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Abstract

This paper investigates one-step ahead density forecasts of mixed causal-
noncausal models. We compare the sample-based and the simulations-based
approaches respectively developed by Gouriéroux and Jasiak (2016) and
Lanne, Luoto, and Saikkonen (2012). We focus on explosive episodes and
therefore on predicting turning points of bubbles bursts. We suggest the
use of both methods to construct investment strategies based on how much
probabilities are induced by the assumed model and by past behaviours. We
illustrate our analysis on Nickel prices series.
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1 Introduction

Locally explosive episodes have long been observed in financial and economic
time series. Such patterns, often observed in stock prices, can be triggered
by anticipation or speculation. Given this forward-looking aspect, expecta-
tion models have been prevalent for modelling them. As shown for instance
by Gouriéroux, Jasiak, and Monfort (2016), equilibrium rational expecta-
tion models admit a multiplicity of solutions, and some of them feature such
speculative bubble patterns.2 Models employed to capture them range from
simplistic approaches, such as single bubble models with constant probabil-
ity of crash, to rather complex models depending on numerous parameters.
Although those models may a posteriori fit the data well, they are either not
informative enough or render predictions uncertain due to their dependence
on extensive parameters estimation.

This paper analyses different approaches to perform point and density fore-
casts from mixed causal-noncausal autoregressive (hereafter MAR) models.
MAR models incorporate both lags and leads of the variable of interest
with potentially heavy-tailed errors. The most commonly used distribu-
tions for such models in the literature are the Cauchy and Student’s t-
distributions. In spite of their simplicity, MAR models generate non-linear
dynamics such as locally explosive episodes in a strictly stationary setting
(Fries and Zaköıan, 2019). So far, the focus has mainly been put on identifi-
cation and estimation. Hecq, Lieb, and Telg (2016), Hencic and Gouriéroux
(2015) and Lanne et al. (2012) detect a noncausal component explaining
respectively the observed bubbles in the demand of solar panels in Bel-
gium, in Bitcoin and inflation series. Few papers look at the forecasting
aspects. Gouriéroux and Zaköıan (2017) demonstrate that the causal condi-
tional distribution possesses more moments than the marginal distribution
and suggest this as a cornerstone for forecasting with such models. Some
distributions however, like Student’s t, do not admit closed-form expressions
for conditional moments and distribution. Gouriéroux and Jasiak (2016) or
Lanne et al. (2012) developed estimators to approximate them based on past
realised values or on simulations respectively. Nonetheless, the literature re-
garding the ability of MAR models to predict both explosive and stable

2In this paper, speculative bubbles, or simply bubbles are referred to as processes
characterised by a rapid and persistent increase followed by a crash. Some authors talk
about bubbles to denote the deviation from the fundamental solution of a present value
type model. Those bubbles might not have the non-linear pattern that we investigate in
this paper.

1



episodes remains scarce (see also Gouriéroux, Hencic, and Jasiak, 2018).
The aim of this paper is to analyse and compare in details methods avail-
able for forecasting MAR(r,1) models, with unconstrained r number of lags,
a unique lead and a positive lead coefficient. Furthermore, the focus is put
on positive bubbles since they are prevalent in financial and economic time
series. This paper investigates the possibility to predict the turning point
of locally explosive episodes. Both statistical and numerical approaches
are employed, and in order to rigorously compare them, this paper aims
attention at one-step ahead predictions. We find that combining results ob-
tained from two different approaches can help to disentangle how much of
the probability of an event is induced by the underlying distribution and by
past behaviours of the series. This information could be used for investment
strategies, to optimise when leaving an investment before the bubble crash.

The paper is constructed as follows. Section 2 introduces mixed causal-
noncausal autoregressive models. Section 3 discusses how they have been
used for prediction so far when the conditional moments and densities admit
closed-form expressions. In Section 4 are presented the numerical sample-
based forecasting approach proposed by Gouriéroux and Jasiak (2016), fol-
lowed by the simulations-based method proposed by Lanne et al. (2012).
The performance of both approaches is compared to closed-form results of
an MAR(0,1) processes with a lead coefficient of 0.8 and Cauchy-distributed
errors. In Section 5 both approximation methods are illustrated using a de-
trended Nickel prices series. Section 6 concludes.

2 Mixed causal-noncausal autoregressive models

Consider the univariate MAR(r,s) process defined as follows,

Φ(L)Ψ(L−1)yt = εt,

where L and L−1 are respectively the lag and forward operators; Φ and
Ψ are two invertible polynomials of degree r and s respectively. That is,
Φ(L) = (1−φ1L · · ·−φrLr) and Ψ(L−1) = (1−ψ1L

−1 · · ·−ψsL−s) with roots
strictly outside the unit circle and such that Φ(0) = Ψ(0) = 1. The error
term εt is i.i.d, following a non-Gaussian distribution. This assumption, not
empirically restrictive since non-normality is widely observed in financial
and economic time series, is necessary to achieve identification of the model.
An MAR(r,s) model can also be expressed as a causal AR model where yt
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depends on its own past and present value of ut,

Φ(L)yt = ut, (1)

where ut is the purely noncausal component of the errors, depending on its
own future and on the present value of the error term

Ψ(L−1)ut = εt. (2)

From this notation it is evident that predicting the variable of interest y re-
quires prediction of its noncausal component u. This is why most prediction
methods focus on forecasting purely noncausal processes. Alternatively, we
can also filter the process as Φ(L)vt = εt with Ψ(L−1)yt = vt to obtain
the backward component of the errors, vt. The process yt admits a station-
ary infinite two-sided MA representation and depends on past, present and
future values of εt,

yt =

+∞∑
i=−∞

aiεt−i.

The case in which all coefficients ai for −∞ < i ≤ 0 (resp. 0 ≤ i < ∞) are
equal to 0, corresponds to a purely causal (resp. noncausal) model.

