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Abstract 

 

This paper investigates the impact of economic policy uncertainty shocks and shocks to 
commodity prices on the realized stock market volatility of the CARB (Canada, Australia, Russia, 
and Brazil) countries. The CARB countries are important countries to study because they are major 
commodity exporters. The analysis is conducted using sign restricted impulse response functions 
(IRFs) and structural vector-autoregressive IRFs. There are some common results across the 
CARB countries. A positive shock to commodity prices lowers realized stock market volatility 
while a shock to economic policy uncertainty has a significant positive impact on realized stock 
market volatility. The magnitudes of the initial impact of these two shocks are similar. Shocks to 
global economic activity and short-term interest rates lower realized stock market volatility. The 
impacts of these shocks are more pronounced in models that use sign restrictions. These results 
have implications for investors and policy makers. 
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1. Introduction 

 

“In short, governments set the rules of the game.” 

Pastor and Veronesi (2012, p.1219). 

 

Government policy affects decision making by individuals and firms and changes in monetary or 

fiscal policy can impact financial markets. When policy changes are anticipated the impact on 

financial markets is likely weak but if there is uncertainty about economic policy then the effects 

on financial markets can be strong. For firms, economic policy uncertainty creates an option value 

of waiting to resolve the uncertainty before making any strategic decisions and this creates an 

incentive to postpone decision making. Pastor and Veronesi (2012) develop a theoretical model to 

analyze the impact of government policy uncertainty on stock prices. Their model shows that, on 

average, stock prices fall after the announcement of a policy change. Economic policy uncertainty 

increases stock price volatility and correlations among stocks.  

Up until recently measuring the impact of economic policy uncertainty (EPU) on stock 

market volatility has been difficult due to the lack of a standardized measure of EPU. Now, thanks 

to the work of Baker et al. (2016) there are standardized measures of EPU. The construction and 

publication of these indices has created a rapidly growing field investigating the impact of EPU 

on stock prices and stock price volatility. Baker et al. (2016), Brogard and Detzel (2016), and Yu 

et al. (2018) find that stock market volatility and EPU are closely correlated. Liu and Zhang (2015) 

find that higher EPU leads to significantly higher stock market volatility and that forecasting 

models with EPU provide better out of sample prediction compared to models that do not include 

EPU. Several other authors have found a significant relationship between economic policy 

uncertainty and stock prices (Arouri et al., 2016; Bekiros et al., 2016a, 2016b; Chen et al., 2017; 

Dakhlaoui and Aloui, 2016; Kang et al., 2015; Kang and Ratti, 2013; Li and Peng, 2017; Ozturk 

and Sheng, 2018; Tsai, 2017).  

There is one strand of literature on (i) the impact of EPU on stock prices, and (ii) there is 

another strand of literature on the impact of commodity prices on stock prices. Our objective is to 

combine these two strands of literature to see which impact is greater on stock market volatility in 

the case of commodity producing countries. This is an important topic to study for several reasons 

because the results of our analysis have implications for investors and policy makers. If EPU is 
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the dominant source of stock market volatility then stock market volatility can be reduced by 

mitigating domestic economic policy uncertainty. For example, efficient, effective and transparent 

monetary and fiscal policies can help to reduce EPU which is beneficial to investors. If, however, 

commodity prices are the dominant source of stock market volatility then there is little a major 

commodity producing country can do to mitigate stock market volatility because commodity prices 

are determined by global supply and demand for commodities. In this case, investors can hedge 

their exposure to commodity prices. Consequently, the sources and magnitude of stock market 

volatility affects government policy responses and investors’ risk management strategies.  

We do the analysis for the CARB (Canada, Australia, Russia, and Brazil) countries because 

the CARB countries are richly endowed with natural resources and are four major commodity 

exporters with high stock market liquidity for which the EPU index is available.1  Based on 2017 

dollars, Canada is the third largest wheat exporter2, fourth largest crude oil exporter3, fourth largest 

iron ore exporter4, fifth largest copper ore exporter5, and sixth larger exporter of gold6.  Australia 

is the world’s leading exporter of iron ore and coal7, third largest copper ore exporter, fourth largest 

exporter of wheat, and seventh largest exporter of gold. Russia is the second largest exporter of 

crude oil and wheat, third largest exporter of coal and sixth largest exporter of corn8. Brazil is the 

second largest exporter of corn and iron ore, and sixth largest exporter of copper ore. 

Understanding the impacts of commodity prices and economic policy uncertainty on stock market 

volatility is import because stock price volatility is often measured by variance and variance is an 

important component to risk management topics like portfolio construction, hedging, and option 

pricing. 

We make several important contributions to the literature. First, we use a structural vector 

autoregression (SVAR) and sign restricted VARs to investigate the impact of EPU on stock market 

volatility in the CARB countries. A VAR framework is also appropriate because of the 

endogeneity of policy changes (which are captured by the EPU) and the consequent implications 

on stock price volatility. In particular, when policy changes are uncertain, “policy changes raise 

 
1 They represent the world’s key commodity markets. 
2 http://www.worldstopexports.com/wheat-exports-country/ 
3 http://www.worldstopexports.com/worlds-top-oil-exports-country/ 
4 http://www.worldstopexports.com/iron-ore-exports-country/ 
5 http://www.worldstopexports.com/copper-ore-exports-by-country/ 
6 http://www.worldstopexports.com/gold-exports-country/ 
7 http://www.worldstopexports.com/coal-exports-country/ 
8 http://www.worldstopexports.com/corn-exports-country/ 
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the volatility of the stochastic discount factor. As a result, risk premia go up and stock returns 

become more volatile and more highly correlated across firms” (Pastor and Veronesi, 2012, p. 

