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Abstract

A continuum of agents are choosing whether to enter a competition.
Entry is controlled by a firm that charges a price for it. The mass of
agents is uncertain. I analyse how the distribution of the mass of agents
determines the equilibrium price and the intensity of entry. A shift of
the distribution towards more mass initially induces a reduction of
price, and later — a reduction in entry.
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1 Introduction

Consider a cohort of prospective students who are considering applying to
university. Of those who apply, the ones with the highest ability are admitted
to universities. To apply, a student needs to pay a firm to take a GRE test.
What price will the firm set, and what proportion of prospective students
will apply?

To answer this and similar questions, this paper models a continuum of
candidates who consider whether to enter a competition for a continuum
of prizes. Access to the competition is controlled by a profit-maximising
firm, who charges a price for entering. FEach candidate has a type, and
out of those who enter the competition, candidates with the highest types
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each get one prize. Each candidate is privately informed about her type,
but does not know the total mass of candidates, which is drawn from a
continuous distribution — thus, a candidate is uncertain about the number of
her competitors who have a higher type.

This paper is related to the literature on entry into competitive settings,
such as auctions (McAfee and McMillan, 1987; Levin and Smith, 1994; Aroza-
mena and Weinschelbaum, 2011; Moreno and Wooders, 2011; Li, 2017; Lee
and Li, 2019) or contests (Fu and Lu, 2010; Kaplan and Sela, 2010; Fu et
al., 2015). In particular, Morgan et al. (2017) study entry into contests with
a continuum of agents and prizes; while Ginzburg (2019) analyses a costly
competitive test in which, as in this paper, winning depends on the candid-
ate’s exogenous type, rather than on her endogenously chosen effort or bid.
The key difference of this paper is that the cost of entry is not exogenously
fixed, but is set by a firm. The firm maximises its profit from entry, and
has no stake in the outcome of the competition, unlike an auction or contest
designer.

The paper shows how the distribution of the mass of candidates determ-
ines optimal entry price and the proportion of candidates who enter the
competition. When the mass of candidates tends to be low, the firm sets
a price at which all candidates enter. A first-order shift of the distribution
towards greater mass initially induces the firm to lower the price while main-
taining full entry. However, after the distribution has shifted sufficiently far,
a further proportional shift leads the firm to keep the price unchanged while
allowing the intensity of entry to fall.

2 Model

There is a continuum of candidates, and a continuum of prizes. The value of
a prize to each candidate is v. The mass of candidates y € (0, +00) is drawn
from a smooth distribution G with density g and full support. The mass of
prizes is normalised to 1. Each candidate ¢ has a type 6; € [0, 1], drawn from
a smooth distribution F’ with full support. Each candidate knows her type,
but not the types of other candidates or the mass of candidates.

After learning her type, each candidate decides whether to enter the com-
petition for prizes. Entry is controlled by a profit-maximising firm. The firm
selects a price p that each candidate needs to pay for entry. The firm’s



marginal cost of admitting one candidate is ¢ > 0, where ¢ < v.!

The timing is as follows. First, the firm selects p. Then, nature draws y
and the type of each candidate. Each candidate learns his type. Candidates
then simultaneously decide whether to enter the competition. I will assume
symmetric strategies, in the sense that candidates with the same types enter
the competition with equal probabilities.

Candidates who do not enter receive a payoff of 0. Candidates who enter
pay the price p. If the mass of candidates who enter is greater than 1, then
out of candidates who enter, mass 1 of those who have the highest types
receive one prize each. Formally, if the set of candidates who enter is S,

then each candidate from the set S N [é, 1} receives one prize, while other

candidates do not receive prizes, where 6 is a type such that the mass of
SN [é, 1] equals 1. On the other hand, if the mass of candidates who enter
is smaller than 1, then each candidate who enters receives a prize.

3 Equilibrium

If p > v, no candidate enters, and the firm receives zero profit. Since v > ¢,
the firm is better off setting some price p € (¢, v], and hence every equilibrium
will be of this type.

