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ABSTRACT 

This paper expands the spectral analysis of the Sraffian value system, and shows that: 

(i) the hitherto alternative value theories can be conceived of as “perturbations” of the 
so-called pure labour value theory; (ii) these theories correspond to specific complex 

plane locations of the eigenvalues of the vertically integrated technical coefficients 

matrix; and (iii) the actual economies cannot be coherently analyzed in terms of the 

traditional value theories, despite the fact that their Krylov (or controllability) 

matrices are characterized by rather low degrees of regularity-controllability and 

relatively low numerical ranks. Hence, on the one hand, the Sraffian value theory is 

not only the most general one but also provides a sound empirical basis, while on the 

other hand, real-world economies constitute almost irregular-uncontrollable systems, 

and this explains the specific shape features of the empirical value-wage-profit rate 

curves. 
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1. Introduction 

In spite of their fundamental conceptual differences, the value theories of the 

traditional political economy (classical, Marxian, Austrian, and neoclassical) reduce, 

formally, to the existence of an unambiguous relationship between, on the one hand, 

the movement of the long-period relative price of two commodities arising from 

changes in income distribution and, on the other hand, the difference in the capital 

intensities of the industries producing these commodities. Since Sraffa’s (1960) 

contribution, it has been gradually recognized, however, that such a relationship does 

not necessarily exist: Even in a world of fixed input-output coefficients and at least 

three commodities, produced by means of themselves and homogeneous labour, long-

                                                           
* Various versions of this paper were presented at workshops of the “Study Group on Sraffian 

Economics” and lectures at the Panteion University (May 2016-November 2019): I am grateful to the 

participants and, in particular, to Despoina Kesperi, Nikolaos Rodousakis, George Soklis, and 

Panagiotis Veltsistas for very helpful remarks and stimulating discussions. 
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period relative prices (or values; Sraffa, 1960, pp. 8-9) can change in a complicated 

way as income distribution changes. This phenomenon has crucial implications for all 

the traditional theories of value, capital, distribution and international trade, while its 

investigation led to the formation of a new value theory, namely, the “modern 

classical or Sraffian value theory”, which includes the abovementioned relationship 

between value variation and capital intensity difference as its special or limit case. 

 Following a research line that combines the Sraffian analysis and the spectral 

representation of linear systems (Schefold, 2008; Mariolis and Tsoulfidis, 2009), this 

paper develops a unified treatment of the value problem on both theoretical and 

empirical grounds. In particular, it shows that the hitherto alternative value theories 

correspond to specific complex plane locations of the eigenvalues of the vertically 

integrated technical coefficients matrix, identifies new aspects of the Sraffian value 

theory and, finally, zeroes in on the spectral “imprint” of actual value-wage-profit rate 

systems by detecting the singular value configuration of the relevant Krylov (or 

controllability) matrices. Hence, it also supports the recently proposed link between 

the tendency of actual economies to respond as irregular-uncontrollable systems and 

the specific shape features of the empirical value-wage-profit rate curves (Mariolis 

and Tsoulfidis, 2018).  

 The remainder of the paper is structured as follows. Section 2 analyzes the 

value system and determines the complex plane location of the value theories. Section 

3 provides evidence indicating the empirical relevance of the Sraffian value theory 

and, at the same time, the almost irregularity-uncontrollability of actual economies. 

Finally, Section 4 concludes the paper. 

 

2. Value Theories and Non-Dominant Eigenvalues 

 

2.1. The value system 

Consider a closed, linear and viable economy involving only single products, “basic” 

commodities (in the sense of Sraffa, 1960, pp. 7-8), circulating capital and 

homogeneous labour. Furthermore, assume that: (i) wages are paid at the end of the 

common production period; and (ii) the matrix of direct technical coefficients is 
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diagonalizable, i.e. it has a complete set of linearly independent eigenvectors. The 

value side of the economy is described by1 

 T T T(1 )w r  p l p A        (1) 

where Tp  denotes a 1xn  vector of production prices-values, w  the money wage rate, 

r  the uniform profit rate, Tl  ( T 0 ) the 1xn  vector of direct labour coefficients, and 

A  the irreducible nxn  matrix of direct technical coefficients, with 1 1 A . 

 After rearrangement, equation (1) becomes 

  T T T
w  p v p J                                                       (2) 

where T T 1[ ] v l I A  ( T 0 ) denotes the vector of vertically integrated labour 

coefficients, or the – traditionally – so-called labour values, and 1[ ] H A I A (0 ) 

the vertically integrated technical coefficients matrix. Moreover, 1
rR  , 0 1  , 

denotes the relative profit rate, which equals the share of profits in the Sraffian 

Standard system (SSS), and 1 1

1 11R     A H   the maximum possible profit rate (i.e. 

the profit rate corresponding to 0w  and p 0 ), which equals the ratio of the net 

product to the means of production in the SSS (Sraffa, 1960, pp. 21-23). Finally, 

RJ H  denotes the normalized vertically integrated technical coefficients matrix, 

1 1 1R  J H , and the moduli of the normalized non-dominant eigenvalues of system 

(2) are less than those of system (1), i.e. 
1

1k k  J A A   
holds for all k  (see, e.g., 

Mariolis and Tsoulfidis, 2016a, p. 22). 

 If Sraffa’s Standard commodity (SSC) is chosen as the numéraire, i.e. T 1p z , 

where 1[ ]  Az I A x  and 
T

1 1Al x , then equation (1) implies that the “wage-relative 

profit rate curve” is the following linear relation 

 1w                                                                              (3) 

with (0) 1w   and (1) 0w  . Substituting equation (3) in equation (2) yields          

                                                           

1 The transpose of an 1n  vector x  is denoted by 
T

x , and the diagonal matrix formed from the 

elements of x  will be denoted by x̂ . Furthermore, 1A  
will denote the Perron-Frobenius (P-F) 

eigenvalue of a semi-positive n n  matrix [ ]ijaA , and 
T

1 1( , )A Ax y  the corresponding eigenvectors, 

while kA , 2,...,k n  and 2 3 ... n    A A A , will denote the non-dominant eigenvalues, and 

T( , )k kA Ax y  the corresponding eigenvectors. Finally, e  will denote the summation vector, i.e. 

T[1,1,...,1]e , ie  the i th unit vector, and I  the nxn  identity matrix.  
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 T T T(1 )   p v p J                                                            (4) 

or, if 1  ,                   

  T T 1 T 2 2 3 3(1 ) [ ] (1 ) [ ...]             p v I J v I J J J   (5) 

which gives the commodity values, expressed in terms of SSC, as polynomial 

functions of  . 

 Equation (4) indicates that jp  is a convex combination of jv  and T

jp Je , where 

the latter equals the ratio of means of production in the vertically integrated industry 

producing commodity j  to means of production in the SSS. From this equation it 

follows that T T(0) p v  and T (1)p  is the left P-F eigenvector of J , expressed in terms 

of SSC, i.e.  

