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ABSTRACT 

In statistical modeling contexts, the use of one-step-ahead prediction errors for testing hypotheses 

on the forecasting ability of an assumed model has been widely considered. Quite often, the 

testing procedure requires independence in a sequence of recursive standardized prediction errors, 

which cannot always be readily deduced particularly in the case of econometric modeling. In this 

paper, the results of a series of Monte Carlo simulations reveal that independence can be assumed 

to hold. 

 

Index terms: ARCH models, Monte Carlo Simulation, One-step-ahead Prediction Errors, 

Predictability, Standardized Prediction Error Criterion. 

                                                 
*
An earlier version of the paper was presented at the 7th Hellenic-European conference on computer mathematics and 

its applications (Degiannakis and Xekalaki 2005c). 
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I. INTRODUCTION 

Defining a standardized prediction error criterion (SPEC), Degiannakis and Xekalaki (2005a) 

proposed a model selection algorithm for ARCH models. The algorithm allows switching from 

the model used at time 1t  for forecasting volatility to another model for use at time t  and, in 

particular, to the model with the minimum value of the average squared standardized prediction 

error. As indicated by the results obtained by Degiannakis and Xekalaki (2005b), the SPEC model 

selection procedure appears to have a satisfactory performance in selecting the model that 

generates better volatility predictions. Moreover, the SPEC algorithm exhibited a satisfactory 

performance on a simulated options market (Xekalaki and Degiannakis 2005) as well as on 

trading S&P500 options on a daily basis (Degiannakis and Xekalaki 2001). The general finding is 

that the prediction performance improves if one switches models over time. In particular, 

switching from one model to another governed by the SPEC model selection rule appears to lead 

to a superior predictive performance. The reason might be traced in that jumping from one model 

to the other according to SPEC reflects a sort of a procedure adapting to the changes of the 

marketplace. However, model selection procedures based on standardized one-step-ahead 

prediction errors often require independence in a sequence of recursive standardized prediction 

errors, which cannot always be readily deduced particularly in the case of econometric modeling. 

In this paper, on the basis of the results of a series of Monte Carlo simulations, it is conjectured 

that independence holds. A theoretical justification can be found in Degiannakis and Xekalaki 

(2005a). 

II. THE ARCH PROCESS 

An ARCH process, 
t

 , is presented as: 
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where 
t

z  is a sequence of independently and identically distributed random variables, with 

autocorrelation,  tt
zzCor , , approximately  1,0 

TN  distributed, 
t

  is a time-varying, positive 

measurable function of the information set at time 1t  and  .g  could be a functional form that 

has been presented in the ARCH literature. 

Since very few financial time series have a constant conditional mean of zero, an ARCH 

model can be presented in a th  order autoregressive form by letting 
t

  be the innovation process 

in a linear regression: 
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The most commonly used conditional variance function is the GARCH(1,1) 

model: 2

11

2

110

2

 
ttt

baa  . 

A wide range of proposed ARCH models is covered in surveys such as Bollerslev et al. 

(1994) and Degiannakis and Xekalaki (2004). 

III. SIMULATION OF THE AR(1)GARCH(1,1) PROCESS 

In the sequel, a Monte Carlo simulation is used to provide evidence for the assumption of 

independently and identically distributed standardized one-step-ahead prediction errors. The 

procedure consists of three stages: 

1. Generate data from the AR(1)GARCH(1,1) process 

 Generate a series of 32000 values from the standard normal distribution, i.e.  1,0~
...

Nz
dii

t
. 

 Generate an equal number of values  32000

1tt
  of the innovation ARCH process, by 

multiplying the collection  32000

1tt
z by a specific conditional variance form, or 2

ttt
z   , for 

2

1

2

1

2 8.012.00001.0  
ttt

 . 

 Generate a first order autoregressive processes, 
ttt

yy  1
06.0 , for the conditional mean, 

based on the values  32000

1tt
  of the innovation process. 

Panel A of Figure 1 plots the simulated processes while panel A of Table 1 presents the relevant 

descriptive statistics. According to results obtained in literature (e.g. Engle and Mustafa 1992), 

the shocks to the variance,    
ttttttt

vEE  
222

1

2  , generate a martingale difference 

sequence. These shocks are neither serially independent nor identically distributed. According to 

the Brock et al.’s (1996) BDS test for independence only the process defined by 
t

z  is 

independently distributed. The test is presented for two correlated dimensions but it has been 

computed for higher values and the results are qualitatively unchanged. Panel A of Figure 2 

presents the autocorrelation of transformations of the processes defined by 
t

z ,
t

v ,
t
 . The half-

length of the 95% confidence interval for the estimated sample autocorrelation equals 

0113.0/96.1 T , in the case of a process with independently and identically normally distributed 

components. On the other hand, the processes defined by 
t

v  and 
t

  are autocorrelated in half of 

the cases. Ding and Ganger (1996) give the autocorrelation function of the squared errors for the 
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GARCH(1,1) process and Karanasos (1999) extends the results to the GARCH(p,q) model. He 

and Teräsvirta (1999) derive the autocorrelation function of the squared and absolute errors for a 

family of first order ARCH processes. 