Intuitively, the probability that a candidate receives the prize is increasing
in her type. Hence, any equilibrium is characterised by a cutoff 0 such that
a candidate enters if and only if her type is above 0. The share of candidates

that enter is thus 1 — F (é) If a candidate with type 6 enters, she pays p,
and receives a prize worth v if and only if y [1 - F (é)} < 1. The probability

of this event is G {%} If she does not enter, her payoff is zero. At the

equilibrium, she must be indifferent between entering and not entering. The
following lemma proves this reasoning formally:

Lemma 1. Fvery equilibrium is characterised by a cutoﬁé given by

1
WG| ——— | —p=0 (1)

1-F (9)

'f ¢ > v, the only kind of equilibrium involves a price p at which no candidate enters.




such that all candidates with types above 0 enter with certainty, and the mass
of candidates whose types are below 0 and who enter is zero.

Proof. See Appendix. O
Let x = 1_;((5) € [1,400). Then (1) implies that at the equilibrium we
have
p =G ()

The mass of candidates who enter equals y [1 - F (QA)} = ¥, and the firm
receives a profit of p — ¢ from each of them. The firm’s problem then is
max E [Q (p— c)} subject to p = vG (2) (2)
p€[0,v] x
Since there is a one-to-one relationship between x and p, the firm’s prob-
lem can be written as that of selecting the optimal x. A larger value of x
corresponds to a lower value of 1 — F (é), and hence to lower intensity of

entry. Let z* be the firm’s equilibrium choice of . The following result
characterises it:

o . G(a)-¢
Proposition 1. z* € arg max,ef o) — .
Proof. Rewriting (2) yields max,e1,4o0) %ﬂj)_c [y], which has the same solu-
tion as the expression in the proposition. O

The optimal price then equals vG (z*). Differentiating the expression in
Proposition 1 implies that whenever z* > 1, it is given by the expression

vy (a") = G(2") = —— (3)

At the same time, for some shapes of G, we can have a corner solution,
at which «* = 1, and hence F (é) = 0 — thus, the firm selects a price that

ensures full entry. These two cases are illustrated in Figure 1.

Which of these cases applies depends on the shape of G. However, when
G is unimodal, we can derive necessary and sufficient conditions for either
case:

Proposition 2. Suppose G is strictly convex on (0, k), and strictly concave
on (k,+o00) for some k € (0,400). Ifk <1 and G(1) > g(1) + £, then
x* = 1. Otherwise, z* > 1 and is given by (3).
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G(z)— <
0 | T 0 1
1 x* =1
(a) z* >1 (b) z* =1
Figure 1: Firm’s equilibrium strategy
Proof. See Appendix. n

Hence, when G is unimodal, the firm sets the price that induces full entry
when the mass of candidates tends to be low — specifically, when (i) the modal
mass of candidates is lower than the mass of prizes; and (ii) the probability
that the mass of candidates is lower than the mass of prizes is sufficiently
large. Otherwise, the firm sets a price at which some candidates do not enter.

4 Comparative Statics

Suppose competition between candidates increases. Formally, suppose that
G is replaced by some other distribution G that first order stochastically
dominates G — that is, G (y) < G (y),Vy € (0,400). How does this affect
the intensity of entry and the optimal price?

If the price was exogenously fixed at some level, then entry would be
determined by (1). A shift from G to G would decrease the left-hand side of
(1). To restore the equality, # would have to increase, so the proportion of
candidates that enter would fall2.

Here, however, the price is endogenously chosen by the firm. How does
a shift from G to G affect entry and prices? Let z* be the optimal x under
G. Consider first the case when G and G are such that 2* = #* = 1 — for

2A similar result emerges, for example, in Ginzburg (2019), in the case where entry is
required for receiving the prize.
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Figure 2: Effect of an increase in competition when z*, 2* > 1.

example, when G and G satisfy the conditions in Proposition 2. Then we
have the following result:

Proposition 3. Suppose G and G are such that z* = &* = 1. ]fé Jirst
order stochastically dominates G, then the optimal price is lower under G
than under G.

Proof. The optimal price under G' and under G equals vG (1) and vG (1),
respectively. Furthermore, G (1) < G (1), implying the result. O

Hence, when the mass of candidates tends to be low, a shift of G towards
greater mass decreases the optimal price, while maintaining full entry.

