fund 

managers re-balance their portfolios on at least a monthly basis). 

In section 2 of the paper, the ARCH process is presented. Section 3 describes the 

SPEC model selection algorithm in the context of ARCH models. Section 4 provides a 

brief description of the evaluation criteria and the inter-day realized volatility measures 

considered. In section 5, the ability of the method proposed to select the ARCH model that 

generates “better” predictions of the volatility, is examined. In section 6, the proposed 

model selection method is compared to other methods of model selection. Finally, in 

section 7, a brief discussion on the results and on the merit of looking into the performance 

of the SPEC algorithm in other econometric set-ups is provided.  
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2. T h e  A R C H  P r o c e s s  

For tP  denoting the price of an asset at time t, let  1ln  ttt PPy  denote the 

continuously compounded return series of interest. The return series is decomposed into 

two parts, the predictable and unpredictable component: 

  tttt yEy  1| , (2.1) 

where  1| ttyE  is the conditional mean of return at period t  depending upon the 

information set available at time 1t  and t  is the prediction error. Usually, the 

predictable component is either the overall mean or a first order autocorrelated process 

(imposed by non-synchronous tradingi). The conditional mean, unfortunately, does not 

have the ability to give useful predictions. That is why modern financial theory assumes 

the asset returns are unpredictable. Before the start of the 1980’s, the view taken about 

returns in financial markets was that they behave as random walks and the Brock et al. 

(1987) [BDS] statistic has widely been used to test the null hypothesis that asset returns are 

independently and identically distributed. This hypothesis, however, has been rejected in a 

vast number of applications. A rejection of the null hypothesis is consistent with some 

types of dependence in the data, which could result in from a linear stochastic system, a 

nonlinear stochastic system, or a nonlinear deterministic system. Thus, a question arises: 

“Are the nonlinearities connected with the conditional mean (so, as to be used to predict 

future returns) or with higher order conditional moments?” Artificial neural networksii, 

chaotic dynamical systemsiii, nonlinear parametric and nonparametric modelsiv are some 

examples from the literature dealing with conditional mean predictions. ARCH modelsv 

and stochastic volatility modelsvi are examples from the literature dealing with conditional 

variance modeling. However, no nonlinear models that can significantly outperform even 

the simplest linear model in out-of-sample forecasting seem to exist in the literature 

(neither in the field of stochastic nonlinear models nor in the field of deterministic chaotic 

systems). On the other hand, the ARCH processes and stochastic volatility models appear 

to be more appropriate to interpret nonlinearities in financial systems on the basis of the 

conditional variance. If an ARCH process is the true data generating mechanism, the 

nonlinearities cannot be exploited to generate improved point predictions relative to a 

linear model. 

In the sequel, the conditional mean is considered as an th  order autoregressive 

process defined by 
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Assuming the unpredictable component in (2.1) is an ARCH process, it can be represented 

as: 
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where  tz  is a sequence of independently and identically distributed random variables, t  

is a time-varying, positive measurable function of the information set at time 1t  , 1tI , t  

is a vector of predetermined variables included in tI  and  .g  could be a linear or 

nonlinear functional form as is usually assumed in the ARCH literature. The unpredictable 

component has variance 2
t , conditional on information given at time 1t . The 

conditional variance is a linear or nonlinear function of lagged conditional variances, past 

prediction errors and predetermined variables measurable at time 1t . The conditional 

prediction error is normally distributed, but the unconditional prediction error and the 

conditional variance of it have an unknown form of distribution. The conditional 

standardized prediction error, 1| ttz , is standard normally distributed: 

   1,0~,0~ 1
1|1|

2
1| NzN tttttttt


   . (2.4) 

 In the recent literature, one can find a vast number of parametric specifications of 

ARCH models motivated by the characteristics explored in financial markets. A 

researcher, who is looking for the “best” model, would have in mind a variety of candidate 

models. The most commonly used conditional variance functions are the GARCH 

(Bollerslev 1986), the Exponential GARCH, or EGARCH, (Nelson 1991) and the 

Threshold GARCH, or TARCH, (Glosten et al. 1993) specifications. In the sequel, these 

ARCH models are considered in the following forms: 

The GARCH(p,q) model  
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The EGARCH(p,q) model  
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The TARCH(p,q) model  
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 where 1td  if 0t , and 0td  otherwise. 
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The majority of practical applications, i.e. option pricing, determination of the 

value-at-risk, require more than one-day-ahead volatility forecasts. More than one-step-

ahead forecasts can be computed by repeated substitution. The forecast recursion relation 

of the GARCH(p,q) model is: 
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) 

For ts  , the forecast of the predictive error s  conditional on information available at 

time t  equals to its zero expected value,   0| ts IE  . On the other hand, the estimated 

value of 2
s  measured at time t should be equal to 2

|ts  for ts  . For ts  , the predictive 

error and its square are computed by the model with the available information at time t . 

The forecast recursion relationship associated with the EGARCH(p,q) model is: 
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(2.9.b) 

that associated with the TARCH(p,q) model is: 
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(2.10.a) 

(2.10.b) 

Here,  tdE  denotes the percentage of negative innovations out of all innovations. Under 

the assumption of normally distributed innovations, the expected number of negative 

shocks is equal to the expected number of positive shocks, or   5.0tdE . 