1221). Second, because the CARB countries are major commodity exporters we include 

commodity prices in the model. We are interested not only in the impact of EPU on stock market 

volatility but also whether EPU has a larger or smaller impact compared to commodity prices. 

Including EPU and commodity prices helps to determine the impact of domestic economic policy 

uncertainty and global commodity price shocks on country stock market volatility. Third, we 

compare the results from a standard SVAR with short-run exclusion restrictions to those from a 

VAR with sign restrictions (Uhlig, 2005).  Standard SVARs impose some zero-value restrictions 

on the contemporaneous effects of structural shocks for certain variables, which means 

representing them with a value of zero in the variance-covariance matrix of error terms in the 

structural VAR for within-period (contemporaneous) covariances. The sign-restrictions approach 

has several advantages over the standard SVAR: (i) Sign restrictions are often used implicitly in 

SVARs in order to assess ex-post the validity of the identifying exclusion restrictions imposed by 

checking whether the impulse responses derived have the anticipated signs. In the sign-restrictions 

approach these restrictions are explicitly imposed a priori. (ii) Impulse responses estimated with 

sign restrictions use simulation to account for both data and identification uncertainty. (iii) Sign 

restrictions are weaker than zero restrictions. This avoids the use of zero restrictions to impose 

identification. (iv) The sign-restriction approach uses Bayesian Monte Carlo sampling which does 

not require differencing of the data thereby avoiding the specification issues of whether to estimate 

the VAR in levels or differences (Sims, 1988).  

Our analysis of the CARB countries reveals several important results. A positive shock to 

commodity prices lowers stock market volatility while a shock to economic policy uncertainty has 

a significant positive impact on realized volatility. The magnitudes of the initial impact of these 

two shocks are similar. Both SVAR and sign restricted VARs produce these results although the 

magnitude of the impacts are larger with sign restricted VAR. Sign restricted IRFs show that a 

shock to global economic activity has a negative impact on realized volatility as does a shock to 

interest rates. 

The paper is organized as follows. Section 2 presents a brief overview of the relevant 

literature.  Section 3 discusses the econometric approach in some detail, and Section 4 describes 
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the data. Section 5 offers the empirical results while Section 6 reports robustness.  Section 7 

concludes the paper.   

 

2. Literature review 

We review briefly the two strands of literature in turn, the literature that analyzes the 

relationship between commodity prices and stock market return volatility, and the literature that 

explores economic policy uncertainty and its link to stock markets.  The first strand of literature is 

very large, whereas the second strand is comparatively small.  However, there is a growing amount 

of empirical work relating economic policy uncertainty to stock market volatility, although most 

empirical work still focuses on U.S. data. Economic theory postulates that an asset price is 

determined by its discounted cash flow (Fisher, 1930).  Hence, any new information that changes 

the expected cash flow of an asset will affect its price. Thus, an oil price increase that affects 

relative input costs and future cash flows, dividends and earnings of a firm will affect its stock 

price (e.g., Jones and Kaul, 1996).9 For example, Bjørnland (2009) points out that Norway, which 

is a net oil exporter, has benefited from oil price increases, showing temporary increases in 

economic growth, but Canada, also a net-oil exporter, has shown declines in economic growth.   

The literature on commodity prices and stock markets is dominated by empirical research on 

one specific commodity and that is oil. This is due on the one hand to the important role of oil as 

an input in the production of many goods and services and, in the form of gasoline, its role in the 

expenditure budget of households, and on the other hand to the relatively large fluctuations of oil 

prices over time.10 The main focus of this first strand of the literature has been on the U.S. and 

developed economies.  There are relatively few papers that study oil-exporting countries and often, 

if they are included, they are generally not analyzed as a separate group.  We consider for our 

literature review only a few selected studies that are directly relevant for our research. 

Numerous articles research the bilateral relationship between commodity prices and stock 

market returns.  Some studies focus on the transmission of prices fluctuations, whereas others 

focus on the transmission of volatilities from one market to another.  These are often based on 

time-varying correlation analysis between the price or return volatility of a specific commodity or 

 
9 Oil price volatility can also affect the risk premium component of the discount rate and the cash flow.  
Furthermore, oil price shocks may also lead to misperceptions about future inflation and hence about expected real 
interest rates that are used for discounting future flows (e.g., Smyth and Narayan, 2018).  
10 The history of oil price fluctuations over the past forty years is studied in Baumeister and Kilian (2016). 
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of a commodity price index on the one hand, and the return or return volatility of a stock market 

index on the other hand.  Filis et al. (2011) survey the literature on time-varying dynamic 

conditional correlations of volatilities, where volatility of a time series is measured by some form 

of its general autoregressive heteroskedasticity. They present bi-variate results for crude oil prices 

and various stock markets of oil-importing (Germany, Netherlands and U.S.) and oil exporting 

(Brazil, Canada, and Mexico).  Filis et al. (2011) find that lagged oil prices have negative effects 

in all current stock markets, with the exception of the 2008 global financial crisis when the effect 

is positive.  The findings do not differ for oil-importing and oil-exporting countries.11  However, 

the literature does not agree on this finding.  A complicating feature of bi-variate analysis is that a 

third factor that is not controlled for may be driving relationships.   

