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Abstract 

Predicting the one-step-ahead volatility is of great importance in measuring and managing 

investment risk more accurately. Taking into consideration the main characteristics of the conditional 

volatility of asset returns, I estimate an asymmetric Autoregressive Conditional Heteroscedasticity 

(ARCH) model. The model is extended to also capture i) the skewness and excess kurtosis that the asset 

returns exhibit and ii) the fractional integration of the conditional variance. The model, which takes into 

consideration both the fractional integration of the conditional variance as well as the skewed and 

leptokurtic conditional distribution of innovations, produces the most accurate one-day-ahead volatility 

forecasts. The study recommends to portfolio managers and traders that extended ARCH models 

generate more accurate volatility forecasts of stock returns. 
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1 .  I n t r o d u c t i o n  

 

I investigate the forecasting ability of a set of conditional volatility models in predicting the 

one-day-ahead conditional standard deviation of three stock indices. Taking into consideration the 

properties that characterize financial markets (non-synchronous trading, volatility clustering, integrated 

conditional variance, asymmetries in the response of volatility to the sign of returns, Box-Cox power 

transformation of the conditional volatility process and the asymmetric absolute innovations), I estimate 

the Generalized ARCH (GARCH), the Integrated Generalized ARCH (IGARCH) and the Asymmetric 

Power ARCH (APARCH) models. Moreover, I extend the APARCH model in order to capture the 

conditional variance response to past innovations by introducing the fractional integration of the 

conditional variance. Also, the used model framework is modified for explaining the skewness and 

excess kurtosis that the asset returns exhibit by assuming that the conditional innovations are skewed-t 

distributed. In total, 5 conditional volatility specifications are considered in the context of ARCH 

models and their forecasting ability is explored in two ways. First, I consider two loss functions that 

measure the distance between predicted and realized intra-day volatility. Second, the ability of the 

models in forecasting the one-day-ahead Value-at-Risk (VaR) measure, for both long and short trading 

positions, is investigated. In both cases, the statistical significance of model’s predictive accuracy is 

tested based on Diedold and Mariano (1995) methodology. 

The APARCH model that takes into consideration both the fractional integration of the 

conditional variance and the skewed and leptokurtic conditional distribution of innovations produces 

the most accurate one-day-ahead volatility forecasts. The extended ARCH model exhibits superior 

forecasting ability over the parsimonious ARCH models. This result appears in accord with the studies 

of Brooks and Persand (2003), Giot and Laurent (2003), Hansen and Lunde (2003) and Vilasuso 

(2002). The present study reinforces the conclusions of the previous studies, providing evidence for the 

accuracy of the one-day-ahead volatility forecasts as measures of the realized intra-day volatility and of 
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the VaR estimation. In respect of one-day-ahead volatility forecasting, the extended model does not 

suffer from over-fitting but gives the most accurate predictions. 

In the second section of this article, a short and concise description of the ARCH framework is 

provided. Section three contains the used dataset and illustrates the estimation method of the models. 

The fourth section compares the predictive ability of the estimated models. In the last section, the 

conclusions of this study are presented. 

 

2 .  T h e  A R C H  f r a m e w o r k  o f  E s t i m a t i n g  V o l a t i l i t y  

 

For tP  denoting the price of an asset at time t, let  1ln  ttt PPy  denote the continuously 

compounded return series and     ttttt yEIyE   11|  denotes the conditional mean given the 

information set 1tI  available in time 1t . The innovation process for the conditional mean is then 

given by ttt y    with corresponding unconditional variance   2 tV  and zero unconditional 

mean. The conditional variance is defined by     2
11| ttttt yVIyV   . An ARCH process,  t , 

can be presented as: 
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where  .f  is the density function of tz , with     1,0  tt zVzE , w  is the vector of the parameters 

of f ,  .g  is a linear or nonlinear functional form and t  is a vector of predetermined variables 

included in tI . The conditional mean is considered as a first order autoregressive process, 

110  tt ycc , in order to account for the non-synchronous trading. According to Campbell et al. 

(1997), “The non-synchronous trading effect arises when time series, usually asset prices, are taken to 
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be recorded at time intervals of one length when in fact they are recorded at time intervals of other, 

possible irregular lengths”. 