The forecast of the conditional variance at time t  over a horizon of N  days ahead 

is simply the average of the estimated future variance conditional on information given at 

time t   

  





N

i

titNt N
1

2
|

12 ̂ . (2.11) 



   

6 

 

3. T h e  S P E C  M o d e l  S e l e c t i o n  M e t h o d  

In this section, a brief description of the theoretical motivation of the SPEC 

algorithm that is based on pairwise comparisons of the sums of squared standardized one-

step-ahead forecasting errors of a set of ARCH models is provided. Degiannakis and 

Xekalaki (2005) introduced the SPEC model selection method based on the correlated 

gamma ratio (CGR) distribution, which was derived by Xekalaki et al. (2003) as the 

distribution of the ratio of two variables jointly distributed according to Kibble’s (1941) 

bivariate gamma distribution. Kibble (1941) proves that if, for ,...2,1t , the joint 

distribution of     B

t

A

t rr ,  is the bivariate standard normal, then the joint distribution of 
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Xekalaki et al. (2003),  A
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from two regression models (not necessarily nested) but with a common dependent 

variable. The distribution of the ratio of the sum of their squares is the CGR distribution; 
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Thus, two regression models can be compared through testing the null hypothesis of 

equivalence of the models in their predictability against the alternative that model  A  

produces “better” predictions. The null hypothesis is rejected if 
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, where  ,,kCGR  is the  1100  percentile of the 

CGR distributionvii. 

Degiannakis and Xekalaki (2005) assumed that we are interested in comparing the 

predictive ability of two ARCH models: 
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is Kibble’s bivariate gamma distribution. Thus, the standardized one-step-ahead prediction 

errors can be used to test the null hypothesis of equivalence of the models in their 

predictive ability against the alternative that the first model produces “better” predictions. 
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The null hypothesis is rejected if      ,,ˆˆ
1
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 . Note that the SPEC 

algorithm is always computed on the basis of the one-step-ahead forecasts since ttz |1ˆ   are 

asymptotically normally distributed (Degiannakis and Xekalaki 2005), while the 

standardized residuals from N -step ahead forecasts, tNtz |ˆ  , for 2N , are not. 

According to the SPEC model selection algorithm, the models that are considered 

as having a “better” ability to predict future volatility of the dependent variable, are those 

with the lowest sum of squared standardized one-step-ahead prediction errors. Let us 

assume that M  candidate ARCH models are available and that we are looking for the 

“most suitable” model at each of a sequence of points in time. On the basis of the SPEC 

algorithm, at time k , selecting a strategy for the most appropriate model to forecast 

volatility at time 1k  ( ,...1,  TTk ) could naturally amount to selecting the model 

which, at time k , has the lowest sum of squared standardized one-step-ahead prediction 

errors. So, each time the SPEC model selection method is applied, the model used to 

predict the conditional variance is revised. Table 1 summarizes the estimation steps 

comprising this approach. On the face of it, one might take the view that a model can 

always be made more attractive simply through over-predicting the volatility. However, an 

algorithm constructed so as to select the model with the maximum sum of the T  most 

recent estimated one-step-ahead volatility forecasts will not pick the same models as those 

picked by the SPEC model selection method. 

In the next section, the methodology applied to evaluate the performance of a 

model in estimating future volatility is presented, while in section 5, the ability of the 

SPEC model selection algorithm to indicate those ARCH models that generate “better” 

volatility predictions is illustrated on daily returns of the S&P500 stock index. 

4. E v a l u a t i n g  t h e  V o l a t i l i t y  F o r e c a s t  P e r f o r m a n c e  

The main problem in evaluating the predictive performance of a model is the 

choice of the function one should use to measure the distance between estimations and 

observations. Evaluating the performance of the variance forecasts requires knowledge of 

the actual volatility, which is unobservable. Thus, in evaluating the predictive performance 

of a variance model a question of a dual nature arises: that of determining the realized 

volatility and of considering the appropriate measure to evaluate the closeness of the 

forecasts to the corresponding realizations. 
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4.1 Realized Volatility Measures 

Practitioners’ most popular volatility measures are the average of squared daily 

returns and the variance of the daily returns. These measures, expressed on a daily basis for 

a horizon of N  days ahead, are: 
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respectively, where   
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1  is the average return. The inter-day volatity 

measures are the most popular measures. However, as noted in the literature (e.g. Ebens 

1999), although the squared daily returns are unbiased volatility estimators, they are very 

noisy. Note that, under the ARCH process, the squared return can be represented by 

222
ttt zy  . It is therefore defined as the product of the true volatility times the square of a 

normally distributed process. Recently, Alizadeh et al. (2002) and Sadorsky (2005) 

proposed the log range measure of volatility defined as the difference between the highest 

and lowest log asset prices over the interval of N  days. In the present paper, we utilize the 

popular among practitioners inter-day measures. An investigation based on the intra-day 

realized volatility is worth future explorationviii. 

