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Abstract 

 

 
Autoregressive Conditional Heteroscedasticity (ARCH) models have successfully 

been employed in order to predict asset return volatility. Predicting volatility is of great 

importance in pricing financial derivatives, selecting portfolios, measuring and managing 

investment risk more accurately. In this paper, a number of univariate and multivariate 

ARCH models, their estimating methods and the characteristics of financial time series, 

which are captured by volatility models, are presented. The number of possible 

conditional volatility formulations is vast. Therefore, a systematic presentation of the 

models that have been considered in the ARCH literature can be useful in guiding one’s 

choice of a model for exploiting future volatility, with applications in financial markets.  
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1 .  I n t r o d u c t i o n  

 

Since the first decades of the 20th century, asset returns have been assumed to 

form an independently and identically distributed (i.i.d) random process with zero mean 

and constant variance. Bachelier (1900) was the first who contributed the theoretical 

random walk model for the analysis of speculative prices. For  tP  denoting the discrete 

time asset price process and  ty  denoting the process of the continuously compounded 

returns, defined by  1log  ttt PPy , the early literature viewed the system that 

generates the asset price process as a fully unpredictable random walk process: 
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where t  is a zero-mean i.i.d. normal process. However, the assumptions of normality, 

independence and homoscedasticity do not always hold with real data. 

Figures 1 to 3 depict the continuously compounded daily returns of the Chicago 

Standard and Poor’s 500 Composite (S&P500) index, Frankfurt DAX30 stock index and 

Athens Stock Exchange (ASE) index. The data cover the period from 2nd January 1990 

to 27th June 2000. A visual inspection shows clearly, that the mean is constant, but the 

variance changes over time, so the return series is not a sequence of independently and 

identically distributed (i.i.d.) random variables. A characteristic of asset returns, which is 

noticeable from the figures, is the volatility clustering first noted by Mandelbrot (1963): 

“Large changes tend to be followed by large changes, of either sign, and small changes 

tend to be followed by small changes”. Fama (1970) also observed the alternation 

between periods of high and low volatility: “Large price changes are followed by large 

price changes, but of unpredictable sign”. 

A non-constant variance of asset returns should lead to a non-normal distribution. 

Figure 4 represents the histograms and the descriptive statistics of the stock market 

series plotted in Figures 1 to 3. Asset returns are highly leptokurtic and slightly 

asymmetric, a phenomenon correctly observed by Mandelbrot (1963): “The empirical 

distributions of price changes are usually too “peaked” to be relative to samples from 

Gaussian populations … the histograms of price changes are indeed unimodal and their  
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Figure 1. S&P500 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00 
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Figure 2. DAX 30 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00 
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Figure 3. ASE Continuously Compounded Daily Returns from 18/1/90 to 27/06/00 
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central bells remind the Gaussian ogive. But, there are typically so many outliers that 

ogives fitted to the mean square of price changes are much lower and flatter than the 

distribution of the data themselves.” In the sixties and seventies, the regularity of 

leptokurtosis led to a literature on modeling asset returns as independently and 

identically distributed random variables having some thick-tailed distribution (Blattberg 

and Gonedes (1974), Clark (1973), Hagerman (1978), Mandelbrot (1963,1964), Officer 

(1972), Praetz (1972)). 

Figure 4. Histogram and Descriptive Statistics for S&P500, DAX 30 and ASE Stock Market 
Returns. 
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 S&P500 DAX 30 ASE 

Mean 0.05% 0.05% 0.08% 

Standard 
Deviation 

0.93% 1.28% 1.91% 

Skewness -0.346 -0.438 0.142 

Kurtosis 8.184 7.716 7.349 
 

 

 These models, although able to capture the leptokurtosis, could not account for 

the existence of non-linear temporal dependence as the volatility clustering observed 

from the data. For example, applying an autoregressive model to remove the linear 

dependence from an asset returns series and testing the residuals for a higher-order 

dependence using the Brock, Dechert and Scheinkman (BDS) test (Brock et al. (1987), 

Brock et al. (1991), Brock et al. (1996)), the null hypothesis, that the residuals are i.i.d., 

is rejected. 
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 In this paper, a number of univariate and multivariate ARCH models are 

presented and their estimation is discussed. The main features of what seem to be most 

widely used ARCH models are described with emphasis on their practical relevance. It is 

not an attempt to cover the whole of the literature on the technical details of the models, 

which is very extensive. (A comprehensive survey of the most important theoretical 

developments in ARCH type modeling covering the period up to 1993 was given by 

Bollerslev et al. (1994)). The aim is to give the broad framework of the most important 

models used today in the economic applications. A careful selection of references is 

provided so that more detailed examination of particular topics can be made by the 

interested reader. In particular, an anthology of representations of ARCH models that 

have been considered in the literature is provided (section 2), including representations 

that have been proposed for accounting for relationships between the conditional mean 

and the conditional variance (section 3) and methods of estimation of their parameters 

(section 4). Generalizations of these models suggested in the literature in multivariate 

contexts are also discussed (section 5). Section 6 gives a brief description of other 

methods of estimating volatility. Finally, section 7 is concerned with interpretation and 

implementation issues of ARCH models in financial applications. 

 The remaining of the present section looks at the influence that various factors 

have on a time series and in particular at effects, which as reflected in the data, are 

known as the “leverage effect”, the “non-trading period effect”, and the “non-

synchronous trading effect”. 

  

1 . 1  T h e  L e v e r a g e  E f f e c t  

 

 Black (1976) first noted that often, changes in stock returns display a tendency to 

be negatively correlated with changes in returns volatility, i.e., volatility tends to rise in 

response to “bad news” and to fall in response to “good news”. This phenomenon is 

termed the “leverage effect” and can only be partially interpreted by fixed costs such as 

financial and operating leverage (see, e.g. Black (1976) and Christie (1982). The 

asymmetry present in the volatility of stock returns is too large to be fully explained by 

leverage effect. 

We can observe the phenomenon of “leverage effect” by plotting the market 

prices and their volatility. As a naïve estimate of volatility at day t , the standard deviation  
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Figure 5. Daily Log-values and Recursive Standard Deviation of Returns for the S&P500 
Stock Market. 
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Figure 6. Daily Log-values and Recursive Standard Deviation of Returns for the DAX 30 
Stock Market. 
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Figure 7. Daily Log-values and Recursive Standard Deviation of Returns for the ASE 

Stock Market. 
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Table 1. Mean and Annualized Standard Deviation of the S&P500, DAX 30 and ASE 
Index Returns. 
 Overall Monday Tuesday Wednesday Thursday Friday 

S&P500 

Mean 0.05% 0.12% 0.06% 0.07% -0.01% 0.04% 
St. Deviation 14.80% 15.84% 15.43% 12.57% 14.81% 15.22% 
N. of observations 2649 505 543 541 532 528 

DAX 30 

Mean 0.05% 0.07% 0.04% 0.09% 0.00% 0.06% 
St. Deviation 20.34% 23.91% 19.79% 18.74% 19.49% 19.46% 
N. of observations 2625 518 537 530 516 524 

ASE 500 

Mean 0.08% 0.12% -0.01% 0.06% -0.01% 0.26% 
St. Deviation 30.27% 39.06% 30.60% 25.98% 28.68% 25.16% 
N. of observations 2548 494 523 517 519 495 

Annualized standard deviation is computed by multiplying the standard deviation of daily returns by 
252

1/2
, the square root of the number of trading days per year. 

 

of the 22 most recent trading days, 
     2222

22

2

22

22   


t

ti

t

ti iit yy , is used. 

Figures 5 to 7 plot daily log-values of stock market indices and the relevant standard 

deviations of the continuously compounded returns. The periods of market drops are 

characterized by a high increase in volatility. 

 

1 . 2  T h e  N o n - t r a d i n g  P e r i o d  E f f e c t  

 
Financial markets appear to be affected by the accumulation of information 

during non-trading periods as reflected in the prices when the markets reopen following 

a close. As a result, the variance of returns displays a tendency to increase. This is 

known as the “non-trading period effect”. It is worth noting that the increase in the 

variance of returns is not nearly proportional to the market close duration as would be 

anticipated if the information accumulation rate were constant over time. In fact, as Fama 

(1965) and French and Roll (1986) observed, information accumulates at a lower rate 

when markets are closed than when they are open. Also, as reflected by the findings of 

French and Roll (1986) and Baillie and Bollerslev (1989), the returns variance tends to 

be higher following weekends and holidays than on other days, but not by as much as it 

would be under a constant news arrival rate. Table 1 shows the annualized standard 

deviations of stock market returns for each day for the indices S&P500, DAX30 and 

ASE. The standard deviation on Monday is higher than on other days, mainly for the 

DAX 30 and ASE indices. 
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1 . 3  N o n - s y n c h r o n o u s  T r a d i n g  E f f e c t  

 

The fact that the values of time series are often taken to have been recorded at 

time intervals of one length when in fact they were recorded at time intervals of other, not 

necessarily regular, length is an important factor affecting the return series with an effect 

known as the “non-synchronous trading effect” (see, e.g. Campbell et al. (1997)). For 

example, the daily prices of securities, usually analyzed, are the closing prices. The 

closing price of a security is the price at which the last transaction occurred. The last 

transaction of each security is not implemented at the same time each day. So, it is 

falsely assumed that the daily prices are equally spaced at 24-hour intervals. The 

importance of non-synchronous trading was first recognized by Fisher (1966) and further 

developed by many researchers such as Atchison et al. (1987), Cohen et al. (1978), 

Cohen et al. (1979, 1983), Dimson (1979), Lo and MacKinlay (1988, 1990a, 1990b), 

Scholes and Williams (1977). 

Non-synchronous trading in the stocks making up an index induces 

autocorrelation in the return series, primarily when high frequency data are used. To 

control this, Scholes and Williams (1977) suggested a first order moving average 

  1MA  form for index returns, while Lo and MacKinlay (1988) suggested a first order 

autoregressive   1AR  form. Nelson (1991) wrote “as a practical matter, there is little 

difference between an  1AR  and an  1MA  when the AR  and MA  coefficients are 

small and the autocorrelations at lag one are equal, since the higher-order 

autocorrelations die out very quickly in the AR  model”. 

 

2 .  T h e  A R C H  P r o c e s s  

 

Autoregressive Conditional Heteroscedasticity (ARCH) models have been widely 

used in financial time series analysis and particularly in analyzing the risk of holding an 

asset, evaluating the price of an option, forecasting time varying confidence intervals 

and obtaining more efficient estimators under the existence of heteroscedasticity. 

Let   ty  refer to the univariate discrete time real-valued stochastic process to 

be predicted  (e.g. the rate of return of a particular stock or market portfolio from time 

1t  to t ) where   is a vector of unknown parameters and 

        ttttt yEIyE   11|  denotes the conditional mean given the information 
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set 1tI  (sigma-field) available in time 1t . The innovation process for the conditional 

mean,    t , is then given by       ttt y   with corresponding unconditional 

variance         22  tt EV , zero unconditional mean and      0 stE , 

st  . The conditional variance of the process given 1tI  is defined by 

           22
111| ttttttt EyVIyV   . Since investors would know the 

information set 1tI  when they make their investment decisions at time 1t , the relevant 

expected return to the investors and volatility are   t  and   2
t

, respectively. 