Despite their apparent simplicity and parsimony, MAR models often pro-
vide a better fit to economic and financial data as they capture non-linear
causal dynamics such as bubbles or asymmetric cycles. The shape of series
generated by MAR(r,s) processes depends on the presence of leads, lags
and the magnitude of their coefficients. Figure 1 displays how the presence
of a lag, a lead, or both, affects the shape of MAR series. Purely causal
(resp. noncausal) processes are only affected by a shock after (resp. before)
the impact; this is shown in graph (a) (resp. (b)). Consequently, MAR
processes are affected both in anticipation and after the shock; the shape
of the explosive episode (mostly forward or backward looking) depends on
the magnitude of the lag and lead coefficients. When the coefficients are
identical (c) the effects of the shock are symmetric around the impact while
when the coefficient of the lead is higher (d), the explosive episode is more
analogous to what we refer to as a bubble with an asymmetry around the
peak.

The usual practice for estimating and identifying MAR models is as fol-
lows. Methods based on first and second moments (e.g. OLS) are unable
to distinguish between purely causal, noncausal or mixed processes as their
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Figure 1: Effects of lags and leads on a MAR(1,1) series (a) φ = 0.8 and
ψ = 0, (b) φ = 0 and ψ = 0.8, (c) φ = 0.8 and ψ = 0.8, (d) φ = 0.3 and
ψ = 0.8

autocovariance functions are identical. Fitting an autoregressive model by
OLS allows however to estimate the sum of leads and lags, p.3 Subsequently,
the respective numbers of lags (r) and leads (s), such that r + s = p, can
be estimated by an approximate maximum likelihood (hereafter AML) ap-
proach (Lanne and Saikkonen, 2011). The selected model is the one max-
imising the AML with respect to r, s and all parameters Ω = (Φ,Ψ,Θ),
where Φ = (φ1, . . . , φr), Ψ = (ψ1, . . . , ψs) and Θ is the errors distribution
parameters, such as the scale or location for instance. The AML estimator
is defined as follows,

(
Φ̂, Ψ̂, Θ̂

)
= argmaxΦ,Ψ,Θ

T−s∑
t=r+1

ln

[
g
(

Φ(L)Ψ(L−1)yt; Θ
)]
,

where g denotes the pdf of the error term, satisfying the regularity con-
ditions (Andrews, Davis, and Breidt, 2006). Lanne and Saikkonen (2011)

3A non-Gaussian MLE can give misleading results in a misspecified model (Gouriéroux
and Jasiak, 2018).
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show that the resulting (local) maximum likelihood estimator is consistent,
asymptotically normal and that (Ψ̂, Φ̂) and Θ̂ are asymptotically indepen-
dent. Since analytic solution of the maximisation problem at hand is not
directly available, numerical gradient-based procedures can be employed.
Hecq et al. (2016) indicate that in theory, estimating MAR models is easier
for more volatile series since the convergence of the estimator is faster for
distributions with fatter tails. They propose an alternative way to obtain
the standard errors, a method implemented in the R package MARX.

While with a unique lead and a positive coefficient ψ, explosive episodes in-
crease at a fixed rate ψ−1 until the crash, other specifications induce complex
patterns not resembling the bubble pattern that this paper focuses on. As
shown in Figure 2, a negative coefficient (upper graphs) creates increasing
oscillations around zero until the crash and multiple leads (bottom graphs)
create oscillations along the explosion. Because the presence of multiple
leads renders derivations rather intricate, this paper focuses on MAR(r,1)
processes with a positive lead coefficient. Except for the empirical analysis
of Section 5, the data generating process will be assumed correctly identified
throughout the paper to disregard estimation uncertainty.

3 Predictions using closed-form expressions

When it comes to forecasting MAR models, different approaches are avail-
able. One can predict the next points of the series based on conditional
expectations. Alternatively, one can forecast densities, with for instance the
aim to visually analyse probabilities of potential future paths or to predict
probabilities of turning point in an explosive episode. However, the antici-
pative aspect of MAR models complicates their use for predictions. Results
are not as straightforward as they could be with purely backward-looking
ARMA models. While in some cases mean or density forecasts can be di-
rectly obtained from the assumed errors distribution, they sometimes need
to be approximated. For this section, let us assume that the data generating
process is an MAR(r,1) process Φ(L)(1 − ψL−1)yt = εt, where ψ > 0, εt is
i.i.d. non-Gaussian and ut = Φ(L)yt is the purely non-causal component of
the process.
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Figure 2: Complex dynamics induced in MAR(0,s) processes by negative
coefficients or multiple leads

3.1 Point predictions

Gouriéroux and Zaköıan (2017) derive the first two conditional moments
of MAR(0,1) processes,4 here denoted as ut, and show that for Cauchy
processes, with ψ > 0, the conditional expectation of uT+1 is

E
[
uT+1|uT ] = uT . (3)

This result is puzzling since the conditional expectation of a noncausal pro-
cess has a unit root even though the process is stationary. More generally,
the conditional expectation of MAR(r,1) processes,

E
[
yT+1|yT

]
= φ1yT + · · ·+ φryT−r+1 + uT ,

4Note that the linear projection on the past does not correspond, in this context, to
the conditional expectation (Gouriéroux and Jasiak, 2018).
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and using Equation (1), is equivalent to

E
[
yT+1|yT

]
= φ1yT + · · ·+ φryT−r+1 + yT + φ1yT−1 + · · ·+ φryT−r

= yT + (1− L)(φ1yT + · · ·+ φryT−r+1).

The last equality corroborates the findings of Fries and Zaköıan (2019) for
MAR(r,1) Cauchy models. They show that the conditional expectation
at any forecast horizon for any symmetric α−stable distributed MAR(r,1)
process can be expressed as a lag polynomial of the last observed value (see
Proposition 3.2 (Fries and Zaköıan, 2019)),

E
[
yT+h|yT

]
= Ph(L)yT ,

with h ≥ 1 and where Ph(L) is a polynomial of degree r. Fries (2018)
expanded those results to any admissible parametrisation of the tail and
asymmetry parameters of α-stable distributions and derives up to the fourth
conditional moments. He also derives the limiting distribution of those four
moments when the variable of interest diverges. He shows that during an
explosive episode, the computation of those moments gets considerably sim-
plified and are characteristic of a weighted Bernoulli distribution charging
probability ψαh to the value ψ−huT and (1 − ψαh) to value zero, for a tail
parameter 0 < α < 2. Those results indicate that along a bubble, the pro-
cess can only either keep on increasing with fixed rate or drop to zero. For
Cauchy-distributed errors (α = 1), the mean forecast during an explosive
episode remains equal to Equation (3), yet for other α-stable distributions
the conditional expectation may be drastically simplified. Hence, during an
explosive episode, the point forecast of an MAR(0,1) process is a weighted
average of the crash and further increase (e.g. a random walk for Cauchy-
distributed processes), which can be rather misleading. Density forecasts
may therefore be more informative as they carry more information.

