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This paper investigates one-step ahead density forecasts of mixed causal-
noncausal models. It analyses and compares two data-driven approaches.
The paper focuses on explosive episodes and therefore on predicting turning
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1 Introduction

Locally explosive episodes have long been observed in financial and economic
time series. Such patterns, often observed in stock prices, can be triggered
by anticipation or speculation. Given this forward-looking aspect, expecta-
tion models have been prevalent for modelling them. As shown for instance
by Gouriéroux, Jasiak, and Monfort (2016), equilibrium rational expecta-
tion models admit a multiplicity of solutions, and some of them feature such
speculative bubble patterns.2 Models employed to capture them range from
simplistic approaches, such as single bubble models with constant probabil-
ity of crash, to rather complex models depending on numerous parameters.
Although those models may a posteriori fit the data well, they are either not
informative enough or render predictions uncertain due to their dependence
on extensive parameters estimation.

This paper analyses and compares two data-driven approaches to perform
density forecasts of mixed causal-noncausal autoregressive (hereafter MAR)
models. MAR models incorporate both lags and leads of the dependent
variable with potentially heavy-tailed errors. The most commonly used
distributions for such models in the literature are the Cauchy and Stu-
dent’s t-distributions. While being parsimonious, MAR models generate
non-linear dynamics such as locally explosive episodes in a strictly station-
ary setting (Fries and Zaköıan, 2019). So far, the focus has mainly been
put on identification and estimation. Hecq, Lieb, and Telg (2016), Hencic
and Gouriéroux (2015) and Lanne, Luoto, and Saikkonen (2012) show that
model selection criteria favour the inclusion of noncausal components ex-
plaining respectively the observed bubbles in the demand of solar panels
in Belgium, in Bitcoin prices and in inflation series. Few papers look at
the forecasting aspects. Gouriéroux and Zaköıan (2017) derive theoretical
point and density forecasts of purely noncausal MAR(0,1) processes with
Cauchy-distributed errors, for which the causal conditional distribution ad-
mits closed-form expressions. With some other distributions however, like
Student’s t, conditional moments and distribution may not admit closed-
form expressions. Lanne, Luoto, and Saikkonen (2012) and Gouriéroux and
Jasiak (2016) developed data-driven estimators to approximate them based

2In this paper, speculative bubbles, or simply bubbles are referred to as processes
characterised by a rapid and persistent increase followed by a crash. Some authors talk
about bubbles to denote the deviation from the fundamental solution of a present value
type model. Those bubbles might not have the non-linear pattern that we investigate in
this paper.
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on simulations or on past realised values respectively, applicable to any dis-
tribution. Nonetheless, the literature regarding the ability of MAR models
to predict both explosive and stable episodes remains scarce (see also Lanne,
Nyberg, and Saarinen, 2012 and Gouriéroux, Hencic, and Jasiak, 2018). The
aim of this paper is to analyse and compare in details the two numerical
methods mentioned for forecasting MAR(r,1) models, with unconstrained r
number of lags, a unique lead and a positive lead coefficient. Furthermore,
the focus is put on positive bubbles since they are prevalent in financial and
economic time series. This paper investigates the possibility to predict, one-
step ahead, probabilities of turning points of locally explosive episodes. We
find that the sample-based method is characterised by a learning mechanism
and that the simulations-based approach is a good approximation of theo-
retical results. Our results show that combining results obtained from the
two methods can help disentangling the proportion of probabilities induced
by the underlying distribution and by past behaviours. This information
could for instance be used for investment decisions, where the strategy is to
be built based on the investor’s risk aversion and beliefs regarding the series.

The paper is constructed as follows. Section 2 introduces mixed causal-
noncausal autoregressive models. Section 3 discusses how they have been
used for prediction so far when the conditional moments and densities admit
closed-form expressions. In Section 4 are presented the simulations-based
forecasting approach proposed by Lanne, Luoto, and Saikkonen (2012), fol-
lowed by the sample-based method proposed by Gouriéroux and Jasiak
(2016). The performance of both approaches is compared, when available,
to theoretical results. The analysis is based on various MAR(0,1) processes
with Cauchy or Student’s t-distributed errors. In Section 5 both approxi-
mation methods are illustrated with an application to a detrended Nickel
prices series. Section 6 concludes.

2 Mixed causal-noncausal autoregressive models

Consider the univariate MAR(r,s) process defined as follows,

Φ(L)Ψ(L−1)yt = εt,

where L and L−1 are respectively the lag and forward operators; Φ and
Ψ are two invertible polynomials of degree r and s respectively. That is,
Φ(L) = (1 − φ1L · · · − φrLr) and Ψ(L−1) = (1 − ψ1L

−1 · · · − ψsL−s) with
roots strictly outside the unit circle. The error term εt is i.i.d, following
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a non-Gaussian distribution. This assumption, not empirically restrictive
since non-normality is widely observed in financial and economic time series,
is necessary to achieve identification of the model. An MAR(r,s) model can
also be expressed as a causal AR model where yt depends on its own past
and present value of ut,

Φ(L)yt = ut, (1)

where ut is the purely noncausal component of the errors, depending on its
own future and on the present value of the error term

Ψ(L−1)ut = εt. (2)

Alternatively, we can also filter the process as Φ(L)vt = εt with Ψ(L−1)yt =
vt to obtain the backward component of the errors, vt. The process yt
admits a stationary infinite two-sided MA representation and depends on
past, present and future values of εt,

yt =

+∞∑
i=−∞

aiεt−i.

The case in which all coefficients ai for −∞ < i ≤ 0 (resp. 0 ≤ i < ∞) are
equal to 0, corresponds to a purely causal (resp. noncausal) model.

Despite their apparent simplicity and parsimony, MAR models often provide
a better fit to economic and financial data as they capture non-linear causal
dynamics such as bubbles or asymmetric cycles. The shape of series gener-
ated by MAR(r,s) processes depends on the presence of leads, lags and the
magnitude of their coefficients. Figure 1 displays how the presence of a lag,
a lead, or both, affects the shape of transitory shocks in MAR series. Purely
causal (resp. noncausal) processes are only affected by a shock after (resp.
before) the impact; this is shown in graph (a) (resp. (b)). Consequently,
MAR processes are affected both in anticipation and after the shock; the
shape of the explosive episode (mostly forward or backward looking) depends
on the magnitude of the lag and lead coefficients. When the coefficients are
identical (c) the effects of the shock are symmetric around the impact while
when the coefficient of the lead is higher (d), the explosive episode is more
analogous to what we refer to as a bubble with an asymmetry around the
peak.