An ARCH process,    t , can be presented as: 

   

    
          ,,...,,...;,,...;,

1,0~

212121
2

...







ttttttt

tt

dii

t

ttt

g

zVzEfz

z





 (2.1) 

where   0tzE ,   1tzV ,  .f  is the density function of tz ,   t  is a time-varying, 

positive and measurable function of the information set at time 1t , t  is a vector of 

predetermined variables included in tI , and  .g  is a linear or nonlinear functional form. 

By definition,   t  is serially uncorrelated with mean zero, but with a time varying 

conditional variance equal to   2
t . The conditional variance is a linear or nonlinear 

function of lagged values of t  and t , and predetermined variables  ,..., 21  tt   

included in 1tI . In the sequel, for notational convenience, no explicit indication of the 

dependence on the vector of parameters,  , is given when obvious from the context. 

Since very few financial time series have a constant conditional mean of zero, an 

ARCH model can be presented in a regression form by letting t  be the innovation 

process in a linear regression: 

 
        ,,...,,...;,,...;,

,0~|

212121
2

2
1
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



ttttttt

ttt

ttt

g

fI

bxy







 (2.2) 

where tx  is a 1k  vector of endogenous and exogenous explanatory variables included 

in the information set 1tI  and b  is a 1k  vector of unknown parameters. 
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2 . 1  A R C H  M o d e l s  

 

In the literature, one can find a large number of specifications of ARCH models 

that have been considered for the description of the characteristics of financial markets. 

A wide range of proposed ARCH processes is covered in surveys such as Bera and 

Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. (1994), Gouriéroux (1997) and Li 

et al. (2001). 

Engle (1982) introduced the original form of  .2
gt  , in equation (2.1), as a 

linear function of the past q  squared innovations: 

 



q

i

itit aa
1

2
0

2  . (2.3) 

For the linear ARCH(q) process to be well defined and the conditional variance to be 

positive, almost surely the parameters must satisfy 00  , 0ia , for qi ,...,1 . An 

equivalent representation of the ARCH(q) process is given by: 

  2
0

2
tt LAa   , (2.4) 

where L  denotes the lag operator and    q

q LaLaLaLA  ...2
21 . Defining 

22
tttv   , the model is rewritten as: 

  ttt vLAa  2
0

2  . (2.5) 

By its definition, tv  is serially uncorrelated with   01  tt vE  but neither independently 

nor identically distributed. The ARCH(q) model is interpreted as an autoregressive 

process in the squared innovations and is covariance stationary if and only if the roots of 

  1
1




q

i

i

i La  lie outside the unit circle, or, equivalently, the sum of the positive 

autoregressive parameters is less than one. If the process is covariance stationary, its 

unconditional variance is equal to      1

10
2 1




q

i it aaV  . 

Also, by definition, the innovation process is serially uncorrelated but not 

independently distributed. On the other hand, the standardized innovations are time 

invariant distributed. Thus, the unconditional distribution for the innovation process will 

have fatter tails than the distribution for the standardized innovations. For example, 

consider the kurtosis for the ARCH(1) process with conditional normally distributed 
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innovations is        2
1

2
1

224 3113  tt EE  if 13 2
1 a , and     

224
tt EE   

otherwise, i.e., greater than 3, the kurtosis value of the normal distribution. Generally 

speaking, an ARCH process always has fatter tails than the normal distribution: 

               222222422244224 33 tttttttttt EEEEzEzEEE   , 

where the first equality comes from the independence of t  and tz , and the inequality is 

implied by Jensen’s inequality. 

 In empirical applications of the ARCH(q) model, a relatively long lag in the 

conditional variance equation is often called for, and to avoid problems of negative 

variance parameter estimates a fixed lag structure is typically imposed (see, for 

example, Engle (1982, 1983), and Engle and Kraft (1983)). To circumvent this problem, 

Bollerslev (1986) proposed a generalization of the ARCH(q) process to allow for past 

conditional variances in the current conditional variance equation, the generalized 

ARCH, or GARCH(p,q), model: 

        22
0

1

2

1

2
0

2
tt

p

j

jtj

q

i

itit LBLAabaa   





 . (2.6) 

For 00  , 0ia , qi ,...,1  and 0jb , pj ,...,1 , the conditional variance is well 

defined. Taylor (1986) independently proposed the GARCH model using a different 

acronym. Nelson and Cao (1992) showed that the non-negativity constraints on the 

parameters of the process could be substantially weakened, so they should not be 

imposed in estimation. Provided that the roots of   1LB  lie outside the unit circle and 

the polynomials  LB1  and  LA  have no common roots, the positivity constraint is 

satisfied if all the coefficients in the infinite power series expansion for      1
1

 LBLB  

are non-negative. In the GARCH(1,2) model, for example, the conditions of non-

negativity are that 00 a , 10 1  b , 01 a  and 0211  aab . In the GARCH(2,1) 

model, the necessary conditions require that 00 a , 01 b , 01 a , 121  bb  and 

04 2
2

1  bb . Thus, slightly negative values of parameters, for higher order lags, do not 

result in negative conditional variance. Rearranging the GARCH(p,q) model, it can be 

presented as an autoregressive moving average process in the squared innovations  of 

orders  qp,max  and p ,    pqpARMA ,,max , respectively: 
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     
t

p

j

jtj

p

j

jtj

q

i

itit vvbbaa  









11

2

1

2
0

2  . (2.7) 

The model is second order stationary if the roots of     1 LBLA  lie outside the unit 

circle, or equivalently if 1
11

 

p

j j

q

i i ba . Its unconditional variance is equal to 

  1

110
2 1



  
p

j j

q

i i baa . 

Very often, in connection with applications, the estimate for    LBLA   turns out 

to be very close to unity. This provided an empirical motivation, for the development of 

the so-called integrated GARCH(p,q) or IGARCH(p,q) model by Engle and Bollerslev 

(1986): 

    22
0

2
ttt LBLAa   , for     1 LBLA , (2.8) 

where the polynomial     1 LBLA  has 0d  unit roots and   dqp ,max  roots 

outside the unit circle. 

Moreover, Nelson (1990a) showed that the GARCH(1,1) model is strictly 

stationary even if 111  ba , as long as    0log 2
11  tzabE . Thus, the conditional 

variance in IGARCH(1,1) with 00 a , collapses to zero almost surely, and in 

IGARCH(1,1) with 00 a  is strictly stationary. Therefore, a process that is integrated in 

the mean is not stationary in any sense, while an IGARCH process is strictly stationary 

but covariance non-stationary. 

Consider the IGARCH(1,1) model,   2
11

2
110

2 1   ttt aaa  , where 

10 1  a . The conditional variance h-steps in the future takes the form: 

  0
22

|
2

haE tththtt    , (2.9) 

which looks very much like a linear random walk with drift 0a . A linear random walk is 

strictly non-stationary (no stationary distribution and covariance non-stationary) and it 

has no unconditional first or second moments. In the case of IGARCH(1,1), the 

conditional variance is strictly stationary even though its stationary distribution generally 

lacks unconditional moments. In the case where 00 a , equation (2.9) reduces to 

22
| ttht   , a bounded martingale as it cannot take negative values. According to the 

martingale convergence theorem (Dudley (1989)), a bounded martingale must converge, 

and, in this case, the only value to which it can converge is zero. Thus, the stationary 
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distributions for 2
t  and t  have moments, but they are all trivially zero. In the case of 

00 a , Nelson (1990a) showed that there is a non-degenerate stationary distribution for 

the conditional variance, but with no finite mean or higher moments. The innovation 

process t  then has a stationary distribution with zero mean, but with tails that are so 

thick that no second or higher order moments exist. Furthermore, if the variable tz  

follows the standard normal distribution, Nelson (1990a) showed that: 

      
       ,2;5.1,2;1,12;5.1;5.02                             

212loglog

11221111

2/11
11

1
2

11

abFababab

azabE t







 (2.10) 

where  .  denotes the Euler Psi function, with   96351.121   (Davis (1965)), 

 .;.;.  the confluent hypergeometric function (Lebedev (1972)), and  .,.;.,.;.22 F  the 

generalized hypergeometric function (Lebedev (1972)). Bougerol and Picard (1992) 

extended Nelson’s work and showed that the general GARCH(p,q) model is strictly 

stationary and ergodic. Choudhry (1995), by means of the IGARCH(1,1) model, studied 

the persistence of stock return volatility in European markets during the 1920’s and 

1930’s and argued that the 1929 stock market crash did not reduce stock market 

volatility. Using monthly stock returns from 1919 to 1936 in markets of Czechoslovakia, 

France, Italy, Poland and Spain, Choudhry mentioned that in the GARCH(1,1) model the 

sum of  1a  and 1b  approaches unity, which implies persistence of a forecast of the 

conditional variance over all finite horizons. 

 The GARCH(p,q) model successfully captures several characteristics of financial 

time series, such as thick tailed returns and volatility clustering. On the other hand, its 

structure imposes important limitations. The variance only depends on the magnitude 

and not the sign of t , which is somewhat at odds with the empirical behavior of stock 

market prices where the “leverage effect” may be present. The models that have been 

considered so far are symmetric in that only the magnitude and not the positivity or 

negativity of innovations determines 
2
t . In order to capture the asymmetry manifested 

by the data, a new class of models, in which good news and bad news have different 

predictability for future volatility, was introduced. 

 The most popular method proposed to capture the asymmetric effects is Nelson’s 

(1991) exponential GARCH, or EGARCH, model. He proposed the following form for the 

evolution of the conditional variance: 
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  ,log
1

0
2 



 












i it

it

it ga



   11  , (2.11) 

and accommodated the asymmetric relation between stock returns and volatility changes  

by making  ttg   a linear combination of tt   and tt  : 

     tttttttt Eg   , (2.12) 

where   and   are constants. By construction, equation (2.12) is a zero mean i.i.d. 

sequence (note that tttz  ). Over the range  tz0 ,  tzg  is linear in tz  with 

slope    and over the range 0 tz ,  tzg  is linear with slope   . The first 

term of (2.12),  tt zEz  , represents the magnitude effect as in the GARCH model, 

while the second term,  tz , represents the leverage effect. To make this tangible, 

assume that 0  and 0 . The innovation in  2log t  is then positive (negative) 

when the magnitude of tz  is larger (smaller) than its expected value. Assume now that 

0  and 0 . In this case the innovation in  2log t  is positive (negative) when 

innovations are negative (positive). Moreover, the conditional variance is positive 

regardless of whether the i  coefficients are positive. Thus, in contrast to GARCH 

models, no inequality constraints need to be imposed for estimation. Nelson (1991) 

showed that  2log t  and t  are strictly stationary as long as 

1

2

i i . A natural 

parameterization is to model the infinite moving average representation of equation 

(2.11) as an autoregressive moving average model: 

      111111
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it ELbLaa  , (2.13) 

or equivalently: 

         1

1

0
2 11log 

 tt zgLBLAa . (2.13b) 

 Another popular way to model the asymmetry of positive and negative 

innovations is the use of indicator functions. Glosten et al. (1993) presented the 

GJR(p,q) model: 

      
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
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
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2
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2 0  , (2.14) 
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where i , for qi ,...,1 , are parameters that have to be estimated,  .d   denotes the 

indicator function (i.e.   10 itd   if 0it , and   00 itd   otherwise). The GJR 

model allows good news,  0it , and bad news,  0it , to have differential effects 

on the conditional variance. Therefore, in the case of the GJR(0,1) model, good news 

has an impact of 1a , while bad news has an impact of 11 a . For 01  , the “leverage 

effect” exists. 