3.2 Density predictions

The equivalence of information sets (y1, . . . , yT , y
∗
T+1, . . . , y

∗
T+h) and

(v1, . . . , vr, εr+1, . . . , εT−1, uT , u
∗
T+1, . . . , u

∗
T+h), where vt = Φ(L)−1εt and

ut = (1 − ψL−1)−1εt, allows to predict future values of y from predic-
tions of the forward-looking component of ε, namely u. The asterisk in-
dicates unrealised values of the random variables. Most prediction meth-
ods hence aim attention at purely noncausal processes – here ut. Predic-
tions of the MAR(0,1) component can then be converted into predictions
of the MAR(r,1) process. The conditional predictive density (as named by
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Gouriéroux and Jasiak, 2016) or the causal transition distribution (as named
by Gouriéroux and Zaköıan, 2017) of the h future values, (u∗T+1, . . . , u

∗
T+h),

given the information known at time T is as follows,

l(u∗T+1, . . . , u
∗
T+h|y1, . . . , yT )

= l(u∗T+1, . . . , u
∗
T+h|v1, . . . , vr, εr+1, . . . , εT−1, uT )

= l(u∗T+1, . . . , u
∗
T+h|uT ),

(4)

where l denotes densities associated with the noncausal process ut. The
reduction of the conditional information set stems from information sets
equivalence and the independence between error components. While the
interest is on predicting the future given present and past information, it
is only possible, by the model definition, to derive the density of a point
conditional on its future point. Bayes’ rule is first used to get rid of the
conditioning on the present point and a second time to condition on the
last point of the forecast. Then, the theorem is applied repeatedly on the
first term until the density of all points is conditional on future ones. The
conditional pdf in (4) can thus be expressed as follows,

l(u∗T+1, . . . , u
∗
T+h|uT )

=
l(uT , u

∗
T+1, . . . , u

∗
T+h−1, u

∗
T+h)

l(uT )

= l(uT , u
∗
T+1, . . . , u

∗
T+h−1|u∗T+h)×

l(u∗T+h)

l(uT )

=

{
l(uT |u∗T+1, . . . , u

∗
T+h)l(u∗T+1|u∗T+2, . . . , u

∗
T+h) . . . l(u∗T+h−1|u∗T+h)

}
×
l(u∗T+h)

l(uT )
.

Equation (2) states that εt = ut − ψut+1, hence, for all t, only ut+1 is
necessary to derive ut. Furthermore, given ut+1, the conditional density
of ut (which we do not know) is equivalent to the density of εt (which we
know) evaluated at the point ut − ψut+1.5 That is, for any assumed errors
distribution g we have,

5Since uτ = ψuτ+1 + ετ for any time point 1 ≤ τ ≤ T , luτ |uτ+1
(u|x) = gετ (u−ψx) for

all time point τ and values u and x. For simplicity, the density distributions related to ut
(resp. εt) are just denoted by l (resp. g).
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l(u∗T+1, . . . , u
∗
T+h|uT )

=
{
l(uT |u∗T+1)l(u∗T+1|u∗T+2) . . . l(u∗T+h−1|u∗T+h)

}
×
l(u∗T+h)

l(uT )

= g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)×
l(u∗T+h)

l(uT )
.

Problems may however arise with the two remaining marginal pdf l(uT )
and l(u∗T+h). We know that ut = ψut+1 + εt =

∑∞
i=0 ψ

iεt+i but the pdf of
a linear combinations of errors may not admit closed-form expressions for
some distributions.

For instance, Gouriéroux and Zaköıan (2013) present closed-form solutions
for the predictive conditional density of purely noncausal MAR(0,1) pro-
cesses with Cauchy-distributed errors. They show that the characteristic
function of the infinite sum corresponds to that of a Cauchy with scale pa-
rameter γ

(1−|ψ|) , where γ is the scale of the distribution of the errors εt.

Hence, in the MAR(r,1) case with Cauchy errors, ut ∼ Cauchy
(

0, γ
(1−|ψ|)

)
.

The predictive density of the purely noncausal process (ut) can thus be
computed as such,

l(u∗T+1, . . . , u
∗
T+h|uT )

= g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)×
l(u∗T+h)

l(uT )

=
1

(πγ)h

(
1

1 +
(uT−ψu∗T+1)2

γ2

. . .
1

1 +
(u∗T+h−1−ψu

∗
T+h)2

γ2

)

×
γ2 + (1− |ψ|)2u2

T

γ2 + (1− |ψ|)2(u∗T+h)2
.

Analogously, since uT = ψhu∗T+h +
∑h−1

i=0 ψ
iεT+i, it follows that uT |u∗T+h ∼

Cauchy
(

0, γh

)
, where γh =

∑h−1
i=0 |ψi|γ. Hence, for Cauchy distributed

errors, instead of the h-dimensional conditional joint density, the conditional
density of an h-step ahead point forecast can be obtain as such,

l(u∗T+h|uT ) = l(uT |u∗T+h)×
l(u∗T+h)

l(uT )

=
1

πγh

γ2
h

(uT − ψhu∗T+h)2 + γ2
h

×
γ2 + (1− |ψ|)2u2

T

γ2 + (1− |ψ|)2(u∗T+h)2
.
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To illustrate how the predictive density evolves as the series diverges, Figure
3 shows one-step ahead forecasts for different levels (yT = {0.50, 10, 50}))
of a purely noncausal process with a lead coefficient of 0.8 and standard
Cauchy-distributed errors. While the predictive distribution is uni-modal
for low levels (close to zero), it splits and becomes a bi-modal distribution
as the level of the series increases, and the more it diverges the more
evident is the bi-modality of the distribution. The two modes correspond
to a drop to 0 and a continuous increase to (1/0.8)uT ; each event has
probability 0.2 and 0.8 respectively. For instance, when the series attains
50, the probability that it will keep on increasing to a point close to 62.5
is 0.8. Those results corroborate what Fries (2018) shows for diverging
Cauchy-distributed MAR(0,1) series. Note that results are analogous for
any parameters.