The usual practice for estimating and identifying MAR models is as fol-
lows. Methods based on first and second moments (e.g. OLS) are unable
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Figure 1: Effects of a lag and a lead on transitory shocks for MAR series (a)
purely causal φ = 0.8 and ψ = 0, (b) purely noncausal φ = 0 and ψ = 0.8,
(c) φ = 0.8 and ψ = 0.8, (d) φ = 0.3 and ψ = 0.8

to distinguish between purely causal, noncausal or mixed processes as their
autocovariance functions are identical. Fitting an autoregressive model by
OLS allows however to estimate the sum of leads and lags, p.3 Subsequently,
the respective numbers of lags (r) and leads (s), such that r + s = p, can
be estimated by an approximate maximum likelihood (hereafter AML) ap-
proach (Lanne and Saikkonen, 2011). The selected model is the one max-
imising the AML with respect to r, s and all parameters Ω = (Φ,Ψ,Θ),
where Φ = (φ1, . . . , φr), Ψ = (ψ1, . . . , ψs) and Θ is the errors distribution
parameters, such as the scale or location for instance. The AML estimator
is defined as follows,

(
Φ̂, Ψ̂, Θ̂

)
= argmaxΦ,Ψ,Θ

T−s∑
t=r+1

ln

[
g
(

Φ(L)Ψ(L−1)yt; Θ
)]
,

where g denotes the pdf of the error term, satisfying the regularity con-

3A non-Gaussian MLE can give misleading results in a misspecified model (Gouriéroux
and Jasiak, 2018).
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ditions (Andrews, Davis, and Breidt, 2006). Lanne and Saikkonen (2011)
show that the resulting (local) maximum likelihood estimator is consistent,
asymptotically normal and that (Ψ̂, Φ̂) and Θ̂ are asymptotically indepen-
dent, for Student’s t-distributed errors with finite moments. Since an ana-
lytic solution of the maximisation problem at hand is not directly available,
numerical gradient-based procedures can be employed. Hecq et al. (2016)
indicate that estimating MAR models is easier for more volatile series since
the convergence of the estimator is empirically faster for distributions with
fatter tails. They propose an alternative way to obtain the standard errors, a
method implemented in the R package MARX (Hecq, Lieb, and Telg, 2017).

While with a unique lead and a positive coefficient ψ, explosive episodes
increase at a fixed rate ψ−1 until a sudden crash, other specifications induce
complex patterns not resembling the bubble pattern that this paper focuses
on. This paper hence only considers MAR(r,1) processes with a positive
lead coefficient.

3 Predictions using closed-form expressions

When it comes to forecasting MAR processes, different approaches are avail-
able. Conditional expectations can be used to predict the next points, while
alternatively, forecasting densities aims at visually analysing the proba-
bilities of potential future paths. The latter can be employed to evalu-
ate the probabilities of a turning point in an explosive episode. However,
the anticipative aspect of MAR models complicates their use for predic-
tions. Results are not as straightforward as they could be with purely
backward-looking ARMA models. While in some cases mean or density
forecasts can be directly obtained from the assumed errors distribution,
they sometimes need to be approximated. For this section, let us assume
that the data generating process (hereafter dgp) is a stationary MAR(r,1)
process Φ(L)(1 − ψL−1)yt = εt, where ψ > 0, εt is i.i.d. non-Gaussian and
ut = Φ(L)yt is the purely non-causal component of the process. Throughout
the coming sections, the dgp is be assumed correctly identified to disregard
estimation uncertainty.

Given the true dgp, the information sets (y1, . . . , yT , y
∗
T+1, . . . , y

∗
T+h) and

(v1, . . . , vr, εr+1, . . . , εT−1, uT , u
∗
T+1, . . . , u

∗
T+h), where vt = Φ(L)−1εt and

ut = (1 − ψL−1)−1εt, are equivalent. This allows to predict future values
of y from predictions of the forward-looking component of ε, namely u.
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The asterisk indicates unrealised values of the random variables. Most
prediction methods hence aim attention at purely noncausal processes –
here ut, sufficient to predict the variable of interest.

3.1 Point predictions

Gouriéroux and Zaköıan (2017) derive the first two conditional moments of
MAR(0,1) processes,4 here denoted as ut, and show that for Cauchy pro-
cesses, with ψ > 0, the expectation of uT+1 conditioned on the information
set known at time T, FT , is

E
[
uT+1|FT ] = uT . (3)

This result is puzzling since the conditional expectation of a noncausal pro-
cess has a unit root even though the process is stationary. Fries (2018)
expanded those results to any admissible parametrisation of the tail and
asymmetry parameters of α-stable distributions and derives up to the fourth
conditional moments. He also derives the limiting distribution of those four
moments when the variable of interest diverges. He shows that during an
explosive episode, the computation of those moments gets considerably sim-
plified and are characteristic of a weighted Bernoulli distribution charging
probability ψαh to the value ψ−huT and (1 − ψαh) to value zero, for a tail
parameter 0 < α < 2. Those results indicate that along a bubble, the pro-
cess can only either keep on increasing with fixed rate or drop to zero. For
Cauchy-distributed errors (α = 1), the mean forecast during an explosive
episode remains equal to Equation (3), yet for other α-stable distributions
the conditional expectation may be drastically simplified. Hence, during an
explosive episode, the point forecast of an MAR(0,1) process is a weighted
average of the crash and further increase (e.g. a random walk for Cauchy-
distributed processes). Density forecasts may therefore be more informative.

3.2 Density predictions

The joint conditional predictive density (as named by Gouriéroux and
Jasiak, 2016) or the causal transition distribution (as named by Gouriéroux
and Zaköıan, 2017) of the h future values, (u∗T+1, . . . , u

∗
T+h), given the in-

formation known at time T can be evaluated only conditioning on the last
observed value uT . This stems from the equivalence of information set of

4Note that the linear projection on the past does not correspond, in this context, to
the conditional expectation (Gouriéroux and Jasiak, 2018).
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the observed series and of its filtrations when the model is assumed correctly
identified and the independence between the error components. While the
interest is on predicting the future given present and past information, it
is only possible, by the model definition, to derive the density of a point
conditional on its future point. Bayes’ Theorem is first used to get rid of
the conditioning on the present point and a second time to condition on the
last point of the forecast. Then, the theorem is applied repeatedly on the
first term until the density of all points is conditional on future ones. The
conditional pdf can thus be expressed as follows,

l(u∗T+1, . . . , u
∗
T+h|uT )

= l(uT , u
∗
T+1, . . . , u

∗
T+h−1|u∗T+h)×

l(u∗T+h)

l(uT )

=

{
l(uT |u∗T+1, . . . , u

∗
T+h)l(u∗T+1|u∗T+2, . . . , u

∗
T+h) . . . l(u∗T+h−1|u∗T+h)

}
×
l(u∗T+h)

l(uT )
,

where l denotes densities associated with the noncausal process ut. Equation
(2) states that εt = ut − ψut+1, hence, for all t, only ut+1 is necessary to
derive ut. Furthermore, given ut+1, the conditional density of ut (which is
not known) is equivalent to the density of εt (which is known) evaluated at
the point ut − ψut+1.5 That is, for any assumed errors distribution g we
have,

l(u∗T+1, . . . , u
∗
T+h|uT )

=
{
l(uT |u∗T+1)l(u∗T+1|u∗T+2) . . . l(u∗T+h−1|u∗T+h)

}
×
l(u∗T+h)

l(uT )

= g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)×
l(u∗T+h)

l(uT )
.

