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Abstract: Risk metrics users assume that the moments of asset returns exist, irrespectively
of the trading frequency, hence the observed values of these moments are used to capture the
potential losses from asset trading (e.g. with Value-at-Risk (V aR) or Expected Shortfall (ES)
calculations). Despite the fact that the behavior of traditional risk metrics is well-examined
for high frequency data (e.g. at daily intervals), very little is known on how these metrics
behave under Ultra-High Frequency Trading (UHFT). We fill this void by firstly examining
the existence of the daily and intraday returns moments, and subsequently by assessing the
impact of their (non)existence in a risk management framework. We find that the third and
fourth moments of the distribution of asset returns do not exist. We next use both real and
simulated data to show that, when daily trading is implemented, V aR or ES deliver estimates
in line with what the theory predicts. We show, however, that when UHFT is considered,
assuming finite higher order moments, potential losses are much bigger than what the theory
predicts, and they increase exponentially as the trading frequency increases. We argue that
two possible explanations affect potential loses; first, the exponential increase in the sample
data points at UHFT; second, the fact that the data, which are sampled from a heavy-tailed
distribution, tend to have higher sample moments than the theory suggests - we call this
phenomenon superkurtosis. Our findings entail that traditional risk metrics are unable to
properly judge capital adequacy. Hence, the use of risk management techniques such as V aR
or ES, by market participants who engage with UHFT, impose serious threats to the stability
of financial markets, given that capital ratios may be severely underestimated.
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1. Introduction

Highly sophisticated algorithms and fast computer technology have originated a new class of trading
known as Ultra-High Frequency Trading (UHFT). UHFT has numerous advantages: it offers a great
deal of liquidity in the market; it facilitates the instantaneous transmission of information into prices,
pushing markets to be more efficient; and it creates a market place for small (retail) as well as large
investors (institutions).
However, UHFT also presents unique challenges,1 having been criticised as liable to cause large mar-
ket crashes2 which may be amplified by the influx of algorithmic trading and the order clustering
caused by unintended trading strategy coordination (Beddington et al., 2012). Hence, regulators3,
economists (e.g. Kirilenko and Lo, 2013) and law scholars (e.g. Yadav, 2015) have proposed mea-
sures to curb UHFT. As a consequence, market participants are required to measure and report
several market risk metrics, and to take them into account when calculating their regulated capital
requirements.4,5 For instance, ECB is required to impose capital requirements (via the Capital Re-
quirements Regulation) on institutions who engage in UHFT. Such requirements are based on risk
metrics or asset volatility6. However, standards set by regulators are based on risk metrics that are
calculated - at most - at daily frequency. Given that UHFT takes place at higher frequencies, this
leaves the market risk generated by UHFT largely as a dark pool.
Very little is known about market risk associated with UHFT, and similarly little analysis has been
conducted on how traditional risk metrics such as Value at Risk (V aR, hereafter) or Expected
Shortfall (ES) behave at such frequencies. Nevertheless, the investigation of this issue is of immense
importance, which stems from the fact that risk metrics users assume that high order moments of
asset returns in ultra-high frequency are finite, hence the empirical estimation of these moments can
be used to compute the V aR and ES. In turn, such risk metrics computations can adequately capture
capital adequacy. We note that the validity of such important assumption has not been formally
tested thus far. In this study, we fill this gap, firstly by investigating the existence of moments of
intraday currency returns, and subsequently by assessing the impact of moments (non)existence in a
risk management framework.7 Specifically, we test for the existence of the first four moments, using
ultra-high frequency data from the currency markets. We find that the distribution of the returns of
the assets traded under UHFT does not have finite moments of order higher than 2, implying that
only the mean and the variance exist at intraday frequencies. Despite this, high-frequency traders
use the empirical estimation of these moments to compute their V aR or ES. Our findings, however,
imply that the V aR or ES is infinite when calculated with data frequencies higher than daily, or, to
put it equivalently, that the potential capital loss implied by V aR or ES is unlimited in the presence

1See for example the Final Project Report from The Government Office for Science, London - 2012.
2See for example Bloomberg article in April 21st, 2015 by Silla Brush, Tom Schoenberg and Suzi Rin: How a

Mystery Trader With an Algorithm May Have Caused the Flash Crash and Kirilenko et al. (2017) for a suggested
solution.