A similar way to model asymmetric effects on the conditional standard deviation 

was introduced by Zakoian (1990), and developed further in Rabemananjara and 

Zakoian (1993), by defining the threshold GARCH, or TGARCH(p,q), model: 

     











 

p

j

jtj

q

i

iti

q

i

itit baa
111

0  , (2.15) 

where 
tt    if 0t , 0

t  otherwise and 
  ttt  . 

 Engle and Ng (1993) recommended the “news impact curve” as a measure of 

how news is incorporated into volatility estimates by alternative ARCH models. In their 

recent comparative study of the EGARCH model to the GJR model, Friedmann and 

Sanddorf-Köhle (2002) proposed a modification of the news impact curve termed the 

“conditional news impact curve”. Engle and Ng argued that the GJR model is better than 

the EGARCH model because the conditional variance implied by the latter is too high 

due to its exponential functional form. On the other hand, Friedmann and Sanddorf-

Köhle (2002) argued that the EGARCH model does not overstate the predicted volatility. 

The number of formulations presented in the financial and econometric literature 

is vast. In the sequel, the best known variations of ARCH modeling are presented. 

Taylor (1986) and Schwert (1989a,b) assumed that the conditional standard 

deviation is a distributed lag of absolute innovations, and introduced the absolute 

GARCH, or AGARCH(p,q), model: 







 
p

j

jtj

q

i

itit baa
11

0  . (2.16) 

Geweke (1986), Pantula (1986) and Milhǿj (1987) suggested a specification in which the 

log of the conditional variance depends linearly on past logs of squared innovations. 

Their model is the multiplicative ARCH, or Log-GARCH(p,q), model defined by 

     





 
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jtj
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itit baa
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2
0

2 logloglog  . (2.17) 
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Schwert (1990) built the autoregressive standard deviation, or Stdev-ARCH(q), model: 

2

1
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2









 




q

i

itit aa  . (2.18) 

Higgins and Bera (1992) introduced the non-linear ARCH, or NARCH(p,q), model: 







 
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jtj

q

i

itit baa
11

22
0




  , (2.19) 

while Engle and Bollerslev (1986) proposed a simpler non-linear ARCH model: 

2
11110

2
  ttt baa  

. (2.20) 

In order to introduce asymmetric effects, Engle (1990), proposed the asymmetric 

GARCH, or AGARCH(p,q), model: 

  
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2  , (2.21) 

where a negative value of i  means that positive returns increase volatility less than 

negative returns. Moreover, Engle and Ng (1993) presented two more ARCH models 

that incorporate asymmetry for good and bad news, the non-linear asymmetric GARCH, 

or NAGARCH(p,q), model: 

  
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2  , (2.22) 

 and the VGARCH(p,q) model: 

  

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iititit baa
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2  . (2.23) 

Ding et al. (1993) introduced the asymmetric power ARCH, or APARCH(p,q), 

model, which includes seven ARCH models as special cases (ARCH, GARCH, 

AGARCH, GJR, TARCH, NARCH and logARCH): 

  





 
p

j

jtj

q

i

ititit baa
11

10
  , (2.24) 

where 00 a , 0 , 0jb , pj ,...,1 , 0ia  and 11  i , qi ,...,1 . The model 

imposes a Box and Cox (1964) power transformation of the conditional standard 

deviation process and the asymmetric absolute innovations. The functional form for the 

conditional standard deviation is familiar to economists as the constant elasticity of 

substitution (CES) production function. Ling and McAleer (2001) provided sufficient 
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conditions for the stationarity and ergodicity of the APARCH(p,q), model. Brooks et al. 

(2000) applied the APARCH(1,1) model for 10 series of national stock market index 

returns. The optimal power transformation was found to be remarkably similar across 

countries. 

Sentana (1995) introduced the quadratic GARCH, or GQARCH(p,q), model of the 

form: 

 
 
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2 2  . (2.25) 

Setting 0i , for qi ,...,1 , leads to the Augmented ARCH model of Bera and Lee 

(1990). It does encompass all the ARCH models of quadratic variance functions, but it 

does not include models in which the variance is quadratic in the absolute value of 

innovations, as the APARCH model. 

 Hentschel (1995) gave a complete parametric family of ARCH models. This 

family nests the most popular symmetric and asymmetric ARCH models, thereby 

highlighting the relation between the models and their treatment of asymmetry. 

Hentschel presents the variance equation as: 

 






 


 11 1

1




 


t

t

v

t

t fa , (2.26) 

where  .f  denotes the absolute value function of innovations, 

     tttf . (2.27) 

In general, this is a law of the Box-Cox transformation of the conditional standard 

deviation (as in the case of the APARCH model), and the parameter   determines the 

shape of the transformation. For 1 , the transformation of t  is convex, while for 

1 , it is concave. The parameter v  serves to transform the absolute value function. 

For different restrictions on the parameters in equations (2.26) and (2.27), almost all the 

popular symmetric and asymmetric ARCH models are obtained. For example, for 0 , 

1v , 1  and free  , we obtain Nelson’s exponential GARCH model. However, 

some models, as Sentana’s quadratic model, are excluded. 

 Gouriéroux and Monfort (1992) proposed the qualitative threshold GARCH, or 

GQTARCH(p,q), model with the following specification: 
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Assuming constant conditional variance over various observation intervals, Gouriéroux 

and Monfort (1992) divided the space of t  into J  intervals and let  tjI   be 1 if t  is in 

the 
th

j  interval. 

 Another important class of models, proposed independently by Cai (1994) and 

Hamilton and Susmel (1994), is the class of regime switching ARCH models, a natural 

extension of regime-switching models for the conditional mean, introduced by Hamilton 

(1989). These models allow the parameters of the ARCH process to come from one of 

several different regimes, with transitions between regimes governed by an unobserved 

Markov chain. Let t
~  be the innovation process and let ts  denote an unobserved 

random variable that can take on the values K,...,2,1 . Suppose that ts  can be described 

by a Markov chain,   ijttttt pksisjsP   ,...~,~,...,,| 2121  , for Kji ,...,2,1,  . The 

idea is to model the innovation process, t
~ , as tst t

g  ~ , where t  is assumed to 

follow an ARCH process. So, the underlying ARCH variable, t , is multiplied by the 

constant 1g  when the process is in the regime presented by 1ts , is multiplied by 

2g  when 2ts , and so on. The factor for the first stage, 1g , is normalized at unity 

with 1jg  for Kj ,...,3,2 . The idea is, thus, to model changes in regime as changes 

in the scale of the process. Dueker (1997) and Hansen (1994) extended the approach to 

GARCH models. 

 Fornari and Mele (1995) introduced the volatility-switching ARCH model, or 

VSARCH(p,q), model: 
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where tS  is an indicator factor that equals one if 0t , minus one if 0t , and 

22
tt   measures the difference between the forecast of the volatility at time t  on the 

basis of the information set dated at 1t , 
2
t , and the realized value 

2
t . As Fornari and 

Mele (1995) mentioned, the volatility-switching model is able to capture a phenomenon 

that has not been modeled before. It implies that asymmetries can become inverted, with 

positive innovations inducing more volatility than negative innovations of the same size 

when the observed value of the conditional variance is lower than expected. Fornari and 
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Mele (1996) built a mixture of the GJR and the VSARCH models, named it asymmetric 

volatility-switching ARCH, or AVSARCH(p,q), model and estimated it for 1 qp : 

   1
2

1
2

1
2

11
2

11
2

110
2

  tttttttt SkSbaa  . (2.30) 

The first four terms are the GJR(1,1) model, except that tS  is a dummy that equals one 

or minus one instead of zero or one, respectively. The last term captures the reversal of 

asymmetry observed when 2
1

2
1  tt   reaches k , the threshold value. Note that the 

AVSARCH model is able to generate kurtosis higher than the GARCH or GJR models. 

 Hagerud (1996), inspired by the Smooth Transition Autoregressive (STAR) model 

of Luukkonen et al. (1988), proposed the smooth transition ARCH model. In the STAR 

model, the conditional mean is a non-linear function of lagged realizations of the series 

introduced via a transition function. The smooth transition GARCH(p,q) model has the 

form: 
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where  .F  is either the logistic or the exponential transition function, the two most 

commonly used transition functions for STAR models (for details see Teräsvirta (1994)). 

The logistic function considered is 

     5.0exp1
1  

 ititF  , for 0 , (2.32) 

and the exponential function is 

   2exp1 ititF    , for 0 . (2.33) 

The two resulting models termed logistic and exponential smooth transition GARCH, or 

LST-GARCH(p,q) and EST-GARCH(p,q), models, respectively. The smooth transition 

models allow for the possibility of intermediate positions between different regimes. For 

 t , the logistic transition function takes values in   5.0.5.0  F  and 

generates data where the dynamics of the conditional variance differ depending on the 

sign of innovations. On the other hand, the exponential function generates a return 

process for which the dynamics of the conditional variance depend on the magnitude of 

the innovations, as for t  the transition function will be equal to unity, and when 

0t  the transition function is equal to zero. Thus, contrary to the regime switching 

models, the transition between states is smooth as the conditional variance is a 

continuous function of innovations. A model similar to the LST-GARCH model was 
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independently proposed by González-Rivera (1996). Recently, Nam et al. (2002) 

provided an application of a smooth transition ARCH model with a logistic function in the 

following form 
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which they termed asymmetric nonlinear smooth transition GARCH, or ANST-GARCH 

model. Nam et al. explored the asymmetric reverting property of short-horizon expected 

returns and have found that the asymmetric return reversals can be exploited for the 

contrarian profitability1. Note that when 020  bb  the ANST-GARCH model reduces to 

González-Rivera’s specification. Lubrano (1998) suggested an improvement over these 

transition functions, introducing an extra parameter, the threshold c , which determines 

at which magnitude of past innovations the change of regime occurs. The generalized 

logistic transition function is given by: 
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 . (2.34) 

The exponential transition function can also be generalized in the form: 

    2
exp1 cF itit    . (2.35) 

Engle and Lee (1993) proposed the component GARCH model in order to 

investigate the long-run and the short-run movement of volatility. The GARCH(1,1) 

model can be written as: 

   22
11

22
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22    ttt ba , (2.36) 

for   1

110
2 1

 baa  denoting the unconditional variance. The conditional variance 

in the GARCH(1,1) model shows mean reversion to the unconditional variance, which is 

constant for all time. By contrast, the component GARCH, or CGARCH(1,1), model 

allows mean reversion to a time varying level tq . The CGARCH(1,1) model is defined 

as: 

                                                 
1 Contrarian investment strategies are contrary to the general market direction. Interpretation of the 
contrarian profitability is in a debate between the two competing hypotheses: the time varying rational 
expectation hypothesis and the stock market overreaction hypothesis. For details see Chan (1988), Chopra 
et al. (1992), Conrad and Kaul (1993), DeBondt and Thaler (1985, 1987,1989), Lo and MacKinlay (1990b), 
Veronesi (1999), Zarowin (1990). 
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The difference between the conditional variance and its trend, 
tt q2 , is the transitory 

or short-run component of the conditional variance, while tq  is the time varying long-run 

volatility. Combining the transitory and permanent equations the model reduces to: 

       
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 (2.38) 

which shows that the CGARCH(1,1) is a restricted GARCH(2,2) model. Moreover, 

because of the existence of the “leverage effect”, Engle and Lee (1993) combine the 

component model with the GJR model to allow shocks to affect the volatility components 

asymmetrically. The asymmetric component GARCH, or the ACGARCH(1,1), model 

becomes: 
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where  .d  denotes the indicator function (i.e.   10 itd   if 0it , and 

  00 itd   otherwise). 