(4)

Problems may however arise when the stationary distribution of ut is
unknown. We know that ut = ψut+1 + εt =

∑∞
i=0 ψ

iεt+i, but the pdf of
a linear combinations of errors may not admit closed-form expressions for
some distributions.

5Since uτ = ψuτ+1 + ετ and because uτ+1 and ετ are independent for all 1 ≤ τ ≤ T ,
we have fuτ |uτ+1

(x) = fετ+ψuτ+1|uτ+1
(x) = fετ |uτ+1

(x − ψuτ+1) = fε(x − ψuτ+1). For
simplicity, the density distributions related to ut (resp. εt) are just denoted by l (resp.
g).
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For instance, Gouriéroux and Zaköıan (2013) present closed-form solutions
for the predictive conditional density of purely noncausal MAR(0,1) pro-
cesses with Cauchy-distributed errors. They show that the characteristic
function of the infinite sum corresponds to that of a Cauchy with scale pa-
rameter γ

(1−ψ) , where γ is the scale of the distribution of the errors εt. Hence,

in the MAR(r,1) case with Cauchy errors, ut ∼ Cauchy
(

0, γ
(1−ψ)

)
. The pre-

dictive density of the purely noncausal process (ut) can thus be computed
as such,

l(u∗T+1, . . . , u
∗
T+h|uT )

=
1

(πγ)h

(
1

1 +
(uT−ψu∗T+1)2

γ2

. . .
1

1 +
(u∗T+h−1−ψu

∗
T+h)2

γ2

)

×
γ2 + (1− ψ)2u2

T

γ2 + (1− ψ)2(u∗T+h)2
.

To illustrate how the predictive density evolves as the series departs from
central values, Figure 2 shows one-step ahead forecasts for different levels
corresponding to quantiles 0.55, 0.85 and 0.975 of a purely noncausal
process with a lead coefficient of 0.8 and standard Cauchy-distributed
errors. By using quantiles, explosive episodes can be compared between
different distributions and parameters.6 While the predictive distribution
is uni-modal for median-level values, it splits and becomes bi-modal when
the series departs from such values. As the series diverges, the bi-modality
of the conditional distribution becomes more evident, where the two
modes correspond to a drop to 0 and a continuous increase with rate
(1/0.8); each event has probability 0.2 and 0.8 respectively. Those results
corroborate what Fries (2018) shows for diverging Cauchy-distributed
MAR(0,1) series. Note that results are analogous for any parameters, with
corresponding probabilities of a crash equal to 1 − ψ. Bi-modality in this
paper will therefore designate the split of the conditional density and not
the bi-modality sometimes observed in the estimation of the coefficients of
MAR models (Hecq et al., 2016 and Bec, Bohn Nielsen, and Säıdi, 2019)

For MAR(r,1) processes, one-step ahead density forecasts consists in shifting
the predictive density of the purely non-causal component by the causal part
of the process, namely φ1yT + ...+ φryT−r+1. For an h-step ahead forecast,
with h ≥ 1, the predictive density of y∗T+h will depend on the joint density

6We thank an anonymous referee for the suggestion.

8



Figure 2: Evolution of the 1-step ahead predictive density as the level of the
series increases for a Cauchy MAR(0,1) with ψ = 0.8.

of (u∗T+1, . . . , u
∗
T+h). One way of approaching this is to directly write the

predictive density in terms of y∗T+k, with 1 ≤ k ≤ h, in the conditional joint
density of (u∗T+1, . . . , u

∗
T+h). For an MAR(1,1) process with lag coefficient

φ for instance, the conditional predictive density of h future y’s could be
obtained as follows,

l(y∗T+1, . . . , y
∗
T+h|yT ) =

1

(πγ)h

× 1

1 +
(uT−ψ(y∗T+1−φyT ))2

γ2

. . .
1

1 +
(y∗T+h−1−φy

∗
T+h−2)−ψ(y∗T+h−φy

∗
T+h−1))2

γ2

×
γ2 + (1− ψ)2u2

T

γ2 + (1− ψ)2(y∗T+h − φy∗T+h−1)2
.

Figure 3 shows the evolution of two-step ahead forecasts of a purely
noncausal process with lead coefficient 0.8 and Cauchy-distributed errors
as the variable increases. For high levels of the series, the split of the
distribution is evident; at each step the series can either keep on increasing
or drop to zero, where the latter corresponds to an absorbing state. An
interpretation of the regions of the graphs with respect to potential future
shapes of the series was given by Gouriéroux and Jasiak (2016).

Overall, density predictions yield a more complete forecast as they carry
more information regarding potential future patterns of the series. They
cannot be easily graphically displayed for forecast horizons larger than 2
as we investigate joint predictions, yet results can be used to compute the
probabilities regarding future patterns. For instance, when the variable
follows an explosive path, the probabilities of a crash can be computed from
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Figure 3: Evolution of the 2-step ahead joint predictive density as the level
of the series increases for an MAR(0,1) with ψ = 0.8 and Cauchy-distributed
errors

the densities by choosing a threshold, such as the last observed value or
its half for instance. Nonetheless, as indicated by Fries (2018) for α-stable
distributions, explosive episodes seem to be memoryless and as the series
diverges, the probabilities of a crash tend to the constant 1− ψαh for given
a given horizon h ≥ 1. Even though as h→∞ this probability tends to 1, it
may not be very realistic when it comes to real life data. We might expect
the probabilities of a crash in stock prices for instance to increase with the
level of prices. Furthermore, the assumption of other fat-tail distributions
(e.g. Student’s t) generally leads to the absence of closed-form expressions
for the conditional moments and densities. The next Section presents two
approaches to approximate the conditional densities in such circumstances;
the first one is based on simulations (Lanne, Luoto, and Saikkonen, 2012)
and the second one uses sample counterparts (Gouriéroux and Jasiak, 2016).

4 Predictions using approximation methods

4.1 Predictions using simulations-based approximations

Lanne, Luoto, and Saikkonen (2012) base their methodology on the fact that
the noncausal component of the errors, u, can be expressed as an infinite
sum of future errors, which in the MAR(r,1) case is as follows,

ut = Ψ(L−1)−1εt =

∞∑
i=0

ψiεt+i.