Engle (1982) introduced the original form of  .2
gt   as a linear function of the past q  

squared innovations: 
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where 00  , 0ia , for qi ,...,1 . Bollerslev (1986) proposed a generalization of the ARCH( q ) 

process, the GARCH( qp, ) model, by allowing for past conditional variances in the current conditional 

variance equation: 
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where 00  , 0ia , qi ,...,1  and 0jb , pj ,...,1 . The unconditional variance is equal to 
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 turns out to be very close to unity, providing the motivation, for the development of 

the so-called integrated GARCH, or IGARCH( qp, ), model by Engle and Bollerslev (1986): 
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where L  is the lag operator. The polynomial 1
11
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  dqp ,max  roots outside the unit circle.  The Exponentially Weighted Moving Average (EWMA) 

model, used by RiskMetricsTM (1995) in their VaR methodology for daily data, is a special case of the 

IGARCH(1,1) model with zero intercept and 94.01 b . 

Ding et al. (1993) introduced the APARCH( qp, ) model, which allows the power   of the 

heteroscedasticity equation to be estimated from the data: 
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where 00 a , 0 , 0ia  and 11  i , for qi ,...,1  and 0jb , for pj ,...,1 . The 

model introduces a Box-Cox power transformation on the conditional standard deviation process and on 

the asymmetric absolute innovations. 

Tse (1998) based on the observation that volatility tends to change quite slowly over time, 

introduced the Fractionally Integrated Asymmetric Power ARCH, or FIAPARCH( qp, ), model in the 

following form: 
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. The model (6) is strictly stationary and ergodic for 

10  d . In contrast to the GARCH and IGARCH models where shocks to the conditional variance 

either dissipate exponentially or persist indefinitely, for the FIAPARCH model the response of the 

conditional variance to past shocks decays at a slow hyperbolic rate. 

In the original paper of Engle (1982), the density function of tz ,  .f , was considered as the 

standard normal distribution. Bollerslev (1987) was the first who introduced non-normality for  .f  in 

order to produce unconditional distribution with thicker tails. Lambert and Laurent (2000, 2001), based 

on Fernández and Steel (1998), suggested that not only the conditional distribution of innovations may 

be leptokurtotic, but also asymmetric and proposed the use of the skewed Student t density function: 
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where g  is the asymmetry parameter, v  denotes the degrees of freedom of the distribution,  .  is the 

gamma function, 1td  if smzt / , and 1td  otherwise, 
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Financial literature is full of ARCH presentations whose modelisation was motivated by the 

various characteristics of financial markets. A wide range of proposed ARCH processes is covered in 

surveys such as Bera and Higgins (1993), Bollerslev et al. (1994), Degiannakis and Xekalaki (2004), 

Gouriéroux (1997), Li et al. (2001) and Poon and Granger (2003). 

 

3 .  D a t a s e t  a n d  M e t h o d  o f  M o d e l  E s t i m a t i o n  

 

The data set used in the present study consists of the CAC40, DAX30 and FTSE100 stock 

index daily returns in the period from July 10th, 1987 to June 30th, 2003 and is obtained from 

DataStream. Figure 1 plots the daily returns of the three stock indices and Table 1 presents their basic 

statistics. There is negative skewness and excess kurtosis in the three stock index daily returns, 

indicating the use of an asymmetric and leptokurtic conditional distribution of innovations such as the 

skewed Student t distribution. 

A number of studies, such as Brooks and Persand (2003), Giot and Laurent (2003) and Hansen 

and Lunde (2003), investigated whether more flexible models are able to beat the forecasting ability of 

the parsimonious GARCH(1,1) model. In the present study the GARCH(1,1) model with normally 

distributed innovations (GARCH(1,1)-N) and its extensions, the IGARCH(1,1)-N, the APARCH(1,1)-

N, the FIAPARCH(1,1)-N and the FIAPARCH(1,1) with skewed-t conditional distributed innovations 

(FIAPARCH(1,1)-skT) models are estimated. The main purpose of the study is to provide evidence for 

the use of extended ARCH models, such as the FIAPARCH(1,1)-skT model, in predicting future 

volatility.  

The five models are estimated using a rolling sample of constant size equal to 2000 

observations, by the maximum likelihood method. The GARCH(1,1)-N model is the most parsimonious 

model and requires the estimation of 5 parameters ( 11010 ,,,, baacc ). On the other hand, the most 

extended model is the FIAPARCH(1,1)-skT, which has 10 parameters for estimation 
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( gvdbaacc ,,,,,,,,, 11010  ).  Since, in estimating non-linear ARCH models, no closed form 

expressions are obtainable for the parameter estimators, the BHHH iterative algorithm (Berndt et al. 