   T T 1 T T 1 T

1 1 1 1 1(1) ( ) ( [ ] )   J J J A Jp y z y y I A x y   

or, since 1 1 1[ ] (1 )  A A AI A x x and matrices A  and J  have the same set of 

eigenvectors, 

   
T T 1 T

1 1 1 1(1) [(1 ) ]   A J J Jp y x y  (6) 

 Equation (5) is the reduction of commodity values to “dated quantities” of 

labour value in terms of SSC. In the general case, therefore, commodity values are 

ratios of polynomials of degree 1n  in   and, therefore, may admit up to 2 4n  

extreme points.  

 Finally, it should be added that:2 

(i). Non-diagonalizable systems are of measure zero in the set of all systems and, thus, 

not generic, while given any A  and an arbitrary 0  , it is possible to perturb the 

entries of A  by an amount less than   so that the resulting matrix is diagonalizable.  

(ii). If wages are paid ex ante, then the wage-relative profit rate curve is non-linear, i.e. 

1(1 ) (1 )w R    , and   is no greater than the share of profits in the Sraffian 

Standard system. Nevertheless, equation (4) holds true. 

 (iii). These fundamental value relationships remain valid for the cases of (a) fixed 

capital à la Leontief-Bródy; and (b) differential profit and wage rates (provided that 

these variables exhibit a stable structure in relative terms). For instance, in the former 

case,
Tv and H  should be replaced by T D 1[ ( )] l I A A  and C D 1[ ( )] A I A A , 

                                                           
2 See Aruka (1991, pp. 74-76); Kurz and Salvadori (1995, chaps. 7, 8 and 11); Mariolis and Tsoulfidis 

(2016a, pp. 22-32); Schefold (1971); Sraffa (1960, Part 2). 
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respectively, where DA  denotes the matrix of depreciation coefficients, and CA  the 

matrix of capital stock coefficients. Nevertheless, the said value relationships do not 

necessarily remain valid for the joint production case. 

 

2.2. Regular-controllable and irregular-uncontrollable economies 

An n economy is said to be “regular of rank n ” or “completely regular” iff the nxn  

Krylov matrix 

  T T 1 T[ (0), (0),..., ( ) (0)]nK p J p J p  

has rank equal to n  or, equivalently, iff T (0)p  is not orthogonal to any (real or 

complex) right eigenvector of J . In that case, the value vectors relative to any n  

distinct values of the profit rate are linearly independent (see Bidard and Salvadori, 

1995; Kurz and Salvadori, 1995, chap. 6).  

 By contrast, iff  [ ]rank m n K , then the economy is said to be “irregular” or, 

more specifically, “regular of rank m ”. This means that the value vectors relative to 

any 1m  distinct values of the profit rate are linearly dependent. In that case, there is 

a vector z  such that  Kz 0  and, therefore, T 0 p z  (see equation (5)). Hence, a 

change of numéraire, from z  to  z z , where   is a given scalar, has no effect on 

the wage rate and commodity values (Miyao, 1977). Iff the dimension of an 

eigenspace associated with an eigenvalue of J  is larger than 1 or, equivalently, iff J  

satisfies a polynomial equation of degree less than n , then the economy is irregular 

whatever T (0)p  is (see Ford and Johnson, 1968).  

 The concepts of “regularity/irregularity” (introduced by Schefold, 1971) are 

algebraically equivalent to those of “controllability/uncontrollability” (introduced by 

Kalman, 1960). The latter concepts apply to the following dynamic version of the 

value system: 

 
T T

1 (0)t t tw 
  p p p J , 0,1,...t   

where   denotes the exogenously given nominal relative profit rate, and  0 p 0  

(Mariolis, 2003). Iff [ ]rank nK , then this dynamic system is said to be 

“completely controllable”, which means that the initial state 0p  can be transferred, 

by application of tw , to any state, in some finite time.  
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 This approach provides only a yes/no criterion for complete regularity-

controllability, while irregular-uncontrollable systems are of measure zero in the set 

of all systems and, thus, not generic or, in other words, systems are always almost 

regular-controllable (Kalman et al., 1963; for a recent discussion, see Cowan et al., 

2012). However,  

 

[i]n the real world […] it may not be possible to make such sharp distinctions. 
The problem with the standard definition of controllability […] is that it can 
lead to discontinuous functions of the system parameters: an arbitrarily small 

change in a system parameter can cause an abrupt change in the rank of the 

matrix by which controllability […] is determined. It would be desirable to have 

definitions which can vary continuously with the parameters of the system and 

thus can reflect the degree of controllability of the system. Kalman et a1. (1963) 

recognized the need and suggested using the determinant of the corresponding 

test matrix [ K ] as a measure of the degree of controllability […]. Friedland 
(1975), noting that basing the degree of controllability […] on the determinant 
of the test matrix suffers from sensitivity to the scaling of the state variables, 

suggested using the ratio of the smallest of the singular values to the largest as a 

preferable measure. (Friedland, 1986, p. 220; emphasis added) 

 

In this connection, therefore, matrix J  can be decomposed as (“spectral 

decomposition”; see, e.g. Meyer 2001, 517-518) 

   T 1 T T 1 T

1 1 1 1

2

( ) ( )
n

k k k k k

k

 



 J J J J J J J J JJ y x x y y x x y                        (7) 

or 1ˆ  J J JJ X λ X , where JX  and the diagonal matrix ˆ
Jλ  are matrices formed from the 

right eigenvectors and the eigenvalues of J , respectively, while 
1

JX   equals the 

matrix formed from the left eigenvectors of J . Equation (7) implies, in turn, that the 

Krylov matrix can be expressed as a product of three matrices: 

  T 1ˆ  JK Vω X  

where 1( )i

j
  JV  denotes the Vandermonde matrix of the eigenvalues of J  , and ω̂  

the diagonal matrix formed from the elements of (0)  Jω p X . Consequently, the 

determinant of K is given by 

  T 1ˆdet[ ] det[ ]det[ ]det[ ] JK V ω X                                             (8) 

where 
1

det[ ] ( )
j i

i j n

 
  

  J JV . Finally, the “degree of regularity-controllability” is 

defined as  
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  1

1nDR    K K
 (9) 

where 0 1DR  , and 1K  , n
K  denote the largest and the smallest singular values 

of K , respectively, while 1
DR

  equals the “condition number” of K . When 0DR  , 

the economy is irregular-uncontrollable; otherwise, it is completely regular-

controllable. Nevertheless, when the value of DR  is “very small”, the regularity-

controllability is “weak” or “poor”; in other words, the economy is said to be “almost 

irregular-uncontrollable”.3 

 

2.3. Value theories 

In the Ricardo-Marx-Dmitriev-Samuelson “equal value compositions of capital” case, 

Tl  (
Tv ) is the left P-F eigenvector of A  (of J ). Therefore, commodity values are 

independent of income distribution, and equal to the labour values, i.e. 