Figure 3: Evolution of the 1-step ahead predictive density as the level of the
series increases for an MAR(0,1) with ψ = 0.8.

The predictive density of the purely noncausal filtration of the errors, u,
needs to be transformed into that of the variable of interest, y. As ex-
plained before, due to equivalence of information sets, the density for
(u∗T+1, . . . , u

∗
T+h) can directly be converted into the predictive density of

(y∗T+1, . . . , y
∗
T+h). In case yt is a purely noncausal process, it is equal to the

process ut, and forecasting one is equivalent to forecasting the other. How-
ever, in the MAR(r,1), since y∗T+1 = φ1yT +...+φryT−r+1+u∗T+1, the density
of the purely noncausal process is shifted by φ1yT +...+φryT−r+1. For h = 2,
y∗T+2 depends on u∗T+2 and y∗T+1, which itself depends on u∗T+1. Overall, the
predictive density of y∗T+h (or of the future path of length h) is determined
by the h-dimensional conditional joint density of (u∗T+1, . . . , u

∗
T+h). Another

way of approaching this is to directly write the predictive density in terms of
y∗T+k, with 1 ≤ k ≤ h, in the conditional joint density of (u∗T+1, . . . , u

∗
T+h).

For an MAR(1,1) process with lag coefficient φ for instance, the conditional
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predictive density of h future y’s could be obtained as follows,

l(y∗T+1, . . . , y
∗
T+h|yT ) =

1

(πγ)h

× 1

1 +
(uT−ψ(y∗T+1−φyT ))2

γ2

. . .
1

1 +
(y∗T+h−1−φy

∗
T+h−2)−ψ(y∗T+h−φy

∗
T+h−1))2

γ2

×
γ2 + (1− |ψ|)2u2

T

γ2 + (1− |ψ|)2(y∗T+h − φy∗T+h−1)2
.

Figure 4 shows the evolution of two-step ahead forecasts of a purely
noncausal process with lead coefficient 0.8 and Cauchy-distributed errors
as the variable increases. For high levels of the series, the split of the
distribution is evident; at each step the series can either keep on increasing
or drop to zero, where the latter corresponds to an absorbing state. The
interpretation of each area of the graph is explained in Figure 5, showing
which region of the graph corresponds to which potential future shape of
the series given the last observed point.

Figure 4: Evolution of the 2-step ahead joint predictive density as the level
of the series increases for an MAR(0,1) with ψ = 0.8 and Cauchy-distributed
errors

Overall, density predictions yield a more complete forecast as they carry
more information regarding potential future patterns of the series. They
cannot be easily graphically displayed for forecast horizons larger than 2,
yet results can be used to compute probabilities regarding future patterns.
For instance, when the variable follows an explosive path, probabilities of
a crash can be computed from the densities by choosing a threshold, such
as the last observed value or its half for instance. Nonetheless, as indicated
by Fries (2018) for α-stable distributions, explosive episodes seem to be
memoryless and as the series diverges, probabilities of a crash tend to the
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Figure 5: Future patterns based on joint predictive density. The dotted lines
correspond to the last observed point and the diagonal dashed line to the
line y∗T+1 = y∗T+2.

constant |ψ|αh for given a given horizon h ≥ 1. This may however not be
very realistic when it comes to real life data. We might expect probabilities
of a crash in stock prices for instant to increase with the level of prices
since a bubble cannot go on forever. This reason and the fact that the use
of other fat-tail distributions (e.g. Student’s t) may lead to the absence
of closed-form expressions for the conditional moments and densities led
to the elaboration of approximation methods. The next Section presents
two approaches to approximate the conditional densities; the first one uses
sample-counterparts (Gouriéroux and Jasiak, 2016) and the second is based
on simulations (Lanne et al., 2012).

4 Predictions using approximation methods

4.1 Predictions using sample-based approximations

This section is based on the approach proposed by Gouriéroux and Jasiak
(2016). They derive a sample-based estimator of the predictive densities
based on past values of the series and this method can be applied to any
non-Gaussian distribution.

Recall that the predictive density of h future values (u∗T+1, . . . , u
∗
T+h) of an

MAR(0,1) process is as follows,

l(u∗T+1, . . . , u
∗
T+h|uT ) =

g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)×
l(u∗T+h)

l(uT )
.

(5)
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One of the reason leading to the derivation of this sample-based estimator
is that for some distributions, the marginal distribution of uT and u∗T+h do
not admit closed-form expressions. They can however, based on the iterated
expectation theorem, be expressed as follows,

l(uτ ) = Eτ+1

[
l(uτ |uτ+1)

]
,

with τ = {T, T + h}. Once again the noncausal relationship described in
Equation (2) is used to evaluate the conditional distribution of l(uτ |uτ+1)
with the distribution of the errors, g(uτ − ψuτ+1). Subsequently, the ex-
pected value of the latter can be approximated by its sample-based coun-
terparts as the average obtained using all points from the sample for the
conditional variable,

l(uτ ) = Eτ+1

[
g(uτ − ψuτ+1)

]
≈ 1

T

T∑
t=1

{
g(uτ − ψut)

}
. (6)

Hence, the predictive density for the MAR(0,1) process ut can be approxi-
mated by plugging the sample counterparts (6) in (5),

l(u∗T+1, . . . , u
∗
T+h|uT )

≈ g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)

∑T
t=1 g(u∗T+h − ψut)∑T
t=1 g(uT − ψut)

.