3See for example the Press Release, European Parliament, MEPs Vote Laws to Regulate Financial Markets and
Curb High Frequency Trading (Apr. 15, 2014).

4For example, on January 16th, 2016 the Basel Committee on Banking Supervision published a document that
revised standards for minimum capital requirements for Market Risk.

5Consistent with the policy rationale underpinning the Committee has three consultative papers on the Funda-
mental review of the trading book. (i) Fundamental review of the trading book, May 2012, (ii) A revised market risk
framework, October 2013 and (iii) Fundamental review of the trading book: Outstanding issues, December 2014.

6For details see https://www.bankingsupervision.europa.eu/press/publications/newsletter/2019/html/ssm.nl190213-
5.en.html

7The focus on the foreign exchange market is justified by the fact that in September 2018 the committee report
of the Bank of International Settlements sets the tone of the magnitude of the so-called fast-paced electronic markets
(FPMs) for heavily levered markets, like the foreign exchange. Trading has not only become increasingly electronic
and automated, but the use of ultra-high frequency algorithmic trading and machine learning protocols are increasing
like never before. In the foreign exchange market more than 65% of the more than 5trillion dollars daily volume is
traded from algorithms. More than 80% of Central Banks monitor FPMs operations and 60% is for market stability
reasons alone.
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of UHFT.
We find that this is due to two sources: first, the sheer sample size, which affects potential losses.
Secondly, we find clear numerical evidence that, at higher frequencies, data sampled from a distri-
bution which has heavy tails tend to have higher sample moments than the theory would suggest;
this, in turn, affects the potential losses associated with V aR or ES. More specifically, to confirm
this striking empirical finding, a series of simulations are generated aiming to disentangle possible
sources of the extreme (infinite) potential losses. The simulated data shows that, on one hand, the
estimated kurtosis grows as the sampling frequency increases (as theory would predict), yet, on the
other hand, the growth pattern exhibits a much faster rate than the theory would predict. Thus, kur-
tosis diverges much faster from its theoretical path as the sampling frequency increases, contributing
significantly to the exponential increase of the potential losses at UHFT. Hence, the simulated data
lend strong support to our empirical conclusions.
We call this phenomenon superkurtosis; it implies that traditional risk measures are not a good
metric for the true market risk (see also Bradley and Taqqu, 2003), and should therefore not be
employed to gauge capital adequacy under UHFT.
The remainder of the paper is organised as follows. Section 2 describes the methods used for the
test of moments, as well as, for the assessment of the impact of these moments on risk management.
Section 3 presents our empirical results from the real data, as well as, the simulated data. Finally,
Section 4 concludes the study and provides ideas for future research.

2. Methodology

Our analysis is based on two steps. We start by verifying whether higher order moments exist (Section
2.1); we then turn to assessing the impact of potential non-existence of high order moments on V aR
(Section 2.2).

2.1. Testing for the existence of the asset returns’ moments.

We test for the existence of up to the fourth moment of a random variable X, given a sample {xt}Tt=1,
using the test proposed by Trapani (2016) for

{

H0 : E |X|k = ∞
HA : E |X|k <∞ , (2.1)

with k = 2, 3 and 4. In (2.1), the null hypothesis is the non-existence of the k-th absolute moment.
Following the guidelines in Trapani (2016), for each k, test statistics are based on

µk = ck × T−1
∑T

t=1 |xt|
k

(

T−1
∑T

t=1 |xt|
p
)k/p

(2.2)

where p = min{k − 1, 2} and

ck =











4
π when k = 2

1 when k = 3
1
3 when k = 4

. (2.3)