T T T(0) (1) p p p , or, in other words, the “pure labour value theory” (PLVT) 

appears to hold true. In that case, the economy is regular of rank 1 irrespective of the 

rank of J . 

 In the two-industry case, the elements of the value vector as functions of the 

relative profit rate, T ( ) [ ( )]jp p  , are necessarily monotonic and, therefore, the 

direction of relative value movement is governed only by the differences in the 

relevant capital intensities (“capital-intensity effect”; see Kurz and Salvadori, 1995, 

chap. 3; Pasinetti 1977, pp. 82-84), as in the various versions of the “traditional value 

theory” (TVT), i.e. classical (Ricardo, 1951, p. 46), Marxian (Marx, [1894] 1959, 

chaps. 11 and 12), Austrian (Böhm-Bawerk, [1889] 1959, vol. 2, pp. 86 and 356-358; 

von Weizsäcker, 1977), and neoclassical (see, e.g., Stolper and Samuelson, 1941; 

Kemp, 1973). 

 However, as Sraffa (1960) pointed out, leaving aside these two restrictive cases, 

changes in income distribution can activate complex capital revaluation effects, which 

imply that the direction of relative value movement is governed not only by the 

differences in the relevant capital intensities but also by the movement of the relevant 

capital intensities (“value effect”) arising from changes in relative commodity values: 

                                                           
3 According to an alternative approach, the largest difference (or “gap”) between consecutive singular 

values of K  provides a measure of the distance of a regular-controllable pair 
T[ ,  (0)]J p  to the 

nearest irregular-uncontrollable pair or, in other words, the order of perturbation needed to transform a 

regular-controllable system into an irregular-uncontrollable one (Boley and Lu, 1986).  
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[T]he means of production of an industry are themselves the product of one or 

more industries which may in their turn employ a still lower proportion of 

labour to means of production (and the same may be the case with these latter 

means of production; and so on) (pp. 14-15). […] [A]s the wages fall the price 

of the product of a low-proportion […] industry may rise or it may fall, or it 

may even alternate in rising and falling, relative to its means of production (p. 

15). […] The reversals in the direction of the movement of relative prices, in the 

face of unchanged methods of production, cannot be reconciled with any notion 

of capital as measurable quantity independent of distribution and prices. (p. 38; 

Sraffa, 1960) 

 

 Indeed, differentiation of equation (4) with respect to   finally gives (for a 

detailed analysis, see Mariolis and Tsoulfidis, 2016a, pp. 40-45) 

  / (CIE VE)j j jp dp d Rv     

where 1CIE j R    denotes the traditional or capital-intensity effect, 

T 1( )j j jv  p He  the capital-intensity of the vertically integrated industry producing 

commodity j , 1
R
  the capital-intensity of the SSS, which is independent of prices 

and income distribution (since, in our case, SSC is the numéraire), and 

T 1VE ( )j j jv   p He  the Sraffian or value effect, which depends on the entire 

economic system and, therefore, is not predictable at the level of any single industry.  

 Hence, when these two effects have opposite signs, i.e. CIE ( ) 0   and 

VE < ( ) 0 , the traditional statement about the direction of relative value movements 

does not necessarily hold true, while the underlying phenomena call for a new 

approach to value theory and, therefore, form the basis of the “Sraffian value theory” 

(SVT). In effect, all statements and relationships derived from the TVT framework 

cannot, in general, be extended beyond a world where: (i) there are no produced 

means of production; or (ii) there are produced means of production, while the profit 

rate on the value of those means of production is zero; or, finally, (iii) that profit rate 

is positive, while the economy produces one and only one, single or composite, 

commodity (Garegnani, 1970; Salvadori and Steedman, 1985). Consequently, it can 

be stated that the difficulties of the TVT arise from the existence of complex 

interindustry linkages in the realistic case of production of commodities and positive 

profits by means of commodities. 



9 

 

 

2.4. “Perturbing” the pure labour value theory  

Equations (4) through (7) imply that, from a value theory viewpoint, it suffices to 

focus on the following seven ideal-type (in the Weberian sense) cases:4 

Case 1:  The economy tends to be decomposed into n  quasi-similar self-reproducing 

vertically integrated industries, i.e. J I . It follows that 1k J  
and T T (0)p p . 

Hence, the economy tends to behave as a one-industry economy, and the PLVT tends 

to hold true. When J I , the economy is regular of rank 1, irrespective of the 

direction of the labour value vector, T (0)p . 

Case 2: There are strong quasi-linear dependencies amongst the technical conditions 

of production in all the vertically integrated industries, i.e. 0k J or 

T 1 T

1 1 1 1( ) J J J JJ y x x y  . It follows that  

  T T T(1 ) (0) (1)   p p p  

namely, T ( )p  tends to be a convex combination of the extreme, economically 

significant, values of the value vector, T (0)p  and T (1)p , and, therefore, linear. 

 When 0k J , we obtain a “rank-one economy”, i.e. [ ] 1rank J , which 

exhibits the following two essential characteristics: 

(i). Irrespective of the direction of T (0)p , it holds that 

  T T 1 T T

1 1 1 1(0) [(1 ) ] (1)h    A J J Jp J y x y p , 1,2,...h   

since  

  T T 1 T

1 1 1 1 1 1( ) ( )h h h  J J J J J JJ y x y x x y J  

Hence, [ ] 2rank K and, therefore, the economy is irregular, i.e. regular of rank 2.  

 (ii). It is equivalent, via Schur’s triangularization (see, e.g., Meyer, 2001, pp. 508-

509), to an economically significant and generalized ( 1 1n  ) Marx-Fel’dman-

Mahalanobis (or, in more traditional terms, “corn-tractor”) economy (Mariolis, 2015, 

p. 270). Hence, it behaves as a reducible two-industry economy without “self-

reproducing non-basics” (in the sense of Sraffa, 1960, Appendix B).  

                                                           
4 The first five cases have been extensively analyzed in the literature: Schefold (2008, 2013), Mariolis 

and Tsoulfidis (2009, 2016a, pp. 154-157, 2018). Thus, here we report, without detailed proofs, the 

main findings that are directly relevant for our present purposes. To the best of our knowledge, the 

other two cases have not been addressed in the literature. Examples illustrating these two cases are 

given in the Appendix.  
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 Consequently, on the one hand, the value side of a rank-one economy is “a 

little” more complex than that of the PLVT economy ( J I ) and, at the same time, 

much simpler than that of a completely regular economy. In fact, its value side 

corresponds to that of the TVT. On the other hand, a rank-one economy can be fully 

described by a triangular matrix with only n  positive technical coefficients and, 

therefore, its production structure is “a little” more complex than that of Austrian-type 

economies, where the technical coefficients matrix is, by assumption, strictly 

triangular (see, e.g., Burmeister, 1974). 

