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Abstract 

In this paper we show that the exchange rates of some commodity exporter countries have the 

ability to predict the price of spot and future contracts of aluminum. This is shown with both in-

sample and out-of-sample analyses. The theoretical underpinning of these results relies on the 

present-value model for exchange rate determination and on the tight connection between 

commodity prices and the currencies of commodity exporter countries. We show results using 

traditional statistical metrics of forecast accuracy: Mean Squared Prediction Error and Mean 

Directional Accuracy. We also show that the first principal component of our sample of 

exchange rates is a useful way to summarize the predictive information contained in our set of 

commodity currencies. 

JEL Codes: C52, C53, G17, E270, E370, F370, L740, O180, R310 
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1. Introduction 

 

In this paper we show that the exchange rates of some commodity exporter countries have the 

ability to predict the price of spot and future contracts of aluminum. We also show that the first 

principal component of our sample of exchange rates is a useful way to summarize the 

predictive information contained in our set of commodity currencies. These results are 

important in two dimensions. First, they are consistent with the present-value model for 

exchange rate determination and second they provide a useful way to forecast aluminum 

prices. This last point is fairly relevant since global investments in aluminum based instruments 

are far from negligible. In fact, in 2018 aluminum was one of the most traded metals in the 

London Metal Exchange (LME), representing nearly 37% of the total volume in futures contracts 

and nearly 48% of the total volume in traded options.  

As mentioned before, the theoretical underpinning of our paper relies on the present-value 

model for exchange rate determination. While details of this model can be found in Appendix 1, 

in short, it claims that an exchange rate should be the expected value of the discounted sum of a 

linear combination of future fundamentals.  As noted in Campbell and Shiller (1987) and Engel 

and West (2005), one of the key implications of this model is that exchange rates may Granger-

cause their own fundamentals.  While Engel and West (2005) and Hsiu-Hsin and Ogaki (2015) 

have reported only modest results when testing this implication for traditional exchange rate 

fundamentals, stronger results are reported in some papers when exploring the predictive 

relationship between the exchange rates of commodity exporting countries and the price of the 

commodities being exported.  Probably the most influential articles exploring this relationship 

are those of Chen, Rossi and Rogoff (2010, 2014) (henceforth CRR), but a few other papers have 

followed with additional supporting evidence. For instance, Chen, Rossi and Rogoff (2011) find 

more evidence for the case of agricultural commodities. In the same line, Gargano and 

Timmermann (2014) show similar results for the Australian dollar and the Indian rupee and 

Ciner (2017) provides evidence of a predictive relationship between the South African rand and 

the price of white metals. More recently, Pincheira and Hardy (2018, 2019) show strong results 

when predicting base metal returns with either the Chilean exchange rate or survey-based-

expectations of the Chilean currency. Finally, Belasen and Demirer (2019) report in-sample 

predictability when forecasting both commodity returns and volatility in an expanded set of 

commodity-exporters. 

 

Despite this evidence, the empirical implications of the present-value model for exchange rate 

determination are not exempt of controversy.  For instance, Groen and Pasenti (2011) find little 

evidence of predictability when studying ten alternative commodity indices. Moreover, results 

reported by Bork, Rovira and Sercu (2014) and Lof and Nyberg (2017) suggest virtually no 
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predictive relationship between commodities and exchange rates. In this context, we analyze 

the potential predictability of aluminum prices with five traditional commodity-currencies: 

those of Australia, Canada, Chile, New Zealand and South Africa.  These countries are usually 

considered in studies analyzing predictability from exchange rates to commodity prices. See for 

instance, CRR, Bork, Rovira and Sercu (2014) and Lof and Nyberg (2017). 

 

Some prior studies supporting the initial findings of CCR have shown predictability from 

exchange rates to either the returns of the main exporting commodities of the corresponding 

countries or to the returns of some closely related indexes. Nevertheless, and similar to the 

results in Pincheira and Hardy (2018, 2019), in this paper we show that the exchange rates of 

some countries with little or no production of aluminum at all, do have the ability to predict 

aluminum returns. One rationale for this result relies on the fact that some of the countries in 

our database export commodities that have an important correlation with aluminum.  For 

instance CRR show that the South African export share of base metals is zero (see Table A1 in 

Appendix 2). However, in Table A2 in Appendix 2 we show that most of the commodities 

produced by South Africa (and the other four economies) have an important correlation with 

aluminum.  