Kang et al. (2018) construct a multivariate structural VAR model with time-varying parameters 

that combines country-specific variables (industrial production, consumer price indexes, and short-

term interest rates) with a global commodity price index and a global stock return volatility index. 

They find that stock market volatility and commodity prices affect each other in a gradual 

endogenous adjustment process.  Aside from the U.S., they analyze four developing and 12 

developed countries.  Generally, shocks to global stock volatility cause negative effects on global 

commodity prices in the first year, and shocks to global commodity prices have persistent positive 

effects on global stock volatility, especially during the recent global financial crisis.      

Smyth and Narayan (2018) review the various branches of literature on the relationship 

between oil prices and stock returns that use bi-variate and multi-variate methods.  They focus 

primarily on the period since 2008. Kilian and Park (2009) is an often cited paper that uses a 

structural VAR model for the oil market.  They model world oil production (oil supply), the price 

of crude oil, and world oil demand (measured by an index of global economic activity) in a VAR 

that includes U.S. stock returns.   They conclude that 22% of the long-run variations in U.S. real 

stock returns are explained by oil demand and oil supply shocks together.  Further, they argue that, 

regardless of the source of the oil shock, the impact response of stock returns is driven by 

fluctuations in expected real dividend growth and time-varying risk premia.12  We discuss next the 

literature on the role of risk, as measured by the EPU, for stock returns.     

 
11 See also Creti et al. (2013) for an extension of this type of analysis to 25 commodities and their relationship to 
U.S. S&P 500 stock returns.  
12 Smyth and Narayan (2018) discuss various other studies on oil prices and stock returns based on the VAR 
approach.  Recent examples are Basher et al. (2018) focusing on major oil-exporting countries and Degiannakis et 
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We review a number of studies which focus on the effects of EPU on stock market volatilities 

in CARB countries. Kang and Ratti (2013) extend the structural VAR model of Kilian and Park 

(2009) by adding the economic policy uncertainty index of Baker et al. (2013).13 Based on monthly 

observations over the period 1990-2011, they find that an unanticipated increase in policy 

uncertainty reduces real stock returns in Canada, an energy-exporting country. In a multi-country 

empirical study, Christou et al. (2017) examine the role of EPU on the stock market returns for six 

Pacific-rim countries including Australia and Canada.14 Based on monthly observations over the 

period 1998 to 2014, they find that an increase in the U.S. EPU negatively (positively) affects 

stock market returns in Canada (Australia). The difference in results may be explained by the fact 

that Canada is the U.S.’s second largest trade partners, while Australia ranks far below other 

trading partners.  

Ferreira et al. (2018) find that over the period 1996-2016, political uncertainty (measured by 

the EPU index) is positively and significantly related to the volatility and correlation of stock 

returns in the Brazilian capital market. However, they did not find a significant relationship 

between political uncertainty and the equity risk premium, which is likely due to two opposing 

forces with respect to the effect of political uncertainty on the equity risk premium in a weaker 

economy. As argued by Pastor and Veronesi (2013), on the one hand, a government’s concern for 

investors’ interest pulls down the risk premium, while on the other hand, the lack of clarity 

concerning the outcome of a government’s action pushes up the risk premium. Xavier and de 

Vasconcelos (2018) examine whether and how EPU is related to momentum return in the Brazilian 

stock market. Using monthly data over the period 2001-2017, they find that local momentum is 

stronger in months followed by high EPU, both domestic and foreign EPU. Furthermore, foreign 

EPU (particularly of the United States) plays a more prominent (mostly negative) role than the 

country-specific EPU for the Brazilian momentum strategy.  

 
al. (2014) on various European stock index volatility measures. Bastianin et al. (2016) instead analyzed oil price 
shocks and stock return volatility in G-7 countries.    
13 On the other hand, Kang et al. (2015) use instead of the EPU index the Chicago Board of Options Exchange’s 
VIX fear index.  It measures investors’ uncertainty, inferred from option prices, about both fundamental values of an 
asset and the behaviour of other investors over the next 30 calendar days.   
14 Unlike most previous studies, they use a panel VAR framework to capture the international transmission of 
different shocks including return spillovers and financial contagion. In addition, their panel VAR permits for 
heterogeneous coefficients which generate country-specific impulse response functions, rather than an average 
impulse response obtained under standard panel data approaches. To compensate for the overparameterization of 
their panel VAR, they use the Bayesian method proposed by Koop and Korobilis (2016), which offers a 
parsimonious panel VAR framework. 
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Liu and Zhang (2015) examine whether adding EPU to an existing volatility prediction model 

improves forecasting ability. Using the 5-minute high-frequency return of the U.S. S&P 500 and 

eight popular models of realized volatility, they find that EPU helps to predict both in-sample and 

out-of-sample stock market volatility. The predictability of stock volatility with EPU is explained 

through the reasoning of Pastor and Veronesi (2012), who argue that policy uncertainty and stock 

price volatilities are endogenous. Pastor and Veronesi (2013) examine the effects of political 

uncertainty, proxied by the EPU index of Baker et al. (2012), on stock prices and find that political 

uncertainty makes the stock more volatile (through an increase in the risk premium) and more 

correlated, and the effects are stronger in weaker economies. 

The main message of the earlier studies is that the global stock markets cannot afford to ignore 

political dangers. At the time of this writing (mid 2019), both the VIX and EPU climbed to their 

near high levels of uncertainty in the wake of escalating trade tension between China and the U.S. 

The trade tension is just one of the myriad sources of political uncertainty rippling through the 

global financial markets.      