Case 3: Consider a rank-one perturbation of the PLVT economy, i.e. 

T 1 T(1 ) [ ]  J ψ χ I χψ  (0 ). It follows that 
T 1(1 )k  J ψ χ  and  

  T 1 T T(1 ) [(1 ) (0) (1 ) (1)]k k       J Jp p p  

namely, ( )jp   tend to be rational functions of degree 1 and, therefore, monotonic. 

Hence, for T 0  ψ χ  or T0   ψ χ , the economy tends to behave as a 

two-industry economy with only basic commodities, and the TVT tends to hold true. 

As T 0ψ χ  ( T ψ χ ), we obtain Case 1 (Case 2). 

Case 4: Consider a rank-two perturbation of the PLVT economy, i.e. 

2
1 T

1

1

(1 ) [ ] 


 



  ΨJ I χ ψ , where χ , T

ψ , are semi-positive vectors (or two pairs of 

complex conjugate vectors), and T

1 2 1 2[ , ] [ , ]Ψ ψ ψ χ χ (in either case, Ψ  is a 2 2  

matrix with only real eigenvalues). It follows that 2n   non-dominant eigenvalues of 

J  tend to equal 1

1(1 )  Ψ , and the remaining tends to equal  1

2 1(1 )(1 )   Ψ Ψ  . 

Hence, the economy tends to behave as a three-industry economy; and the same holds 

true when k k ki   J , where 1i    and 0 k , for all k .5  

Case 5: The subdominant eigenvalues are complex, 2,3 2,3 2,3i   J , where 

2,30  , and 4 ... 0n   J J . Hence, the economy tends to behave as a reducible 

four-industry economy without self-reproducing non-basics. Both in Cases 4 and 5, 

the value functions may be non-monotonic. 

Case 6: Matrix J  is doubly stochastic, i.e. 
T Te J e  and Je e . From equation (6) it 

follows that 

                                                           

5 Any complex number is an eigenvalue of a positive 3 3  circulant matrix (Minc 1988, p. 167). For 

the properties of the circulant matrices, see Davis (1979). 
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T 1 T T

1(1) [(1 ) ] ( )n   Ap l e e  

or, since T 1 T

1(1 ) ( )   Av e l e  and T T(0) p v , 

  T T(1) (0)pp e  (10) 

where 1 T(0) ( (0) )p n
 p e  equals the arithmetic mean of the elements of the labour 

value vector. Hence, if there is a commodity whose labour value equals the arithmetic 

mean of the labour values, then, by Rolle’s theorem, its value curve will necessarily 

have at least one stationary point in the economically relevant interval of the profit 

rate.6  

Case 7: Since 
1[ ] A I H H , there is no good economic reason for supposing that J  

is doubly stochastic. It should be noted, however, that: 

(i). Any doubly stochastic matrix can be expressed as a convex combination of at 

most 
2( 1) 1n    permutation matrices (see, e.g., Minc, 1988, pp. 117-122). 

(ii). Matrix J  is similar to the column stochastic matrix 
1

1 1
ˆ ˆ  J JM y Jy : 

   
T T 1 T 1 T

1 1 1 1
ˆ ˆ   J J J Je M y Jy y y e  

The elements of M  are independent of both the choice of physical measurement units 

and the normalization of 
T

1Jy . Matrix M  can be conceived of as a matrix of the 

relative shares of the capital goods in the cost of outputs, evaluated at 1  , or, 

alternatively, as derived from J  by changing the units in which the various 

commodity quantities are measured (see Ara, 1963).7 Moreover, the Dmitriev and 

Dynkin (1946) and Karpelevich (1951) inequalities for stochastic matrices imply that 

   1tan( ) 1k k n      (11) 

for each eigenvalue  ( )k k k ki     M J .  

(iii). Finally, when there is only one commodity input in each industry (i.e. industry 

 , 1,2,..., 1n   , produces the input for industry 1  , and industry n  produces 

the input for industry 1), A  is imprimitive or “cyclic” (see Solow, 1952, pp. 35-36 and 

40-41; Schefold, 2008, pp. 8-14). Therefore, M  is circulant and doubly stochastic 

(see Mariolis and Tsoulfidis, 2016a, pp. 165-167). 

                                                           
6 See Example 1 in the Appendix.  
7 When [ ] 1rank J , all the columns of M  are equal to each other (see Mariolis and Tsoulfidis, 

2016a, p. 48). 
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 Thus, hereafter, we consider a “basic circulant” perturbation of the PLVT 

economy, i.e.  

   (1 )c c   J C I Π  

where 0 1c  , circ[0,1,0,...,0]Π  is the basic circulant permutation (or shift) 

matrix (post-multiplying any matrix by Π  shifts its columns one place to the right), 

and n Π I . 

 The eigenvalues of the circulant doubly stochastic matrix C  are (1 )c c
  , 

where 0,1,..., 1n   , 1exp(2 )in   , and  

  1 1cos(2 ) sin(2 )n i n
       

are the n  distinct roots of unity. It then follows that: 

 (i). The eigenvalues of C are the vertices of a regular n gon, and C  is that 

stochastic matrix that has an “extremal eigenvalue” on the segment joining the points 

1 and   (Dmitriev and Dynkin, 1946; Karplevich, 1951). 8  This eigenvalue is a 

subdominant eigenvalue, which satisfies relation (11) as an equality. 

(ii). For 0 1c  , the moduli of the eigenvalues of C  are given by  

   2 1 22 (1 )cos(2 ) (1 )c c c n c      

or, equivalently, 

   11 2 (1 )[cos(2 ) 1]c c n     

which is a symmetric function with respect to 0.5c  and   ,   , where n     

(Davis, 1979, pp. 119-120). The modulus of the subdominant eigenvalues occurs for 

1,  1n   . When n  is even, i.e. 2n  , the smallest modulus occurs for   , and 

equals 1 2c  , while when n  is odd, 2 1n   , the smallest modulus occurs for 

,  +1   . Finally, C  has rank 1n  iff n  is even and 0.5c  (Davis, 1979, p. 147). 