Some comments on (2.2) and (2.3) are in order. The first statistic to be employed is µ2, which has

been designed to test for H0 : E |X|2 = ∞ - i.e., the non-existence of the variance. When k = 2,
the sample second moment (at the numerator) is made scale-invariant by dividing by the square
of the mean absolue value of xt; other rescalings would be possible (chiefly, the median, which has
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the advantage of being well-defined), but the simulations in Trapani (2016) show that the mean
absolute value yields better power and size. For k = 2, 3, rescaling is done using the sample variance,
as is more natural. Turning to the multiplicative constants ck, these follow the guidelines in Trapani
(2016), where each sample moment is rescaled by the corresponding sample absolute moment of a
standard normal distribution.
Based on (2.2)-(2.3), we construct the statistic

ψk = exp (µk)− 1. (2.4)

Allowing for weak dependence in the sample, Trapani (2016) showed that

P
{

ω : lim
T→∞

ψk = ∞
}

= 1, under H0 : E |X|k = ∞, (2.5)

P
{

ω : lim
T→∞

ψk = 0
}

= 1, under HA : E |X|k <∞. (2.6)

Under H0, ψk diverges to positive infinity instead of having a limiting distribution. Thus, we ran-
domise it to produce a test statistic which has a well-defined limiting law, using the following
algorithm.

Step 1 Randomly generate an i.i.d. N (0, 1) sample of size R =
⌊

N1/2
⌋

, say
{

ξ
(k)
j

}R

j=1
, indepen-

dently across k, and define
{

ψ
1/2
k × ξ

(k)
j

}R

j=1
.

Step 2 For u =
{

−
√
2,
√
2
}

, generate ζ
(k)
j,n (u) = I

(

ψ
1/2
k × ξ

(k)
j ≤ u

)

, 1 ≤ j ≤ r.

Step 3 For each u, define

ϑ
(k)
n,R (u) =

2√
R

R
∑

j=1

[

ζ
(k)
j,n (u)− 1

2

]

, (2.7)

and finally the test statistic

Θ
(k)
n,R =

1

2

[

(

ϑ
(k)
n,R

(

−
√
2
))2

+
(

ϑ
(k)
n,R

(√
2
))2

]

. (2.8)

Following Horváth and Trapani (2016), it holds that

Θ
(k)
n,R

d∗

→ χ2
1, under H0, (2.9)

R−1Θ
(k)
n,R

P∗

→ 1, under HA, (2.10)

as T → ∞ for almost all realisations of {xt}Tt=1. In (2.9) and (2.10), “
d∗

→” and “
P∗

→” denote conver-
gence in distribution and in probability, respectively, with respect to P ∗, defined as the probability
conditional on the sample {xt}Tt=1.

2.2. Assessing the impact of (non)existence of moments in risk management.

We consider a representative trader with unlimited capital, who wants to calculate her V aR measure
at each point in time. Without loss of generality, each trading day t is divided in τ equidistant
intraday subintervals. The observed prices at day t are denoted as Ptj , for j = 1, 2, ..., τ , with sample
frequency defined as m = τ−1. We define daily log-returns as yt = logPtτ − logP(t−1)τ , and intraday
log-returns as ytj = logPtj − logPtj−1

.
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The V aR for a long trading position at (1− p) level of confidence, at sampling (trading) frequency

m, is denoted as V aR
(m)
(1−p), defined such that P (ytj ≤ V aR

(m)
(1−p)). The V aR

(m)
(1−p) is computed non-

parametrically as the p-quantile of the intraday log-returns at sampling frequency m: V aR
(m)
(1−p) =

fp
(

{ytj}t=1,...,T
j=1,...,τ

)

8. We measure the potential losses conditional to a V aR violation (i.e. the losses that
occur when the returns are lower than the V aR measure) by constructing an evaluation function,

l
(m)
tj that measures the absolute distance between actual returns, ytj , and the V aR measure, i.e. the

potential loss (l
(m)
tj ):

l
(m)
tj =

{

|ytj − V aR
(m)
(1−p)| if ytj < V aR

(m)
(1−p)

0 otherwise.
(2.11)

We note that the expected shortfall, recently proposed as an alternative risk measure, is the expec-

tation of the potential loss (E(l
(m)
tj )), given that the V aR violation is present.