Now consider the case when G and G are such that z* > 1 and #* > 1.
Then a shift from G and G can both increase and decrease entry, as Figure
2 shows.

As a specific example of a shift in distribution, suppose G (z) = G (ax)
for some a € (0,1). A shift from G to G then represents a proportional
increase in the mass of candidates for every draw made by nature®. We can

3Specifically, consider again the example of university admission test in the introduc-
tion, and suppose that y = A\Y, where Y is the total mass of people of a particular age
drawn from the distribution G (%), and X is the proportion of people for whom the benefit
of higher education is higher than the cost. Then an increase in that proportion from A to

[SH e}



show that such a shift does not change the optimal price, while reducing the
intensity of entry:

Proposition 4. Suppose that G (z) = G(az) for a € (0,1), and that G
and G each induce a unique equilibrium with z* > 1 and * > 1. Then the
optimal price is the same under G as under G. Furthermore, T* > x*.

Proof. See Appendix. O

Informally, Propositions 3 and 4 together imply that if the mass of can-
didates tends to be low, a shift in the distribution towards more mass initially
induces the firm to lower the price while maintaining full entry. Eventually,
however, a further proportional shift leads the firm to maintain the same
price while allowing the proportion of candidates who enter to fall.
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Appendix

Proof of Lemma 1. Let h(6) be the equilibrium probability that a can-
didate with type 6 enters the competition. If a candidate with type 6 enters,
her expected payoff is

—p=w(0)

vy [10ar 0 2] v |

which is weakly increasing in ¢. Note that w (¢) > 0 for all types for which
h(0) > 0, and w () < 0 for all types for which h(f) < 1. Denote 0 =
sup {t | h (t) < 1}, that is, the highest type that does not enter with certainty.

Suppose first that § = 0. Then w (é) =w(0)=vG (1) —p. Hw(0) >0,
then w (6) > 0,V0, so the firm can raise its profit by increasing p. Hence, we
must have w (é) =vG (1) —p =0, so (1) holds.

Suppose instead that 6 > 0. Take some ¢ < 6. If h(0') > 0, then
w(0) > 0. But w (é) < 0, and w () is strictly increasing over any interval
over which h () > 0, so we must have h (t) = 0 for almost all t € (6’,@).

Thus, i (0) = 1 for all 6 > 0, and foé h(0) dF (0) = 0. Hence, 0 is given by

vG [W} = p, which is equivalent to (1). o
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Proof of Proposition 2. If £ > 1, then, at x = 1, GG is convex, so # is

increasing. Since the firm’s profit equals %E ly] = (M - 9) E [y], it

is increasing in x at x = 1. Thus, z* > 1.
If G(1) <g(1)+ <, then

(UG (z) —c

T

d
dx

E[m) — [og (1) —vG (1) + B[] > 0

Hence, profit is again increasing in x at x = 1. Thus, x* > 1.
Now consider the case when G (1) > g (1) + ¢ and k < 1. The former

C

implies that the left-hand side of (3) is weakly smaller than —¢ at 2" = 1.
The latter implies that ¢’ () < 0 for all z > 1, and thus for all z* € (1, +00)
the derivative of the left-hand side of (3) with respect to z* equals

Hence, the left-hand side of (3) is decreasing in z*. Thus, (3) is not satisfied
for any x* > 1, so z* = 1. O]
Proof of Proposition 4. If G (z) = G (ax), then the associated density
equals g (z) = ag (ax). Then Z* is given by (3) as
G (az") = ‘i az*g (ax™)
v

To show that that £* is decreasing in a, differentiate both sides with respect
to a to obtain

( ~*) ~*+ a‘%* _ ( ~>k) ~*+ aj* + ~ % /( ~*) ~*+ a‘%*
glaxr T aaa = gl\axr T aaa ar g (ax i aa

a

Hence, az*g’ (aZ*) (92** + a%) = 0, which implies that % = —% < 0.
At the same time, the optimal price equals

vG (aZ*) = c+vaZ*g (aZ™)

Hence,
0 [vG (az*)] .. 07" v e [ w0\
T—Ug(aa:) x+aaa +vaz*g (az™) $+aaa =0
where the last equality follows from the fact that z* + a%% =0. O]
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