For centred Cauchy- or Student’s t-distributed errors for instance, the
density g(uτ − ψut), with τ = {T, T + h}, is maximised when uτ = ψut,
for some 1 ≤ t ≤ T . That is, as uτ departs from all past realised values
of the series, 1

T

∑T
t=1 g(uτ − ψut) will tend to zero. Hence, the estimated

ratio may significantly differ from
l(u∗T+h)

l(uT ) due to approximation errors
and since the denominator approaches zero when the last observed point
departs from all past values, approximations errors of the whole ratio will
be amplified for high values of uT . Furthermore, since at time T uT is
known and its realised value is used in the estimation, the ratio varies as
a function of u∗T+h. Hence, the closer will u∗T+h be to past values of the
sample, the higher will the ratio be. We can therefore expect to obtain
significant discrepancies between closed-form and sample-based conditional
densities for point forecasts that are of the similar magnitude as values
already observed in the past.
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Computations for MAR(r,1) processes depend on the last r observed
values of y and on uT , and this dependence makes it more difficult to
generalise results. Hence, for the sake of simplicity and comparison, we
consider MAR(0,1) processes with a lead coefficient of 0.8 and standard
Cauchy-distributed errors. For low levels of the series, results are similar
between closed-form and sample-based predictions, regardless of past
behaviours. As shown in Figure 6, when the series is close to zero, the
sample-based estimator fully recovers closed-form results but as expected,
when the series departs from central values distortions appear. Nonetheless,
the estimator captures the split of the density and thus the potential outset
of an explosive episode.

Figure 6: 1-step ahead forecasts of an MAR(0,1) series with lead coefficient
ψ = 0.8 at 2 arbitrary low levels (0.65 and 10.66).

Figure 7 shows one-step ahead forecasts of two MAR(0,1) series – one with
no bigger previous bubbles (left) and the other with two larger explosive
episodes – evaluated at similar levels close to 50. As explained above,
approximations errors are more considerable for higher levels. The bottom
left graphs depicts how, when the level of the series has exceeded all
past values, distortions mostly happen around the crash (spanning the
range of past values). The bottom right graph on the other hand shows
how previous explosive paths may influence the probabilities of a further
increase. Distortions are now mostly apparent on the increasing part of
the predictive distribution, induced by the past explosive episodes. Indeed,
the process already attained such level before and kept on increasing, and
the values to which it then increased are assigned significant probabilities
due to the sample-based approximation. Subsequently, the empirical
conditional cumulative density function (hereafter cdf ) can be derived from
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the predictive density. To compute cumulative probabilities, we arbitrarily
chose the last observed value as the threshold to obtain probabilities of
a decrease. For the two series, probabilities of a decrease are respectively
0.57 and 0.33 compared to the closed-form Cauchy-derived result of
approximately 0.23.6 Note that the choice of threshold may significantly
affect the outcome as probabilities of a decrease may be significantly larger
than probabilities of a drop of at least 20% for instance. This is due to large
probabilities assigned to points of similar magnitude to the last observed
value. The difference between the sample-based probabilities of the two
processes arise from the learning mechanism of this approach. On the
other hand, differences between closed-form and sample-based results stem
from realised values inducing higher probabilities of following similar paths
as before in the approximation method. Those approximation errors can
however be considered as updates of probabilities based on what previously
happened in the series. If statistically they are approximations errors, in
real life, series may tend to behave similarly as in the past and in such case,
using only past values instead of all potential values in the estimation of
the densities may capture this phenomenon.

Results are similar for two-step ahead predictions; the estimated densi-
ties depend both on past behaviours and level of the series. However,
predictions with this approach are significantly computationally heavier
and if the variable follows an explosive path, precise forecasts of more
than two steps ahead are laboriously obtained. Gouriéroux and Jasiak
(2016) propose a method to tackle this issue by elaborating a Sampling
Importance Resampling (SIR) algorithm. The algorithm aims at recovering
a predictive density based on simulations from a misspecified instrumental
model from which it is easier to simulate. They suggest using a Gaussian
AR model of order s (here an AR(1)) to simulate the process ut. This
approach recovers the intended densities for low levels of the series but
fails to recover both the parts corresponding to the crash and to the
increase when the variable exceeds some threshold. This threshold depends
on past behaviours and on the underlying distribution, but this failure
of the algorithm for high levels of the series stems from the intention
to recover a bi-modal distribution from a uni-modal distribution. If the
variance of the uni-modal instrumental distribution is not large enough

6The closed-form result slightly departs from the limiting results of Fries (2018) due
to the choice of threshold used to compute the cumulative probabilities (uT ). It may be
located too close to the left tail of the increasing part of the density, amplifying the total
probabilities of a decrease.
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Figure 7: 1-step ahead forecasts of two MAR(0,1) series with lead coefficient
ψ = 0.8 at an arbitrary level (around 50).

to cover both modes of the sample-based density, the algorithm will
not be able to recover the whole conditional distribution. The shape
of the Normal distribution significantly depends on past behaviours of
the series since the variance is estimated as the variance of the residuals
of the MAR model. Hence, for more volatile series, the variance of
the instrumental Normal distribution will be larger, yet, as the variable
increases and the two modes diverge, there will always be a point from
which the SIR algorithm does not succeed in recovering the density anymore.

Gouriéroux et al. (2018) find that the quality of forecasts diminishes when
the series follows an explosive episode. Indeed, approximations errors am-
plify with the level of the series, and there is a point from which the SIR
algorithm does not recover the whole density anymore. Yet, we find that
the sample-based estimator captures the split of the conditional density as
the series departs from central values and always comprises both the crash
and increase parts of the predictive density. Furthermore, it yields varying
probabilities of events based on its learning mechanism. While sample-based
predictive densities based on Student’s t-distributions cannot be compared
to closed-form predictions, results corroborate the conclusions drawn with
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Cauchy. A limitation is that when closed-form results are not available, we
cannot disentangle how much of the derived probabilities are induced by the
underlying distribution and how much by past behaviours. An alternative
approximation method was proposed by Lanne et al. (2012) and it is based
on simulations rather than past points.

4.2 Predictions using simulations-based approximations

Lanne et al. (2012) base their methodology on the fact that the noncausal
component of the errors, u, can be expressed as an infinite sum of future
errors, which in the MAR(r,1) case is easily obtained as such,

ut = Ψ(L−1)−1εt =
∞∑
i=0

ψiεt+i.

Since stationarity is assumed, the sequence (ψi) is converging to zero. Hence,
they assumed that there exists an integer M large enough so that any future
point of the noncausal component of the errors can be approximated as the
following finite sum,

u∗T+h ≈
M−h∑
i=0

ψiε∗T+h+i, (7)

for any h ≥ 1.