Since stationarity is assumed, and because in applications ψ rarely (and
barely) exceeds 0.9, the sequence (ψi) converges rapidly to zero. Hence,
they assumed that there exists an integer M large enough so that any future
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point of the noncausal component of the errors can be approximated as the
following finite sum,

u∗T+h ≈
M−h∑
i=0

ψiε∗T+h+i, (5)

for any h ≥ 1.

As explained before, any point forecast y∗T+h of an MAR(r,1) process
depends on the sequence forecast (u∗T+1, . . . , u

∗
T+h). Thus, forecasting

any future point y∗T+h or the path (y∗T+1, . . . , y
∗
T+h), with h ≥ 1, requires

forecasting the sequence of M future errors (ε∗T+1, . . . , ε
∗
T+M ) which we

will denote as ε∗+. Instead of deriving an M -dimensional conditional joint
density function (Lanne, Luoto, and Saikkonen (2012) use M = 50) , they
propose a way to obtain conditional point and cumulative density forecasts.
While the estimation approach they propose requires finite moments for
the errors distribution, this restriction is not necessary for their forecasting
method (Lanne and Saikkonen, 2011).

Using the companion form of an MAR(r,1) model, y∗T+h can, by recursion,
be expressed as the sum of a known component and the h future values of
ut, where the latter, based on Equation (5), can be approximated as a linear
combination of M future errors

y∗T+h = ι′ΦhyT +
h−1∑
i=0

ι′Φiιu∗T+h−i

≈ ι′ΦhyT +
h−1∑
i=0

ι′Φiι
M−h+i∑
j=0

ψjε∗T+h−i+j ,

(6)

where

yT =


yT
yT−1

...
yT−r+1

 , Φ =


φ1 φ2 . . . . . . φr
1 0 . . . . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0

 (r×r) and ι =


1
0
...
0

 (r×1).

Let g(ε∗+|uT ) be the conditional joint distribution of the M future errors,
which, using Bayes’ Theorem can be expressed as follows,

g(ε∗+|uT ) =
l(uT |ε∗+)

l(uT )
g(ε∗+).
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Thus, for any function q,

E
[
q(ε∗+)

∣∣uT ] =

∫
q(ε∗+)g(ε∗+|uT )dε∗+

=
1

l(uT )

∫
q(ε∗+)l(uT |ε∗+)g(ε∗+)dε∗+

=
Eε∗+

[
q(ε∗+)l(uT |ε∗+)

]
l(uT )

.

(7)

Similarly as before, l(uT |ε∗+) can be obtained from the errors distribution
g. Yet, since it is conditional on ε∗+ instead of u∗T+1, we can only obtain
an approximation. Using this approximation and the Iterated Expectation
theorem, the marginal distribution of uT can be approximated as follows,

l(uT ) = Eε∗+
[
l(uT |ε∗+)

]
≈ Eε∗+

[
g

(
uT −

M∑
i=1

ψiε∗T+i

)]
.

Overall, by plugging the aforementioned approximation in (7), we obtain

E
[
q(ε∗+)

∣∣uT ] ≈ Eε∗+

[
q(ε∗+)g

(
uT −

∑M
i=1 ψ

iε∗T+i

)]

Eε∗+

[
g
(
uT −

∑M
i=1 ψ

iε∗T+i

)] .

Let ε
∗(j)
+ =

(
ε
∗(j)
T+1, . . . , ε

∗(j)
T+M

)
, with 1 ≤ j ≤ N , be the j -th simulated series

of M independent errors, randomly drawn from the assumed distribution of
the process. Assuming that the number of simulations N is large enough,
the conditional expectation of interest can be approximated as follows,

E
[
q(ε∗+)

∣∣uT ] ≈ N−1
∑N

j=1 q
(
ε
∗(j)
+

)
g
(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

)
N−1

∑N
j=1 g

(
uT −

∑M
i=1 ψ

iε
∗(j)
T+i

) . (8)

Based on Equation (6), for any MAR(r,1) process and for any forecast
horizon h ≥ 1, choosing q(ε∗+) = 1

(∑h−1
i=0 ι

′Φiι
∑M−h+i

j=0 ψjε∗T+h−i+j ≤
x − ι′ΦhyT

)
in (8) will provide an approximation of P

(
y∗T+h ≤ x|uT

)
. By

computing its value for all possible x we can obtain the whole conditional
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cdf of y∗T+h.

P
(
y∗T+h ≤ x

∣∣uT) = E
[
1
(
y∗T+h ≤ x

)∣∣uT ]
≈ E

[
1

(
ι′ΦhyT +

h−1∑
i=0

ι′Φiι
M−h+i∑
j=0

ψjε∗T+h−i+j ≤ x

)∣∣∣∣uT
]
.

Let us consider again an MAR(0,1) process with a lead coefficient of 0.8 and
Cauchy-distributed errors. The complete predictive cdf is approximated
using M = 100 and the 10,000 simulations suggested by Lanne, Luoto, and
Saikkonen (2012) at each iteration. The Mean Squared Errors (henceforth
MSE) between the estimated and the theoretical cdf ’s for increasing
quantile (between the Q(0.95) and Q(0.999)) of the MAR process are
presented on graph (a) in Figure 4. The MSEs increase with the level
of the series (from 0.0002 to 0.2384) and for illustration, graph (b) in
Figure 4 compares the cdf ’s obtained with 10,000 and 100,000 simulations
with the theoretical cdf for quantile 0.99. The discrepancy between
the estimated and theoretical cdf ’s significantly decrease with a larger
number of simulations and results converge towards the theoretical distri-
bution. Furthermore, it is important to note that the bi-modality of the
conditional distribution of an explosive episode is captured by this approach.

Figure 5 depicts the empirical distribution of 1,000 iterations of the same
inquiry with different number of simulations. Since this paper focuses
on the investigation of turning point of explosive episodes, each iteration
consists in computing the probabilities of a decrease of at least 25% when
the last observed value is equal to the quantile 0.995, namely a value of
around 318 for such process. The theoretical probability is equal to 0.2
and as the number of simulations increases, results converge to this value.
For lower number of simulations the same inquiry repeated twice may give
completely opposite results. This stems from the fact that we investigate
explosive episodes. Recall that bubbles are triggered by a future extreme
value in the error terms and if no simulated paths among all simulations can
trigger such increase, then the probabilities may be significantly misleading.
Conclusions are similar for different lead coefficients (results available upon
request), the simulations-based probabilities are a good approximation of
theoretical Cauchy-derived probabilities ((1−ψ) during explosive episodes),
when the number of simulations is coherently chosen w.r.t. the level of the
series.
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(a) Evolution of the MSE of the cdf
estimations with 10,000 simulations
for increasing quantiles.