The total potential losses over the sample period are computed as L(m) =
∑T

t=1

∑τ
j=1 l

(m)
tj . To allow

comparison across the different sampling frequencies we also compute the daily adjusted losses per

V aR violation as L̄(m) = 1361(Nm)−1L(m), for N =
∑T

t=1

∑τ
j=1 I

(m)
tj , where:

I
(m)
tj =

{

1 if ytj < V aR
(m)
(1−p)

0 otherwise.
(2.12)

We multiply the number of violations by the daily adjustment, 1361/m, where 1361 reflects the
1-minute observations per day that the market is open.

3. Empirical findings and simulations

In Section 3.1 we carry out an empirical exercise where we (i) check whether our data have heavy
tails or not (by testing for the existence of up to the fourth moment), and (ii) evaluate the potential
losses when using a strategy that fails to acknowledge that higher order moments do not exist. We
find that, when considering ultra-high frequency data, higher order moments such as the kurtosis
and the third absolute moment do not exist; and that potential losses tend, in such cases, to be
much higher than anticipated. Subsequently, in Section 3.2, we analyse the causes underpinning
such stylised fact. In particular, we assess the impact of the sample size on potential losses, showing
that as this increases, so do the potential losses. Further, we assess the impact of having heavy tails
on the potential losses; strikingly, we find that sample moments, when population moments do not
exist, tend to be much higher than the theory would suggest, which we show is particularly true for
the sample kurtosis.

3.1. Data analysis

3.1.1. Data description

We use 1-minute data of the front-month futures contracts for the EUR/USD, GBP/USD and
CAD/USD exchange rates, obtained from TickData. The period of the study spans from August 1,
2003 to August 5, 2015. We focus on the G10 exchange rate market as it is considered continuously

8The V aR of intraday log-returns ytj for a short trading position at (1−p) level of confidence at sampling frequency

m is P
(

ytj ≥ V aR
(m)
(1−p)

)

= (1− p).
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trading, so that we do not have to take into consideration significant data alterations. The choice of
the specific currency pairs is justified by the fact that (i) they are among the most liquid, and (ii)
they represent the most heavily traded exchange rate for financial transactions. Our sample consists
of 3028 trading days, which contain more than 16 million 1-minute data.
Table 1 presents the descriptive statistics of the currency pairs’ returns for sampling (trading) fre-
quencies from 1-minute to 1-day. We note that volatility is falling linearly as the sampling frequency
is increasing. By contrast, the third moment (skewness) does not see to change materially from
symmetry at the different frequencies. More importantly, the forth moment (kurtosis) shows the
well documented leptokurtosis, which increases exponentially as the sampling frequency increases.
Of course, the magnitude of kurtosis at the higher frequencies differs among the different crosses,
with the higher being observed in the EUR/USD.

[Insert Table 1 around here]

3.1.2. Testing for the existence of higher order moments

We start our analysis with results on the existence of moments in Table 2.9

[Insert Table 2 around here]

The results show that only the second moment exists across all currencies and sampling frequencies.
By contrast, for all intraday sampling frequencies across the three currency pairs, the null hypotheses
of non-existence of the third and fourth moments cannot be rejected at conventional significance
levels. Moving to lower sampling frequencies, i.e. daily, we find evidence that higher order moments
exist.

3.1.3. The impact of the non-existence of moments in UHFT

The results presented in Table 2 seem to suggest that risk management tools, such as the V aR or
ES, that assume the existence of moments, might be inappropriate to assess the true underline risk
of loss in the ultra-high frequencies. To ascertain this, we consider a scenario where traders assume
that moments do exist at the intraday frequencies. Under this scenario, we calculate the potential
losses (L(m) and L̄(m)), conditional to V aR violation, as shown in Section 2.2 (see Figure 1).

[Insert Figure 1 around here]

In all cases considered, potential losses are decidedly higher for the higher sampling frequencies,
while they decrease gradually as the sampling frequency decreases. This holds for both the total
potential losses (L(m)) and the daily adjusted potential losses (L̄(m)). For instance, in the 1-minute
sampling frequency of the EUR/USD we observe that a trader would have lost 48 times more capital
than anticipated by the V aR, whereas the daily adjusted losses, for the same frequency, are about
25% more. Similar figures are reported for the GBP/USD and CAD/USD, as well.
Despite the fact that we have implied that the non-existence of moments, and in particular, this of
kurtosis, could be the source of the exponential potential losses as the sampling frequency increase,
we must note that the actual source of these losses is unclear. To shed light in this respect we perform
an experiment with simulated data, isolating different effects to pin down the most important source
of the association between potential losses and frequency of trading.