 

3. Empirical methodology 

3.1 The sign restricted model 

We use a vector autoregressive (VAR) model with dynamic sign restrictions in order to identify 

structural shocks, based on Bayesian methods.  We include the procedures described in Uhlig 

(2005), in particular his rejection and penalty function approach.  We also employ Fry and Pagan's 

(2011) median target method.  We will apply Uhlig’s (2005) procedures but will choose the final 

model with the median target method of Fry and Pagan (2011).   

The first step of the analysis is to consider the structural equations underlying a reduced-from 

VAR: 𝐴0𝑦𝑡 = 𝐴(𝐿)𝑦𝑡−1 + 𝜀𝑡,                                    (1) 

where yt is a vector of n endogenous variables of interest, for time periods t=1, …, T; 𝜀𝑡 denotes 

the (nx1) vector of serially and mutually uncorrelated structural innovations, which have an 

economic interpretation as shocks. They are assumed to follow a standard normal distribution with 

zero mean and constant variance.  The orthogonal structural innovations have to be estimated from 

the reduced form:  𝑦𝑡 = 𝐴0−1𝐴(𝐿)𝑦𝑡−1 + 𝑒𝑡,                                                   (2) 
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with et a vector of VAR errors such that 𝐴0𝑒𝑡 = 𝜀𝑡.  The reduced form VAR errors, et , have no 

economic interpretation as they are correlated with each other. In order to identify the n2 parameters 

in 𝐴0 one has to impose enough restrictions on this matrix to be able to identify the structural 

shocks.  This process allows recovering the relationships between reduced form shocks 𝑒𝑡 and 

structural shocks 𝜀𝑡, which is given by 𝐴0𝑒𝑡 = 𝜀𝑡.  Identification is necessary to carry out impulse 

response function analysis.  The identification of 𝐴0 usually requires at least n(n-1)/2 restrictions 

in order to identify the elements of 𝐴0. Often, recursive structures (Cholesky decompositions) or 

zero restrictions are used for contemporaneous relationships between the structural shocks in 

period t and the variables in 𝑦𝑡, based on information lags or nominal rigidities found in previous 

studies. It is also possible to impose restrictions that last many time periods, so-called long-run 

restrictions.  Another alternative is to impose sign restrictions for the effects of shocks on a specific 

variable only over a certain number of time periods. Uhlig (2005) shows how structural VAR 

models can incorporate prior beliefs about the signs of the impact of certain shocks, as suggested 

by theoretical models.  It would be difficult to impose sign restrictions directly on the coefficient 

matrix of the model.  Therefore, they are imposed ex-post on a set of orthogonalized impulse 

response functions to see whether the responses are consistent with the imposed sign restrictions. 

Thus, Uhlig (2005) argues that this procedure makes explicit what restrictions are used for judging 

whether impulse response functions produce reasonable results.  In addition to specifying the sign 

of the response of a variable to a shock, one has to choose for how many time periods the sign 

restriction applies and what variables are restricted.  Hence, one imposes a joint set of dynamic 

sign restrictions. 

Uhlig's (2005) method identifies structural shocks using a rejection method applied to a 

reduced-from VAR model that is estimated with Bayesian methods, using a flat Gaussian-inverse 

Wishart prior distribution for the reduced-from parameters.15  As implemented in R, the size of the 

shock is one standard deviation and only one shock of interest is identified at a time by a set of 

sign restrictions imposed. The Markov chain Monte Carlo (MCMC) routine stops once enough 

draws have been found that satisfy the sign restrictions or the maximum number of draws is 

reached.  The method is based on a certain, user-specified, number of draws from the posterior 

distribution and a specified number of sub-draws for each posterior draw to generate an impulse 

 
15 Baumeister and Hamilton (2015) show that informative priors work only in very special circumstances.  
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vector and the candidate impulse responses to which a rejection algorithm is applied. This involves 

calculating the impulse responses and an orthogonal impulse vector that is drawn randomly from 

the unit sphere that maps the loading of the shock onto the variables.  This vector is decomposed 

based on so-called “Givens” rotations.  Impulse responses are then checked to see if they match 

the imposed signs for every restricted period.  Uhlig’s (2005) algorithm checks whether the 

impulse response functions have the appropriate sign.  The above sub-draws generate a number of 

impulse response vectors for each posterior draw. His algorithm finds an impulse vector by 

minimizing a function that penalizes sign restriction violations.  Next, an impulse vector is selected 

that minimizes the total penalty for the restricted variables at all restricted horizons.  Minimization 

is carried out over the unit sphere of the penalty function.   The routine, as implemented in R, stops 

once a sufficient number of accepted draws is reached.  Also, the procedure in R currently allows 

only one shock to be fully identified at a time for a set of restrictions only.  Mountford and Uhlig 

(2009) provide an extension of the penalty function approach for dealing with multiple shocks 

simultaneously.  Furthermore, the number of rejected draws provides an indication of the number 

of other models that may fit the data.  