2. Estimate the parameters of the AR(1)GARCH(1,1) model 

 The AR(1)GARCH(1,1) model is applied, for the data produced from the 

AR(1)GARCH(1,1) process. Dropping out the first 1000 data, maximum likelihood estimates of 

the parameters are obtained by numerical maximization of the log-likelihood function, using a 

rolling sample of constant size equal to 1000. At each of a sequence of points in time, the 

maximum likelihood parameter vector,  
ttttt

baac
,1,1,0,1

ˆ,ˆ,ˆ,ˆˆ  , is being estimated in order to compute 

the conditional mean and variance: 

tttt
ycy

,1|1
ˆˆ   

2

|,1

2

|,1,0

2

|1
ˆˆˆˆ

ttttttttt
baa   . 

(3) 

3. Compute the standardized one-step-ahead prediction errors,   1

|1|11|1
ˆˆˆ 

 
ttttttt

yyz   

According to Degiannakis and Xekalaki (2005a), under the assumption of constancy of 

parameters over time,         ˆˆ...ˆˆ
1   Ttt

, the estimated standardized one-step-ahead 

prediction errors 
TTtttt

zzz
|11|2|1

ˆ,...,ˆ,ˆ
  are asymptotically independently standard normally distributed. 

 The one-step-ahead estimated processes are presented in Panel B of Figure 1, while Panel 

B of Table 1 presents the relevant descriptive statistics. According to the tests of normality and 

independence, the one-step-ahead standardized prediction error process,   1

|1|11|1
ˆˆˆ 

 
ttttttt

yyz  , is 

independently normal distributed. Moreover, if  1,0~ˆ
...

|1
Nz

dii

tt , then 




T

t

tt
z

1

2

|1
ˆ  should be chi-square 

distributed with T  degrees of freedom, and mean and variance: 

TzE
T

t

tt
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
1
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|1
ˆ  and TzV

T

t

tt
2ˆ

1

2

|1 
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




 . (4) 

According to Table 2, which presents the descriptive statistics of 




T

t

tt
z

1

2

|1
ˆ , the processes are chi-

square distributed in all the cases. Moreover, if 
tt

z
|1

ˆ
  is a sequence of i.i.d. variables then the 

autocorrelation of any transformation of 
tt

z
|1

ˆ
 ,  d

tt

d

tt
zzCor   |1|1
ˆ,ˆ , 0d , is  1,0 

TN  distributed. 

Panel B of Figure 2 presents the autocorrelation of transformations of the processes 
tt

z
|1

ˆ
 ,

tt |1
ˆ
 ,

tt
v

|1
ˆ
 . 

Since the sum of squared standardized one-step-ahead prediction errors is chi-square distributed, 

and the transformations of 
tt

z
|1

ˆ
  are not autocorrelated, our findings point towards the 

independence of the standardized one-step-ahead innovations, 
tt

z
|1

ˆ
 . 
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IV. SIMULATION OF THE GARCH, EGARCH AND TARCH PROCESSES 

In the sequel, the assumption that the standardized one-step-ahead prediction errors are 

independently and identically distributed is investigated for higher order of autoregressive 

processes for the conditional mean and conditional variance functions of the following types: 

The GARCH(p,q) model, Bollerslev (1986): 
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The EGARCH(p,q) model, Nelson (1991): 
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The TARCH(p,q) model, Glosten et al. (1993): 
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where 1
t

d  if 0
t
 , and 0

t
d  otherwise. 

The procedure followed is comprised of the following steps: 

1. Eight processes have been generated with coefficients presented in Table 3 

2. Estimate the parameters of the simulated processes 

 At each of a sequence of points in time, the maximum likelihood parameter vector 

 
ttttttttt

baaaccc ,1,1,2,1,0,3,2,1
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ    is being estimated. The models are estimated 30000 times and 

the conditional mean and variance are computed in (8)-(11): 

The th  order Autoregressive process: 
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ittitt
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The GARCH(1,q) model: 
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The EGARCH(1,1) model: 
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The TARCH(1,q) model: 
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3. Compute the standardized one-step-ahead prediction errors   1

|1|11|1
ˆˆˆ 

 
ttttttt

yyz   

Due to space limitations all the relative information for each of the eight generated processes are 

available upon request. The evidence from our findings is in support of the hypothesis of 
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independently and identically distributed standardized one-step-ahead prediction errors in this 

case too. 