9We have also considered lower frequencies than the daily (e.g. weekly, biweekly and so on) and the results show
that all moments continue to exist. Also, we only report results for the EUR/USD exchange rate, as numbers for the
other currencies are almost exactly the same. All these unreported results are available from the authors upon request.
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3.2. Evidence from simulated data

3.2.1. Assessing the impact of the sample size on potential losses

We analyse - via a simulation exercise - the impact of the sample size on potential losses, considering
a Gaussian data generating process where we simulate the prices Pt, for t = 1, ..., 106 as

Pt = Pt−1 + zt, (3.1)

with zt
i.i.d.∼ N(0, 1/h2) and initial price P1=$1000. The h2∋R+ enables us to control for the magni-

tude of variance. The total sample is split in 1000 trading days with 1000 intraday prices. Without
any loss of information, the sample {Pt}10

6

t=1 mimics the Ptj for j = 1, ..., 1000 and t = 1, ..., 1000,
at sampling (or trading) frequency m = 10−3. For example, at 1-minute sampling frequency, or
m = 10−3, we have τ = 1000 intraday prices, for T = 1000 trading days, at 2-minutes sampling
frequency, we have τ = 500 intraday prices, for T = 1000 trading days, and so on.

Figure 2 illustrates the V aR
(m)
(95%), the kurtosis of log-returns, yt = log(Pt/Pt−1), and the potential

losses L(m), L̄(m) for the simulated log-returns. We have set h = 10 ; we note however that, in
unreported experiments, very similar results were found when using different values of h. The x-axis
presents the trading frequency in minutes; from 1 up to 120 minutes. Without any loss of generality,
we assume a long trading position, hence the 95% VaR measure is computed as the 5% quantile
point of the empirical distribution of yt

10.

[Insert Figure 2 around here]

The simulated results provide us with an important finding; the potential losses are dependent on
the trading frequency, where higher trading frequency leads to higher potential losses, despite the
fact that the kurtosis (upper right graph) is around the value of 3 across any trading frequency
m = 1, ..., 120. So, such finding could simply suggest that the increased potential losses are not
related with the effect of superkurtosis, but rather they are the artifact output of the effect of
number of observations which increases exponentially as the sampling frequency increases.
In order to shed further light on the impact of the sample size, we investigate the analytical form of
the total potential losses.
The potential loss L(m) is given by

L(m) =

T
∑

t=1

τ
∑

j=1

(

|yt − V aR
(m)
(1−p)| × I

{yt<V aR
(m)

(1−p)
}

)

, (3.2)

for I{.} representing the indicator variable and we compute the expected value of total potential

losses, E(L(m)). For our long trading position and under the condition yt < V aR
(m)
(1−p), we have yt < 0

and V aR
(m)
(1−p) < 0, as well. So, for yt < V aR

(m)
(1−p), we have |yt − V aR

(m)
(1−p)| = −(yt − V aR

(m)
(1−p)).

Hence:

E(L(m)) =

T
∑

t=1

τ
∑

j=1

E
(

|yt−V aR(m)
(1−p)|×I{yt<V aR

(m)

(1−p)
}

)

= −
T
∑

t=1

τ
∑

j=1

pE
(

yt−V aR(m)
(1−p)|yt < V aR

(m)
(1−p)

)

.