1974) is employed. For technical details about the model estimation, the interested reader is referred to 

Bollerslev et al. (1994, section 2.2.1) and Degiannakis and Xekalaki (2004, section 4.1).  The 

parameters of the models are re-estimated every trading day, in order to incorporate the most recent 

information for the trading behavior. This is a major difference with other studies such as Hansen and 

Lunde (2003), Klaassen (2002), Vilasuso (2002), where the forecasts were calculated using the 

parameters of the model that had been estimated once. Vilasuso (2002) estimated the parameters of his 

model using all the available dataset, while Klaassen (2002) and Hansen and Lunde (2003) estimated 

the in-sample parameters of their models and based on them, they derived the volatility forecasts. Giot 

and Laurent (2003) re-estimated the model parameters every 50 trading days as they supported that 

there are no qualitative differences as when one updates the parameters on a daily base. 

 

4 .  E v a l u a t e  t h e  P r e d i c t i v e  A b i l i t y  o f  t h e  A R C H  M o d e l s  

 

In order to investigate the predictability of the models, a two-fold evaluation procedure is 

followed. First, I define two statistical criteria to measure the distance between predicted and realized 

intra-day volatility. Second, I compute the VaR measure and investigate which model can predict the 

next day’s financial loss more accurately. 

4 . 1  P r e d i c t i n g  I n t r a - d a y  V o l a t i l i t y  

 

Two measures of the closeness of the forecasts to the realizations are used in order to evaluate 

the ability of the models in forecasting one-step-ahead intra-day volatility: 1) the heteroscedasticity-

adjusted squared error (HASE) and the logarithmic error (LE) loss functions. Denoting the one-step-
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ahead forecasting variance by 2
|1 tt , and the realized intra-day variance at time 1t  by 2

1th , the loss 

functions were considered as: 

 



 

T

t

ttthTHASE
1

22
|1

2
1

1 1  , (8) 

 





T

t

ttthTLE
1

22
|1

2
1

1 ln  , (9) 

where T  is the number of the one-step-ahead volatility forecasts. The HASE function and the LE 

function were introduced by Andersen et al. (1999) and Pagan and Schwert (1990), respectively. The 

realized intra-day volatility of day t  is computed as: 
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where   tmP ,  is the discretely observed series of prices of an asset at day t  with m  observations per 

day. In order to avoid market microstructure frictions without lessening the accuracy of the continuous 

record asymptotics, I used five-minute linearly interpolated prices. The 5-minutes sampling frequency 

were also used by Andersen and Bollerslev (1998), Andersen et al. (1999), Andersen et al. (2000), 

Andersen et al. (2001a) and Kayahan et al. (2002) among others. For information and reference about 

the construction and the properties of the intra-day data, the reader is referred to Andersen et al. 

(2001b), Andersen et al. (2003) and Andersen et al. (2004). Olsen and Associates provided the intra-day 

quotation data. 

In the sequel, the model with the lowest value of the loss function was tested against the other 

models in order to investigate whether its forecasting performance is statistically superior. The 

statistical significance of the volatility forecasts was investigated using the Diedold and Mariano (1995) 

methodology. Let B

t

A

tt HASEHASEDM  , where A

tHASE  and B

tHASE  are the HASE values at 

time t  of models A  and B , respectively. The Diebold-Mariano statistic is the t-statistic derived by the 

regression of tDM  on a constant with Newey and West (1987) heteroscedastic and consistent (HAC) 
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standard errors. Under the null hypothesis, the model with the lowest value of the loss function has 

equal predictive ability with the alternative model. Under the alternative hypothesis, the model with the 

lowest value of the loss function has superior predictive ability. According to Table 2, which presents 

the values of the HASE and LE loss functions and the relative Diebold-Mariano statistics, the 

FIAPARCH(1,1)-skT model either yields the lowest value of the loss functions or produces volatility 

forecasts whose predictive accuracy is not statistically significant to the forecasts of the model with the 

lowest value of the loss function. Only, in the case of the FTSE100 index and the LE loss function, the 

FIAPARCH(1,1)-skT model is statistically significant to the FIAPARCH(1,1)-N model, which  yields 

the lowest value of the LE loss function. According to the 2nd Figure, which plots the realized intra-day 

volatility and the relative one-day-ahead volatility forecasts of the FIAPARCH(1,1)-skT model, it 

tracks the realized volatility very close. 