As shown before, any point forecast y∗T+h depends on the sequence forecast
(u∗T+1, . . . , u

∗
T+h). Using the companion form of an MAR(r,1) model, y∗T+h

can be expressed as the sum of a known component and the h future values
of ut, where the latter, based on Equation (7), can be approximated as a
linear combination of M future errors

y∗T+h = ι′ΦhyT +

h−1∑
i=0

ι′Φiιu∗T+h−i

≈ ι′ΦhyT +
h−1∑
i=0

ι′Φiι
M−h+i∑
j=0

ψjε∗T+h−i+j ,

(8)
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where

yT =


yT
yT−1

...
yT−r+1

 , Φ =


φ1 φ2 . . . . . . φr
1 0 . . . . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

 (r×r) and ι =


1
0
...
0

 (r×1).

Thus, forecasting any future point y∗T+h or the path (y∗T+1, . . . , y
∗
T+h), with

h ≥ 1, requires forecasting the sequence of M future errors (ε∗T+1, . . . , ε
∗
T+M )

which we will denote as ε∗+. The issue is that the M -dimensional conditional
distribution of ε∗+ is almost impossible to obtain. Instead, Lanne et al.
(2012) propose a way to obtain point and cumulative density forecasts.
While the estimation approach they propose (Lanne and Saikkonen, 2011)
requires finite variance for the errors distribution, this restriction is not
necessary for their forecasting method.

Let g(ε∗+|uT ) be the conditional joint distribution of the M future errors,
which, using Bayes’ rule can be expressed as follows,

g(ε∗+|uT ) =
l(uT |ε∗+)

l(uT )
g(ε∗+).

Thus, for any function q,

E
[
q(ε∗+)

∣∣uT ] =

∫
q(ε∗+)g(ε∗+|uT )dε∗+

=
1

l(uT )

∫
q(ε∗+)l(uT |ε∗+)g(ε∗+)dε∗+

=
E
[
q(ε∗+)l(uT |ε∗+)

]
l(uT )

.

(9)

Similarly as before, l(uT |ε∗+) can be obtained from the errors distribution g.
Yet, since it is conditional on ε∗+ instead of u∗T+1, we can only obtain the
following approximation,

l
(
uT |ε∗+

)
≈ g

(
uT −

M∑
i=1

ψiε∗T+i

)
.

Using this approximation and the Iterated Expectation theorem, the
marginal distribution of uT can be approximated as follows,

l(uT ) = ET+1

[
l(uT |ε∗+)

]
≈ E

[
g

(
uT −

M∑
i=1

ψiε∗T+i

)]
.
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Overall, by plugging the aforementioned approximations in (9), we obtain

E
[
q(ε∗+)

∣∣uT ] ≈ E

[
q(ε∗+)g

(
uT −

∑M
i=1 ψ

iε∗T+i

)]

E

[
g
(
uT −

∑M
i=1 ψ

iε∗T+i

)] .

While Gouriéroux and Jasiak (2016) use past sample to estimate the en-

tity of interest, Lanne et al. (2012) make use of simulations. Let ε
∗(j)
+ =(

ε
∗(j)
T+1, . . . , ε

∗(j)
T+M

)
, with 1 ≤ j ≤ N , be the j -th simulated series of M inde-

pendent errors. Assuming that the number of simulations N is large enough,
the conditional expectation of interest can be approximated as follows,

E
[
q(ε∗+)

∣∣uT ] ≈ N−1
∑N

j=1 q
(
ε
∗(j)
+

)
g
(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

)
N−1

∑N
j=1 g

(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

) . (10)

From (8), we can obtain conditional cumulative probabilities as follows,

P
(
y∗T+h ≤ x

∣∣uT) = E
[
1
(
y∗T+h ≤ x

)∣∣uT ]
≈ E

[
1

(
ι′ΦhyT +

h−1∑
i=0

ι′Φiι
M−h+i∑
j=0

ψjε∗T+h−i+j ≤ x

)∣∣∣∣uT
]

That is, for any MAR(r,1) process and for any forecast horizon h ≥ 1,
choosing q(ε∗+) = 1

(∑h−1
i=0 ι

′Φiι
∑M−h+i

j=0 ψjε∗T+h−i+j ≤ xu
)

in (10), where

xu = x − ι′ΦhyT , will provide an approximation of P
(
y∗T+h ≤ x|uT

)
. By

computing its value for all possible x we can obtain the whole conditional
cdf of y∗T+h.

For the sake of simplicity and comparison, we again consider MAR(0,1)
processes with a lead coefficient of 0.8 and Cauchy-distributed errors.
Probability forecasts are performed for different levels of uT ; the levels were
arbitrarily chosen to represent different stages of the process, from stable to
explosive. The threshold x in the indicator function was chosen as the last
observed value to compute probabilities of a decrease. While augmenting
the truncation parameter M has no notable consequences, computation
time significantly increases with the number of simulations N. We hence
computed the probabilities with a fixed truncation parameter M = 100 and
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uT Cauchy
Simulations-based predictive probabilities

10,000
simulations

50,000
simulations

100,000
simulations

10 0.320
0.322 0.322 0.322

(0.011) (0.005) (0.003)

25 0.259
0.260 0.259 0.259

(0.019) (0.009) (0.006)

50 0.231
0.235 0.231 0.231

(0.036) (0.015) (0.011)

100 0.215
0.238 0.221 0.218

(0.075) (0.028) (0.019)

200 0.208
0.278 0.226 0.217

(0.168) (0.062) (0.040)

Table 1: Probabilities of a decrease computed for different levels of an
MAR(0,1) series with lead coefficient ψ = 0.8, derived from closed-form
results and from simulations-based approximations. For the latter, mean
and standard deviation (in brackets) over 1,000 iterations are reported.

different number of simulations N = {10,000, 50,000, 100,000}, including
the 10,000 suggested by Lanne et al. (2012).