(3.3)

Note also that E(I
{yt<V aR

(m)

(1−p)
}
) = p. As E(yt|yt < V aR

(m)
(1−p)) = ES

(m)
(1−p) and E(V aR

(m)
(1−p)|yt <

V aR
(m)
(1−p)) = V aR

(m)
(1−p), we can show that:

10For a short trading position, the 95% quantile point of the empirical distribution would have been considered.
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E(L(m)) = −Tτp(ES(m)
(1−p) − V aR

(m)
(1−p)). (3.4)

Under the data generated process, we can prove that11,

V aR
(m)
(1−p) = Φ(1−p)

(

E(yt) = 0, V (yt) =

(

1

P1

√

m

h2

)2
)

(3.5)

and

ES
(m)
(1−p) =

σ

1− p
ϕ

(

Φ(1−p)(0, 1)

)

, (3.6)

where ϕ denotes the standard normal probability density function and σ = 1
P1

√

m
h2 . Hence, the

V aR
(m)
(1−p) measure equals to the (1−p) percentile point of the inverse cumulative normal distribution

with zero mean and 1
P1

√

m
h2 standard deviation (we should note to the reader that m = τ−1 is the

intraday sampling (trading) frequency).
So, as presented in Figure 3, the total potential losses per trading frequency m are affected not only
by the number of observations, Tτ , but also from the distance between the two risk measures; i.e.

the expected shortfall and the V aR, i.e. (ES
(m)
(1−p) − V aR

(m)
(1−p)). Therefore, as the trading frequency

increases, (i) the number of trades increases exponentially (see the effect of size in Figure 3), while
(ii) the distance between the two risk measures decreases (see the expected shortfall and value-at-
risk in Figure 3). Indicatively, some estimates of (3.4) are E(L(1)) = 2.089 and E(L(120)) = 0.1907,

for ES
(1)
(5%) − V aR

(1)
(5%) = 4.2E − 5 and ES

(120)
(5%) − V aR

(120)
(5%) = 4.6E − 4.

[Insert Figure 3 around here]

Thus, both analytical and simulated evidence show that the total potential losses per trading fre-
quency m are affected positively by the number of trades and negatively by the distance between
the two risk measures. Having established the aforementioned effects, in the paragraphs that follow,
we investigate whether there are any additional effects from kurtosis.

3.2.2. Assessing the impact of heavy tails on potential losses

We now turn to investigating the effect of heavy tails on potential losses; in particular, we assess the
impact of excess kurtosis. To this end, we consider a heavy tail data generating process, as follows:

Pt = Pt−1 + zt, (3.7)

for zt
i.i.d.∼ t(0, 1/h2, v), for v ≥ 2 and initial price of P1=$1000. The probability density function for

Student t is considered as: ϕ(0, 1/h2, v) =
Γ( v+1

2 )

Γ( v
2 )
√

πv

h2

(

1 +
z2
th

2

v

)− v+1
2

.

Figure 4 shows the values of the sample kurtosis and the potential losses L(m), L̄(m) for the simulated
log-returns, from the Student t random walk data generated process under various degrees of freedom,
v = 3, 4, 5, 10, 20, 30, 100 and h = 10; clearly, the population kurtosis does not exist for the first two
values.

[Insert Figure 4 around here]

11The proof is available upon request.
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We note that, for the near-Gaussian cases v = 30, 100, the kurtosis remains constant across various
values of trading frequency, and, as expected, the potential losses L(m) and L̄(m) are almost identical
to those found in the previous section. As is natural to expect, as the degree of freedom v decreases,
the sample kurtosis increases; for example, for v = 10, the kurtosis of log-returns at 120-minutes
trading frequency is around 3.1, whereas for v = 3 the kurtosis of log-returns at 120-minutes trad-
ing frequency is around 4.5. However, Figure 4 shows a remarkable feature of the sample kurtosis.
Heuristically, when v ≤ 4, the sample kurtosis should pass to infinity as the sample size Tτ → ∞.
By the Marcinkiewicz-Zygmund Strong Law of Large Numbers, the sample kurtosis should pass to

infinity at a rate given by (modulo some slowly varying sequence) O
(

(Tτ)
4−v
v

)

.

For example, when v = 3, the sample kurtosis should diverge to infinity as fast as (approximately)
O
(

(Tτ)1/3
)

. Based on these heuristic considerations, when e.g. v = 3, one could expect the sample

kurtosis for the 1-minute trading frequency to be larger by a factor 1201/3 than the sample kurtosis
calculated for the 120-minutes trading frequency, keeping T constant. On the contrary, from Figure
4, it is apparent that the sample kurtosis is bigger than the theory would predict. For example, for
v = 3, the 1-minute sampling frequency log-returns have kurtosis of 150, which is approximately 30
times as much as in the 120-minute sampling frequency case, whereas the theory would predict an
increase of approximately 5 times only.