4 . 2  P r e d i c t i n g  V a R  M e a s u r e  

 

VaR at level of significance a , is a measure, which refers to the predicted financial loss over a 

specified period with a given probability a1 . Traders do not concentrate only on buying assets, as 

their portfolios may consist of both long and short trading positions. Thus, the ability of the models 

discussed here in forecasting VaR should be evaluated for trades that are profitable regardless of 

whether the asset price increases or decreases. The VaR number for the next trading day, given the 

information set at day t , is computed as: 

ttatt FVaR |1|1    , (11) 

where aF  is the corresponding quantile of the assumed unconditional distribution of innovations. For 

long and short trading positions aF  is the left and right quantile at %a , respectively. The adequacy of 

the models, in a risk management framework, is investigated by the construction of a loss function that 

measures the squared distance between actual daily returns and one-step-ahead VaR.1 The model with 

the minimum value of (12) is considered as the most appropriate: 
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For long trading positions, 1td  if 1|  ttt VaRy  and 0td  otherwise, whereas, for short trading 

positions, 1td  if 1|  ttt VaRy  and 0td  otherwise. According to Table 3, the FIAPARCH(1,1)-

skT model achieves the lowest value of loss function (12) for both long and short trading positions and 

the three stock indices under investigation. Under the null hypothesis of the Diebold-Mariano test, the 

model with the lowest value of the loss function has equal predictive ability in forecasting one-day-

ahead VaR with the alternative model. The accuracy of the FIAPARCH(1,1)-skT model’s  VaR 

predictions is statistically superior in the majority of the cases. 

Brooks and Persand (2003), Giot and Laurent (2003), Hansen and Lunde (2003) and Vilasuso 

(2002) among others have reached to the conclusion that flexible models produce accurate volatility 

forecasts. Brooks and Persand (2003) modeled volatility for S&P500 and Southeast Asian stock market 

indices. They noted that models, which allow for asymmetries either in the unconditional return 

distribution or in the response of volatility to the sign of returns, lead to VaR measures, which would be 

deemed more accurate under the Basle Committee rules. Giot and Laurent (2003) estimated daily VaR 

for stock index returns by using an APARCH model with skewed distribution and pointed out that it 

performed better than the pure symmetric one, because it reproduced the characteristics of the empirical 

distribution more accurately. Hansen and Lunde (2003) investigated DM-$ exchange rates and IBM 

stock returns and concluded that, although, the parsimonious GARCH(1,1) model was not 

outperformed in its forecasting ability by more sophisticated models in the case of DM-$ exchange 

rates, in the case of stock returns, models, which account for asymmetric effects, have produced more 

accurate volatility forecasts. Vilasuso (2002) showed that a FIGARCH model with normally distributed 

innovations generated superior out-of-sample exchange rate volatility forecasts. The present study has 

reached the conclusion that the FIAPARCH(1,1)-skT, an extended ARCH model, generates more 

accurate volatility forecasts. Usually, researchers reach to the conclusion that the extended models 
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provide excellent in-sample performance but poor out-of-sample predictability. However, in the case of 

one-day-ahead volatility forecasting, the FIAPARCH(1,1)-skT model does not seem to suffer from the 

over-fitting symptom. On the contrary, it produces the most accurate volatility forecasts in the majority 

of the cases. 

 

5 .  C o n c l u s i o n  

 

The ability of volatility models, under the ARCH framework, to produce accurate forecasts of i) 

one-day-ahead realized intra-day volatility and ii) one-day-ahead VaR was investigated. It was found 

that the FIAPARCH(1,1)-skT model generates improved one-day-ahead volatility predictions. It is an 

asymmetric ARCH model that takes into consideration the Box-Cox power transformation of the 

conditional standard deviation process and the asymmetric absolute innovations, the fractional 

integration of the conditional variance as well as the skewed and leptokurtic conditional distribution of 

innovations. Therefore, the use of flexible models, which account for recent developments in the area of 

asset returns’ volatility, is important in obtaining more accurate one-step-ahead volatility forecasts. 

Portfolio managers should take into consideration the ability of volatility specifications, such as the 

FIAPARCH(1,1)-skT model, in forecasting one-day-ahead volatility more accurately.  
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Table 1. Daily returns basic statistics. 

 CAC40 DAX30 FTSE100 

Mean 
0.000183 0.000206 0.000132 

Standard Deviation 
0.014108 0.015186 0.011155 

Skewness 
-0.2671 -0.4850 -0.7660 

Kurtosis 
7.1050 8.8777 13.2623 

Number of Observations 
4001 4008 4031 
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Table 2. HASE and LE loss functions, as they are computed in (8) and (9), respectively, and the relative 

Diebold-Mariano statistics. 