(b) Comparison of estimated cdf ’s for
Q(0.99) using 10,000 and 100,000 simu-
lations with theoretical cdf.

Figure 4: Sensitivity of estimations to the number of simulations for an
MAR(0,1) with ψ = 0.8 and Cauchy distributed errors.

Figure 5: Empirical distributions of 1,000 repeated forecasts using different
numbers of simulations for an MAR(0,1) process with ψ = 0.8 and Cauchy
distributed errors evaluated at quantile 0.995.

Analogously, results also converge for Student’s t-distributed processes
– we here investigate t(2)- and t(3)-distributed MAR(0,1) series. No
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theoretical results are available but Figure 6 indicate that results converge
to a unique distribution as the number of simulations is increased in the
estimation. Values corresponding to similar quantiles significantly vary with
the distributions. While for a Cauchy (t(1)) distributed MAR(0,1) process
with ψ = 0.8, Q(0.995) corresponds to a value of 318.28, it corresponds
to 17.35 and 8.75 for t(2) and t(3) respectively.7 Hence, since the rate of
increase remains the same (1/0.8), the modes of the conditional distribution
are closer and the bi-modality is less evident for similar quantiles when the
degrees of freedom of the distribution are larger. Hence, given a quantile,
probabilities of events (e.g. drop of at least 25% or of at least 50%) will
differ the most when the quantile corresponds to lower values. Furthermore,
for analogous quantiles, approximations are less sensitive to the number of
simulations as the degrees of freedom of the distribution increases. This
is explained by the fact that the values needed to be drawn from the
distribution to keep on following the current explosion rate (1/0.8) do
not correspond to the same quantiles. Namely, (1/0.8)Q(0.995) does not
correspond to the same quantile depending on the distribution. For t(1)
the rate of increase would lead to quantile 0.999 while for t(3) it would lead
to quantile 0.986. Hence, when reaching the same quantile, it is more likely
that the values corresponding to the natural rate of increase are simulated
when the degrees of freedom of the distribution are larger.

Figure 6: Estimated cdf ’s evaluated at Q(0.995) using 10,000 and 100,000
simulations for MAR(0,1) processes with ψ = 0.8 with t(2) (left) and t(3)
(right) distributed errors.

7Note that quantiles for t-distributed processes were empirically estimated.
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To compare results with Cauchy-distributed processes, Table 1 displays
the probabilities of a decrease of at least 25% once the quantile 0.995 is
attained for the three distributions and for three distinct lead coefficients.
Theoretical probabilities from the same quantile are also reported for
Cauchy (t(1)) distributed errors. Simulations-based probabilities differ by
a maximum of 0.2% from theoretical results in the t(1) case. Furthermore,
recall that the larger the degrees of freedom, the less noisy are estimations
for a given number of simulations. That is, we can expect the probabilities
for the t(2) and t(3) cases to differ from theoretical probabilities by at
most 0.2% and further increasing the number of simulations would lead
to more precise results. Given the same quantile, the probabilities of
a turning point significantly increases with the degrees of freedom of
the distribution and with lower lead coefficients. For the investigated
quantile, a process with t(3)-distributed errors and a lead coefficient of
0.2 only has a probability of 4% to keep on increasing as opposed to
20% for Cauchy-distributed processes. Furthermore, simulations indicate
that as the series diverges, the probabilities of a crash (impact of the
choice of threshold becomes negligible as the modes of the distribution
departs from one another) tend to a constant for all models. For a lead
coefficient of 0.8 for instance, the probabilities of a downturn tends to
0.2, 0.36 and 0.48 as the bubble increases for t(1), t(2) and t(3) respectively.

Table 1: Probabilities of a crash of at least 25% when quantile 0.995 is
attained

Lead coefficient Theoretical Simulations-based
ψ Cauchy/t(1) t(1) t(2) t(3)

0.2 .794 .793 .937 .960
0.5 .497 .499 .718 .792
0.8 .201 .203 .358 .435

Reported probabilities for the simulations-based approach are the av-
erage over 1,000 forecasts using 1,000,000 simulations.

Overall, this approach seems to be a good approximation of theoretical
results. With a sufficient number of simulations, the probabilities obtained
with Cauchy-distributed errors converge to theoretical probabilities. While
for t(2) and t(3) results cannot be compared to a benchmark, estimated
distributions also converge to a unique distribution which we can expect to
be the theoretical one. Nonetheless, obtained probabilities do not depend
on past behaviours and, as was indicated in Section 3 for theoretical results,
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tend to a constant during explosive episodes. That is, past some point, the
probabilities of a crash will remain constant.

4.2 Predictions using sample-based approximations

This section is based on the approach proposed by Gouriéroux and Jasiak
(2016). They derive a sample-based estimator of the ratio of the predictive
densities in Equation (4), which does not always admit closed-form results.
Based on past values of the series, this method can also be applied to any
non-Gaussian distribution. Whether or not the marginal distributions of ut
and u∗T+h admit closed-form, they can be expressed as follows,

l(uτ ) = Euτ+1

[
l(uτ |uτ+1)

]
,

with τ = {T, T + h}. Once again the noncausal relationship described in
Equation (2) is used to evaluate the conditional distribution of l(uτ |uτ+1)
with the distribution of the errors, g(uτ − ψuτ+1). While Lanne, Luoto,
and Saikkonen (2012) employed simulations to approximate expected values,
Gouriéroux and Jasiak (2016) use sample-based counterparts. The expected
value here is approximated by the average obtained using all points from the
sample for the conditioning variable,

l(uτ ) = Euτ+1

[
g(uτ − ψuτ+1)

]
≈ 1

T

T∑
i=1

{
g(uτ − ψui)

}
. (9)

Hence, the predictive density for the MAR(0,1) process ut can be approxi-
mated by plugging the sample counterparts (9) in (4),

l(u∗T+1, . . . , u
∗
T+h|uT )

≈ g(uT − ψu∗T+1) . . . g(u∗T+h−1 − ψu∗T+h)

∑T
i=1 g(u∗T+h − ψui)∑T
i=1 g(uT − ψui)

.
(10)

For centred and symmetrical uni-modal distributions, such as the Cauchy
and the Student’s t that are employed in this analysis, the probability
density function is maximised at zero. That is, the density g, as it is
evaluated in Equation (10), is maximised at the points where uτ − ψui = 0
and tends to zero as the difference widens. Since at time T all observations
up to uT are used in the estimation, the ratio of Equation (10) only varies
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as a function of u∗T+h and will be maximised for paths that were already
undertaken. Furthermore, when uT diverges from all past values in the
sample, the numerator tends to zero, meaning that approximations errors
will be amplified during explosive episodes. That is, we can expect this ap-
proximation method to put more weight on forecast points corresponding to
already undertaken paths and that this tendency will be more pronounced
during bubbles.