Table 1 shows the probabilities of a decrease of MAR(0,1) series, evaluated
at arbitrary levels. Closed-form results are presented in column 2, and
as the level of the series increases, probabilities of a decrease approaches
the limiting results presented by Fries (2018). The reason for which
probabilities are higher than 0.20 even for high levels was explained before;
the threshold (last observed value) used to compute probabilities may be
too close to the left tail of the upper part of the distribution, slightly
amplifying probabilities of a decrease. As the two modes of the conditional
distribution diverges when the level increases, the impact of the choice
of threshold becomes negligible. Simulations-based approximations are
presented in columns 3 to 5 where the mean and standard deviation of
1,000 iterations are reported for the three different number of simulations
within the computations. As the level of the series increases, results
between iterations become more volatile. For instance, for a level of 200
with 10,000 simulations, predicted probabilities of a decrease range from
0.06 to 0.92; that is from almost certainty of a further increase to almost
certainty of a crash. This means that the same inquiry repeated twice
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may give completely opposite results. Recall that a bubble is triggered by
an extreme value, and the date at which this extreme value is attained
is the date of the crash. Consequently, if we are investigating an explo-
sive episode there must be an extreme value in future points triggering
the current explosion. However, as we have seen before, only extreme
values at ε∗T+i inducing the natural rate of increase (1/ψ)i are assigned
significant probabilities. The simulations-based approach will therefore
tend to indicate high probabilities of a crash, even with a significantly
large number of simulations, if no such values are simulated. However,
increasing the number of simulations reduces this discrepancy and brings
the mean closer to closed-form results for all levels. Yet, even with 100,000
simulations, standard deviations remain quite large for high levels of the
series and this indicates that more simulations are necessary. Overall, the
higher the level of the series, the higher should the number of simulations be.

Repeating computations for all potential threshold x yields the whole
conditional cdf. By choosing the appropriate number of simulations based
on the the level of the series, an accurate approximation of the true condi-
tional cdf can be obtained. Figure 8 shows the convergence of predictions
towards the true predictive cdf (Cauchy-derived distribution) as the number
of simulations in each iteration increases. Each point of the predictive
probabilities is based on a different set of simulations. It represents one-step
ahead predictive cdf ’s of a series whose last observed value is 100 with
10,000, 50,000 and 100,000 simulations in the computations. The higher the
number of simulations, the less noisy approximations are and the closer the
results get to the closed-form distribution. It is important to note that the
bi-modality of the conditional distribution is always captured. We illustrate
this convergence of results with a maximum of 100,000 simulations due to
time and computation constraints; yet, increasing it even more will reduce
further the deviation from closed-form results. Once the predictive cdf is
obtained, the empirical pdf can be derived from it; however, it is rather
computationally demanding to obtain the whole conditional cdf with a
large number of simulations. Hence, it can be quite restrictive and may lead
to noisy approximations if the number of simulations is lowered. Instead,
computing probabilities of fewer events with an even larger number of
simulations may be more adequate. We can see from Figure 8 that the
choice of threshold to compute probabilities of a drop, whether it is of a
decrease or of a crash of 50%, will not significantly affect results. Indeed,
probabilities assigned to events between the crash and the further increase
are almost zero, thus cumulative probabilities do not significantly vary in
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this interval.

Figure 8: Simulations-based predictive cdf ’s evaluated at yT = 100 with
different number of simulations compared to closed-form results.

For Student’s t-distributions, while predictions cannot be compared to
closed-form results, they are analogous; probabilities converge as the number
of simulations is increased. The stability between iterations depends both on
the distribution and amplitude of the series but with a large enough number
of simulations, they seem to be a good approximation of closed-form results.
Overall, once the series follows an explosive path, the number of simulations
within the estimator needs to be increased.

5 Empirical Analysis

We now emiricallt evaluate the performance of the different approaches
presented in Section 4. We forecast the bubble pattern in commodity
prices and in particular in the monthly Global price of Nickel. The series
is obtained from the International Monetary Fund and spans the period
from January 1980 to June 2017. There seems to be a positive trend in the
data but making the series stationary is far from obvious. Indeed, usual
unit root tests do not perform well for this type of variable with very large
spikes. For instance ADF tests would reject the null of a unit root against
both a mean and a trend reverting alternative. A conclusion that does not
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seem satisfactory from the graphs of the data. It might also well be that
the series is stationary around a shift in mean. Hencic and Gouriéroux
(2015) use a cubic deterministic trend for isolating the bubble in the
Bitcoin. In order to preserve the bubble features of the data and to obtain
a stationary series with locally explosive episodes (that would disappear
by taking the returns) we have instead considered the Hodrick-Prescott
filtering approach. The detrended series is reported in Figure 9. We are
of course aware that this first step might alter the dynamics of the series,
probably in the same manner that a X-11 seasonal filter modifies MAR
models (see Hecq, Telg, and Lieb, 2017). We leave this important issue for
further research. We first estimate an autoregressive model by OLS on the
whole HP-detrended Nickel price series. Information criteria (AIC,BIC and
HQ) all pick up a pseudo lag length of p = 2. The three possible MAR(r,s)
specifications are consequently a MAR(2,0), a MAR(1,1) or a MAR(0,2).
Using the MARX package a MAR(1,1) with a t-distribution with a degree
of freedom of 1.34 and a scale parameter of 356.147 is favoured. The value
of the causal and the noncausal parameters are respectively 0.60 and 0.74.
We are consequently in the situation in which the predictive density does
not admit closed-form expressions (although not very far from the Cauchy),
hence the sample- and simulations-based approaches can be used.

We aim attention at the main explosive episode, which crashed in June
2007. To investigate the evolution of predictions along the bubble like
in a real-time setting, we estimate the model with expanding window
at every step. Note that at each point, even if parameters differed, the
model identified was always an MAR(1,1). The points at which we perform
predictions are represented by the diamonds on the series in Figure 9. We
investigate five points along the main explosive episode and one after, to
capture the effects on the inclusion of the crash in the estimation and
prediction. Each point is assigned an index between 1 and 6 indicating
their order of arrival. At each point, we compute the sample-based
predictive density and the corresponding probability of a decrease (hence
the presence of a turning point), as well as the probability of a decrease
derived from the simulations-based approach with 3,000,000 simulations
and a truncation parameter of 100. Results are presented in Table 2 where
the model identified at each point is reported. Note that until now we
assumed the model was correctly specified, hence, only the sample-based
approach depended on past values in the prediction procedure. Here past
realised values influence the model estimated at each point for the two
approaches. Hence, only the sample-based method incorporates past values
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Figure 9: HP-detrended nickel prices series. The diamonds represent points
from which one-step ahead forecasts are performed in this analysis.

in the predictions but both methods use the information carried by the
series until the point of the forecast in the estimation.