Turning now to the relationship between kurtosis and potential losses at the highest trading frequency
of 1-minute, we document that a kurtosis of 4 (as derived for v = 10 degrees of freedom) implies
potential losses of L(1) = 2.78 and L̄(1) = 0.080, whereas a kurtosis of 150 (as derived for v = 3)
increases the potential losses to L(1) = 7.58 and L̄(1) = 0.218. Therefore, it is obvious that the
potential losses are heavily affected by the presence of kurtosis.
Both simulated and analytical results strengthen our findings, from the real data, that the poten-
tial losses are dependent on the trading frequency, where higher trading frequency leads to higher
potential losses. Most importantly, though, we observe the effect of superkurtosis, which is also evi-
dent in the real data, to influence radically the potential losses. Put it differently, the shape of the
potential losses from the simulated data do resemble those of the actual data. Thus, as the sampling
(trading) frequency increases, the effect of superkurtosis becomes more material and the potential
losses increase substantially.

We should highlight that we have further experimented with the previous simulation for P1 = 1
in order to mimic the exchange rate values, as well as, using a conditionally heteroscedastic data
generating process and the results remain robust. For brevity we do not show the results here but
rather they are available upon request.

4. Conclusions

It is common practice for risk metrics users to assume that the moments of asset returns exist and
thus their observed values can be used to adequately capture the potential losses from asset trading,
using metrics such as the V aR or ES. However, we do not know whether this assumption holds
under UHFT and if so, what the likely consequences are.
In this paper, we studied the potential losses arising from UHFT, as these are assessed by a risk
management metric, such as V aR or ES, which are based on the assumption that the higher mo-
ments of asset returns exist, i.e. they are finite. Using both real data and a simulation exercise,
we (rather unsurprisingly) found that, when high frequency trading is implemented (daily trading),
V aR estimates deliver as expected, with potential losses being in line with what the theory predicts.
Results, conversely, were far more striking when ultra-high frequency trading (intraday) was consid-
ered. Indeed, we found that in such a case the potential losses are much bigger than what the theory
would predict. In order to provide some explanation of this stylised fact, we tried to disentangle
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its possible causes. We found that there are two concurring features that can explain our findings.
Firstly, the sheer sample size: as the sampling frequency increases, so does the number of datapoints;
our results show that this increases the potential loss. Secondly, ultra-high frequency data are more
likely to have heavy tails, as our empirical analysis shows. In particular, the fourth moment of high
frequency data is invariably found not to exist.
This is not merely at odds with the V aR or ES frameworks, which postulate the existence of
these moments: in our simulations we find that the sample kurtosis computed using datasets whose
population fourth moment does not exist tends to be higher than what the theory would predict,
which in turn, exponentially increases the potential losses. Put it differently, moving from high
frequency trading to UHFT, asset returns have infinite high order moments (due to heavy-tailed
distributions), which leads to massively higher potential losses, rendering the survival of a given
investment at high risk. We call this discrepancy between the theoretical behaviour and the actual
magnitude of the sample kurtosis superkurtosis, and we argue that it is one component of the heavy
potential losses which, as a stylised fact, are encountered when trading at ultra-high frequency under
the (implicit in the use of V aR or ES) assumption that high order moments do exist when in fact
they do not.
Our findings have profound implications for the use and regulation of UHFT: employing traditional
risk measures for market participants who engage with UHFT imposes serious threats to the stability
of the financial markets, given that capital ratios may be severely underestimated. Indeed, based on
our analysis, it follows that the hidden risks from UHFT from the foreign exchange market alone
in the financial system are immense and leverage must be reduced substantially (e.g. by at least 45
times) so that risk metrics like V aR or ES match the Central Bank’s capital adequacy preset levels
for financial stability reasons.
In light of our findings, we conclude that it would be very important to accumulate additional
evidence in this line of research, by replicating our results for other asset classes, as well as, portfolios
of assets. These extensions are currently under investigation by the authors.
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Fig 1. Trader’s potential capital losses, on the three exchange rates, above the anticipated losses from the V aR
measure.
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Fig 2. The Value-at-Risk, kurtosis and potential losses for the random walk data generated process.
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∼ N(0, 1/h2), P1 = $1000

and h = 10. The x-axis denotes the 1 to 120 minute intraday sampling (trading) frequencies.