Let us again consider an MAR(0,1) process with a lead coefficient of 0.8
and standard Cauchy-distributed errors. For median levels of the series,
results are similar between closed-form and sample-based predictions
regardless of past behaviours. However, as the series departs from central
values, discrepancies emerge and are path-dependent. To illustrate this,
Figure 7 shows one-step ahead density forecasts performed at time T=200
of two different MAR(0,1) trajectories, both ending at the same point
corresponding to quantile 0.975 (equivalent to a level of 63.53 for such
model). Series 1 (left) only has smaller explosive episodes before the one
at which predictions are performed while series 2 already lived a more
considerable bubble before. The one-step ahead density predictions are
estimated and compared to closed-form Cauchy results in the bottom
graphs. The estimator captures the split of the density of the explosive
episode but the densities are significantly different. Compared to the
theoretical density (solid line), the left estimated density overestimates the
probabilities related to a crash since all past points are lower, while the
right one overestimates potential increases as the series already underwent
larger explosive episodes. Predictions with this approach are therefore
case-specific and can be characterised by a learning mechanism based on
past behaviours. The probabilities of events can be empirically derived from
the obtained predictive densities. The probabilities of a decrease of at least
25% are theoretically 20.5% for such process but are respectively equal to
55.7% and 26.3% for series 1 and 2, for which the discrepancy is explained
by the aforementioned learning mechanism. The choice of event and thus
threshold used to calculate the probabilities may have a considerable impact
on the results. Theoretically, for such process and quantile, the probabilities
of a drop of 75% are only 3.2% lower than for a drop of 25%. This indicates
that the arbitrary definition of a crash (e.g. a drop of 50% or of 25%) does
not significantly affect the resulting probabilities. However, for series 1
(resp. 2), the probabilities of a drop of at least 75% are 11% (resp. 5%)
lower. That is, the learning mechanism can induce substantial probabilities
for scenarios in between the crash and the further increase. Hence, caution
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is needed when building probability-based investment strategies for instance.

Figure 7: Comparison between estimated and theoretical 1-step ahead pre-
dictive densities for Cauchy MAR(0,1) with ψ = 0.8 evaluated at quantile
0.975 for 2 distinct trajectories.

In the intent of generalising results, we simulated sets of 1,000 different
MAR(0,1) (with Cauchy-distributed errors) trajectories ending at quantiles
0.99 or 0.995, with lead coefficients 0.2, 0.5 or 0.8 and sample size 100, 200,
500 or 1000. The probabilities of a decrease of at least 25% were computed
for all settings and all trajectories. Figure 8 reports the distribution of
results depending on lead coefficient, sample size (500 on the left column
and 1,000 on the right) and quantile investigated (0.99 and 0.995). The
probabilities obtained from different trajectories are more volatile for
large lead coefficients, large sample size and low quantiles. With such
sample sizes, the empirical quantile corresponding to the last point when
the lead coefficient is large is usually lower than the theoretical quantile
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due to long lasting bubbles inducing substantial discrepancies between
trajectories. This also implies that a larger proportion of points are
of higher magnitude, which, as explained above may significantly alter
probabilities, hence inducing volatility in the results. The same goes for
lower the quantiles, a larger proportion of points of higher magnitude
amplifies divergence between probabilities of two distinct trajectories.
Increasing the sample size increases the occurrence of extreme episodes
which also considerably affect probabilities. Indeed, as we have seen in
Figure 7 one previous extreme episode is sufficient to significantly decrease
the probabilities of a crash. Furthermore, we can see that the larger the
coefficient, the more the sample-based approach tends to overestimates
probabilities, compared to theoretical ones (represented by the dotted
line). Note however, that the maximum probabilities obtained correspond
to the main mode of the distributions and that the divergence of results
(resp. the change of quantile) only happen in or (resp. affect) the left tail.
Compared to theoretical probabilities, this approach tend to overestimates
the probabilities of a crash but results seem to be upper-bounded, and this
upper bound corresponds to the most recurrent obtained probability over
1,000 trajectories. However, probabilities of a crash can also be lower than
theoretical probabilities, that is, the learning mechanism can indicate that
based on past behaviours, the probabilities of turning point are lower than
the underlying distribution would suggest.

Table 2 summarises the aforementioned results for four different samples
sizes and the three distributions investigated in this paper. Obtained
probabilities are compared to theoretical probabilities (for t(2) and t(3)
results obtained in Table 1 are assumed to be theoretical ones). For
each model setting, the first quantile and the mode of the distribution
of the probabilities from the 1,000 trajectories are reported. The first
quantile indicates the heaviness of the left tail while the mode indicates the
upper-bound and by definition the most recurrent probability. Note that
the tendency of the sample-based approach to overestimate the probabilities
of a crash is lower for larger degrees of freedom in the errors distribution.
Conclusions drawn above are analogous for all distribution, namely that an
increase in the sample size and in the lead coefficient leads to significantly
more volatile results. Nevertheless, due to the heavy dependence on past
points and the case-specificity of this approach, it is rather challenging to
demonstrate theoretical guarantees or convergence of this approximation
method.
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T=500 T=1000

Figure 8: Distributions of estimated probabilities of a crash of at least 25%
for 1,000 different trajectories evaluated at two different quantiles. The
dotted lines represent theoretical Cauchy-derived probabilities. The lead
coefficient varies (by row) and so does the sample size (by column).

The focus of this paper is on one-step ahead forecasts yet farther predictions
are possible, though computationally demanding. Gouriéroux and Jasiak
(2016) propose a method to tackle this issue by elaborating a Sampling
Importance Resampling (SIR) algorithm. The algorithm aims at recovering
a predictive density based on simulations from a misspecified instrumental
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Table 2: Sample-based probabilities of a crash of at least 25% evaluated at
Q(0.995) for 1,000 trajectories for each model

ψ
Sample t(1) t(2) t(3)

size Theor. 1st Q. Mode Theor.* 1st Q. Mode Theor.* 1st Q. Mode

0.2

100

.794

.828 .828

.937

.941 .941

.960

.961 .962
200 .828 .828 .941 .941 .961 .961
500 .825 .828 .941 .941 .961 .961
1000 .824 .828 .940 .941 .961 .961

0.5

100

.497

.664 .665

.718

.772 .776

.792

.808 .819
200 .657 .665 .756 .776 .802 .818
500 .629 .665 .738 .775 .795 .819
1000 .611 .665 .714 .775 .789 .815

0.8

100

.201

.555 .556

.358

.544 .597

.435

.428 .606
200 .553 .556 .458 .603 .391 .590
500 .404 .556 .259 .607 .369 .491
1000 .343 .556 .290 .605 .379 .416