Often, results have been presented by taking the posterior median response function, e.g., Uhlig 

(2005).  However, summarizing the responses by the median response reflects the distribution 

across models and not, as necessary, the sampling uncertainty. In other words, the median impulse 

response does not, in general, correspond to the impulse responses of a single model.  Therefore, 

we follow Fry and Pagan’s (2011) suggestion to pick, instead of a median response, a single 

impulse vector and the corresponding model that is closest to the median response. This is Fry and 

Pagan's (2011) median-target method.  It finds the single best draw for the impulse vector by 

minimizing the sum of squared standardized gaps between the impulse responses given the test 

rotation and the sign restricted responses of the model that is tested.16  

 

3.2 VAR specification and sign restrictions imposed 

We select for our VAR the following variables: real global economic activity (denoted “gea”) 

to reflects global business cycle fluctuations and to proxy for the global demand for commodities 

 
16 Furthermore, Fry and Pagan (2011) explain why variance decompositions carried out in order to assess the 
contribution of a specific structural shock to fluctuations and forecast-errors is generally flawed in sign restricted 
VARs of the type that we analyse here.  See also Kilian and Lütkepohl (2013, Ch. 13).  
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in general;17 the country-specific commodity price index in constant US dollars (“comprice”), 

weighted by the importance of the included commodities in global economic production; the 

country-specific economic policy uncertainty index (“epu”); a country-specific short-term interest 

rate (“rate”) that reflects monetary and fiscal government policies; and country-specific realized 

stock market volatility (“RV”).   All variables are treated as endogenous.  Data are monthly 

observations.  

Table 1 shows the sign restrictions for the impulse response functions. The sign restrictions 

are imposed on months 1 through 6.18 A positive shock to gea is assumed to have a positive impact 

on gea and comprice and a negative impact on epu and RV. A positive shock to comprice is 

assumed to have a negative impact on gea and RV. The impact that commodity prices have on RV 

for commodity exporting countries is difficult to determine a priori since higher commodity prices 

are beneficial to the commodity producing sectors but not beneficial to the non-commodity 

producing sectors. The assumption that comprice has a negative impact on RV is based on 

preliminary IRF analysis that indicates a better fit based on the Pagan-Fry impulse responses than 

those obtained assuming commodity prices have a positive impact on RV. For commodity 

producing countries higher commodity prices increase cash flows which should increase stock 

market prices and lower stock market volatility. A shock to epu is assumed to have a positive 

impact on itself and RV. A positive shock to rate has a positive impact on itself and a negative 

impact on RV. Interest rates affect the discount rate used to value stocks. Higher interest rates are 

often indicative of tighter monetary policy which lower stock prices and stock market volatility. 

VARs with sign restrictions are estimated using 24 lags, a constant in the model and 48 steps 

for the impulse response functions. IRFs are calculated using 200 draws from the posterior and 

 
17 Kilian and Park (2009) include the global production of oil in their structural VAR of the oil market.  Hence, they 
model oil supply along with oil demand, which allows them to identify the source of oil price shocks. This is not 
feasible for the various country-specific commodities that we consider, in part due to a lack of appropriate 
production data.  Moreover, we are not interested in the sources of the commodity price shocks, and we follow 
instead an approach similar to Wong (2015), among others, looking at oil price shocks without exploring their 
origins in supply or demand shifts.  Also, Kilian and Park (2009) argue for the oil market that, regardless of the 
source of the oil shock, the impact response of stock returns is driven by fluctuations in expected real dividend 
growth and time-varying risk premia.  
18 We glean the signs of the various effects from previous studies.  In particular, we rely on: Schwert (1989), who 
studies U.S. historic stock volatility and its association with various economic and financial activities; Paye (2012), 
who explores the forecastability of U.S. S&P500 stock returns with macroeconomic variables; and Kang et al. 
(2018), who use a VAR with time-varying parameters and global stock volatility and global commodity prices for 
various countries, including the CARB countries. We should note that we focus instead on country-specific stock 
volatility and country-specific commodity prices and in addition include the EPU. 
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200 sub-draws for each posterior draw. The first 1000 accepted draws are kept. IRFs are plotted 

along with the 68% confidence bands which is standard in this type of analysis. The restrictions 

are assumed to apply from the first period (point of impact) until the sixth period. In the literature 

this is known as setting KMIN=1 and KMAX=6.19  Section 6 presents some results regarding the 

robustness of these assumptions. 

 

4. Data 

The variables used in the analysis consist of realized stock market volatility, global economic 

activity, commodity prices, economic policy uncertainty, and short term interest rates. Monthly 

realized stock market volatility is obtained by summing squared daily returns within each month 

(rvt) and then applying the natural log transformation as in Paye (2012, pp. 529-530), RVt = 

ln((12rvt)(1/2)) . The measure of realized volatility is the natural logarithm of annualized volatility. 

Daily stock market data in local currency are obtained from Yahoo Finance.  

The index of global economic activity, gea, is the one used by Kilian (2009) with updates and 

corrections available from his website (https://sites.google.com/site/lkilian2019/research/data-

sets; last accessed 22 August 2018). This measure of global economic activity is: “an index of 

cyclical variation in global real economic activity based on percentage changes in representative 

single-voyage ocean shipping freight rates available for various bulk dry cargoes, consisting of 

grain, oilseeds, coal, iron ore, fertilizer, and scrap metal, further differentiated by the size of the 

vessel and the shipping route. These rates of growth are averaged and adjusted for U.S. CPI 

inflation and for the long-run trend in the cost of the shipping. This approach effectively controls 

for increases in the size of vessels over time.” (Kilian and Zhou, 2018, 57). 

The commodity price data is specific to each country. For Canada, the Bank of Canada 

commodity price index is used (https://www.bankofcanada.ca/rates/price-indexes/bcpi/). This 

index is a chain Fisher price index of the spot or transaction prices in U.S. dollars of 26 

commodities produced in Canada and sold in world markets. For Australia, the RBA Index of 

Commodity Prices is used (https://www.rba.gov.au/statistics/frequency/commodity-prices/2019/). 