Finally, one more set of GARCH(1,1) processes is simulated in order to investigate if 

changes in the  coefficients affect the distribution of 
tt

z
|1

ˆ
 . We generate a series  20000

1tt
  of 20000 

values for each of 18 innovation GARCH(1,1) processes by multiplying the generated values of 

t
z  by 

t
  from   2

11

2

1

2 05.0002.0  
t

k

tt
b   , where  

kb
k *05.01   for 18,...,2,1k .There is no 

evidence against the property of independently distributed standardized prediction errors. 

V. CONCLUSION 

The findings are in support of the hypothesis of independence of the 
tt

z
|1

ˆ
 . Moreover, changes in 

the types of conditional variance function, the order of the autoregressive process of the 

conditional mean and as well as the values of the coefficients considered do not appear to affect 

these findings. 
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FIGURES & TABLES 

Table 1. Descriptive statistics of the simulated processes (Panel A) and the one-step-ahead 

estimated processes (Panel B). The Crámer-Von Misses and Anderson-Darling statistics test 

the null hypothesis that the process is normally distributed. The BDS statistic tests the null 

hypothesis that the process is independently and identically distributed. 

 Panel A Panel B 

  32000

2000tt
z   32000

2000tt
   32000

2000tt
y   30000

1|1
ˆ

 ttt
z   30000

1|1
ˆ

 ttt
   30000

1|1
ˆ

 ttt
y  

Mean      0.006139 0.000218 0.000232 0.006218 0.000214 1.73E-05 

Median   0.001398 3.81E-05 6.16E-05 0.003156 9.65E-05 4.14E-07 

Std. Dev.    0.999047 0.035500 0.035562 1.004477 0.035514 0.002390 

Skewness    0.015896 0.017497 0.023013 0.016695 0.014996 0.086885 

Kurtosis    3.004320 3.703915 3.712639 3.027268 3.699045 5.895584 

Crámer-Von Misses 0.039066 2.175911 2.205750 0.046491 2.177987 68.12699 

[p-value] 0.6992 0.00 0.00 0.5643 0.00 0.00 

Anderson-Darling 0.241252 14.30484 14.52898 0.315299 14.29365 361.4363 

[p-value] 0.7728 0.00 0.00 0.5430 0.00 0.00 

BDS 8.13E-05 0.011808 0.012084 2.19E-05 0.011849 0.033372 

[p-value] 0.8244 0.00 0.00 0.9526 0.00 0.00 
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Table 2. Descriptive statistics of    

t

Ttj jj
z

1

2

|1
ˆ , for  30000TTt  . The Crámer-Von Misses and 

Anderson-Darling statistics test the null hypothesis that the process is chi-squared distributed. 

 2T  4T  10T  20T  

Mean  2.017960  4.035919  10.08980  20.17960 

Variance  4.128895  8.334519  21.34030  41.31167 

Crámer-Von Misses 0.110346 0.080465 0.121311 0.112239 

[p-value] 0.5364 0.6889 0.4898 0.5274 

Anderson-Darling 1.057137 0.590629 1.112229 0.686104 

[p-value] 0.3286 0.6569 0.3034 0.5705 

Observations  15000  7500  3000  1500 

 

Table 3. Coefficients of the simulated processes. 

Model Parameters 

 1
c  2

c  
3

c  
0

a  
1

a  2
a  

1
b  

1
  

AR(1)GARCH(1,1) 0.05 - - 0.002 0.05 - 0.91 - 

AR(1)EGARCH(1,1) 0.05 - - 0.2 0.05 - 0.2 0.1 

AR(1)TARCH(1,1) 0.05 - - 0.002 0.15 - 0.7 -0.08 

AR(1)GARCH(1,2) 0.05 - - 0.002 0.05 0.08 0.8 - 

AR(1)TARCH(1,2) 0.05 - - 0.002 0.15 0.05 0.7 -0.08 

AR(3)GARCH(1,1) 0.1 0.03 -0.02 0.002 0.05 - 0.91 - 

AR(3)EGARCH(1,1) 0.12 0.07 -0.03 0.001 0.05 - 0.2 0.1 

AR(3)TARCH(1,1) 0.1 0.03 -0.02 0.002 0.15 - 0.7 -0.08 
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Figure 1. The simulated processes (Panel A) and the one-step-ahead estimated processes (Panel B) 
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Figure 2. Autocorrelation of transformations of the processes 
t

z ,
t
 ,

t
v (Panel A) and 

tt
z

|1
ˆ
 ,

tt |1
ˆ
 ,

tt
v

|1
ˆ
 (Panel B) 

Panel A Panel B 
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