Baillie et al. (1996), motivated by the Fractionally Integrated Autoregressive 

Moving Average, or ARFIMA, model, presented the Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedasticity, or FIGARCH, model. The ARFIMA(k,d,l) 

model for the discrete time real-valued process  ty , initially developed in Granger 

(1980) and Granger and Joyeux (1980), is defined as: 

     tt

d
LByLLA 1 , (2.40) 

where  LA  and  LB  denote the lag operators of order k  and l  respectively, and  t  

is a mean-zero serially uncorrelated process. The fractional differencing operator, 

 d
L1 , is usually interpreted in its binomial expansion given by: 

  
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 , (2.41) 

where  .  denotes the gamma function. 

 The stationary ARMA process, equation (2.40) for 0d , is a short memory 

process, the autocorrelations of which are geometrically bounded: 
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  m

mtt cryyCor , ,  

for ,...2,1m , where 0c  and 10  r . As m  the dependence, or memory, 

between ty  and mty   decreases rapidly. However, some observed time series appeared 

to exhibit a substantially larger degree of persistence than allowed for by stationary 

ARMA processes. For example, Ding et al. (1993) found that the absolute values or 

powers, particularly squares, of returns on S&P500 index tend to have very slowly 

decaying autocorrelations. Similar evidence of this feature for other types of financial 

series is contained in Dacarogna et al. (1993), Mills (1996) and Taylor (1986). Such time 

series have autocorrelations that seem to satisfy the condition:  

  12, 
  d

mtt cmyyCor ,  

as m , where 0c  and 5.0d . Such processes are said to have long memory 

because the autocorrelations display substantial persistence. 

 The concept of long memory and fractional Brownian motion was originally 

developed by Hurst (1951) and extended by Mandelbrot (1963, 1982) and Mandelbrot 

and Van Ness (1968). However, the ideas became essentially applicable by Granger 

(1980,1981), Granger and Joyeux (1980) and Hosking (1981). Hurst was a hydrologist 

who worked on the Nile river dam project. He had studied an 847-years record of the 

Nile’s overflows and observed that larger than average overflows were more likely to be 

followed by more large overflows. Suddenly, the water flow would change to a lower than 

average overflow which would be followed by lower than average overflows. Such a 

process could be examined neither with standard statistical correlation analysis nor by 

assuming that the water inflow is a random process, so it could be analyzed as a 

Brownian motion. Einstein (1905) worked on Brownian motion and found that the 

distance a random particle covers increases with the square root of time used to 

measure it, or: 

2/1
td  , (2.42) 

where d  is the distance covered and t  is the time index. But this applies only to time 

series that are in Brownian motion, i.e. mean-zero and unity variance independent 

processes. Hurst generalized (2.42) to account for processes other than Brownian 

motion in the form: 

H
ctsd  . (2.43) 
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For any process  T

tty
1  (e.g. asset returns) with mean 
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, (2.44) 

where s  is the standard deviation of  T

tty
1  and c  is a constant. The ratio sd  is called 

rescaled range and H  is the Hurst exponent. If  ty  is a sequence of independently and 

identically distributed random variables, then 5.0H . Hurst’s investigations for the Nile 

lead to 9.0H . Thus, the rescaled range was increasing at a faster rate than the 

square root of time.  

 The IGARCH(p,q) model in equation (2.8) could be rewritten as: 

      tt vLBaLL  11 0
2 , (2.45) 

where         1
11

 LLBLAL  is of order   1,max qp . The FIGARCH model 

is simply obtained by replacing the first difference operator in equation (2.45) with the 

fractional differencing operator. Rearranging terms in equation (2.45) the 

FIGARCH(p,d,q) model is given as: 

        22
0

2 11 tt

d

t LBLLLBa   , (2.46) 

which is strictly stationary and ergodic for 10  d . In contrast to the GARCH and 

IGARCH models where shocks to the conditional variance either dissipate exponentially 

or persist indefinitely, for the FIGARCH model the response of the conditional variance 

to past shocks decays at a slow hyperbolic rate. The sample autocorrelations of the daily 

absolute returns, or ty , as investigated by Ding et al. (1993) and Bollerslev and 

Mikkelsen (1996) among others, exceed the 95% confidence intervals for no serial 

dependence for more than 1000 lags. Moreover, the sample autocorrelations for the first 

difference of absolute returns,   tyL1 , still show statistically significant long-term 

dependence. On the contrary, the fractional difference of absolute returns,   tyL
5.0

1 , 

shows much less long-term dependence. Bollerslev and Mikkelsen (1996) provided 

evidence that illustrates the importance of using fractional integrated conditional 

variance models in the context of pricing options with maturity time of one year or longer. 

Note that the practical importance of the fractional integrated variance models stems 

from the added flexibility when modeling long run volatility characteristics. 
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As Mills (1999) stated, the implication of IGARCH models that shocks to the 

conditional variance persist indefinitely does not reconcile with the persistence observed 

after large shocks, such as the crash of October 1987, and with the perceived behavior 

of agents who do not appear to frequently and radically alter the composition of their 

portfolios. So the widespread observation of the IGARCH behavior may be an artifact of 

a long memory FIGARCH data generating process. Baillie et al. (1996) provided a 

simulation experiment that provides considerable support of this line of argument. Beine 

et al. (2002) applied the FIGARCH(1,d,1) model in order to investigate the effects of 

official interventions on the volatility of exchange rates. One of their interesting remarks 

is that measuring the volatility of exchange rates through the FIGARCH model instead of 

a traditional ARCH model leads to different results. The GARCH and IGARCH models 

tend to underestimate the effect of the central bank interventions on the volatility of 

exchange rates. Vilasuso (2002) fitted conditional volatility models to daily spot 

exchange rates and found that the FIGARCH(1,d,1) model generates superior volatility 

forecasts compared to those generated by a GARCH(1,1) or IGARCH(1,1) model. 

Bollerslev and Mikkelsen (1996) extended the idea of fractional integration to the 

exponential GARCH model, whereas Tse (1998) built the fractional integration form of 

the APARCH model. Factorizing the autoregressive polynomial 

     dLLLB  11 , where all the roots of   0 z  lie outside the unit circle, the 

fractionally integrated exponential GARCH, or FIEGARCH(p,d,q), model is defined as: 

          1

1

0
2 11log 

  t

d

t zgLALLa . (2.47) 

The fractionally integrated asymmetric power ARCH, or FIAPARCH(p,d,q), model has 

the following form: 

         tt

d

t LLLBa  
111

1

0 . (2.48) 

Finally, Hwang (2001) presented the asymmetric fractionally integrated family 

GARCH(1,d,1), or ASYMM FIFGARCH(1,d,1), model, which is defined as: 
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 (2.49) 

for 1c . Hwang points out that, for different parameter values in (2.49), the following 

fractionally integrated ARCH models are obtained: FIEGARCH, for 0 , 1v , 
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FITGARCH for 1 , 1v , FIGARCH for 2 , 2v , and FINGARCH, for v  but 

otherwise unrestricted. 

 However, Ruiz and Pérez (2002) noted that Hwang’s model is poorly specified 

and does not nest the FIEGARCH model. Thus, they suggested an alternative 

specification, which is a direct generalization of Hentschel’s model in (2.26): 

       

































 





bcbf

1zfL1a
1

L1L1

t

t

t

t

t

t

1t
v

1t
td

, (2.50) 

Imposing appropriate restrictions on the parameters of (2.50), a number of models are 

obtained as special cases (e.g. the FIGARCH model in (2.46), the FIEGARCH model in 

(2.47), Hentschel’s model in (2.26)). 

Nowicka-Zagrajek and Weron (2001) replaced the constant term in the 

GARCH(p,q) model with a linear function of i.i.d. stable random variables and defined 

the randomized GARCH, or R-GARCH(r,p,q), model: 
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where 0
i

c , ri ,...,1
, 0ia , qi ,...,1 , 0jb , pj ,...,1 , the innovations t  are 

positive i.i.d. stable random variables expressed by the characteristic function in (4.16), 

and  t  and  tz  are independent. 

Müller et al. (1997), based on the hypothesis that participants in a heterogeneous 

market make volatilities of different time resolutions behave differently, proposed the 

heterogeneous interval GARCH, or H-GARCH(p,n), model that takes into account the 

squared price changes over time intervals of different sizes:  
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where 00 a , 0ika , for ni ,...,1 , ik ,...,1 , 0jb , pj ,...,1 .  

 Many financial markets impose restrictions on the maximum allowable daily 

change in price.  As pointed out by Wei and Chiang (1997), the common practice of 

ignoring the problem by treating the observed censored observations as if they were 

actually the equilibrium prices, or dropping the limited prices from the studied sample, 

leads to the underestimation of conditional volatility. Morgan and Trevor (1997) proposed 
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the Rational Expectation (RE) algorithm (which can be interpreted as an EM algorithm 

(Dempster et al. (1977)) for censored observations in the presence of heteroscedasticity, 

which replaces the unobservable components of the likelihood function of the ARCH 

model by their rational expectations. As an alternative to the RE algorithm, Wei (2002), 

based on Kodres’s (1993) study, proposed a censored-GARCH model and developed a 

Bayesian estimation procedure for the proposed model. Moreover, on the basis of 

Kodres’s (1988) research, Lee (1999), Wei (1999) and Calzolari and Fiorentini (1998) 

developed the class of Tobit-GARCH models.  

Brooks et al. (2001) reviewed the most known software packages for estimation 

of ARCH models, and concluded that the estimation results differ considerably from one 

another. Table 2, in the Appendix, contains the ARCH models that have been presented 

in this section. 
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3 .  T h e  R e l a t i o n s h i p  B e t w e e n  C o n d i t i o n a l  V a r i a n c e  a n d  

C o n d i t i o n a l  M e a n  

 

3 . 1  T h e  A R C H  i n  M e a n  M o d e l  

 

Financial theory suggests that an asset with a higher expected risk would pay a 

higher return on average. Let ty  denote the rate of return of a particular stock or market 

portfolio from time t  to 1t  and trf  be the return on a riskless asset (i.e. treasury bills). 

Then, the excess return (asset return minus the return on a riskless asset) can be 

decomposed into a component anticipated by investors at time 1t , t , and a 

component that was unanticipated, t : 

tttt rfy   . 