4.2 Evaluation Criteria 

A large number of forecast evaluation criteria exists in the literature. However, 

none is generally acceptable. Because of high non-linearity in volatility models and the 

variety of statistical evaluation criteria, a number of researchers constructed economic 

criteria based upon the goals of their particular application. West et al. (1993) develop a 

criterion based on the decisions of a risk averse investor. Engle et al. (1993) assume that 

the objective is to price options and develop a loss function from the profitability of a 

particular trading strategy. Gonzalez-Rivera et al. (2004) considered comparing the 

performance of various volatility models on the basis of economic and statistical loss 

functions. Their study revealed that there does not exist a unique model that can be 

regarded as the best performer across various loss functions. Brooks and Persand (2003) 

also found that the forecasting accuracy of various methods considered in the literature is 

highly sensitive to the measure used to evaluate them. Hence, different loss functions may 

point towards different models as the most appropriate in volatility forecasting. In the 

sequel, we focus on statistical criteria to measure the closeness of the forecasts to the 

realizations, in order to avoid restrictions imposed by economic theory. Moreover, we 

consider statistical criteria that are robust to non-linearity and heteroscedasticity. Pagan 
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and Schwert (1990) use statistical criteria to compare the in-sample and out-of-sample 

performance of parametric and non-parametric ARCH models. Besides, Heynen and Kat 

(1994) investigate the predictive performance of ARCH and stochastic volatility models 

and Hol and Koopman (2000) compare the predictive ability of stochastic volatility and 

implied volatility models. Andersen et al. (1999) applied heteroscedasticity-adjusted 

statistics to examine the forecasting performance of intraday returns. Denoting the 

forecasting variance over an N  day period measured at day t  by  
2

Nt , and the realized 

variance over the same period by  
2

Nts , the following evaluation criteria are considered: 

Squared Error (SE):     222
NtNt s  (4.3

) 

Absolute Error (AE):    
22

NtNt s  (4.4

) 

Heteroscedasticity Adjusted Squared Error (HASE):     2221 NtNts   (4.5

) 

Heteroscedasticity Adjusted Absolute Error (HAAE):    
221 NtNts   (4.6

) 

Logarithmic Error (LE):     222ln NtNts   (4.7

) 

The first two functions have been widely used in the literature (see, e.g. Heynen and Kat 

1994, West and Cho 1995, Yu 2002 and Brooks and Persand 2003). The HASE and HAAE 

functions were considered by Walsh and Tsou (1998) and Andersen et al. (1999), while the 

LE function was utilized by Pagan and Schwert (1990) and Saez (1997). 

Usually, the average of the evaluation criteria is computed. However, when 

simulating an AR(1)GARCH(1,1) process, which is the most commonly used model in 

financial applications, the distributions of     22
NtNt s ,     221 NtNts   and 

    22ln NtNts   are asymmetric with extreme outliers. It would therefore be advisable to 

compute both the mean and the median of the evaluation criteria. Figure 1 depicts the 

histograms of the one-step forecast error distribution from the following simulated process: 
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5. E x a m i n i n g  t h e  P e r f o r m a n c e  o f  t h e  S P E C  M o d e l  S e l e c t i o n  

A l g o r i t h m  

In this section, the ability of the SPEC model selection algorithm to lead to the 

ARCH models that track closer future volatility is illustrated on a series of daily log-

returns. As follows from section 2, the return series can be modeled in the following form: 
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In the sequel, the above form is considered in connection with the ARCH models defined 

by (2.5), (2.6) and (2.7), for 4,3,2,1,0 , 2,1,0p  and 2,1q , thus yielding a total of 

85 casesix. The first autoregressive order of the conditional mean accounts for the non-

synchronous trading. However, various orders are considered as, according to Hansen and 

Lunde (2003), a small improvement of the modeling of the conditional mean, may lead to a 

clear improvement in the forecast of volatility. Also, contrary to the majority of applied 

studies, such as those by Klaassen (2002), Vilasuso (2002) and Hansen and Lunde (2003), 

where the forecasts are calculated by estimating the models once, in the present study the 

models are re-estimated every trading day, in order to evaluate the forecast accuracy under 

real world circumstances. Further, as Degiannakis and Xekalaki’s (2005) results reveal, the 

SPEC algorithm can be applied to all the conditional variance functions with consistent 

and asymptotically normal estimators of the parameters. Thus, although, austerely 

mathematically, minimizing the sum of squared standardized one-step-ahead residuals is 

not equivalent to maximizing the likelihood, Bollerslev and Wooldridge’s (1992) quasi-

maximum likelihood method is employed in the sequel to estimate the models. Maximum 

likelihood estimates of the parameters are obtained by numerical maximization of the log-

likelihood function using the Marquardt algorithm (Marquardt 1963), a modification of the 

Berndt, Hall, Hall and Hausman, or BHHH, algorithm (Berndt et al. 1974). The quasi-

maximum likelihood estimator (QMLE) is used, as according to Bollerslev and 

Wooldridge, it is generally consistent, has a normal limiting distribution and provides 

asymptotic standard errors that are valid under non-normality. 