The index measured in US dollars includes 21 major commodities that are exported from Australia. 

The commodity price index for Brazil is obtained from ITAU (https://www.itau.com.br/itaubba-

 
19 We use the “VARsignR” package written for R: https://rdrr.io/cran/VARsignR/f/vignettes/VARsignR-
vignette.Rmd, written by Christian Danne; last accessed 8 May 2019. 

https://sites.google.com/site/lkilian2019/research/data-sets
https://sites.google.com/site/lkilian2019/research/data-sets
https://www.bankofcanada.ca/rates/price-indexes/bcpi/
https://www.rba.gov.au/statistics/frequency/commodity-prices/2019/
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en/economic-analysis/our-economic-series/ici-commodities). ITAU is Latin America’s largest 

Corporate & Investment Bank. The index consists of 16 major export commodities in agriculture, 

base metals, and energy. The index is in US dollars and the commodities are weighted according 

to their importance in global economic production. For Russia, Brent oil prices in $US are used to 

proxy commodity price movements. For each commodity price, real values are obtained by 

dividing by the US consumer price index. The variable comprice denotes the natural logarithm of 

the commodity price index. 

Country specific data on economic policy uncertainty come from the Economic Policy 

Uncertainty organization (https://www.policyuncertainty.com/). In the case of Canada, for 

example, the EPU index is constructed by searching 5 Canadian newspapers and the Canadian 

newswire for terms referencing uncertain, uncertainty, economic or economy.  Policy related terms 

include 'policy', 'tax', 'spending', 'regulation', 'central bank', 'budget', and 'deficit'.  These search 

terms are then aggregated into an index. Full details on the calculation of the EPU index are 

provided on their website. The variable epu denotes the economic policy uncertainty index. Short 

term interest rates (rate) are obtained from the Federal Reserve Economic Database 

(https://fred.stlouisfed.org/). All of data ends in June of 2018 but the start date for each country 

varies depending upon data availability.20 

Table 2 presents descriptive statistics for the data of the CARB countries used. There are  402 

monthly observations for Canada. The gea variable has the largest range. The coefficient of 

variation, which applies to data with positive mean values, indicates that the interest rate variable 

has the most variation while the commodity price variable has the least. Each of the variables 

exhibit non-normality as indicated by the W (Shapiro-Wilk) test. For Australia, Russia and Brazil, 

the variable gea has the largest coefficient of variation (Tables 3, 4 and 5). Russia has the highest 

mean value of RV (3.348) while Canada has the lowest (2.408). 

Figure 1 plots the data for Canada. Global economic activity rose considerably between 2000 

and 2008. The upward trend was broken by the economic recession of 2008-2009. After the 

recession, economic activity fell to new lows in 2015 before rebounding. The Canadian commodity 

price index shows a similar pattern to gea. Canadian short term interest rates have declined over 

the sample period. Realized volatility was highest in the late 1980s and the peak of the 2008-2009 

 
20 See the footnotes to Tables 2 to 5 for exact start dates. 
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financial crises. Economic policy uncertainty was range bound up until 2008-2009 before trending 

higher.  

In the case of Australia, Australian commodity prices have remained strong even when global 

economic activity weakened (Figure 2). Australian interest rates have mostly trended down after 

2008-2009 although the financial crisis did not impact in Australia to the extent that it did in North 

American and Europe. Realized volatility was highest in 2008 and economic policy uncertainty 

shows no obvious trend.  

Russian short-term interest rates and realized volatility have been trending down over the 

sample period while economic policy uncertainty has been climbing higher (Figure 3). Brazilian 

short term interest rates and realized volatility have trended down while commodity prices and 

economic policy uncertainty have increased (Figure 4). 

 

5. Empirical results 

SVAR impulse responses for each country are calculated using the variable ordering gea, 

comprice, epu, rate, and RV, i.e., a recursive Cholesky ordering with contemporaneous exclusion 

restrictions only for the effects of structural shocks. The lag length for each variable in the VAR 

is set at 24, which is consistent with Kilian and Park (2009). The choice of 24 lag lengths accounts 

for seasonality, ensures the residuals are random, and the roots of the characteristic polynomial are 

less than unity. A block recursive structure is used where gea has no contemporaneous correlation 

with other variables, comprice responds contemporaneously to shocks to itself and shocks to gea. 

epu is assumed to respond to gea and comprice shocks immediately but with a delay of at least one 

period to rate and RV.  In other words, epu responds only to sustained movements in rate and RV 

and not to every one-period change by itself. The interest rate variable, rate, responds 

contemporaneously to shocks to itself and shocks to gea, comprice and epu. RV responds 

contemporaneously to shocks to itself and shocks to each of the other variables. 

For Canada, a one-standard deviation positive shock to comprice has a negative and 

significant impact on RV for three months (Figure 5). A positive shock to epu has a significant 

positive impact on RV for two months. This is expected since an increase in economic policy 

uncertainty creates an option value to weighting to invest in stocks (Pastor and Veronesi, 2012). 

The impact of a one-standard-deviation shock to epu is almost double that of a comprice shock (in 

absolute terms). Figure 6 reports the results of impulse responses calculated using sign restrictions. 
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Confidence bands for 68% coverage are shown. The pattern of sign restrictions is described in 

Table 1. A positive shock to gea lowers RV and this impact is significant for 5 months. A positive 

shock to commodity prices decreases RV and this effect is significant for 6 months. A positive 

shock to epu has a positive impact on RV and this impact is significant for 8 months. A positive 

shock to interest rates has negative and statistically significant on RV for 12 months. Notice that 

the magnitude of an initial shock to epu on RV is similar in magnitude to an initial shock to 

commodity prices. 