The relationship between investors’ expected return and risk was presented in an ARCH 

framework, by Engle et al. (1987). They introduced the ARCH in mean, or ARCH-M, 

model where the conditional mean is an explicit function of the conditional variance of 

the process in framework (2.1). The estimated coefficient on the expected risk is a 

measure of the risk-return tradeoff. Thus, the ARCH regression model, in framework 

(2.2), can be presented as: 
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where  2
t  represents the risk premium, i.e., the increase in the expected rate of 

return due to an increase in the variance of the return. Although earlier studies 

concentrated on detecting a constant risk premium, the ARCH in mean model provided a 

new approach by which a time varying risk premium can be estimated. The most 

commonly used specifications of the ARCH-M model are in the form: 

  2
10

2
tt cc   , (Nelson (1991), Bollerslev et al. (1994)),  

  tt cc  10
2  , (Domowitz and Hakkio (1985), Bollerslev et al. (1988)),  

   2
10

2 log tt cc   , (Engle et al. (1987)).  
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A positive as well as a negative risk return tradeoff could be consistent with the financial 

theory. A positive relationship is expected if we assume a rational risk averse investor 

who requires a larger risk premium during the times when the payoff of the security is 

riskier. On the other hand, a negative relationship is expected under the assumption that 

during relatively riskier periods the investors may want to save more. In applied research 

work, there is evidence for both positive and negative relationship. French et al. (1987) 

found positive risk return tradeoff for the excess returns on the S&P500 composite 

portfolio although not statistically significant in all the examined periods. Nelson (1991) 

found a negative but insignificant relationship for the excess returns on the Center for 

Research in Security Prices (CRSP) value weighted market index. Bollerslev et al. 

(1994) found a positive, not always statistically significant, relationship for the returns on 

Dow Jones and S&P500 indices. Interesting studies employing the ARCH-M model were 

conducted by Devaney (2001) and Elyasiani and Mansur (1998). The former examined 

the tradeoff between conditional variance and excess returns for stocks of the 

commercial bank sector, while the latter investigated the time varying risk premium for 

real estate investment trusts. 

 

3 . 2  V o l a t i l i t y  a n d  S e r i a l  C o r r e l a t i o n  

 

LeBaron (1992) found a strong inverse relation between volatility and serial 

correlation for S&P500, CRSP value weighted market index, Dow Jones and IBM 

returns. He introduced the exponential autoregressive GARCH, or EXP-GARCH(p,q), 

model in which the conditional mean is a non-linear function of the conditional variance. 

Based on LeBaron (1992), the ARCH regression model, in framework (2.2), can be 

presented as: 
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 (3.1) 

The model is a mixture of the GARCH model and the exponential AR model of Ozaki 

(1980). For the data set LeBaron used, 2c  is significantly negative and remarkably 

robust to the choice of sample period, market index, measurement interval and volatility 

measure. As LeBaron stated, it is difficult to estimate 3c  in conjunction with 2c  when 

using a gradient type of algorithm. So, 3c  is set to the sample variance of the series. 
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Generally, the first order autocorrelations are larger for periods of lower volatility and 

smaller during periods of higher volatility. The accumulation of news2 and the non-

synchronous trading3 were mentioned as the possible reasons. The stocks do not trade 

close to the end of the day and information arriving during this period is reflected on the 

next day’s trading, inducing serial correlation. As new information reaches market very 

slowly, traders optimal action is to do nothing until enough information is accumulated. 

Because of the non-trading, the trading volume, which is strongly positive related with 

volatility, lowers. Thus, we have a market with low trade volume and high correlation. 

 Kim (1989), Sentana and Wadhwani (1991) and Oedegaard (1991) have also 

investigated the relationship between autocorrelation and volatility and found an inverse 

relation between volatility and autocorrelation. Moreover, Oedegaard (1991) found that 

the evidence of autocorrelation, for the S&P500 daily index, decreased over time, 

possibly because of the introduction of financial derivatives (options and futures) on the 

index. 

 

4 .  E s t i m a t i o n  

 
4 . 1  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

 

 In ARCH models, the most commonly used method in estimating the vector of 

unknown parameters,  , is the method of maximum likelihood (MLE). Under the 

assumption of independently and identically distributed standardized innovations, 

      tttz  , in framework (2.2), let us denote their density function as  wzf t ; , 

where 
w

RWw


  is the vector of the parameters of f  to be estimated. So, for 

 w ,  denoting the whole set of the w
   parameters that have to be 

estimated for the conditional mean, variance and density function, the log-likelihood 

function for   ty  is: 

         2log
2

1
;log; tttt wzfyl  . (4.1) 

The full sample log-likelihood function for a sample of T observations is simply: 

                                                 
2 See section 1.2. 
3 See section 1.3. 
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If the conditional density, the mean and the variance functions are differentiable for each 

possible 



RW  , the MLE estimator ̂  for the true parameter vector 0  is 

found by maximizing equation (4.2), or equivalently by solving the equation 
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 If the density function does not require the estimation of any parameter, as in the case 

of the normal distribution that is uniquely determined by its first two moments, then 

0w


. In such cases, equation (4.3) becomes: 
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Let us, for example, estimate the parameters of framework (2.2) for normal distributed 

innovations and the GARCH(p,q) functional form for the conditional variance as given in 

equation (2.6). The density function of the standard normal distribution is: 
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For convenience equation (2.6) is written as 
tt s 2 , where 
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parameters that have to be estimated is    ,b . For normally distributed 

standardized innovations, tz , the log-likelihood function in equation (4.1), is: 

     2

2

2

log
2

1

22

1
log; t

t

tt

tt

bxy
yl 


 











 ,  

and the full sample log-likelihood function in equation  (4.2), becomes: 
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The first and the second derivatives of the log-likelihood for the th
t  observation with 

respect to the variance parameter vector are: 
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The first and second derivatives of the log-likelihood with respect to the mean parameter 

vector are: 
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The information matrix corresponding to   is given as: 
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The information matrix corresponding to b  is given as: 
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The elements in the off-diagonal block of the information matrix are zero, i.e., 
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So,   can be estimated without loss of asymptotic efficiency based on a consistent 

estimate of b  and vice versa. At this point, it should be noticed that although the block 

diagonality holds for models as the GARCH, NARCH and Log-GARCH models, it does 
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not hold for asymmetric models, i.e. the EGARCH model, and for the ARCH in mean 

models. In such cases, the parameters have to be estimated jointly. 

 Even in the case of the symmetric GARCH(p,q) model with normally distributed 

innovations, we have to solve a set of 1 qpk


 non-linear equations in (4.4). 

Numerical techniques are used in order to estimate the vector of parameters  . 

 

4 . 2  N u m e r i c a l  E s t i m a t i o n  A l g o r i t h m s  

 

The problem faced in non-linear estimation, as in the case of the ARCH models, 

is that there are no closed form solutions. So, an iterative method has to be applied to 

obtain a solution. Iterative optimization algorithms work by taking an initial set of values 

for the parameters, say 
 0 , then performing calculations based on these values to 

obtain a better set of parameters values 
 1 . This process is repeated until the 

likelihood function, in equation (4.2), no longer improves between iterations. If 
 0  is a 

trial value of the estimate, then expanding     ;tT yL  and retaining only the first 

power of 
 0  , we obtain 
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At the maximum, TL  should equal zero. Rearranging terms, the correction for the 

initial value, 
 0 , obtained is 
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Let 
 i  denote the parameter estimates after the th

i  iteration. Based on (4.6) the 

Newton-Raphson algorithm computes 
 1i  as: 
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The scoring algorithm is a method closely related to the Newton-Raphson algorithm and 

was applied by Engle (1982) to estimate the parameters of the ARCH(p) model. The 

difference between the Newton-Raphson method and the method of scoring is that the 
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former depends on observed second derivatives, while the latter depends on the 

expected values of the second derivatives. So, the scoring algorithm computes 
 1i  as: 
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An alternative procedure suggested by Berndt et al. (1974), which uses first derivatives 

only, is the Berndt, Hall, Hall and Hausman (BHHH) algorithm. The BHHH algorithm is 

similar to the Newton-Raphson algorithm, but, instead of the Hessian (second derivative 

of the log likelihood function with respect to the vector of unknown parameters), it is 

based on an approximation formed by the sum of the outer product of the gradient 

vectors for the contribution of each observation to the objective function. This 

approximation is asymptotically equivalent to the actual Hessian when evaluated at the 

parameter values, which maximize the function. The BHHH algorithm computes 
 1i  

as: 
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When the outer product is near singular, a ridge correction may be used in order to 

handle numerical problems and improve the convergence rate. Marquardt (1963) 

modified the BHHH algorithm by adding a correction matrix to the sum of the outer 

product of the gradient vectors. The Marquardt updating algorithm is computed as: 
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where I  is the identity matrix and a  is a positive number chosen by the algorithm. The 

effect of this modification is to push the parameter estimates in the direction of the 

gradient vector. The idea is that when we are far from the maximum, the local quadratic 

approximation to the function may be a poor guide to its overall shape, so it may be 

better off simply following the gradient. The correction may provide a better performance 

at locations far from the optimum, and allows for computation of the direction vector in 

cases where the Hessian is near singular. 
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4 . 3  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  u n d e r  N o n - N o r m a l i t y  

 

As already mentioned, an attractive feature of the ARCH process is that even 

though the conditional distribution of the innovations is normal, the unconditional 

distribution has thicker tails than the normal one. However, the degree of leptokurtosis 

induced by the ARCH process often does not capture all of the leptokurtosis present in 

high frequency speculative prices. Thus, there is a fair amount of evidence that the 

conditional distribution of t  is non-normal as well. 

To circumvent this problem, Bollerslev (1987) proposed using the standardized t 

distribution with 2v  degrees of freedom: 
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where  .  is the gamma function. The degrees of freedom are regarded as parameter 

to be estimated,  w . The t distribution is symmetric around zero and for 4v  the 

conditional kurtosis equals    1
423

 vv , which exceeds the normal value of three, 

but for v , (4.11) converges to (4.5), the standard normal distribution. 

Nelson (1991) suggested the use of the generalized error distribution, or GED4: 
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where v  is the tail-thickness parameter and    112 32   vv
 . (For more details 

on the GED, see Harvey (1981) and Box and Tiao (1973)). When 2v , tz  is standard 

normally distributed and so (4.12) reduces to (4.5). For 2v , the distribution of tz  has 

thicker tails than the normal distribution (e.g., for 1v , tz  has a double exponential 

distribution) while for 2v , the distribution of tz  has thinner tails than the normal 

distribution (e.g., for v , tz  has a uniform distribution on the interval )3,3( ). 

The densities presented above account for fat tails but they are symmetric. Lee 

and Tse (1991) suggested that not only the conditional distribution of innovations may be 

                                                 
4 The GED sometimes referred as the exponential power distribution. 
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leptokurtotic, but also asymmetric. Allowing for skewness may be important in modeling 

interest rates as they are lower bounded by zero and may therefore be skewed. To allow 

for both skewness and leptokurtosis, they used a Gram Charlier type distribution (see 

Kendall and Stuart (1969), p.157) with density function given by: 
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where  .f


 is the standard normal density function, and   ttt zzzH 33
3   and 

  36 24
4  ttt zzzH  are the Hermite polynomials. The quantities v  and g  are the 

measures of skewness and kurtosis, respectively. Jondeau and Rockinger (2001) 

examined the properties of the Gram Charlier conditional density function and estimated 

ARCH models with a Gram Charlier density function for a set of exchange rate series. 