Theor. corresponds to theoretical probabilities (Theor.* correspond to the probabilities that were
derived via simulations in the previous Section reported in Table 1).
Are also reported the 1st quantile and the mode of the distribution of the 1,000 probabilities of
each scenario.

model from which it is easier to simulate. They suggest using a Gaussian
AR model of order s (here an AR(1)) to simulate the process ut. This
approach recovers the intended densities for median levels of the series but
fails to recover both the parts corresponding to the crash and to the increase
during explosive episodes. The failure of the algorithm for high levels of the
series stems from the intention to recover a bi-modal distribution from a
uni-modal distribution. If the variance of the uni-modal instrumental distri-
bution is not large enough to cover both modes of the sample-based density,
the algorithm will not be able to recover the whole conditional distribution.
The shape of the Normal distribution significantly depends on past be-
haviours of the series since the variance is estimated as the variance of the
residuals of the MAR model. Hence, for more volatile series, the variance
of the instrumental Normal distribution will be larger, yet, as the variable
increases and the two modes diverge, there will always be a point from
which the SIR algorithm does not succeed in recovering the density anymore.

Gouriéroux et al. (2018) find that the quality of forecasts diminishes when
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the series follows an explosive episode. Indeed, approximations errors
amplify with the level of the series, and there is a point from which the SIR
algorithm does not recover the whole density anymore. Yet, we find that
the sample-based estimator captures the split of the conditional density
as the series departs from central values and comprises both the crash
and increase parts of the predictive density. Furthermore, it yields time
varying probabilities based on its learning mechanism. While sample-based
predictive densities based on Student’s t-distributions cannot be compared
to closed-form predictions, results corroborate the conclusions drawn with
Cauchy. Thinner tails in the errors distribution lead to higher probabilities
of crash for given quantiles of an MAR process. A limitation is that when
closed-form results are not available, we cannot disentangle how much of
the derived probabilities are induced by the underlying distribution and
how much by past behaviours. To tackle this, the probabilities estimated
with the simulations-based approach of Lanne, Luoto, and Saikkonen
(2012) can be used as benchmark as they seem to be good approximation
of theoretical results. Such data-driven approach alleviates the issue of
constant probabilities that theory or the simulations-based method suggest
during explosive episodes. Yet, this is at the costs of heavy computations
(increasing with the forecast horizon) and of lack of theoretical guarantees.

5 Empirical Analysis

We now empirically analyse the two approaches presented in Section 4.
Karapanagiotidis (2014) and (Lof and Nyberg, 2017) find evidence that
non-causal models generally provide better fits for commodity prices series.
We hence forecast the bubble pattern in commodity prices and in particular
in the monthly Global price of Nickel. The series is obtained from the
International Monetary Fund and spans the period from January 1980 to
June 2017. There seems to be a positive trend in the data but making the
series stationary is far from obvious. Indeed, usual unit root tests do not
perform well for this type of variable with very large spikes. For instance
ADF tests would reject the null of a unit root against both a mean and a
trend reverting alternative. A conclusion that does not seem satisfactory
from the graphs of the data. It might also well be that the series is
stationary around a shift in mean. Hencic and Gouriéroux (2015) use a
cubic deterministic trend for isolating the bubble in the Bitcoin. In order
to preserve the bubble features of the data and to obtain a stationary series
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with locally explosive episodes (that would disappear by taking the returns)
we have instead considered the Hodrick-Prescott filtering approach. The
detrended series is reported in Figure 9. We are of course aware that this
first step might alter the dynamics of the series, probably in the same
manner that a X-11 seasonal filter modifies MAR models (see Hecq, Telg,
and Lieb, 2017). We leave this important issue for further research. We
first estimate an autoregressive model by OLS on the whole HP-detrended
Nickel price series. Information criteria (AIC,BIC and HQ) all pick up a
pseudo lag length of p = 2. The three possible MAR(r,s) specifications are
consequently an MAR(2,0), an MAR(1,1) or a MAR(0,2). Using the MARX
package of Hecq, Lieb, and Telg (2017) an MAR(1,1) with a t-distribution
with a degree of freedom of 1.32 and a scale parameter of 347.96 is favoured.
The value of the causal and the noncausal parameters are respectively 0.60
and 0.74. We are consequently in the situation in which the predictive
density does not admit closed-form expressions (although not very far from
the Cauchy) but the sample- and simulations-based approaches can be used.

Figure 9: HP-detrended monthly Nickel prices series. The diamonds rep-
resent points from which one-step ahead density forecasts are performed in
this analysis.

We aim attention at the main explosive episode, which crashed in June 2007.
To investigate the evolution of predicted probabilities along the bubble
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with settings as close as possible to the assumptions made throughout this
paper, we assume the model is correctly specified (parameters estimated
over the whole sample) at each point of interest. The points at which we
perform predictions are represented by diamonds on the trajectory in Figure
9. We investigate five points along the main explosive episode and one
after, to capture the effects of the inclusion of the crash in the predictions.
Each point is assigned an index between 1 and 6 indicating their order of
arrival. At each point, we compute the sample-based predictive density
and compute various probabilities of events (four different magnitudes of
crash) derived from both the sample- and simulations-based approaches.
Since simulations-based estimations are good approximations (with a large
enough number of simulations) of theoretical results, we consider them
as theoretical benchmark to which sample-based probabilities are compared.

Results are reported in Table 3. The quantiles corresponding to each of
the six points were evaluated using simulations, based on the estimated
model, and are presented in the second column. The whole sample up to
the points of interest were used in the sample-based approach. For the
simulations-based method, given the degrees of freedom estimated for the
errors and the quantiles to be investigated, 5,000,000 simulations were
employed at each iteration. We investigate the probabilities of a decrease
up to 60%. We do not consider larger drops since with a lag coefficient of
0.60, the left mode of the conditional distribution will be located at 60%
of the last observed value and, as depicted in the last two columns, the
probabilities of larger decrease will quickly decay to zero. Hence, let us now
disregard the last two columns for the analysis of the results.

Points 1 to 5 represent the evolution from the outset to the peak of the
bubble. During this episode the series departs from slightly above median
values (Q(0.518)) to reach quantile 0.988. While the sample-based approach
always overestimates theoretical probabilities, discrepancies between the
two approaches widen as the series increases. More specifically, when reach-
ing point 3, the series has now exceeded all past values and the discrepancy
between probabilities of a drop with the two methods expands by 5.1% (a
difference of 21.1% at point 2 and of 26.2% at point 3) and remains as such
until the crash. The difference between them represents how much of the
sample-based probabilities are induced by the learning mechanism of this
approach. This suggests that once past values are exceeded, the uncertainty
added to what the underlying distribution would suggest remains constant.
The probabilities of a drop are strictly increasing with both approaches,
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however, as mentioned in Section 4 the choice of threshold may impact
probabilities. While this usually concerns the sample-based approach,
this is also the case for low quantiles for the simulations-based method
as the two modes of the conditional distribution are not sufficiently far
to neglect the impact of the choice of threshold. The probabilities of a
decrease rose by 1.3% with the sample-based approach between points
4 and 5 while probabilities of a crash of at least 25% declined by 0.1%,
due to larger probabilities of drops of lower magnitudes evaluated at point 5.