 CAC40 DAX30 FTSE100 

Model 

HASE 

Loss 

Function 

DM 

Statistic 

HASE 

Loss 

Function 

DM 

Statistic 

HASE Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 9.045655 -2.52774* 0.485761 -1.94042 0.488443 -1.58756 

IGARCH(1,1)-N 7.970780 -2.21427* 0.447328 -- 0.479234 -1.14582 

APARCH(1,1)-N 7.349019 -2.47113* 0.474691 -0.57499 0.454476 -0.64122 

FIAPARCH(1,1)-N 6.341504 -1.51987 0.464788 -0.49778 0.445565 -- 

FIAPARCH(1,1)-skT 6.252786 -- 0.452104 -0.11375 0.453901 -1.44746 

Model 
LE Loss 

Function 

DM 

Statistic 

LE Loss 

Function 

DM 

Statistic 

LE Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 0.762832 -5.67353** 1.473186 -7.59009** 1.207131 -5.60130** 

IGARCH(1,1)-N 0.891378 -8.71770** 1.570528 -10.1103** 1.213684 -5.53343** 

APARCH(1,1)-N 0.704857 -- 1.292694 -6.26598** 1.139915 -3.81473** 

FIAPARCH(1,1)-N 0.724752 -2.02689* 1.456512 -7.11328** 1.062456 -- 

FIAPARCH(1,1)-skT 0.719542 -1.26751 1.136389 -- 1.079832 -2.71098** 

*Statistically significant at 5%. 

** Statistically significant at 1%. 
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Table 3. The loss function in (12), which measures the squared distance between actual daily returns 

and one-day-ahead VaR forecast, and the relative Diebold-Mariano statistics. The first and the second 

panel refer to the VaR at %5a  and %1a  levels of significance, respectively. 

 CAC40 DAX30 FTSE100 

 %5a  

 Long Positions 

Model 
Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 0.065551 -3.89179** 0.087170 -4.007482** 0.041990 -3.816774** 

IGARCH(1,1)-N 0.055388 -2.47118** 0.066870 -2.338562* 0.037960 -3.222050** 

APARCH(1,1)-N 0.065596 -5.40206** 0.087871 -4.897153** 0.037681 -4.473745** 

FIAPARCH(1,1)-N 0.063253 -5.97315** 0.086078 -4.510446** 0.037282 -5.822649** 

FIAPARCH(1,1)-skT 0.042675 -- 0.053523 -- 0.023751 -- 

 Sort Positions 

Model 
Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 0.044903 -3.85406** 0.038727 -3.288739** 0.017074 -2.740793** 

IGARCH(1,1)-N 0.035263 -1.74338 0.029910 -0.837396 0.014234 -1.132025 

APARCH(1,1)-N 0.041037 -4.98423** 0.037286 -4.913541** 0.014402 -2.031883* 

FIAPARCH(1,1)-N 0.040013 -5.04504** 0.037238 -3.385501** 0.015622 -4.657467 

FIAPARCH(1,1)-skT 0.029958 -- 0.027336 -- 0.012470 -- 

 %1a  

 Long Positions 
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Model 
Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 0.018611 -2.07918* 0.026076 -2.071137* 0.011895 -2.148599* 

IGARCH(1,1)-N 0.016305 -1.81311 0.017439 -1.813110 0.010593 -1.930740 

APARCH(1,1)-N 0.017799 -2.70251** 0.027427 -2.480588* 0.009448 -2.334256* 

FIAPARCH(1,1)-N 0.015945 -2.72616** 0.025671 -2.344886* 0.008977 -2.815065** 

FIAPARCH(1,1)-skT 0.007119 -- 0.009478 -- 0.003468 -- 

 Sort Positions 

Model 
Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

Loss 

Function 

DM 

Statistic 

GARCH(1,1)-N 0.006970 -2.42590** 0.007536 -2.356176* 0.002387 -1.785638 

IGARCH(1,1)-N 0.003923 -1.68471 0.005083 -1.723925 0.001786 -1.142707 

APARCH(1,1)-N 0.006059 -2.63054** 0.007156 -2.655640** 0.001846 -1.735150 

FIAPARCH(1,1)-N 0.005716 -2.69535** 0.009186 -2.425682* 0.002126 -2.891783** 

FIAPARCH(1,1)-skT 0.002142 -- 0.003344 -- 0.001103 -- 

*Statistically significant at 5%. 

** Statistically significant at 1%. 
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Figure 1. CAC40, DAX30 and FTSE100 stock index daily returns in the period from July 10th, 1987 to June 30th, 

2003. 
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Figure 2. The realized intra-day volatility and the relative one-day-ahead forecasts of the FIAPARCH(1,1)-skT 

model for the CAC40 (July 20th 1995 – June 30th 2003), DAX30 (July 11th 1995 – June 30th 2003) and 

FTSE100 indices (June 14th 1995 – June 30th 2003). 
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