 Bollerslev et al. (1994) applied the generalized t distribution (McDonald and 

Newey (1988)): 
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where        gvgvgvB   111 ,  is the beta function and 

       111 23   vgvgvb . The generalized t distribution has the advantage 

that nests both (4.11) and (4.12). For 2v  and 5.0g  times the degrees of freedom, 

(4.14) is set to the t distribution, and for v , the GED is obtained. Moreover, the two 

shape parameters v  and g  allow for fitting both the tails and the central part of the 

conditional distribution. 

Lambert and Laurent (2000, 2001) extended the skewed Student t density 

proposed by Fernandez and Steel (1998) to the ARCH framework, in the following 

density function: 
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where g  is the asymmetry parameter, v  denotes the degrees of freedom of the 

distribution,  .  is the gamma function, 1tII  if 
1 mszt , and 1tII  otherwise, 

         11

2221 
 ggvvvm   and 1222  

mggs . 



  36 

 Vries (1991) noted that the unconditional distribution of variaties from an ARCH 

process can be stable and that under suitable conditions the conditional distribution is 

stable as well. Stable Paretian conditional distributions have been introduced in ARCH 

models by Liu and Brorsen (1995), Mittnik et al. (1999), and Panorska et al. (1995). As 

the stable Paretian distribution does not have an analytical expression for its density 

function, it is expressed by its characteristic function: 
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where 20  a  is the characteristic exponent, 11    is the skewness parameter, 

0  is the scale parameter,   is the location parameter, and 
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The standardized innovations, tz , are assumed as independently, identically stable 

Pareto distributed random variables with zero location parameter and unit scale 

parameter. The way that GARCH models are built imposes limits on the heaviness of the 

tails of their unconditional distribution. Given that a wide range of financial data exhibit 

remarkable fat tails, this assumption represents a major shortcoming of GARCH models 

in financial time series analysis. Stable Paretian conditional distributions have been 

employed in a number of studies, such as Mittnik et al. (1998a, 1998b) and Mittnik and 

Paolella (2001). Tsionas (1999) established a framework for Monte Carlo posterior 

inference in models with stable distributed errors by combining a Gibbs sampler with 

Metropolis independence chains and representing the symmetric stable variates as 

normal scale mixtures. Mittnik et al. (2002) and Panorska et al. (1995) derived conditions 

for strict stationarity of GARCH and APARCH models with stable Paretian conditional 

distributions. Vries (1991) provided relationships between ARCH and stable processes. 

Tsionas (2002) compared a stable Paretian model with ARCH errors with a stable 

Paretian model with stochastic volatility. The Randomized GARCH model with stable 

Paretian innovations totally skewed to the right and with 10  a  was studied by 

Nowicka-Zagrajek and Weron (2001). They derived the unconditional distributions and 

analyzed the dependence structure by means of the codifference. It turns out that R-

GARCH models with conditional variance dependent on the past can have very heavy 
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tails. The class is very flexible as it includes GARCH models and Vries process (1991) 

as special cases. 

 Hansen (1994) suggested an approach that allows not only the conditional 

variance to be time varying but also the higher moments of conditional distribution such 

as skewness and kurtosis. He suggested the autoregressive conditional density, or the 

ARCD, model, where the density function,  wzf t ; , is presented as: 

 1|; ttt Iwzf . (4.17) 

The parameter vector of the conditional density function in (4.17) is assumed to be a 

function of the current information set, 1tI . 

Other distributions, that have been employed, include the normal Poisson mixture 

distribution (Brorsen and Yang (1994), Drost et al. (1998), Jorion (1988), Lin and Yeh 

(2000), and Vlaar and Palm (1993)), the normal lognormal mixture (Hsieh (1989)), and 

serially dependent mixture of normally distributed variables (Cai (1994)) or student t 

distributed variables (Hamilton and Susmel (1994))5. 

 

4 . 4  Q u a s i - M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

 

The assumption of normally distributed standardized innovations is often violated 

by the data. This has motivated the use of alternative distributional assumptions, 

presented in the previous section.  Alternatively, the MLE based on the normal density 

may be given a quasi-maximum likelihood interpretation. Bollerslev and Wooldridge 

(1992), based on Weiss (1986) and Pagan and Sabau (1987), showed that the 

maximization of the normal log-likelihood function can provide consistent estimates of 

the parameter vector   even when the distribution of tz  in non-normal, provided that: 

 
  . 1|

0|

1
2

1









tt

tt

IzE

IzE
 

This estimator is, however, inefficient with the degree of inefficiency increasing with the 

degree of departure from normality. So, the standard errors of the parameters have to be 

adjusted. Let ̂  be the estimate that maximizes the normal log-likelihood function, in 

                                                 
5 Cai (1994) and Hamilton and Susmel (1994) used the mixtures to estimate the class of regime switching 
ARCH models, presented in section 2.1. 
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equation (4.2), based on the normal density function in (4.5), and let 0  be the true 

value. Then, even when tz  is non-normal, under certain regularity conditions: 

   11
0 ,0ˆ  BAANT

D

 , (4.17) 
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for tl  denoting the correctly specified log-likelihood function. The matrices A  and B  can 

be consistently estimated by: 
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where tl  is the incorrectly specified log-likelihood function under the assumption of 

normal density function. Thus, standard errors for ̂  that are robust to misspecification 

of the family of densities can be obtained from the square root of diagonal elements of: 

111 ˆˆˆ 
ABAT . 

Recall that if the model is correctly specified and the data are in fact generated by the 

normal density function, then BA  , and, hence, the variance covariance matrix, 

111 ˆˆˆ 
ABAT , reduces to the usual asymptotic variance covariance matrix for maximum 

likelihood estimation: 

11 ˆ 
AT . 

For symmetric departures from normality, the quasi-maximum likelihood estimation is 

generally close to the exact MLE. But, for non-symmetric distributions, Engle and 

González-Rivera (1991), showed that the loss in efficiency may be quite high (Bai and 

Ng (2001) proposed a procedure for testing conditional symmetry.). In such a case, other 

methods of estimation should be considered. Lumsdaine (1991, 1996) and Lee and 

Hansen (1991, 1994) established the consistency and asymptotic normality of the quasi-
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maximum likelihood estimators of the IGARCH(1,1) model. Lee (1991) extended the 

asymptotic properties to the IGARCH(1,1) in Mean model, Berkes et al. (2003) and 

Berkes and Horváth (2003) studied the asymptotic properties of the quasi-maximum 

likelihood estimators of the GARCH(p,q) model under a set of weaker conditions, and 

Baille et al. (1996) showed that the quasi-maximum likelihood estimators of the 

FIGARCH(1,d,0) model are both consistent and asymptotically normally distributed. 

 

4 . 5  O t h e r  E s t i m a t i n g  M e t h o d s  

 

Other estimation methods, except for MLE, have been appeared in the ARCH 

literature. Harvey et al. (1992) presented the unobserved components structural ARCH, 

or STARCH, model and proposed an estimation method based on the Kalman filter. 

These are state space models or factor models in which the innovation is composed of 

several sources of error where each of the error sources has a heteroscedastic 

specification of the ARCH form. Since the error components cannot be separately 

observed given the past observations, the independent variables in the variance 

equations are not measurable with respect to the available information set, which 

complicates inference procedures. 

Pagan and Hong (1991) applied a nonparametric Kernel estimate of the expected 

value of squared innovations. Pagan and Schwert (1990) used a collection of 

nonparametric estimation methods, including Kernels, Fourier series and two-stage least 

squares regressions. They found that the non-parametric methods did good job in-

sample forecasts though the parametric models yielded superior out-of-sample 

forecasts.  Gouriéroux and Monfort (1992) also proposed a nonparametric estimation 

method in order to estimate the GQTARCH model in equation (2.28). Bühlmann and 

McNeil (2002) proposed a nonparametric estimation iterative algorithm, that requires 

neither the specification of the conditional variance functional form nor that of the 

conditional density function, and showed that their algorithm gives more precise 

estimates of the volatility in the presence of departures from the assumed ARCH 

specification. 

Engle and González-Rivera (1991), Engle and Ng (1993), Gallant and Tauchen 

(1989), Gallant et al. (1991), Gallant et al. (1993) among others, combined parametric 

specifications for the conditional variance with a nonparametric estimate of the 

conditional density function. In a Monte Carlo study, Engle and González-Rivera (1991) 
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found that their semi-parametric method could improve the efficiency of the parameter 

estimates up to 50 per cent over the QMLE, particularly when the density was highly 

non-normal and skewed, but it did not seem to capture the total potential gain in 

efficiency. 

Another attractive way to estimate ARCH models without assuming normality is 

to apply the generalized method of moments (GMM) approach. (For details, see Bates 

and White (1988), Ferson (1989), Mark (1988), Rich et al. (1991), Simon (1989)). Let us, 

for example, represent the GARCH(p,q) model as 
tt s 2 , where 

 
pq bbaaa ,...,,,...,, 110  and  22

1
22

1 ,...,,,...,,1 pttqttts   . Under the assumption 
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the parameters could be estimated by GMM by choosing the vector    ,b  so as to 

minimize: 
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and the matrix Ŝ  can be constructed by any of the methods that have been considered 

in the GMM literature. 

Geweke (1988a,b, 1989) argued that a Bayesian approach, rather than the 

classical one, might be more suitable for estimating ARCH models due to the distinct 

features of these models. In order to ensure positivity of the conditional variance, some 

inequality restrictions should be imposed. Although difficult to impose such restrictions in 

the classical approach, under the Bayesian framework, diffuse priors can incorporate 

these inequalities. Also, as the main interest in not in the individual parameters but rather 

in the conditional variance itself, in the Bayesian framework exact posterior distributions 

of the conditional variance can be obtained. 

Giraitis and Robinson (2000) estimated the parameters of the GARCH process 

using the Whittle estimation technique and demonstrated that the Whittle estimator is 
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strongly consistent and asymptotically normal, provided the GARCH process has finite 

8th moment marginal distribution. Whittle (1953) proposed an estimation technique that 

works in the spectral domain of the process6. Moreover, Mikosch and Straumann (2002) 

showed that the Whittle estimator is consistent as long as the 4th moment is finite and 

inconsistent when the 4th moment is infinite. Thus, as noted by Mikosch and Straumann, 

the Whittle estimator for GARCH processes is unreliable as the ARCH models are 

applied in heavy-tailed data, sometimes without finite 5th, 4th, or even 3rd moments. 

Hall and Yao (2003) showed that for heavy tailed innovations, the asymptotic 

distribution of quasi-maximum likelihood parameter estimators is non-normal and 

suggested percentile-t subsample bootstrap approximations to estimator distributions. 

 

5 .  M u l t i v a r i a t e  A R C H  M o d e l s  

 

 All the ARCH models that have been discussed are univariate. However, assets 

and markets affect each other not only in terms of expected returns but also in terms of 

volatility. Thus, the accurate estimation of time-varying covariances between asset 

returns has been crucial for asset pricing and risk management. The generalization of 

univariate models to a multivariate context leads to a straightforward application of 

ARCH models to portfolio selection and asset pricing theory. 

Let the  1n  vector  ty  refer to the multivariate discrete time real-valued 

stochastic process to be predicted, where   tttE μy 1  denotes the conditional mean. 