The data set consists of 1661 S&P500 daily log-returns in the period from 

November 24th, 1993 to June 26th, 2000. Although, large data sets are often used in the 

literature for the estimation of ARCH models, we consider here using a not too large 

sample, which would expectantly incorporate changes in trading behavior more efficiently 

as the evidence is from various findings in the literature (e.g. Engle et al. 1993, Frey and 

Michaud 1997, Angelidis et al. 2004, Xekalaki and Degiannakis 2005). So, the ARCH 
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processes are estimated using a rolling sample of constant size equal to 500. Thus, the first 

one-step-ahead volatility prediction, 2
|1

ˆ
tt , is available at time 500t . Applying the 

SPEC model selection algorithm, the sum of squared standardized one-step-ahead 

prediction errors,   
T

t ttz
1

2
1|ˆ , was estimated considering various values for T , and, in 

particular,  8055T
x. Thus, the evaluation criteria were applied on the one-step-ahead 

forecasts using 1081805001661   data points, on the two-step-ahead forecasts using 

1080815001661   data points, …, and on the Nth-step-ahead forecasts using 

11081 N  data points. 

Adopting Brooks and Persand’s (2003) approach we consider evaluating multi-

step-ahead forecasts based on overlapping time periods. In particular, most of the studies in 

the literature evaluate the multi-step forecasts using non-overlapping time periods in order 

to infer about the statistical significance of the ranking. Our main purpose is to examine the 

application potential of the SPEC algorithm of selection of models on the basis of their 

forecasting ability in terms of volatility. So, the mean and the median value of each of the 

5 evaluation criteria, in equations (4.3)-(4.7), were computed, yielding a total of 10 

evaluation criteria for each forecasting horizon from one day to one hundred days ahead. 

However, volatility is expressed either as the variance or as the standard deviation. Thus, 

in order to examine possible differences between forecasting the variance and its square 

root, the evaluation criteria were, also, applied on the standard deviation. Therefore,  
2

Nt  

and  
2

Nts , in equations (4.3)-(4.7), were replaced by  Nt  and  Nts , respectively and 10 

more evaluation criteria were computed. In total, 20 evaluation criteria were computed for 

a horizon ranging from one trading day to five trading months. In section 4.1, two realized 

volatility measures were mentioned. As, qualitatively, they are of the same nature, in the 

sequel, we base the analysis on the realized volatility as defined by  
2

Nts .xi 

It was examined whether the ARCH models selected by the SPEC algorithm 

achieve the lowest value of the evaluation criteria. The main focus was on the median 

values of the criteria and mainly on the heteroscedasticity adjusted criteria since they are 

more robust to asymmetry. The comparative evaluation is performed by computing the loss 

functions for variance forecasts always obtained by a single model on the one hand, and for 

variance forecasts obtained by models picked by the SPEC algorithm on the other. Table 2, 

presents the ARCH model that achieved the minimum value of each evaluation criterion. 

Table 2 refers to a subset of the forecasting horizon, but it is representative for the total set 

of 100 trading days ahead. The SPEC algorithm is applied for 16 values for T , and, in 

particular,  8055T . The SPEC(T ) value refers to the size T  for which the SPEC 
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algorithm achieves the minimum value of the evaluation criteria. The minARCH and 

minSPEC values refer to the minima of the evaluation criteria achieved by a single model 

and by models picked by the SPEC algorithm, respectively. As concerns the variance 

forecasts obtained by any single model, the results are in line with those existing in the 

literature, i.e. they are not consistent across all functions. Although, the exponential ARCH 

specification exhibits the best performance in the majority of the cases (84.1% of the cases 

presented in Table 2), the autoregressive order of the conditional mean is not constant 

across the evaluation criteria. However, the lag order 1 qp  of the EGARCH variance 

specification exhibits the best performance in 63.4% of the cases. 

Figure 2 shows, for each evaluation criterion and each forecasting horizon, whether 

ARCH models selected by the SPEC algorithm achieve the lowest value of the evaluation 

criteria. In the first part of Figure 2, the performance of the models, which are selected by 

the SPEC algorithm, on the basis of the conditional variance is depicted, while, the second 

part refers to their performance on forecasting standard deviation. The general conclusion 

is that the SPEC algorithm leads to the selection of the ARCH processes which track closer 

the realized volatility in the majority of the cases. Specifically, for the forecasting horizon 

ranging from 11 to 52 days, the models selected by the SPEC algorithm achieve the lowest 

criteria values, irrespectively of the evaluation criteria. The percentage of cases, in which 

the models picked by the SPEC algorithm achieve the lowest value of the evaluation 

criteria, is higher around the forecasting horizon ranging from 16 to 36 days ahead, or 4 to 

7 trading weeks ahead. The result is in accordance to Degiannakis and Xekalaki (2001) 

who provided evidence that option’s traders using variance forecasts for horizons ranging 

from ten to forty trading days obtained by models suggested by the SPEC algorithm 

achieved the highest rate of return among a set of model selection criteria. Table 3 presents 

the percentage of cases the models selected by the SPEC algorithm perform “better” than 

any other single model as judged by the evaluation criteria, for 3 different horizon ranges. 

Note that, in terms of the MSE and MAE criteria, none of the models chosen by the SPEC 

algorithm appears to perform better in any of the forecasting horizons considered. But, in 

terms of the median values of the criteria and the heteroscedasticity adjusted criteria, which 

are robust to asymmetry, the models selected by the SPEC algorithm appear to have a 

better performance than any other single model in all the forecasting horizons.  