The IRFs from the SVAR for Australia, like in the case of Canada show that a shock to epu 

has a positive and significant initial impact on RV while a shock to commodity prices has a 

negative and significant impact on RV (Figure 7). In addition, a shock to gea has a positive and 

significant impact on RV. The IRFs from sign restrictions show that a positive shock to gea has a 

negative and significant impact on RV for 5 months (Figure 8). A commodity price shock has a 

statistically significant negative impact on RV for 5 months. A positive shock to epu has a positive 

and significant impact on RV for 10 months. As in the case of Canada, the magnitudes of the initial 

impacts of an epu shock and a commodity price shock on RV are similar.  

The SVAR impulse responses for Russia indicate that a positive shock to commodity prices 

initially reduces RV while a positive shock to epu initially increases RV (Figure 9). Sign restricted 

IRFs indicate that a positive shock to gea has a negative and significant impact on RV for 5 months 

(Figure 10). A positive shock to commodity prices decrease RV for five months. A positive shock 

to epu has a positive significant impact on RV for five months. 

In the case of Brazil, the SVAR IRFs indicate that shocks to global economic activity, 

commodity prices and economic uncertainty have initial significant impacts on RV (Figure 11). 

Sign restricted IRFs show these effects to be more pronounced (Figure 12). 

In summary, there are some common results across the CARB countries regarding how 

realized stock market volatility responds to shocks to global economic activity, commodity prices, 

and economic policy uncertainty. For both the SVAR IRFs and sign restriction IRFs a positive 

shock to commodity prices has a significant negative impact on RV and a positive shock to 

economic policy uncertainty has a significant positive impact on RV. The magnitudes of the initial 

impact of these two shocks are similar. A shock to gea reduces RV as does a shock to interest rates. 

Notice that in each case, the Fry-Pagan responses are very close to the median IRFs indicating a 
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good fitting sign restricted VAR. The IRFs from the sign restricted approach are more pronounced 

than those from SVAR. 

This sign restricted VAR analysis also offers some insight on how short term interest rates 

respond to shocks in global economic activity, commodity prices and economic policy uncertainty. 

Since short term interest rates are affected by monetary policy these results can be interpreted as 

how monetary policy in each country responds to these shocks. A shock to gea has no significantly 

significant impact on Canadian or Australian short term interest rates (Figures 6 and 8). A shock 

to gea has a negative and significant impact on Russian short term interest rates for between 2 and 

9 months (Figure 10). For Brazil, a shock to gea has a negative and significant impact on short 

term interest rates around months 6-8 (Figure 12). A shock to commodity prices has no significant 

impact on Canadian, Australian or Brazilian interest rates and a negative impact on Russian interest 

rates (months 4-7).21 A shock to economic policy uncertainty has no significant impact on 

Canadian or Brazilian interest rates,  a negative and significant impact on Australian interest rates 

(months 10 to 20), and a positive impact on Russian interest rates (between 2 and 10 months). In 

summary, Australian and Canadian monetary policy is not very responsive to shocks in global 

economic activity, commodity prices or economic policy uncertainty whereas Russian monetary 

policy is responsive. 

 

6. Robustness 

The IRFs from the sign restricted VAR were estimated assuming the restriction were in place 

from month one to month six. Figure 13 shows IRFs from a one standard deviation shock to 

economic policy uncertainty computed with the restrictions in place from month one to month 

three. For each country the results are similar to what is observed when the restrictions are imposed 

from month one to month six. Figure 14 shows IRFs from a one standard deviation shock to 

commodity prices computed with the restrictions in place from month one to month three. For each 

country the results are similar to what is observed when the restrictions are imposed from month 

one to month six. Doubling the number of draws from the posterior distribution or doubling the 

number of accepted draws does not change the IRFs results.  

 

 
21 Monetary policy frameworks in both Australia and Canada are centered on an inflation target. Therefore, 
temporary factors such as changes in gasoline prices do not warrant a monetary policy response. 
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7. Conclusions  

This paper studies the impact that commodity prices and economic policy uncertainty have on 

realized stock market volatility in the CARB (Canada, Australia, Russia, and Brazil) countries.  

The CARB countries are major commodity exporters and commodity price shocks are expected to 

have a significant impact on stock market volatility. What is not known, however, is how the 

impact of a commodity price shock on stock market volatility compares to an economic policy 

uncertainty shock. These impacts are analyzed using both SVARs and sign restricted VARs. 

The analysis reveals several important results. A positive shock to commodity prices 

lowers realized stock market volatility while a shock to economic policy uncertainty has a 

significant positive impact on realized volatility. The magnitudes of the initial impact of these two 

shocks are similar. Both SVAR and sign restricted VARs produce these results although the 

magnitude of the impacts is larger with sign restricted VARs. Sign restricted VARs are thus 

important in establishing the impact of EPU shocks and commodity price shocks on realized 

volatility is larger than those found under more conventional identification methods. Sign 

restricted IRFs show that a shock to global economic activity has a negative impact on realized 

volatility as does a shock to interest rates. These results are consistent with the growing literature 

showing that economic policy uncertainty shocks impact stock market returns and volatility. These 

results also deepen the understanding of the importance of commodity prices for realized stock 

market volatility in commodity exporting countries.  