For instance, Figure 1 displays the location of the eigenvalues of C  in the complex 

plane, for 3,  6n   and 0,0.25, 0.75c  .9  

 

                                                           

8 A number   is called extremal eigenvalue if (i) it belongs to the set of eigenvalues of a stochastic 

matrix; and (ii)   does not belong to this set, whenever 1  . 
9 Furthermore, see Example 2 in the Appendix. 
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Figure 1. The location of the eigenvalues of C  in the complex plane; 3,  6n   and 

0,0.25, 0.75c    

 

 Now we turn to the value side of the economies T[ ,  (0)]C p , 0 1c  . Ignoring 

the approximation error, equation (4) reduces to  
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   T T T(1 ) (0)   p p p Π   (12)  

where 1(1 ) (1 )c c       , 0 1  . Hence, since n Π I , equation (5) reduces to 

   T 1 T 2 2 1 1(1 )(1 ) (0)[ ... ]n n n            p p I Π Π Π   

or, since 1 2 1 1(1 )(1 ) (1 ... )n n             ,    

  T 2 1 1 T 2 2 1 1(1 ... ) (0)[ ... ]n n n                p p I Π Π Π   (13) 

 From equations (12) and (13) it follows that: 

(i). Although matrix C  is irreducible, commodity values reduce to a finite series of 

dated quantities of vertically integrated labour. Hence, it can be stated that these 

“basic circulant economies” bear some characteristic similarities with the “wine-oak” 

economy example constructed by Sraffa (1960, pp. 37-38). And “this example is a 

crucial test for the [traditional] ideas of a quantity of capital and of [an average] 

period of production.” (Sraffa, 1962, p. 478). 

(ii). In fact, because of the structure of the economies’ matrices, commodity values 

are governed by the terms 

   2 1 1(1 ... ) ,  0,1,..., 1n
n


              

where the denominator has either no real roots (when n  is odd) or one real root (i.e. 

1 , when n  is even). The first derivative of   with respect to   is 

   2 1(1 ) ( )n 
           

where (1 )       defines a linear function, and [( ) ( 1) ] n
n n          

defines a polynomial function. Hence, we get 0 (0) 1   , 1(0) 1   and (0) 0  , for 

2  , while 1(1) (2 ) (1 2 )n n    . Moreover, when  2   is even (is odd),   

has a minimum (an inflection point) at 0  . Finally, iff  11 2 ( 1)n     and 4n  , 

then the equation 0     has two roots in the interval [0,1] , i.e. 
*

   (unique), 

where 
*0 1  , at which   is maximized, and 1   (repeated), where 

(1) (1) 0     (in all other cases, it has, in the said interval, the roots 0 and/or 1). 

For instance, Figure 2 displays the terms    as functions of  , for 7n  : 

*

1 0.517  , 
*

2 0.768  , and 3  has a maximum at 1  . The values 
*

  tend to the 

values of the sequence 1(1 )   as n  tends to infinity and, therefore, the maximum 

values of   tend to the values of the sequence (1 )(1 )     . 
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Figure 2. The rational function terms that govern the commodity values in basic circulant 

economies; 7n   , 0.5 1.2    

 

 

(iii). Commodity values tend to T 1(0) np Π  as   tends to plus or minus infinity. Iff 

there exists a non-zero value of  , say ** , such that **( ) (0)j jp p  , then   

   ** T ** **

1( ) ( ) ( )j j jp p   p Πe  

where 1,2,...,j n  and 
** **

0 ( ) ( )np p  .    

(iv). Finally, differentiation of equation (12) with respect to   gives 

   T T T T( (0) )    p p p Π p Π  (14) 

 T 0p e  (15) 

where 2(1 )(1 ) 0c c      , the difference T T (0)p Π p  represents the capital-

intensity effect, while the term Tp Π  represents the value effect. Now, it suffices to 

focus on the extreme, economically significant, values of  : 

(a). At 0   equation (14) reduces to 

 T 1 T(0) (1 ) (0)c
  p p D   (16) 

where  D I Π  is a circulant double-centered matrix, since all its columns and rows 

sum to zero, i.e. 
T Te D 0 , De 0 , and [ ] 1rank n D . 

(b). At 1   equation (14) reduces to   
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 T 1 T T T(1) (1 ) ( (0) (1) ) (1)c
    p p p Π p Π   

or, rearranging terms and invoking equations (10) and T Te Π e , 

 T 1 T(1) (1 ) (0)c
  p D p F  (17) 

 where 1 T( )n
 F I ee  is the centering matrix, which is symmetric and idempotent 

(multiplication of any vector by the centering matrix has the effect of subtracting its 

arithmetic mean from every element). The solution to equations (15) and (17) is given 

by  

  T 1 T(1) (1 ) (0)c
   p p FD   

or 

  T 1 T(1) (1 ) (0)c
   p p D  (18) 

where D  denotes the Moore-Penrose inverse of D , which is, in our case, a circulant 

double-centered matrix satisfying   DD D D F . 10  Moreover, when n  is even, 

2n  , the explicit expression for matrix D  can be written as 

 1(4 ) circ[2 1,2 3,2 5,..., (2 3), (2 1)]             D  (19) 

while when n  is odd, 2 1n   , it can be written as 

  1(2 1) circ[ , 1, 2,..., ( 1), ]            D              (20) 

(consider Davis, 1979, pp. 148-149). The elements of the first row of D  are equal 

to 1(1) (2 ) (1 2 )n n    , 0,1,..., 1n   .  

 Hence, it is easy to check that equations (16), (18), (19) and (20) imply that, 

when 3n   and 
1(0) (0)j jp p  , 1,2,..., 1j n  , there is at least one element of Tp , 

say hp , such that (0) (1) 0h hp p  , irrespective of the direction of T (0)p . Then, by 

Bolzano’s theorem, it follows that hp  necessarily has at least one extreme point in the 

interval (0,  1) .11  

 

 

 

                                                           

10 There is an algebraic analogue of equations (15) and (17) in electrical network theory: 
T (1)p  and 

1 T(1 ) (0)c
  p F correspond to the vectors of voltages and currents, respectively; equations (15) and 

(17) correspond to Kirchhoff’s voltage law and Ohm’s law, respectively; D  and 


D  correspond to the 

matrices of admittance and impedance, respectively (see Sharpe and Styan, 1965).  
11 See Examples 3, 4 and 5 in the Appendix. 
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2.5. The complex plane location of the polar value theories  

These seven ideal-type cases (and their possible combinations) indicate that the 

location of the non-dominant eigenvalues in the complex plane could be considered as 

an index for the underlying interindustry linkages. Case 1 corresponds to the PLVT, 

while Cases 2 and 3 correspond to the TVT. Cases 4, 5 and 6 fall into the SVT. 

Finally, it could be said that Case 7, i.e. the basic circulant perturbation of the PLVT 

economy, corresponds to the “Sraffian polar value theory” (SPVT), since in that case 

the value-profit rate relationship is non-monotonic whatever the labour value vector is. 

Hence, Figure 3 displays the location of the polar value theories, i.e. PLVT, TVT, and 

SPVT, in the complex plane.  
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Figure 3. The complex plane location of the polar value theories  
       

 

3. The Degree of Regularity-Controllability of Actual Economies 

The value-wage-profit rate system of quite diverse actual economies (but, ex 

hypothesis, linear and single-product) has been examined in a relatively large number 
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of studies. The key stylized findings were that, in the economically relevant interval 

of the profit rate:12 

(i). Non-monotonic value curves do exist. Nevertheless, they are not significantly 

more than 20% of the tested cases, while, expressed in terms of SSC, they have no 

more than one extreme point. Cases of reversal in the direction of deviation between 

values and labour values are rarer. 