It is interesting to note that, via the evaluation criteria, the suggested sample size, 

T , for the SPEC model selection algorithm can be determined. The SPEC model selection 

algorithm has been applied for  8055T . In the sequel, the value of T  for which the 

SPEC selection method achieves the best performance according to the evaluation criteria 

used, is examined. Figure 3 shows a plot of the average T , suggested by the evaluation 
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criteria, across the forecasting horizons. The bar charts are a graphical representation of the 

number of evaluation criteria by which the performance of the models selected by the 

SPEC algorithm were judged “better” than the performance of any other single model 

(measured on the right hand side vertical axis). For a 16 to 36 days ahead forecasting 

horizon, the appropriate T , as concerns the specific data, ranges around 20 days with a 

standard deviation of 3.6 days. Table 4 provides more details for the sample size of the 

SPEC selection method suggested by the evaluation criteria and its standard deviation for 

both the entire 16 to 36 day ahead forecasting horizon and for each day individually. The 

SPEC model selection algorithm shows a better performance for a sample size of about 20 

days. 

Several results in the literature (e.g. Lopez and Walter 2001, Christoffersen and 

Jacobs 2003 and Ferreira and Lopez 2003) reveal that the simplest model specifications are 

chosen a disproportionately large percentage of the time, while others (e.g. Vilasuso 2002, 

Brooks and Persand 2003, Hansen and Lunde 2003, Giot and Laurent 2003, 2004, 

Angelidis et al. 2004, Degiannakis 2004) indicate that the more flexible an ARCH model 

is, the more adequate it is in volatility forecasting, compared to parsimonious models. In 

order to give the reader a sense of which of the 85 models was selected most often, Table 5 

presents the models selected by the SPEC(20) algorithm. For example, the model with 

AR(0) conditional mean and GARCH(0,1) conditional variance was picked on 34 trading 

days. As concerns the conditional variance function, the GARCH, EGARCH and TARCH 

models were picked as the most suitable in the 38%, 39%, and 23% of the cases, 

respectively. On the basis of the results of Table 5, the SPEC algorithm does not appear to 

be noticeably biased towards selecting a specific type of model. This is in line with 

Degiannakis and Xekalaki’s (2001) findings. Tables for the remaining sample sizes T  of 

the SPEC algorithm were also constructed giving qualitatively similar resultsxii. 

6. C o m p a r i s o n  o f  t h e  S P E C  C r i t e r i o n  t o  O t h e r  M e t h o d s  o f  

M o d e l  S e l e c t i o n  

Most of the methods used in the time series literature for selecting the appropriate 

model are based on evaluating the ability of the models to describe the data. Standard 

model selection criteria such as the Akaike information criterion [AIC] (Akaike 1973) and 

the Schwarz Bayesian criterion [SBC] (Schwarz 1978) have widely been used in the 

ARCH literature, despite the fact that their statistical properties in the ARCH context are 

unknown. Hecq (1996), based on a set of Monte Carlo simulations, showed how the 

information criteria behave under the presence of ARCH effects. In small sample 

situations, the SBC is the best performing criterion. These are defined in terms of  ̂nl , the 



   

14 

 

maximized value of the log-likelihood function of a model, where ̂  is the maximum 

likelihood estimator of the parameter vector   based on a sample of size n  and 


 denotes 

the dimension of  , thus: 

  


 ˆ
nlAIC  (6.1) 

   . ln2ˆ 1
nlSBC n 


  (6.2) 

In addition, model selection is mainly based on the evaluation of some loss 

functions for each of the competing models. In this section, the statistical criteria, which 

were considered in section 4 as measures in evaluating the predictive performance of a 

variance model, are considered as criteria for the selection of ARCH models. In particular, 

the model selection methods presented in Table 6 are considered and their ability to predict 

future volatility is investigated. 

Applying the SPEC algorithm, the sum of squared standardized one-step-ahead 

prediction errors,   
T

t tttt1

2
1|

2
1|

ˆˆ  , was estimated considering various values for T . 

Therefore, each of the model selection criteria, in Table 6, was computed considering 

various values for T , and, in particular,  801010T . The AIC and SBC criteria were 

computed based on the rolling sample of constant size equal to 500, or 500n , that is 

used at each time to estimate the parameters of the models. Selecting a strategy for each 

method of model selection naturally amounts to selecting the model, which, at time k , has 

the lowest value of the formula is indicated in Table 6.  

As concerns the AIC and SBC selection methods, they do not achieve the lowest 

value of the evaluation criteria in almost all the cases, which is indicative of the inability of 

the in-sample model selection methods to suggest the models with superior volatility 

forecasting performance. The general conclusion is that the loss functions presented in 

Table 6 do not lead to the selection of the ARCH processes which track closer the realized 

volatility. The HAAEVar, HASEVar and HASEDev methods show a better performance, 

as they select the ARCH models with the lowest value of the evaluation criteria, around the 

forecasting horizon ranging from 16 to 36 days ahead. So, they might be used in selecting 

that model that generates “better” volatility predictions. The other selection methods failed 

to pick the models that perform “better” in almost all the cases. Ιndicatively, Table 7 

presents the percentage of cases the models selected by the HAAEVar and LEVar model 

selection methods perform “better” as judged by the evaluation criteria. The performance 

of the HASEVar and HASEDev selection methods is similar to that of the HAAEVa 

rmethod, whereas the performance of the remaining methods is similar to that of the 

LEVar method. Full tables for all the methods considered are available upon request. In 
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order to investigate whether the suggested model selection method indicates the ARCH 

models that track closer the realized volatility, the predictive ability of these loss functions 

must be compared to the volatility forecasting ability of the SPEC criterion, and mainly for 

a forecasting horizon ranging from 16 days to 36 days ahead.  