The innovation process for the conditional mean ttt μyε   has an  nn  conditional 

covariance matrix   tttV Hy 1 . For a system of n  regression equations, the natural 

extension of (2.2) to a multivariate framework could be presented as: 

 
 ,,...,,...,,

,0~|

2121

1









ttttt

ttt

ttt

g

fI

εεHHH

Hε
εxBy

 (5.1) 

where B  is a nk   matrix of unknown parameters, tx  a 1k  vector of endogenous and 

exogenous explanatory variables included in the available information set, 1tI ,  .f  the 

                                                 
6 For further details about the Whittle estimation technique for ARMA processes see Brockwell and Davis 
(1991). 
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conditional multivariate density function of innovation process and  .g  a function of the 

lagged conditional covariance matrices and innovation process. 

 The natural multivariate extension of the GARCH(p,q) model in equation (2.6) is: 

   
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

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11

BHBAεεAAAH 00 , (5.2) 

where 0A  is a lower triangular matrix with   21nn  parameters and, iA  and jB  

denote  nn  matrices with 2
n  parameters each. Engle and Kroner (1995), based on 

an earlier work of Baba et al. (1990), proposed model (5.2) to which they referred as the 

BEKK model. This parameterization guarantees that tH  is positive definite and requires 

the estimation of     pqnnn  221  parameters. For example, for 3n , the 

multivariate GARCH(1,1) model contains 24 parameters for estimation. Lee (1999b) 

investigated the output-inflation variability tradeoff using the bivariate BEKK model. 

Recently, Moschini and Myers (2002), in order to estimate time-varying optimal hedge 

ratios in commodity markets, modified the BEKK model of (5.2) in the form: 
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.  

As Moschini and Myers noted, the covariance matrix is positive definite as long as tΓ  is 

a positive definite matrix.  

A simpler expression of tH  can be obtained through the use of the  .vech  

operator that stacks the lower portion of a  nn  matrix as an    121 nn  vector. So, 

the equation (5.2) is rewritten as: 
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where iA
~

 and 
jB

~
 are parameter matrices of dimension     2121  nnnn . Engle 

et al. (1986) published the first paper on multivariate ARCH models applying the 

multivariate ARCH(2) model. However, in the multivariate expression of the GARCH(p,q) 

model, serious problems arise: i) the model might not yield a positive definite covariance 

matrix unless nonlinear inequality restrictions are imposed, and ii) the number of 

parameters has to be estimated is        pqnnnn  21121 , a very large 
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number even for low dimensions of n . For example, for 3n , the multivariate 

GARCH(1,1) model contains 78 parameters for estimation. 

 A number of models, considered in the financial literature, have dealt with 

imposing constraints in multivariate GARCH models in order to reduce the number of 

parameters that should be estimated. These constraints have to be compatible with a 

positive definite conditional covariance matrix and must lead to tractable estimation 

procedures. Bollerslev et al. (1988) proposed the diagonal multivariate GARCH(p,q) 

model where the iA
~

 and 
jB

~
 matrices are supposed to be diagonal. Thus, the number of 

parameters is reduced to    pqnn  121 . So, for example, for 3n , the diagonal 

GARCH(1,1) model requires the estimation of 18 parameters. Bollerslev et al. (1988) 

used this model for analyzing returns on bills, bonds and stocks, while Baillie and Myers 

(1991), Bera et al. (1991) and Myers (1991) estimated hedge ratios in commodity 

markets. Ding and Engle (2001) gave sufficient conditions for the diagonal multivariate 

GARCH(1,1) model to be positive definite and proposed four models, which are nested 

to the multivariate diagonal multivariate GARCH(1,1) model.  

A special case of the BEKK model, for 1 qp , is the factor GARCH model first 

proposed in Engle (1987). The factor GARCH(1,1) model was constructed to overcome 

the problem of estimating a vast number of parameters, while retaining the benefits of 

positive definiteness. The model has the form: 

  wHwεwλλAAH 1t00 1

2

  tt βα , (5.4) 

where   and   are scalars,  λ  and w  are  1n  vectors. The vector w  can be 

considered as a vector of portfolio weights and it is convenient to restrict in the case 

1wι , where ι  is a vector of ones. This model is a special case of the BEKK model 

where the matrices 1A  and 1B  have rank 1: λwA  1  and λwB  1 . The 

number of parameters is   2252  nn . So for example, for 3n  we have to estimate 

14 parameters. The model can be extended to allow for K  factors and a higher order 

GARCH structure. So, the K  factor GARCH(p,q) model is represented by 
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and has     212  nnqpnK  free parameters. Engle et al. (1990b) and Ng et al. 

(1992) applied factor GARCH models on treasury bills and stock returns.   Diebold and 
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Nerlove (1989), Harvey et al. (1992), King et al. (1994) and Alexander (2000) proposed 

latent factor GARCH models, based on the assumption that only a few factors influence 

the conditional variances and covariances of asset returns, which are not functions of 

the information set. 

The constant conditional correlation model, introduced by Bollerslev (1990), is a 

popular method to model multivariate GARCH models, where univariate GARCH models 

are estimated for each asset and then the correlation matrix is estimated. The time-

varying conditional covariances are parameterized to be proportional to the product of 

the corresponding conditional standard deviations. This assumption greatly simplifies the 

estimation of the model and reduces the computational cost. Let us assume that the 

covariance matrix can be decomposed thus 
2/12/1

tttt ΣCΣH  , where tΣ  is the diagonal 

matrix with the conditional variances along the diagonal and tC  is the matrix of 

conditional correlations. The constant conditional correlation model assumes that the 

matrix of conditional correlations is time invariant, so that the temporal variation of tH  

can be determined solely by the conditional variances: 

2/12/1
ttt CΣΣH  . (5.6) 

tH  is positive definite if C  is positive definite and the conditional variances are positive. 

The number of parameters reduces to     pqnnn  121 . So, for 3n  the 

constant conditional correlation GARCH(1,1) model requires the estimation of 12 

parameters. Several authors have considered this representation, e.g. Baillie and 

Bollerslev (1990), Brown and Ligeralde (1990), Cecchetti et al. (1988), Fornari et al. 

(2002), Kim (2000), Kroner and Claessens (1991), Kroner and Lastrapes (1991), Kroner 

and Sultan (1991,1993), Lien and Tse (1998) and Park and Switzer (1995). 

 However, recent studies have considered test statistics, which reject the 

constancy of conditional correlation. Bera and Kim (1996), who proposed the Information 

Matrix test, were led to the rejection of a constant correlation hypothesis for USA, 

European and Japan stock markets, while Tse (2000), who derived a Lagrange Multiplier 

test for the conditional correlation stability hypothesis, rejected the hypothesis for Asian 

stock markets. Tsui and Yu (1999), adopting the Information Matrix test, examined the 

China stock market and found that the constant conditional correlation hypothesis is not 

supported. Longin and Solnik (1995) rejected the hypothesis of constant conditional 

correlation in international equity returns against three alternative sources of variability of 
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the correlation such as a time trend, the presence of threshold and asymmetry and the 

influence of information variables. 

As the hypothesis of constancy of correlation was rejected in a number of papers, 

Engle (2000) and Engle and Sheppard (2001) introduced a new form of multivariate 

ARCH model, the Dynamic Conditional Correlation GARCH, or DCC-GARCH(C,M), 

model. The model is estimated in two steps. The first is a series of univariate GARCH 

estimates. The second step, using the residuals resulting for the first stage, evaluates 

the conditional correlation estimator. The success of the DCC-GARCH model depends 

on the estimability of extremely large time varying covariance matrices. Engle proposed 

to use the decomposed covariance matrix 
2/12/1

tttt ΣCΣH   and suggested a time 

varying correlation matrix of the following form: 

2/1*2/1*  tttt QQQC . (5.7) 

The conditional variances, 
2
,tk , are estimated as univariate GARCH( kk qp , ) models, 

allowing for different lag lengths for each series nk ,...,2,1 , 
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The correlation matrix is computed using 
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where tz  are the residuals standardized by their conditional standard deviation, Q  is 

the unconditional covariance of the standardized residuals and 
2/1*

tQ  is a diagonal 

matrix composed of the square roots of the diagonal elements of 
tQ . Engle and 

Sheppard (2001) proved the consistency and asymptotic normality of the two-step 

estimators as well as the positive definiteness of the covariance matrix. They have also 

proposed a test of the null hypothesis of constant correlation against an alternative of 

dynamic conditional correlation. Christodoulakis and Satchell (2002) considered an 

alternative extension of the constant conditional correlation model of Bollerslev (1990) 

and developed a bivariate ARCH model with time varying conditional variances and 

correlations, named Correlated ARCH, or CorrARCH, model. 

 The multivariate ARCH models, that have been presented, although simplifying 

the estimation and inference procedures, do not account for empirical regularities such 
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as the asymmetric effects. In to order to capture the “leverage effect” in a multivariate 

framework, Braun et al. (1995) introduced a bivariate version of the EGARCH model in 

equation (2.13). Sentana (1995), in the presentation of the quadratic GARCH model, 

applied a multivariate version of his model to U.K. stock returns. Kroner and Ng (1998), 

following Hentschel’s (1995) approach, introduced a general multivariate GARCH model 

which nests the BEKK, diagonal, factor and constant conditional correlation GARCH 

models and their natural asymmetric extensions. Their model can be regarded as a 

multivariate extension of the GJR model in equation (2.13). Bekaert and Wu (1997), Ding 

and Engle (2001) and Tai (2001) have also modified multivariate ARCH models to 

accommodate asymmetric effects on conditional variances and covariances. Brunetti 

and Gilbert (1998), based on Bollerslev’s (1990) parameterization, proposed the 

bivariate constant correlation FIGARCH model and Brunetti and Gilbert (2000) applied 

the model to the crude oil market. 

 

6 .  O t h e r  M e t h o d s  o f  V o l a t i l i t y  M o d e l i n g  

 

“Stochastic volatility” models (Barndorff-Nielsen et al. (2001), Chib et al. (1998), 

Ghysels et al. (1996), Harvey and Shephard (1993), Jacquier et al. (1994), Shephard 

(1996), Taylor (1994)), “implied volatility” models (Day and Lewis (1988), Latane and 

Rendleman (1976), Schmalensee and Trippi (1978)), “historical volatility” models 

(Beckers (1983), Garman and Klass (1980), Kunitomo (1992), Parkinson (1980), Rogers 

and Satchell (1991)) and “realized volatility” models are examples from the financial 

econometric literature of estimating volatility of asset returns.  

A typical presentation of a stochastic volatility model can be given by 
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 (6.1) 

where   is a positive scale parameter, 1a , and the error terms tz ,1  and tz ,2  could be 

contemporaneously correlated. The additional error term, tz ,2 , in the conditional variance 

equation makes the stochastic volatility model have no closed form solution. Hence, the 

estimation of the parameters is a quite difficult task. For this reason, stochastic volatility 
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models are not as popular as the ARCH processes. Jacquier et al. (1994) considered a 

Markov Chain Monte Carlo (MCMC) framework in order to estimate stochastic volatility 

models and Jacquier et al. (1999) extended the MCMC technique to allow for the 

leverage effect and fat tailed conditional errors. Nelson (1990b) was the first to show that 

the continuous time limit of an ARCH process, which is a stochastic difference equation, 

is a diffusion process with stochastic volatility (which is a stochastic differential equation). 

Duan (1996) extended Nelson’s study. 