(ii). Despite the presence of considerable deviations from the “equal value 

compositions of capital” case, the wage-profit rate curves are near-linear, i.e. the 

correlation coefficients between the distributive variables tend to be above 99%, and 

their second derivatives change sign no more than once or, very rarely, twice, 

irrespective of the numéraire chosen.  

(iii). The approximation of the value-wage-profit rate curves through low-order 

formulae (ranging from linear to quadratic) works well.  

(iv). The aforementioned shapes of the value-wage-profit rate curves can be explained 

by the fact that, across countries and over time, both the moduli of the first non-

dominant eigenvalues and the first non-dominant singular values of matrices J  fall 

quite rapidly, whereas the rest constellate in much lower values forming “long tails”. 

More specifically: 

(a). The majority of the non-dominant eigenvalues are crowded at very low values and 

bounded in a relatively small region of the unit circle. In point of fact, both the 

eigenvalue moduli and the singular values follow exponentially decaying trends, in 

the case of circulating capital, or a nearly “L-shaped form”, in the case of the presence 

of fixed capital stocks (treated, however, in terms of the Leontief-Bródy approach). 

Hence, although [ ]rank nJ  holds true, the “effective rank (or dimensions)” of J  is 

much lower than n . 

(b). The complex (as well as the negative) eigenvalues tend to appear in the lower 

ranks, i.e. their modulus is relatively small. However, even in the cases that they 

appear in the higher ranks, i.e. second or third rank, the real part is much larger than 

the imaginary part. In the fewer cases that the imaginary part of an eigenvalue 

exceeds the real one, not only their ratio is relatively small but also the modulus of the 

eigenvalue can be considered as a negligible quantity. In general, the imaginary part 

                                                           
12 See Mariolis and Tsoulfidis (2016a, chaps. 3, 5, and 6, 2016b, 2018), Mariolis et al. (2019) and the 

references therein. 
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gets progressively smaller. Consequently, the distribution of the moduli is a fair 

representation of the eigenvalue distribution, while the complex eigenvalues play no 

decisive role in determining the shapes of the empirical value-wage-profit rate 

relationships.  

 The aforementioned stylized findings in combination with the theoretical 

analysis developed in this paper suggest that the actual single-product economies tend 

to behave as three-industry irregular systems. To look deeper into this interesting and 

important phenomenon, we will deal with data from ten flow Symmetric Input-Output 

Tables (SIOTs) of five European economies, i.e. Denmark (for the years 2000 and 

2004; 56n  ), Finland (for the years 1995 and 2004; 57n  ), France (for the years 

1995, 58n  , and 2005, 57n  ), Germany (for the years 2000 and 2002; 57n  ) and 

Sweden (for the years 1995, 53n  , and 2005, 51n  ). These SIOTs have been firstly 

used by Iliadi et al. (2014), and their findings (for instance, non-monotonic value 

curves, expressed in terms of SSC, are observed in about 105/559 or 19% of the tested 

cases) are absolutely consistent with those of all other studies of actual value-wage-

profit rate systems. Hence, this data sample could be considered as sufficiently 

representative. Table 1 reports:  

(i). 2J , 3J , 
n

J  and the geometric mean, GM , of the moduli of the non-

dominant eigenvalues of J  (reproduced from Iliadi et al., 2014, p. 43), which can be 

written, in our case, as   

 
1 1( 1) ( 1)

1

det[ ] ( )
n

n n

i

i

GM 
  



   JJ  

As is well known, the geometric mean is rather appropriate for detecting the central 

tendency of an exponential set of numbers. 

(ii). The ratio between the smallest and the largest singular values, 
1

1n  
J J , of J . 

(iii). The absolute values of the determinant of the Krylov matrices and of the 

determinant of the Vandermonde matrices of the eigenvalues of J  (see equation (8)). 

(iv). The degree of regularity, DR  (see equation (9)).  

(v). The “numerical rank”, NR , of K , defined as the number of singular values of K  

that are larger than 1K , where   is a positive tolerance. 

 Finally, Figure 4 (reproduced from Iliadi et al., 2014, p. 45) displays the 

location of the eigenvalues of all matrices J  in the complex plane, while Figure 5 (the 
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horizontal axis is plotted in logarithmic scale) displays the normalized singular values, 

1

1j
  

K K
 , of all matrices K .  

 

 Table 1. Spectral and regularity characteristics of actual economies; five European 

economies – ten SIOTs 

 
 

 

 

 

 

 

 

Denmark Finland France Germany Sweden 

 2000 

56n   
2004 

56n   
1995 

57n   
2004 

57n   
1995 

58n   
2005 

57n   
2000 

57n   
2002 

57n   
1995 

53n   
2005 

51n   

2J  0.53 0.62 0.59 0.83 0.63 0.59 0.56 0.63 0.53 0.42 

3J  0.48 0.50 0.43 0.50 0.53 0.43 0.50 0.53 0.43 0.38 

nJ  
46 10  31 10  31 10  43 10  53 10  31 10  31 10  36 10  33 10  49 10  

GM  0.07 0.07 0.05 0.05 0.06 0.08 0.11 0.11 0.05 0.05 
1

1n  
J J

 
59 10  31 10  31 10  55 10  510  42 10  59 10  44 10  45 10  410  

det[ ]K  78210
 

79310
 

72710
 

74010
 

74110
 

7444 10  
72810

 
72210

 
7272 10

 

7216 10  

det[ ]V  6472 10
 

6573 10  
6743 10

 

6742 10
 

6813 10
 

6722 10  
6591 10

 

6464 10
 

6103 10
 

5913 10  

DR  196 10  
196 10  

198 10  
191 10  

195 10  
198 10  

209 10  
196 10  

195 10  
203 10  

NR , 
410   

5 6 6 6 6 6 6 6 5 5 

NR , 
210   

3 3 3 4 3 3 3 3 3 3 
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Figure 4. The complex plane location of the eigenvalues of all normalized vertically 

integrated technical coefficients matrices; five European economies – ten SIOTs 
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Figure 5. The normalized singular values of all Krylov matrices; five European economies – 

ten SIOTs 
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 From these representative results it is deduced that the actual single-product 

economies: 

(i). Cannot be coherently analyzed in terms of the TVT, since they exhibit non-

monotonic value curves. And it need hardly be said that the existence of fairly good, 

low-order approximations to these curves is insufficient to restore the TVT. Hence, 

the SVT provides a sound empirical basis, although the eigenvalue distributions of the 

actual matrices J  sharply differ from those of the basic circulant economies, which 

correspond to the SPVT (compare Figure 1 with Figure 4, and see Example 2 in the 

Appendix). In fact, the actual eigenvalue distributions can be viewed as mixed 

combinations of the ideal-type Cases 4 and 5 (presented in Section 2.4). 