 

Differing from some other papers in the literature, where the focus is mainly placed on spot 

prices, we also analyze here predictability for futures contracts of aluminum at different 

maturities. While the results for future prices are not particularly different from those for spot 

prices, we think that this is a reassuring finding that, to our knowledge, has not been reported 

previously in the literature, contributing to the debate of the empirical implications of the 

present-value model for exchange rate determination. 

 

The rest of the paper is organized as follows. In section 2 we present our data and forecasting 

models. In section 3 we present and discuss our in-sample and out-of-sample results. Finally, in 

section 4 we present our conclusions. 

2. Data and Models 
 

We consider quarterly data on each exchange rate relative to the U.S. dollar for the following 

time periods: Australia (1984Q1 to 2018Q4), Canada (1973Q1 to 2018Q4), Chile (1999Q4 to 

2018Q4), New Zealand (1987Q1 to 2018Q4) and South Africa (1993Q2 to 2018Q4).  Exchange 

rates are defined as the amount of local currency that is required to buy one American dollar in 

the domestic market. The starting dates are the same than in CRR with the only exception of 

Chile. According to Pincheira (2018), since 1999 the monetary authorities in Chile decided to 
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pursue a pure flotation exchange rate regime, with only a few periods of pre-announced 

interventions.  It seems reasonable to focus only on the period of pure flotation, given that 

strong interventions might interfere in the ability of exchange rates to respond to their market 

fundamentals.  

For aluminum spot prices we use data in the same frequency and for the same time periods 

considered previously. For futures, due to data availability, we consider the following time 

periods: 1980Q1 to 2018Q4 for 3-months maturity contracts, 1993Q3 to 2018Q4 for 15-months 

maturity contracts and 1993Q3 to 2018Q4 for 27-months maturity contracts. 

The source of our data is Thomson Reuters Datastream from which we obtain daily close prices 

of each asset. With these daily prices, we transform our data to quarterly frequencies by 

sampling from the last day of the quarter. 

We mainly use the econometric framework in Pincheira and Hardy (2019). These specifications 

are quite simple and are designed to explore predictability relative to common benchmarks in 

the literature2. Both in-sample and out-of-sample analyses are based on the models described in 

Table 1 next. 

Table 1: Econometric Specifications 

 

Where 

∆������� ≡ ������� 	 ��	������� 
∆���
��� ≡ ���
��� 	 ��	�
����� 

��� is the price of aluminum at time t, either spot or future. Similarly, 
�� corresponds to a 

given exchange rate at time t, which in our case could be the Australian Dollar, the Canadian 

Dollar, the Chilean Peso, the New Zealand Dollar or the South African Rand. ��� for � � 1,2,3 

represent error terms. 

Two features of our specifications are worth mentioning. First, we use only two lags of 

exchange rate returns as exogenous predictors given that with these lags Pincheira and Hardy 

                                                           
2 A vast literature shows that either the Random Walk or simple autoregressions are usually difficult benchmarks to 

beat when forecasting assets returns. Goyal and Welch (2008) and Meese and Rogoff (1983) are good examples. 
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(2019) report strong results of predictability for aluminum prices with the Chilean peso3.  

Second, our specifications impose the restriction that the coefficients associated to both lags of 

exchange rate returns are the same. We do this because the reduction in the number of 

parameters may be highly beneficial to mitigate estimation errors4.  

For specifications 1-3 in Table 1, we consider the following null hypothesis ��: 
��: � � 0 

This null hypothesis posits that exchange rates do not have the ability to predict aluminum 

returns.  We evaluate this hypothesis both in-sample and out-of-sample for one-step-ahead 

forecasts, leaving the multistep ahead analysis for further research. 

In our in-sample analysis the null hypothesis is evaluated using a simple t-statistic, while in the 

out-of-sample analysis is evaluated with the ENCNEW test proposed by Clark and McCracken 

(2001). This test has a non-standard asymptotic distribution, but critical values for one-step- 

ahead forecasts are tabulated in Clark and McCracken (2001). The asymptotic distribution of the 

ENCNEW test is a functional of Brownian motions depending on the number of excess 

parameters of the nesting model, which is 1 in our models (since we use restricted 

specifications), the scheme used to update the estimates of the parameters (rolling, recursive or 

fixed), and the parameter � defined as the limit of the ratio �/�, where � is the number of one-

step-ahead forecasts and � is the size of the first estimation window used in the out-of-sample 

analysis5. 