These results have several practical implications. First, since economic policy uncertainty 

can be influenced by domestic government policy a country can lessen the impact of economic 

policy uncertainty shocks on stock market volatility by pursuing better more transparent economic 

decision making. Second, in the case of the CARB countries positive shocks to commodity prices 

reduce stock market volatility. The concern is that negative shocks to commodity prices (large 

drops in commodity prices) will increase stock market volatility. For investors in CARB countries 

adverse commodity price shocks can be offset by hedging.  
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Table 1.  Sign restrictions. 

From => gea comprice epu rate 

To:      

Gea + -   

comprice + +   

epu   +  

rate     + 

RV - - + - 

 
Table 2. Descriptive statistics for Canada. 
 

  gea comprice epu rate RV 

nbr.val 402 402 402 402 402 

Min -164.000 4.817 28.537 0.376 1.459 

Max 188.000 6.006 449.624 13.818 4.400 

Range 352.000 1.189 421.087 13.442 2.941 

median -9.035 5.288 107.426 4.226 2.341 

mean -0.438 5.326 126.397 4.648 2.408 

SE.mean 2.939 0.011 3.681 0.172 0.024 

std.dev 58.926 0.222 73.799 3.456 0.483 

coef.var -134.520 0.042 0.584 0.744 0.201 

skewness 0.879 0.291 1.522 0.793 0.872 

kurtosis 1.017 -0.434 2.738 -0.270 1.072 

normtest.W 0.941 0.981 0.869 0.911 0.958 

normtest.p 0.000 0.000 0.000 0.000 0.000 

Notes: Monthly data from January 1985 to June 2018. 

 
 

Table 3. Descriptive statistics for Australia. 
 

  gea comprice epu rate RV 

nbr.val 246 246 246 246 246 

min -164.000 3.139 25.662 1.700 1.558 

max 188.000 4.475 337.044 7.900 4.129 

range 352.000 1.337 311.382 6.200 2.571 

median -9.525 3.744 86.711 4.815 2.508 

mean 5.861 3.695 99.418 4.419 2.526 

SE.mean 4.603 0.025 3.731 0.102 0.027 

std.dev 72.197 0.399 58.513 1.596 0.422 

coef.var 12.318 0.108 0.589 0.361 0.167 

skewness 0.561 0.109 1.481 -0.142 0.565 

kurtosis -0.367 -1.229 2.275 -0.870 0.687 

normtest.W 0.958 0.929 0.867 0.949 0.981 

normtest.p 0.000 0.000 0.000 0.000 0.002 

Notes: Monthly data from January 1998 to June 2018. 
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Table 4. Descriptive statistics for Russia. 
 

 gea comprice epu rate RV 

nbr.val 258 258 258 258 258 

min -164.000 1.787 12.399 4.200 1.978 

max 188.000 4.108 400.017 45.300 5.186 

range 352.000 2.321 387.618 41.100 3.208 

median -10.700 3.162 99.726 8.710 3.251 

mean 4.957 3.151 118.087 11.389 3.348 

SE.mean 4.397 0.034 4.764 0.466 0.037 

std.dev 70.622 0.553 76.515 7.487 0.602 

coef.var 14.248 0.175 0.648 0.657 0.180 

skewness 0.608 -0.266 1.153 2.037 0.512 

kurtosis -0.227 -0.828 1.084 4.228 -0.006 

normtest.W 0.956 0.966 0.908 0.758 0.979 

normtest.p 0.000 0.000 0.000 0.000 0.001 

Notes: Monthly data from January 1997 to June 2018. 

 
 
Table 5. Descriptive statistics for Brazil. 
 

  gea comprice epu rate RV 

nbr.val 282 282 282 282 282 

min -164.000 2.808 12.690 6.140 2.423 

max 188.000 4.124 676.955 84.574 4.819 

range 352.000 1.316 664.265 78.434 2.396 

median -8.405 3.364 109.546 14.804 3.213 

mean 5.023 3.422 132.406 17.540 3.259 

SE.mean 4.044 0.020 5.439 0.587 0.025 

std.dev 67.915 0.340 91.329 9.855 0.423 

coef.var 13.520 0.099 0.690 0.562 0.130 

skewness 0.622 0.250 2.145 2.489 0.919 

kurtosis -0.034 -1.018 6.670 9.797 1.554 

normtest.W 0.961 0.960 0.816 0.789 0.953 

normtest.p 0.000 0.000 0.000 0.000 0.000 

Notes: Monthly data from January 1995 to June 2018. 
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Figure 1. Plots of the data for Canada. 

 
 
Figure 2. Plots of the data for Australia. 
 

 
Figure 3. Plots of the data for Russia. 
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Figure 4. Plots of the data for Brazil. 

 
 
 
Figure 5. SVAR impulse responses for Canada. 
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Figure 6. Sign restriction impulse responses for Canada. 
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Figure 7. SVAR impulse responses for Australia. 
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Figure 8. Sign restriction impulse responses for Australia. 
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Figure 9. SVAR impulse responses for Russia. 
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Figure 10. Sign restriction impulse responses for Russia. 
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Figure 11. SVAR impulse responses for Brazil. 
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Figure 12. Sign restriction impulse responses for Brazil. 
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Figure 13. Sign restriction impulse responses (KMAX = 3) for shock to EPU. 
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Figure 14. Sign restriction impulse responses (KMAX = 3) for shock to commodity prices. 
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