(ii). Are characterized by rather low degrees of regularity and relatively low 

numerical ranks. This primarily results from the skew characteristic value 

distributions of the actual matrices J , and indicates that the actual economies 

constitute almost irregular-uncontrollable systems (see Table 1 and Figure 5; compare 

with Figure A6 in the Appendix). In this connection, experiments with Krylov 

matrices formed from pseudo-random13 vectors T (0)p  and the abovementioned actual 

matrices J  lead to similar results, i.e. to degrees of regularity of the order of 
1910

.  

 It should, finally, be added that, regarding actual Krylov matrices, we also 

experimented with the input-output data used by Soklis (2011), i.e. ten Supply and 

Use Tables (SUTs) of the Finnish economy (for the years 1995 through 2004; 57n  ), 

and the results were similar.14 For instance, when the Krylov matrix is formed from 

the vector T 1[ ]l A B  and the matrix 1[ ]A A B , where B  denotes the output 

coefficients matrix, the degree of regularity is in the range of 
936 10  to 

2710
, while, 

when the Krylov matrix is formed from T 1l B  and 1AB , the  degree of regularity is 

in the range of 
282 10  to 

202 10 .  

 

                                                           
13 Generated by Mathematica; see 

https://reference.wolfram.com/language/tutorial/PseudorandomNumbers.html 
14 In these SUTs of the Finnish economy (i) there exists an interval of r ( 0 ), such that the vector of 

“labour commanded” values, 
1 T

w


p , is positive, for the years 1995 through 1998 and 2000 through 

2002, and (ii) the monotonicity of the estimated wage-profit rate curves (for the years 1995, 1997, 2000 

and 2001) depends on the numeraire chosen (Soklis, 2011, pp. 553-555). As is well known, in the 

SUTs there are industries that produce more than one commodity, and commodities that are produced 

by more than one industry. Therefore, the SUTs could be considered as the empirical counterpart of 

joint production systems à la v. Neumann and Sraffa. 

https://reference.wolfram.com/language/tutorial/PseudorandomNumbers.html
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4. Concluding Remarks 

The spectral analysis of the value system of economies of production of commodities 

by means of commodities revealed that the hitherto alternative value theories 

correspond to specific production structures and, therefore, to specific eigenvalue 

locations in the complex plane. More specifically, it has been shown that these 

theories can be conceived of as “perturbations” of the pure labour value theory, which 

is a polar theory of value that tends to hold true when all the eigenvalues of the 

vertically integrated technical coefficients matrix tend to be equal to each other. 

 It has also been shown that, although the existence of value-profit rate curves 

that are non-monotonic irrespective of the labour value vector direction presupposes 

eigenvalue distributions sharply different from those appearing in real-world 

economies, the Sraffian value theory is not only the most general one but also 

provides a sound empirical basis. On the other hand, empirical evidence suggests that 

the Krylov matrices of actual economies are characterized by rather low degrees of 

regularity-controllability and relatively low numerical ranks. This finding results from 

the skew characteristic value distributions of the actual vertically integrated technical 

coefficients matrices, and indicates that the actual economies constitute almost 

irregular-uncontrollable systems. Finally, the almost irregularity-uncontrollability of 

real-world economies explains, in turn, the specific shape features of the empirical 

value-wage-profit rate curves. 

 Future research work should (i) expand the empirical analysis of the joint 

production economies using data from the Supply and Use Tables; (ii) delve into the 

proximate determinants of the irregular-uncontrollable aspects of real-world 

economies, and draw their broader implications for both political economy and 

economic policy issues; and (iii) heuristically look for eigenvalue locations in the 

complex plane that could lead to new versions of the value theory. 
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Appendix: Examples 

 

Example 1 

Consider the following 3 3  doubly stochastic and irreducible economies: 

  

1

1

1 1 1

   
   
       

  
    
         

J  

where T T(0) (1)p p . 

 Iff    and 12 (1 )      , then J  is circulant with a repeated eigenvalue, 

1

2 3 2 (3 1)    J J
, and this eigenvalue has two linearly independent eigenvectors, 

i.e. 
T

2 2[ 1,0,1] Jx  and 
T

3 3[ 1,1,0] Jx , where 2 , 3  denote arbitrary non-zero 

scalars. Since 2 3J Jx x  is also an eigenvector, there exists an eigenvector of J  that is 

orthogonal to any given T (0)p . Therefore, [ ] 2rank K , the economies are irregular 

whatever T (0)p  is, and jp  are not rational functions of degree 1 ( 2)n    but of 

degree 2 ( 1)n   . This reduction in degree (known in control theory as “pole-zero 

cancellation”) is a characteristic feature of irregular-uncontrollable systems (Kalman, 

1960, p. 494). More specifically, when 
T

2(0) 0Jp x  or 
T

3(0) 0Jp x , equation (4) 

implies that 1 3p p  or 1 2p p , respectively. When 
T (0) 0k Jp x ,  it follows that 

   T T 1 T T 1

2 3 2 3( ) (0) ( (0) ) J J J Jp x p x p x p x  

or 

   2 1 3(1 )p p p     

where 

 1

3 2 3 1( (0) (0))( (0) (0))p p p p     (A1) 

Iff 2 (0) (0)p p , then 12   and, therefore, 1

2 1 3 22 ( ) (0)p p p p
   .  

 It should be added that, when 2 3 J J , the Schur triangularization theorem 

implies that J  can be transformed, via the semi-positive similarity matrix 

1 2 3[ , , ] JT x e e , into   
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1 1

1 1

1

1 2 (1 ) 2 (1 )

0 2 (3 1) 0

0 0 2 (3 1)

 




 

 



  
   
  

Τ JT  

Hence, when 13  , the original economies are economically equivalent to a 

triangular economy involving only one composite basic commodity (“hyper-basic 

commodity”; Mariolis and Tsoulfidis, 2016a, p. 155), which is no more than SSC, and 

a diagonal non-basic system. When  13  , we obtain a version of the ideal-type 

Case 2 (presented in Section 2.4). 

 By contrast, when 2 3 J J  and 2 (0) (0)p p , 2p  has an extreme point in the 

economically relevant interval of the profit rate, i.e. at  

   * 1[1 3 (1 )(1 ) ]          

See, for instance, Figure Α1, where 0.5   , 0.2 or 0.4  , 0.1  , and 

T (0) [1,2,3]p . When 0.2  , det[ ] 0.414 K  and 0.010DR   (see equations (8) 

and (9)), while when 0.4  , det[ ] 1.134K  and 0.029DR  . Also note that, when 

2 (0) (0)p p , all six value curves may be monotonic. 