For our in-sample analysis we estimate the parameters with all the available observations. In 

contrast, for the out-of-sample analysis, we split the sample in two windows: an initial 

estimation window of size � and a prediction window of size � such that � + � � !, where ! is 

the total number of observations. To check the robustness of our results, we split our sample in 

two different ways. First, we use one third of our observations for initial estimation and two 

thirds for evaluation (this means �/� � 2). Second, we use two thirds of our observations for 

initial estimation and one third for evaluation (this means �/� � 0.4). We use a rolling scheme 

to update the estimates of our parameters in the out-of-sample analysis. 

 

 

                                                           
3 Notice that the present-value model for exchange rate determination says nothing about the number of lags to be 

considered; this number of lags is an empirical issue. 
4 Furthermore, in the case of aluminum and monthly data, Pincheira and Hardy (2019) show that the coefficients 

associated to the first two lags of the Chilean peso have the same sign and that they are not statistically different 

according to results of a Wald test. 
5 See Clark and McCracken (2001) or West (2006) for further details about out-of-sample evaluations in nested 

environments. 
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3. Empirical Results 

 

In this section we report in-sample estimates and tests of specification 1 in Table 1. We also 

report results of the ENCNEW out-of-sample test of Clark and McCracken (2001). We start by 

reporting our in-sample results. 

 

3.1 In–Sample Analysis  

 

In Table 2 next we report estimates of specification 1 in Table 1. We use HAC standard errors 

according to Newey and West (1987, 1994).  Column 2 of Table 2 shows results when forecasting 

aluminum spot returns. Some findings are worth mentioning. First, the coefficients associated to 

exchange rates are significant in all cases with the sole exceptions of the South African Rand 

and the Canadian Dollar; moreover, we do reject the null at the 5% significance level for the 

Australian and the New Zealand Dollar. Second, the coefficients associated to exchange rates 

are negative in all cases. This is consistent with an inverse relationship between exchange rates 

and aluminum returns. This is expected in aluminum exporting countries: higher aluminum 

prices are expected to generate an inflow of American dollars to these economies, leading to an 

appreciation of the domestic currency. In the countries that do not export aluminum we can 

claim a similar statement relying on the positive correlation between aluminum returns and 

those of the commodities that are exported by these particular countries.  

 

Columns 3-5 show results for futures with maturities of 3, 15 and 27 months. Several findings 

are worth mentioning. First, all coefficients associated to the exchange rates are negative; this is 

again consistent with the relationship between aluminum prices and the appreciation of the 

local currency explained previously6. Second, we find evidence of Granger-causality in at least 

one maturity for all exchange rates, with the sole exception of the South African Rand. Third, 

for the cases of Australia, Chile and New Zealand, the coefficients associated to the exchange 

rate are significant for all maturities, sometimes at tight significance levels (1%). 

 

Results for the Chilean Peso and the South African Rand are particularly interesting provided 

that CCR report that neither of them produces aluminum. On the one hand, Table 2 shows 

strong predictability for the Chilean Peso. On the other hand, Table 2 shows no predictability at 

all for the South African Rand. A plausible explanation for this phenomenon relies on the 

correlations between the main commodity exports of these countries with aluminum. In the ca 

se of Chile, the correlation between one-period copper and aluminum returns is 0.76, while in 

                                                           
6
 Again, in Chile and South Africa, countries with no aluminum exports, this can be explained by the positive 

correlation between aluminum returns and those of the main Chilean and South African commodity exports. See 

Table A2 in Appendix 2.  
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the case of South Africa the correlation between one-period gold and aluminum returns is only 

0.28  (See Tables A1 and A2 in Appendix 2).  

Table 2: Forecasting Aluminum with Commodity Currencies 

 

Notes: 
� stands for Exchange Rates Returns, 
��	1� and 
��	2� represent the first and second lags of Exchange Rates Returns. 

��$%��$% and ��$%��$%�	1� denote one-quarter returns of aluminum and its first lag respectively. Table 2 shows estimates of the 

parameters in specification 1 in Table 1 for spot and futures prices. For the sake of space, we do not report estimates either of the 

constant or the AR(1) term. HAC standard errors are estimated according to Newey and West (1987, 1994). *& < 0.1, **	& < 0.05, *** 

& < 0.01. Source: Author’s elaboration. 

 

In summary, our in-sample results provide evidence of a predictive relationship between 

aluminum prices and most of our sample of “commodity currencies”. To mitigate the usual 

overfitting problems associated to in-sample analyses, we move next to an out-of-sample 

environment. 