 Models based on the daily open, high, low and close asset prices, and 

exponential smoothing methods, such as the Riskmetrics method by J.P. Morgan, are 

procedures which are included to the historical volatility models. 

Implied volatility is the instantaneous standard deviation of the return on the 

underlying asset, which would have to be input into a theoretical pricing model in order 

to yield a theoretical value identical to the price of the option in the marketplace, 

assuming all other inputs are known. Day and Lewis (1992) examined whether implied 

volatilities contain incremental information relative to the estimated volatility from ARCH 

models. Noh et al. (1994) compared the forecasting performance of ARCH and implied 

volatility models in the context of option pricing. Andersen et al. (2002) reviewed a 

systematically categorization of various ways of modeling volatility. Recently, Poon and 

Granger (2001) conducted a comparative review based on the forecasting performance 

of ARCH, implied volatility, and historical volatility models. 

Although the presentation of the above methods of volatility estimation is beyond 

the scope of this paper, we briefly refer to the modeling of realized volatility, as it is a 

recently developed promising area of volatility model building. 

 

6 . 1  I n t r a - D a y  R e a l i z e d  V o l a t i l i t y  M o d e l s  

 

The modeling of realized volatility is based on the idea of using higher frequency 

data to generate more accurate volatility estimates of lower frequency. Andersen and 

Bollerslev (1998a) introduced an alternative volatility measure, the “realized volatility”. 

For tP  denoting the price of an asset at day t , let the difference of the log-prices, 

     
mtttm PPy 1, loglog  , where ,...2,1 mmt  , (6.2) 

denote the discretely observed series of continuously compounded returns with m  

observations per day. The realized volatility for a horizon of N  days ahead is: 
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Andersen at al. (2000b, 2001a, 2001b, 2001c) were the first studies that explored the 

distributional properties of the realized volatility. The main results are that i) although the 

distribution of asset returns is non-normal (highly skewed and kurtosed), the distribution 

of returns scaled by the realized standard deviation is approximately Gaussian and ii) the 

realized logarithmic standard deviation is also nearly Gaussian. The concept of the 

realized volatility is based on the “integrated volatility”, which is central to the stochastic 

volatility option pricing in Hull and White (1987). Over an interval of length h , the 

integrated volatility is defined as: 

 
h

rhtth drsy
0

22
, , (6.4) 

where ts  is the volatility of the instantaneous returns process, generated by the 

continuous time martingale,   ttt dWsPd log , ( tW  is the standard Wiener process). In 

the case of discrete time with a sample frequency of mh 1 ,  
2

,1 thy  is an unbiased 

estimator of 
2
,thy . As noted by Ebens (1999) and Andersen and Bollerslev (1998a) for 

daily volatility forecasts, or  1h , the discretely sampled daily returns, for  1m , 

constitute a noisy estimator, but the accuracy improves as the sampling frequency is 

increasing,  m . However, the observed tick-by-tick asset prices are available only 

at discrete points in time and asset returns are characterized by the effect of non-

synchronous trading. Thus, the sampling frequency should be as high as the market 

microstructure features do not induce bias to volatility estimator, i.e. Andersen and 

Bollerslev (1998a), Andersen et al. (1999), Andersen et al. (2000a), Andersen et al. 

(2001a), Areal and Taylor (2000), Kayahan et al. (2002) used a sampling frequency of 5-

minites for heavily traded assets. The 5-minites sampling frequency were also used in 

the majority of the subsequent studies.  

 Ebens (1999), Giot and Laurent (2001), and Thomakos and Wang (2002) 

proposed the use of an ARFIMA model, in the form of (2.40), in order to fit the 

logarithmic realized variance. For more information and reference about applications and 

properties of the realized volatility and the use of intraday data see Andersen (2000), 

Andersen and Bollerslev (1998b), Andersen et al. (2001b), Barndorff-Nielsen and 
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Shephard (2002a, 2002b), Bollerslev and Wright (2001), Oomen (2001) and Taylor and 

Xu (1997). 

 

7 .  I n t e r p r e t a t i o n  o f  A R C H  P r o c e s s  

 

 A number of studies have aimed at explaining the prominence of ARCH process 

in financial applications. Stock (1987, 1988) established the time deformation model, in 

which economic and calendar time proceed at different speed, and linked the relation 

between time deformation and ARCH models. Any economic variable evolves on an 

operational time scale, while in practice it is measured on a calendar time scale. The 

inappropriate use of calendar time scale leads to volatility clustering since relative to the 

calendar time, the variable may evolve quicker or slower. The time deformation model 

for a random variable ty  has the form: 

 
.

,0~|
2

110
2

2
1

1











tt

ttt

tttt

aa

NI

ypy







 (7.1) 

According to Stock, when a long segment of operational time elapsed during a unit of 

calendar time, tp  is small and 2
t  is large. In order words, the time varying 

autoregressive parameter is inversely related to the conditional variance. 

  Mizrach (1990) developed a model in which the errors, made by the participants 

of the market on investing, are strongly dependent on all past errors. The highly 

persistence on the errors forces the volatility of asset returns to have an ARCH like 

structure. 

Gallant et al. (1991), based on some earlier work by Clark (1973), Mandelbrot 

and Taylor (1967), Tauchen and Pitts (1983), and Westerfield (1977) provided a 

theoretical interpretation of ARCH effect. Let us assume that the asset returns are 

defined by a stochastic number of intra-period price revisions so that they can be 

decomposed to: 





t

i

itty



1

, (7.2) 

where t  is the forecastable component,  2
...

,0~ sN
dii

i  denotes the incremental 

changes and t  is the number of times new information comes to the market in time t . 
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t  is an unobservable random variable and is independent of the incremental changes. 

In such a case, the asset returns are not normally distributed, as their distribution is a 

mixture of normal distributions. Rewriting the equation (7.2) as: 
tttt zsy  2 , with 

tz , ,...2,1t  as i.i.d. standard normal variables, the ty  conditional on any information 

set, t  and 1 t , is normally distributed: 

   ttttt sNIy  2
1 ,~,|  . (7.3) 

However, the knowledge of information that flows into the market is an unrealistic 

assumption. Hence, the ty  conditional on the information set available to the market 

participants is: 

  ttttt EsNIy  1
2

1 ,~|  . (7.4) 

Note that the conditional kurtosis,    2

1
2

13 tttt EE   , exceeds 3, as in the ARCH 

process where the innovation, 
t , always has fatter tails than its unconditional normal 

distribution: 

    3
224 tt EE  . (7.5) 

 Lamoureux and Lastrapes (1990) assumed that the number of information 

arrivals is serially correlated and used the daily trading volume as a proxy variable for 

the daily information that flows into the stock market. Hence, t  can be expressed as an 

autoregressive process: 

 1,0~

1
0

Nz

zbb

iid

t

t

i

itit  







 (7.6) 

From (7.4) we know that    tttt sIyE  2
1

2
|   , thus (7.6) becomes 

      t
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The structure in (7.7) expresses the persistence in conditional variance, a characteristic 

that is captured by the ARCH process. Lamoureux and Lastrapes (1990) used the 

trading volume as a proxy variable for t . Including the daily trading volume, tV , as an 

exogenous variable in the GARCH(1,1) model, they found that its coefficient was highly 

significant whereas the ARCH coefficients became negligible: 
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tttt Vbaa   2
1

2
10

2 . (7.8) 

The heteroscedastic mixture model assumes that 0  and that the persistence of 

variance as measured by 11 ba   should become negligible. Their work provided 

empirical evidence that the ARCH process is a manifestation of the time dependence on 

the rate of information arrival to the market.  

Brailsford (1996) and Pyun et al. (2000) applied versions of the heteroscedastic 

mixture model and reported that the degree of persistence reduced as a proxy for 

information arrival enters into the variance equation. On the other hand, a number of 

studies (i.e. Abhyankar (1995), Bessembinder and Seguin (1993), Najand and Yung 

(1991), Locke and Sayers (1993), Sharma et al. (1996)) tested the mixture of 

distributions hypothesis, for various sets of data, and found that the ARCH coefficients 

remain statistically significant even after a trading volume is included as an exogenous 

variable in the model. This contradiction forced Miyakoshi (2002) to reexamine the 

relation between ARCH effects and rate of information arrival to the market. By using 

data from the Tokyo Stock Exchange, Miyakoshi showed that for periods with important 

market announcements, the trading volume affects the return volatility and the ARCH 

coefficients become negligible, while for periods which lack of “big news” the ARCH 

structure characterizes the conditional variance, adequately. The mixture of distributions 

hypothesis was also reexamined by Luu and Martens (2002) in the context of “realized 

volatility”. 

 Engle et al. (1990a) evaluated the role of the information arrival process in the 

determination of volatility in a multivariate framework providing a test of two hypotheses: 

heat waves and meteor showers. Using meteorological analogies, they supposed that 

information follows a process like a heat wave so that a hot day in New York is likely to 

be followed by another hot day in New York but not typically by a hot day in Tokyo. On 

the other hand, a meteor shower in New York, which rains down on the earth as it turns, 

will almost surely be followed by one in Tokyo. Thus, the heat wave hypothesis is that 

the volatility has only country specific autocorrelation, while the meteor shower 

hypothesis states that volatility in one market spills over to the next.  They examined 

intra daily volatility in the foreign exchange markets, focusing on time periods 

corresponding to the business hours of different countries. Their research based on the 

Yen/Dollar exchange rate while the Tokyo, European and New York market are open. 

They found that the foreign news was more important than the past domestic news. So, 
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the major effect is more like a meteor shower, i.e. Japanese news had a greater impact 

on the volatility of all markets except the Tokyo market. This is interpreted as evidence 

that volatility in part arises from trading rather than purely from news. Conrad et al. 

(1991), Pyun et al. (2000) and Ross (1989) examined the volatility spillover effect across 

large and small capitalization companies. The main finding is that volatility propagates 

asymmetrically in sense that the effect of shocks of larger firms on the volatility of 

smaller companies is more significant than that from smaller firms to larger companies. 

 Bollerslev and Domowitz (1991) showed how the actual market mechanisms may 

themselves result in a very different temporal dependence in the volatility of transaction 

prices, with a particular automated trade execution system inducing a very high degree 

of persistence in the conditional variance process. 

 Alternative expositions for theoretical evidence on the sources of ARCH effect 

have been presented by Attanasio and Wadhwani (1989), Backus et al. (1989), Brock 

and Kleidon (1990), Diebold and Pauly (1988), Domowitz and Hakkio (1985), Engle and 

Susmel (1990), Giovannini and Jorion (1989), Hodrick (1989), Hong and Lee (2001), 

Hsieh (1988), Lai and Pauly (1988), Laux and Ng (1993), Ng (1988), Schwert (1989a), 

Smith (1987) and Thum (1988). Nelson (1990b) was the first to show how ARCH models 

can emerge from diffusion processes. The problem of estimation of discretely sampled 

diffusions, such as ARCH processes, and their relationship with continuous time models 

has also been considered in the literature (see, e.g., Aït-Sahalia (2001, 2002), and 

references therein). 
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T h e  A R C H  m o d e l s  t h a t  h a v e  b e e n  p r e s e n t e d  

 

Table 2. The ARCH models that have been presented in Section 2.1. The reader who is interested in 
more information for an ARCH model should recur to the equation referred in the last column. 
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