Point 6 corresponds to a quantile slightly higher than point 2, hence, as
expected, theoretical probabilities of a decrease are slightly higher as well.
However, as the main explosive episode is now included in the sample-based
approximations, the learning mechanism suggests less risk of a crash as the
series already departed from such values. This leads to probabilities 12.2%
lower than at point 2 for probabilities of a decrease and 9.8% lower for a
crash of at least 25%. Furthermore, the discrepancy between the sample-
and simulations-based approaches is reduced by more than 11% for both
inquiries.

Table 3: One-step ahead probabilities of events for detrended monthly Nickel
prices at six different point in time

Point Quantile
< yT < 75%yT < 60%yT < 40%yT

samp. sims. samp. sims. samp. sims. samp. sims.

1 .518 .291 .147 .227 .116 .185 .097 .131 .075
2 .902 .484 .273 .385 .183 .221 .105 .041 .033
3 .975 .587 .325 .518 .272 .273 .130 .008 .010
4 .984 .591 .330 .539 .289 .294 .139 .004 .006
5 .988 .604 .342 .538 .143 .291 .143 .002 .004

6 .923 .362 .289 .287 .199 .161 .107 .028 .027

The quantiles corresponding to each point were evaluated with simulations based on the esti-
mated model.
samp. (resp. sims.) represents sample-based (resp. simulations-based) probabilities.
The probabilities are estimated with the following MAR(1,1) model: φ = 0.60, ψ = 0.74 and
t(1.32,347.96) distributed errors.
For the simulations-based approach the following settings were employed: M = 100 and
N = 5,000,000. Results with this approach are assumed to be theoretical ones.
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5.1 Example of investment strategy

Using a monthly series to illustrate investment strategies may not be
adequate but this is an example as to how the obtained probabilities
could be employed and could be straightforwardly extended to higher
frequencies. In addition, while the choice of the de-trending method may
alter interpretation, it keeps the locally explosive characteristic of the
series and is therefore a good illustrative example. A rather risk averse
investor would probably sell once the series reaches point 3, that is when
the learning mechanism indicates an increase of the probability of a turning
point of 10.3% and more particularly an increase in the probabilities of a
drop of at least 25% of 13.3%. Furthermore, as mentioned before, once
exceeding all past values, the uncertainty carried by the sample-based
approach is translated into a larger discrepancy between the sample- and
simulations-based approaches (which then remains rather constant). If this
investor did not sell at point 3, they would most likely sell at point 4. At
that point, while the learning mechanism does not inflate the probabilities
of a turning point (constant discrepancy between the two approaches), it
still inflates the probabilities of a drop of at least 25%. This means that
going from point 3 to 4, with the same excess probabilities of a turning
point, if the series actually drops, higher probabilities are that it will drop
by at least 25% when reaching point 4. A more risk seeking investor, if
they have not sold yet at point 4 may be misled at point 5, indeed, excess
probabilities of a turning point would still be the same that at point 4 while
indicating that if the series drops it would less likely drop by more than
25% compared to the previous points. Moreover, any investment strategy
using the learning mechanism of the sample-based approach would most
probably lead to not selling at point 6 even though the small-scaled bubble
crashed the subsequent point. Overall, the extent to which the excess
probabilities (discrepancy between the sample- and simulations-based
approaches) are used in an investment strategy depends on the beliefs
regarding the series. The definition of a crash (namely just a turning point
or a drop of at least 25% for instance) depends on the risk aversion of the
investor. Further research should be done to investigate more thoroughly
structured investment strategies and their performance over larger and
diversified data sets.

To put it in a nutshell, the use of both approaches when the distribution of
the errors does not allow for closed-form expressions can help disentangle
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how much probabilities in the sample-based approach are induced by past
behaviours. Indeed, even if probabilities of a turning point were continu-
ously increasing with the variable, the discrepancy between probabilities,
capturing the variation in uncertainty regarding the downturn may remain
constant after some point as we have seen in this empirical example. The two
approaches carry different information; on the one hand, the sample-based
approach relies heavily on past behaviours and is usually more conserva-
tive, yielding higher probabilities of turning points. On the other hand the
simulations-based approach yields probabilities solely induced by the un-
derlying model. Both methods capture the bi-modality of potential future
path characterising locally explosive episodes. They could, individually or
combined, be used for investment strategies for instance. However, such
strategy depends on what the investor is seeking, their risk aversion and
their beliefs regarding the process.

6 Conclusion

This paper analyses and compares in details two approximation methods
developed to forecast mixed causal-noncausal autoregressive processes. It
focuses on MAR(r,1) processes and aims attention at predictive densities
rather than point forecasts as they are more informative, especially in the
case of explosive episodes.

The sample-based (Gouriéroux and Jasiak, 2016) and simulations-based
(Lanne, Luoto, and Saikkonen, 2012) methods are compared to theoretical
results using various MAR(0,1) processes and Cauchy-distributed errors.
Results are also derived for Student’s t distributions with 2 and 3 degrees
of freedom even though no closed-form solutions exist. This paper focuses
on one-step ahead forecasts to give a rigorous analysis of how and why
estimations may differ from closed-form results. We find that theoretical
and sample-based predictive densities start to differ as the series departs
from central values, and the discrepancies increase with the level of the
series, the lead coefficient and the sample size. The sample-based approach
gives time-varying probabilities and depends on how similar the event
under investigation is to past events. This approach yields results that
are a mixture of probabilities ensuing from the underlying distribution
and from past behaviours of the series. Simulations-based predictive
probabilities are a good approximation of theoretical results obtained
with Cauchy-distributed errors, as long as the number of simulations in
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the approximations is sufficient and probabilities are also converging to a
unique distribution for processes with t(2) and t(3) errors. Both methods
capture the bi-modality of the conditional distribution as the series di-
verges from central values, which is an indicator of a potential bubble outset.

We illustrate the two methods with a detrended Nickel prices series. When
the underlying distribution does not admit closed-form expressions for the
predictive densities, the only way to determine the proportion of probabili-
ties induced by past behaviours in the sample-based approach is to compare
it with the probabilities obtained with the simulations-based method. This
information can be used in investment decisions, where the strategy is to be
built based on the investor’s risk aversion and beliefs regarding the series.
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