Of main interest is whether the ARCH models selected by the SPEC algorithm 

yield values for the evaluation criteria that are lower than those corresponding to the 

ARCH models selected by the model selection methods summarized in Table 6. As 

concerns forecasting horizons of 4 to 7 trading weeks ahead the performance of the SPEC 

algorithm is by far the best. Table 8 presents, indicatively, the percentage of times the 

ARCH models selected by the SPEC algorithm achieve lower values for the corresponding 

evaluation criteria and the specific forecasting horizons than the models selected by the 

HAAEVar and LEVar model selection methods. The SPEC algorithm performs “better” 

than the other methods of model selection in about 90% of the cases. This percentage is 

lower when the SPEC algorithm is compared to the HAAEVar, HASEVar and HASEDev 

methods. Nevertheless, even in such cases, the opponent methods select the ARCH models 

that track closer future volatility much less frequently than the SPEC algorithm. The 

percentage of times, an opponent to the SPEC algorithm selects the most appropriate 

models in forecasting future volatility, is highest in the case of the HAAEVar method. 

However, only in the 23% of the cases, the ARCH models selected by the HAAEVar 

method perform "better" than the models selected by the SPEC criterion, for any of the 3 

horizon ranges. The performance of the remaining model selection methods is similar to 

that of the LEVar method. Full tables with the comparison of all the model selection 

methods to the SPEC algorithm are available upon request. 

7. D i s c u s s i o n  

The SPEC method, for selecting an ARCH model among several competing 

models, amounts to choosing the model with the lowest sum of squared standardized one-

step-ahead forecasting errors. It incorporates the idea of “jumping” from one model to 

another, as stock market behavior alters. Thus, using the SPEC model selection algorithm 

every time a volatility forecast is required, allows shifting from the model used to predict 

the conditional variance the previous time to another. 

In this paper, a number of evaluation criteria, for forecasting horizons ranging from 

one day to one hundred days ahead, were applied and it was found that the ARCH models, 

picked by the SPEC model selection algorithm, generate “better” predictions of the 

volatility. Thus, the SPEC selection method appears to be a useful tool in guiding one’s 

choice of the appropriate model for estimating future volatility, with applications in 

evaluating portfolios, derivatives and financial risk. 
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Brooks and Persand’s (2003) evaluation approach was adopted and multi-step-

ahead forecasts were evaluated based on overlapping time periods. Alternatively, one 

might like to consider non-overlapping time periods and apply other evaluation schemes, 

such as those proposed by Diebold and Mariano (1995), Hansen and Lund (2003) or 

Hansen et al. (2003). 

A topic worth exploring is the application of SPEC algorithm on models that 

account for recent developments in the area of volatility. Considering fractional integration 

of the conditional variance, for example, is an interesting question with regard to 

investigating  SPEC’s applicability further.  (For more details, see, e.g., Giot and Laurent 

2003 and Degiannakis 2004). Finally, assessing the utility of the SPEC algorithm as a tool 

in model selection for ARCH models with non-normally distributed conditional 

innovations would be equally worthy as it would bring into play more general forms of 

models in the statistical and econometric literature. 
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Table 1. The estimation steps required at time k  for each model m  by the 

SPEC model selection algorithm. At time k  ( ,...1,  TTk ), select the model 

m  with the minimum value for the sum of the squares of the T  most recent 

standardized one-step-ahead prediction errors,      
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Table 3. The percentage of times the ARCH models selected by the SPEC algorithm perform "better" than 

any other single model as judged by the evaluation criteria. The first and the second panel correspond to the 

mean and the median of the evaluation criteria, respectively. The left and the right part of the panels 

correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively. 

Days ahead 

forecasting 

horizon 

Mean 

Variance Standard Deviation 

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE 

1-100 0% 0% 47% 56% 34% 26% 26% 54% 56% 34% 

11-52 0% 0% 88% 100% 79% 62% 62% 100% 100% 79% 

16-36 0% 0% 100% 100% 100% 100% 100% 100% 100% 100% 

Days ahead 

forecasting 

horizon 

Median 

Variance Standard Deviation 

Med 

SE 

Med 

AE 

Med 

HASE 

Med 

HAAE 

Med 

LE 

Med 

SE 

Med 

AE 

Med 

HASE 

Med 

HAAE 

Med 

LE 

1-100 40% 40% 65% 65% 35% 38% 38% 50% 50% 35% 

11-52 64% 64% 88% 88% 83% 81% 81% 93% 93% 83% 

16-36 86% 86% 95% 95% 100% 90% 90% 100% 100% 100% 

MSE: Mean Square Error  

MAE: Mean Absolute Error  

MHASE: Mean Heteroscedasticity Adjusted Squared Error  

MHAAE: Mean Heteroscedasticity Adjusted Absolute Error  

MLE: Mean Logarithmic Error  

MedSE: Median Square Error  

MedAE: Median Absolute Error  

MedHASE: Median Heteroscedasticity Adjusted Squared Error  

MedHAAE: Median Heteroscedasticity Adjusted Absolute Error  

MedLE: Median Logarithmic Error    



   

 

 

 
 
 
           
Table 4. Average sample size for the SPEC model selection algorithm suggested by the evaluation 

criteria for both the entire 16 to 36 days ahead forecasting horizon and for each day individually. 