Fig 3. The total potential losses, the number of observations (Tτ), the expected shortfall (ES
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), and the Value-

at-Risk (V aR
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), under the random walk data generated process, per sampling frequency m = 1, ..., 120.

 

 

 

 

Note: The left panel shows the (E(L(m))) and the number of observations (Tτ), per trading frequency m = 1, ..., 120,
whereas the right panel shows the ES and the V aR, per trading frequency m = 1, ..., 120. The x-axis denotes the 1

to 120 minute intraday sampling (trading) frequencies.
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Fig 4. The total potential losses and kurtosis from the Student t random walk data generated process under various
degrees of freedom.       
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Table 1

Descriptive statistics of the three currency pairs at different sampling (trading) frequencies

Frequency Mean Std.Dev. Skewness Kurtosis

EUR/USD

1m 1.34E-08 0.000187 1.775107 748.3108

2m 2.68E-08 0.000261 1.362421 408.7735

5m 6.70E-08 0.000405 0.894493 171.4304

10m 1.34E-07 0.000565 0.645733 92.2061

15m 2.01E-07 0.000686 0.584515 67.0804

20m 2.68E-07 0.000790 0.412722 51.7350

30m 4.01E-07 0.000958 0.429589 38.8754

60m 8.02E-07 0.001355 0.267877 22.9572

Daily 8.99E-05 0.006458 0.060827 4.3828

GBP/USD

1m -6.52E-09 0.000174 -0.350810 243.3383

2m -1.30E-08 0.000243 -0.332122 135.5416

5m -3.25E-08 0.000375 -0.194385 66.0113

10m -6.49E-08 0.000522 -0.225726 42.2837

15m -9.76E-08 0.000633 -0.119137 33.5736

20m -1.30E-07 0.000724 -0.190707 28.6625

30m -1.95E-07 0.000880 -0.198243 24.7113

60m -3.93E-07 0.001231 -0.185203 16.4620

Daily 6.22E-05 0.005629 -0.269195 5.12008

CAD/USD

1m 1.63E-08 0.000182 -0.009072 81.9100

2m 3.25E-08 0.000252 0.005984 57.4756

5m 8.14E-08 0.000386 -0.051981 34.5443

10m 1.63E-07 0.000534 -0.042633 26.1680

15m 2.44E-07 0.000647 -0.035875 23.4246

20m 3.25E-07 0.000740 -0.078372 20.7301

30m 4.87E-07 0.000897 0.038314 18.3294

60m 9.71E-07 0.001257 0.108383 17.0792

Daily 5.09E-05 0.005742 -0.193507 5.8329

Table 2

Tests for moments existence for the EUR/USD currency pair at different sampling (trading) frequencies

Frequency Size µ2 µ3 µ4

µ2 p-value µ3 p-value µ4 p-value

1m 5, 350, 729 0.122 0.00 2313 0.95 1.78× 10
6

0.66
2m 2, 675, 323 0.245 0.00 1635 0.28 8.91× 10

5
0.67

5m 1, 070, 149 0.613 0.00 1034 0.42 3.56× 10
5

0.75
10m 535, 033 1.223 0.00 731 0.79 1.78× 10

5
0.85

15m 356, 719 1.839 0.00 597 0.36 1.18× 10
5

0.71
20m 269, 464 2.434 0.00 519 0.57 8.98× 10

4
0.80

30m 178, 318 3.679 0.00 422 0.62 5.94× 10
4

0.84
60m 95, 140 6.896 0.05 308 0.56 3.17× 10

4
0.90

Daily 4, 035 0.042 0.00 1.56 0.00 0.99 0.00
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