The model estimated at the outset of the bubble (point 1) is mostly back-
ward looking, the lag coefficient is 0.201 larger than the lead coefficient.
However, as we move along the bubble, and therefore add higher points
in the estimation, identification tends to favour more forward looking
models. There seems to be a structural change in the series between the
consecutive points 3 and 4 (between February and March 2007) where the
scale suddenly increases by more than 20 and where magnitudes of lag and
lead coefficients invert so that the series becomes mostly forward-looking.
Furthermore, the degrees of freedom of the t-distribution vary between 1.41
and 1.54 before the crash and decrease to 1.18 once the crash is included in
the estimation, implying higher probabilities of extreme events.

As mentioned before, a number of simulations large enough, the method
proposed by Lanne et al. (2012) seems to be a good approximation of
closed-form results. Simulations-based predictions only depend on the
estimated underlying distribution and level of the series as opposed to
sample-based results, computed with the method of Gouriéroux and Jasiak
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Point
Model estimated Probability of a decrease

φ ψ t(λ, σ) Sample-based Simulations-based Difference

1 0.763 0.562 t(1.54, 259.2) 0.444 0.341 0.103

2 0.758 0.572 t(1.43, 258.7) 0.607 0.490 0.117

3 0.748 0.606 t(1.41, 257.6) 0.645 0.487 0.158

4 0.573 0.756 t(1.53, 281.1) 0.593 0.347 0.246

5 0.571 0.765 t(1.49, 280.4) 0.600 0.336 0.264

6 0.677 0.689 t(1.18, 289.5) 0.275 0.305 -0.030

Table 2: Models estimated at the 6 distinct points in calendar order, where
φ and ψ are the causal and noncausal coefficients respectively and λ and
σ the degrees of freedom and scale of the distribution. The corresponding
probabilities of decrease at an horizon of 1 computed from the sample- and
simulations-based approaches and the difference between them is reported
in the last column.

(2016), which furthermore incorporates all past realised values of the series.
The difference between them, reported in the last column, represents
how much of the sample-based probabilities was induced by the learning
mechanism of this approach. We see that as we move along the explosive
episode, the difference in probabilities between the two methods increases;
this is mostly due to the fact that we get further away from past maximum
levels of the series and the sample-based approach, based on its learning
mechanism, predict higher probabilities of decrease than the underlying
distribution suggests. Probabilities of a crash are the highest at points 2
and 3 due to the identified models, a lower lead coefficient imply higher
probabilities of a decrease. At point 1, the low probabilities are due to the
relatively low level of the series and for the sample-based approach also
to the fact that it is still close to numerous past values. Once predictions
are performed after the bubble (point 6), probabilities of a drop with both
methods significantly decrease. This is firstly due to the inclusion of the
crash in estimation, which alters parameters (lower degrees of freedom and
higher lead coefficient), which induces lower probabilities of a decrease, but
also to the learning mechanism of the sample-based approach. Indeed, the
series already reached three times this level and it once kept on increasing,
thus, probabilities that it drops are now lowered by the main bubble and
the probability from the sample-based approach is even 3% lower than the
simulation-based prediction.

Overall, once the level of the series attains past maxima, probabilities of
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a decrease significantly increase (from less than 0.45 to around 0.6 along
the bubble) and the proportion of the probabilities induced by the learn-
ing mechanism also increases with the level of the series (from 0.1 to 0.26
difference). We investigated probabilities of a decrease but any threshold
can be chosen. From an investor’s perspective, the probabilities that the
series will drop under some fixed threshold or by a certain percentage could
also be derived, as well as values at risk or expected shortfall. Figure 10
shows how the choice of threshold may affect final probabilities. Cumula-
tive probabilities are computed as the area under the curve on the left of the
threshold. In the scenario depicted in Figure 10, probability of a decrease
at the top of the bubble (point 5) is equal to 0.6 while probability of a drop
of at least 25% is 0.484. The simulations-based probabilities of a decrease
of at least 25% is equal to 0.322 compared to 0.336 for the probability of a
decrease. That is, as explained before, the sample-based approach is much
more sensitive to the choice of threshold and this may significantly alter the
conclusions drawn from the results. In this scenario the difference between
the two methods is reduced to 0.162. Furthermore, note that the detrending
method applied to the series may significantly alter results interpretation. A
combination of both the sample- and simulations-based predictive probabili-
ties could also be employed, relying on the beliefs regarding how likely is the
series to follow similar paths as before. Furthermore, farther horizon could
be investigated but this is limited by computationally demanding sample-
based approximations. An adaptation of the SIR algorithm proposed by
Gouriéroux and Jasiak (2016) to bi-modal distribution could be considered.

Figure 10: Sample-based predictive densities and thresholds to compute
probability of decrease and probability of a decrease of at least 25%
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6 Conclusion

This paper analyses and compares in details two approximation methods
developed to forecast mixed causal-noncausal autoregressive processes. It
focuses on MAR(r,1) processes and aims attention at predictive densities
rather than point forecasts as they are more informative, especially in the
case of explosive episodes.
The sample-based (Gouriéroux and Jasiak, 2016) and simulations-based
(Lanne et al., 2012) methods are compared to closed-form results using
MAR(0,1) processes with a lead coefficient of 0.8 and Cauchy-distributed
errors. We focus on one-step ahead forecasts to give a rigorous analysis
of how and why they may differ from closed-form results. We find that
closed-form and sample-based predictive densities start to differ as the series
departs from central values, and the discrepancies increase with the level of
the series. The sample-based approach gives time-varying probabilities and
depends on how similar the event under investigation is to past events. This
approach yields results that are a mixture of probabilities ensuing from the
underlying distribution and from past behaviours of the series. On the other
hand, simulations-based predictive probabilities are a good approximation
of closed-form results obtained with Cauchy-distributed errors, as long as
the number of simulations in the approximations is large enough relative
to the level of the series. Both methods capture the bi-modality of the
conditional distribution as the series diverges from central values, which is
an indicator of a potential bubble outset.

We illustrate the different methods with a detrended Nickel prices series.
When the underlying distribution does not admit closed-form expressions for
the predictive densities, the only way to disentangle how much was induced
by past behaviours in the sample-based approach is to compute the difference
with the probability computed with the simulations-based method. This
information can be used in investment decisions, depending on how much
the series is assumed to follow past behaviours.
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