   Average sample size suggested by 

the Evaluation Criteria rating the 

performance of the SPEC 

selection algorithm "best". 

 
Average sample size suggested 

by all the Evaluation Criteria 

considered. 
    

Forecasting Horizon 

(in number of days 

ahead) 

 
Number of 

Criteria 

Average 

sample size 

Standard 

Deviation 

 Number 

of 

Criteria 

Average 

sample size 

Standard 

Deviation 
  

16-36  366 19.7 3.6  420 19.9 3.7 

16  12 23.8 1.7  20 26.0 2.5 

17  14 20.7 1.5  20 23.5 2.9 

18  18 24.7 2.8  20 24.3 2.7 

19  18 25.0 3.3  20 24.3 3.3 

20  18 23.6 3.3  20 23.0 3.3 

21  18 23.3 3.4  20 22.5 3.4 

22  18 20.0 3.8  20 19.5 3.6 

23  18 19.4 3.8  20 19.0 3.7 

24  18 19.4 3.8  20 19.0 3.7 

25  18 17.2 2.9  20 17.0 2.8 

26  18 17.2 2.9  20 17.0 2.8 

27  18 17.8 3.6  20 17.5 3.4 

28  18 18.3 3.1  20 18.0 2.9 

29  18 18.3 3.1  20 18.0 2.9 

30  18 20.6 6.5  20 20.0 6.2 

31  18 16.1 1.4  20 16.0 1.4 

32  18 17.8 3.6  20 17.5 3.4 

33  16 15.6 0.8  20 20.0 6.2 

34  18 21.1 4.7  20 20.5 4.5 

35  18 17.8 3.6  20 17.5 3.4 

36   18 17.8 2.9   20 17.5 2.8 



   

 

 

 

Table 5. Number of ARCH models selected by the SPEC(20) algorithm for 1081 

trading days, classified by the types of models considered for their conditional 

means and variances. 

 Type of Conditional Mean Model  

AR(0) AR(1) AR(2) AR(3) AR(4)  Total 

T
yp

e 
o

f 
C

on
d

it
io

na
l 

V
ar

ia
nc

e 
M

o
de

l 

GARCH(0,1) 34 14 0 8 6  62 

GARCH(0,2) 12 0 2 6 1  21 

GARCH(1,1) 31 24 4 12 14  85 

GARCH(1,2) 38 9 0 9 16  72 

GARCH(2,1) 21 0 8 1 6  36 

GARCH(2,2) 62 21 4 7 41  135 

TARCH(0,1) 0 0 0 0 0  0 

TARCH(0,2) 0 0 2 4 2  8 

TARCH(1,1) 1 6 0 2 3  12 

TARCH(1,2) 2 61 20 3 19  105 

TARCH(2,1) 0 1 26 22 5  54 

TARCH(2,2) 23 13 19 5 10  70 

EGARCH(0,1) 81 31 4 51 14  181 

EGARCH(0,2) 6 8 6 0 5  25 

EGARCH(1,1) 4 20 13 8 11  56 

EGARCH(1,2) 14 28 21 10 14  87 

EGARCH(2,1) 27 7 24 1 13  72 

 Total 356 243 153 149 180  1081 

 



   

 

 

 

Table 6. Methods of selection of ARCH models.  
2

Nt  denotes the forecasting variance over 

an N  day period measured at day t  and  
2

Nts  denotes the realized variance over the same 

period. 

 1. Square Error of Conditional Variance (SEVar): 

     



T

t

NtNt s
1

222  (6.3) 

 2. Absolute Error of Conditional Variance (AEVar): 

    



T

t

NtNt s
1

22  (6.4) 

 3. Square Error of Conditional Standard Deviation (SEDev): 

     



T

t

NtNt s
1

2
  (6.5) 

 4. Absolute Error of Conditional Standard Deviation (AEDev): 

    



T

t

NtNt s
1

  (6.6) 

 5. Heteroscedasticity Adjusted Squared Error of Cond. Variance (HASEVar): 

     



T

t

NtNts
1

2221   (6.7) 

 6. Heteroscedasticity Adjusted Absolute Error of Cond. Variance (HAAEVar): 

    



T

t

NtNts
1

221   (6.8) 

 7. Heteroscedasticity Adjusted Squared Error of Cond. St. Deviation (HASEDev): 

     



T

t

NtNts
1

2
1   (6.9) 

 8. Heteroscedasticity Adjusted Absolute Error of Cond. St. Deviation (HAAEDev): 

    



T

t

NtNts
1

1   (6.10) 

 9. Logarithmic Error of Conditional Variance (LEVar): 

     


T

t

NtNts
1

222ln   (6.11) 



   

 

 

 

Table 7. The percentage of times the ARCH models selected by the HAAEVar method perform "better" than 

any other single model as judged by the evaluation criteria. The first and the second panel correspond to the 

mean and the median of the evaluation criteria, respectively. The left and the right part of the panels correspond 

to the volatility expressed as the variance and the standard deviation of the returns, respectively. 