 

β 0.4

β 0.2

0.0 0.2 0.4 0.6 0.8 1.0

1.88

1.90

1.92

1.94

1.96

1.98

2.00

2.02

 

Figure A1. Non-monotonic value curves in 3 3  doubly stochastic economies where 

2 (0) (0)p p  
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Example 2 

Figure A2 displays the moduli of the eigenvalues of C , for 7,  500n   and 

0.1,  0.3, 0.5c  . Figure A3 displays the modulus of the subdominant eigenvalues of 

C  as a function of c , 0 0.5c  , and n , 3 50n  . 

 

 

c 0.1

c 0.3

c 0.5

1 2 3 4 5 6 7

0.2

0.4

0.6
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1.0

 

7n  , 0.1, 0.3, 0.5c   

c 0.1

c 0.3

c 0.5

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

 

500n   and 0.1, 0.3, 0.5c   

 

Figure A2. The moduli of the eigenvalues of C ; 7, 500n  and 0.1, 0.3, 0.5c   
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Figure A3. The modulus of the subdominant eigenvalues of C  as a function of c  and n ; 

0 0.5c   and 3 50n   

 

 

Example 3 

Consider the following economies: J C , where 
1(0) (0)j jp p  . When 6n  , i.e. 

3  , it necessarily follows that (0) (1) 0p p   , since 

   3 2 3(0) (1 )( (0) (0)) 0p c p p     

and 

 1

3 4 3 5 2 6 1(1) [12(1 )] [5( (0) (0)) 3( (0) (0)) (0) (0)] 0p c p p p p p p
         

 When 7n  , i.e. 3  , it necessarily follows that (0) (1) 0p p    and  

1 1(0) (1) 0p p    , since 

  3 2 3(0) (1 )( (0) (0)) 0p c p p     

  4 3 4(0) (1 )( (0) (0)) 0p c p p     

and 

 1

3 4 3 5 2 6 1(1) [7(1 )] [3( (0) (0)) 2( (0) (0)) (0) (0)] 0p c p p p p p p
         

 1

4 5 4 6 3 7 2(1) [7(1 )] [3( (0) (0)) 2( (0) (0)) (0) (0)] 0p c p p p p p p
         
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Example 4 

Consider the following economies: J C , 3n  ,  where 
1(0) (0)j jp p  . It follows 

that, in the economically relevant interval of  , 1( )p   and 3( )p   are monotonic, 

while 2 ( )p   is minimized at  

 * 21         

where 1   (see equation (A1)) and * / 0d d   . Since   increases (decreases) with 

  (with c ), the relevant value of the profit rate, i.e.  

 * * * 1[1 (1 )]c        

increases with c . Finally,  2 2( ) (0)p p   at 0   and at  

 ** 1 1     

where ** *  , while ** 1    iff 12   or, equivalently, 2 (0) (0)p p . See, for 

instance, Figure A4, where T (0) [1,2,4]p  and c  is in the range of 0 to 0.995; 

2 / 3  , 
* ( 7 2) / 3 0.215    , *

2( ) (11 2 7) / 3 1.903p      and ** 0.5  ).  

 It should be noted that n n  doubly stochastic circulant economies of the form  

  2 1

1 2 3 ... n

nc c c c
   I Π Π Π , 2 3 1( , ,..., ) 0nc c c    

do not necessarily generate non-monotonic value curves. For instance, consider 

Example 1 ( 2 3 J J ) or the following 3 3 cases: (i) 1 0c  , 2 0.6c  , 3 0.4c  ; and 

(ii) 1 0.6c  , 2 0.25c  , 3 0.15c  , with T (0) [1,2,4]p , and take into account the 

structure of the relevant matrices D  (compare with equations (19) and (20)). 
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Figure A4. Non-monotonic value curves in 3 3  basic circulant economies 

 

Example 5 

Consider the following economies: J C , 4n  ,  where 
T

4(0) [1,5, 4, (0)]pp  and 

4 (0) 5p  . It follows that 3 3( ) (0)p p   at 0   and at 

 
** 1 1 1 1 2 1

1,2 1 1 22 ( 1) 4 ( 1) ( 1)              

where 

 1

1 4 3 4 1( (0) (0))( (0) (0))p p p p     , 10 1   

 1

2 4 3 4 2( (0) (0))( (0) (0))p p p p    , 2 1   

and, therefore, that **

1,20 1   for 46 (0) 6.25p  . More specifically, for 4 (0) 6p   

we get **

1 1/ 2   and 
**

2 1  , while for 4 (0) 6.25p   we get 
** **

1 2 2 / 3   .  

 Hence, when, for instance, 4 (0) 6.1p  , we get 
** 1

1,2 21 (15 15)  , i.e. 

**

1 0.530  , 
**

2 0.899  ; 3( )p   has two extreme points, i.e. at 
*

1 0.183   and 

*

2 0.712  , while 2 ( )p   is minimized at * 0.689  . The graphs in Figure A.5 

display 3( )p   for values of c  in the range of 0 to 0.90 (note that 3 3(0) (1) 0p p  ), and 
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the value difference 3 2( ) ( )p p  , which equals zero at **

1,2   and at 1   

(compare with Figure 3 in Sraffa, 1960, p. 38).  
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Figure A5. Possible non-monotonic value curves and value difference in 4 4  basic 

circulant economies 

 

 Now, assume that T (0)p  is arbitrary but T T(0) (1)p p . The determinant of the 

Krylov matrix is given by 
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  6

0 1 2det[ ] (1 )c P PP  K   

where 6 1(1 ) det[ ]det[ ]c
   JV X  (see equation (8)), 

4

0

1

(0)
j

j

P p


   and 

  1 1 2 3 4(0) (0) (0) (0)P p p p p     

  2 2

2 1 3 2 4( (0) (0)) ( (0) (0))P p p p p      

Hence, these economies are irregular iff either 1 0P   ( [ ] 3rank K ) or 2 0P   

( [ ] 2rank K ). When  1 0P  , ( )jp   are rational functions of degree 2 ( 2)n   and  

  1 3 2 4 1 3( ) ( ) ( ) ( ) (0) (0)p p p p p p         

When 2 0P  , ( )jp   are rational functions of degree 3 ( 1)n   , 1 3( ) ( )p p   and 

2 4( ) ( )p p  .  

 Finally, the graphs in Figure A6 display the degree of regularity, DR , as a 

function of 4 (0)p , for 0c   and 
T

4(0) [1,1,1, (0)]pp or, alternatively, 

T

4(0) [1,5, 4, (0)]pp : 0DR   at 4 (0) 1p   or 0DR   at 4 (0) 0p  , respectively, 

while DR  tends to 1 as 4 (0)p  tends to plus infinity. 
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Figure A6. The degree of regularity of a 4 4  basic circulant economy ( 0c  ) as a function 

of 4 (0)p  
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