Days ahead 

forecasting 

horizon 

Mean 

Variance Standard Deviation 

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE 

1-100 2% 1% 4% 16% 0% 1% 12% 9% 34% 0% 

11-52 0% 0% 0% 14% 0% 0% 29% 0% 57% 0% 

16-36 0% 0% 0% 5% 0% 0% 57% 0% 90% 0% 

Days ahead 

forecasting 

horizon 

Median 

Variance Standard Deviation 

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE 

1-100 36% 36% 26% 26% 24% 26% 26% 24% 24% 24% 

11-52 64% 64% 52% 52% 52% 60% 60% 50% 50% 52% 

16-36 90% 90% 100% 100% 100% 86% 86% 95% 95% 100% 

The percentage of times the ARCH models selected by the LEVar method perform "better" than any other 

single model as judged by the evaluation criteria. 

Days ahead 

forecasting 

horizon 

Mean 

Variance Standard Deviation 

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE 

1-100 1% 2% 0% 0% 3% 2% 2% 0% 0% 3% 

11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Days ahead 

forecasting 

horizon 

Median 

Variance Standard Deviation 

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE 

1-100 8% 8% 1% 1% 2% 5% 5% 1% 1% 2% 

11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 



   

 

 

 

Table 8. The percentage of times the ARCH models selected by the SPEC method perform "better" than the 

ARCH models selected by the  HAAEVar criterion as judged by the evaluation criteria. The first and the second 

panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 

the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, 

respectively. 

Days ahead 

forecasting 

horizon 

Mean 

Variance Standard Deviation 

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE 

1-100 0% 60% 99% 99% 93% 94% 89% 98% 96% 93% 

11-52 0% 95% 100% 100% 100% 100% 98% 100% 100% 100% 

16-36 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Days ahead 

forecasting 

horizon 

Median 

Variance Standard Deviation 

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE 

1-100 36% 36% 92% 92% 83% 59% 57% 88% 88% 83% 

11-52 26% 26% 93% 93% 79% 52% 52% 88% 88% 79% 

16-36 19% 19% 90% 90% 76% 43% 43% 86% 86% 76% 

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models 

selected by the LEVar criterion as judged by the evaluation criteria. 

Days ahead 

forecasting 

horizon 

Mean 

Variance Standard Deviation 

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE 

1-100 97% 94% 100% 100% 96% 97% 95% 100% 100% 96% 

11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Days ahead 

forecasting 

horizon 

Median 

Variance Standard Deviation 

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE 

1-100 90% 90% 100% 100% 97% 92% 92% 99% 99% 97% 

11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Figure 3. Sample size of the SPEC model selection algorithm, suggested by the evaluation 

criteria. 
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i According to Campbell et al. (1997), “The non-synchronous trading or non-trading effect arises when time 

series, usually asset prices, are taken to be recorded at time intervals of one length when in fact they are 

recorded at time intervals of other, possible irregular lengths.” For more details on non-synchronous trading 

see Scholes and Williams (1977), Dimson (1979), Cohen et al. (1983) and Lo and MacKinlay (1988, 1990). 

ii For an overview of the Neural Networks (NN) literature, see Poggio and Girosi (1990), Hertz et al. (1991), 

White (1992), Hutchinson et al. (1994). Plasmans et al. (1998) and Franses and Homelen (1998) investigated 

the ability of NN on forecasting exchange rates. The non-linearity found in exchange rates is due to ARCH 

effects. Saltoglu (2003) investigated the forecasting ability of NN on interest rates and noted the importance 

of modeling both the first and second moments jointly. Jasic and Wood (2004) and Perez-Rodriguez et al. 

(2005) provided evidence that NN models have a superior ability compared to other model frameworks in 

predicting stock indices. 

iii Brock (1986), Holden (1986), Thompson and Stewart (1986) and Hsieh (1991) review applications of 

chaotic systems to financial markets. Adrangi and Chatrath (2003) found that the non-linearities in 

commodity prices are not consistent with chaos but they are explained by an ARCH process. On the other 

hand, Barkoulas and Travlos (1998) mentioned that even after accounting for the ARCH effect, the evidence 

is consistent with a chaotic structure of the Greek stock market. 

iv Priestley (1988), Tong (1990) and Teräsvirta et al. (1994) cover a wide variety of nonlinear models. 

Applications of SETAR and ARFIMA models can be found in Peel and Speight (1996) and Barkoulas et al. 

(2000), respectively. 

v For an overview of the ARCH literature see Bollerslev et al. (1992), Bera and Higgins (1993), Bollerslev et 

al. (1994), Hamilton (1994), Gourieroux (1997) and Degiannakis and Xekalaki (2004). 

vi For details, see Taylor (1994), Shephard (1996) and Selcuk (2005). 

vii Percentage points of the CGR distribution can be found in Xekalaki et al. (2003) and Degiannakis and 

Xekalaki (2005). 

viii For details and references about intra-day realized volatility the interested reader is referred to Andersen 

and Bollerslev (1997, 1998a, 1998b), Barndorff-Nielsen and Shephard (1998), Andersen et al. (1999), 

Andersen et al. (2000a), Andersen et al. (2000b, 2001a, 2003), Andersen et al. (2001b) and Andersen et al. 

(2004). 

ix Numerical maximization of the log-likelihood function, for the EGARCH(2,2) model, failed to converge in 

more than 1% of the trading days. So the five EGARCH models for 2 qp  were excluded. 



   

 

 

                                                                                                                                                    
x Here,  cbaT   denotes c,,...,2,, bcbabaaT  . 

xi The analysis was also conducted based on  
2

Nts


 giving qualitatively similar results. 

xii These tables are available upon request. 