 

3.2 Out–of-Sample Analysis  

 

Tables 3-4 show results of the ENCNEW test of Clark and McCracken (2001) in different out-of-

sample exercises based on specifications 1, 2 and 3 of Table 1. Table 3 shows results when the 

(1) (2) (3) (4) (5)

Aluminum Aluminum 3 

month

Aluminum 15 

month

Aluminum 27 

month

ER(-1)+ER(-2) -0.178** -0.172** -0.176* -0.202**

(0.085) (0.085) (0.095) (0.079)

Observations 140 140 100 100

R-squared 0.043 0.064 0.087 0.080

ER(-1)+ER(-2) -0.160 -0.190 -0.082 -0.147**

(0.102) (0.126) (0.099) (0.073)

Observations 181 154 100 100

R-squared 0.039 0.066 0.070 0.057

ER(-1)+ER(-2) -0.383* -0.390* -0.420** -0.437**

(0.214) (0.211) (0.205) (0.192)

Observations 78 78 78 78

R-squared 0.127 0.137 0.156 0.164

ER(-1)+ER(-2) -0.327** -0.306** -0.248*** -0.263***

(0.136) (0.124) (0.085) (0.085)

Observations 128 128 100 100

R-squared 0.073 0.093 0.115 0.115

ER(-1)+ER(-2) -0.077 -0.075 -0.078 -0.076

(0.056) (0.056) (0.054) (0.053)

Observations 98 98 98 98

R-squared 0.074 0.078 0.070 0.055

Panel A: Australia

Panel B: Canada

Panel C: Chile

Panel D: New Zealand

Panel E: South Africa
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number of forecasts is twice the number of observations in the first estimation window (this is 

�/� � 2�. In contrast, Table 4 shows results when the number of forecasts is 40% of the number 

of observations used in the first estimation window (this is �/� � 0.4�.  
 

In the first column of Tables 3-4 we use the following notation to describe specifications 1, 2 and 

3 of Table 1: AR(1) stands for an autoregressive process of order 1 for the one-period return of 

aluminum (either spot or future), RW with drift stands for Random Walk in the log level of 

aluminum spot or future price, and Driftless RW denotes the Driftless Random Walk in the log 

level of aluminum spot or future price. 

 

Column 2 in Tables 3-4 shows out-of-sample results when forecasting aluminum spot returns. 

In both tables, the models including the exchange rates of Australia, Chile and New Zealand 

outperform all three benchmarks at least at the 10% significance level with just one exception. 

The results for the South African Rand and the Canadian Dollar are rather weaker and unstable. 

In Table 4 we find predictability against the Random Walk and the Driftless Random Walk for 

both exchange rates, nevertheless, in Table 3 we find no predictability whatsoever.  

 

Columns 3-5 of Tables 3-4 report results when forecasting aluminum future prices. Some 

features are worth mentioning. First, we still have modest results with the currencies of Canada 

and South Africa. Table 4 indicates that we find predictability with the South African Rand in 

six out of nine exercises (never beating the AR(1)), while in Table 3 we do not reject the null in 

any case. Similarly, with the Canadian Dollar and considering both Tables 3 and 4, we find 

predictability in only 7 out of 18 exercises with futures. Second, results with the currencies of 

Australia, Chile and New Zealand are surprisingly strong in both tables: our models 

outperform the benchmarks in 94% of the exercises (with those including the Chilean Peso and 

the New Zealand Dollar rejecting the null in all exercises). Our results show that these 

commodity currencies can predict different returns of aluminum: spot and futures. Moreover, 

this evidence of predictability is robust to the choice of the point in time in which we split our 

sample. Figure 1 shows a comparison between our forecasts for 27-months futures using 

specification 2 of Table 1 with the Chilean Peso. Consistent with the results of the ENCNEW 

test, our forecasts seems to be reasonably accurate. In particular they show a correlation of 0.26 

with actual Aluminum 27-months returns. 
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Table 3: Forecasting Aluminum Prices with Commodity Currencies, )/* � +. 
Out-of-Sample Analysis with the ENCNEW Test 

 

Notes: 10%, 5% and 1% critical values are 1.808, 2.836 and 5.065 respectively for ENCNEW when excess parameters are 1. P is the 

number of one-step-ahead forecasts, R the sample size of the first estimation window. The AR(1) benchmark corresponds to model 1 

in Table 1 when the coefficient associated with the exchange rates is set to zero. Similarly, the RW with drift and the Driftless RW 

benchmarks correspond to models 2 and 3 in Table 1 respectively, when coefficients associated with the exchange rates are set to 

zero. Source: Author’s elaboration. 
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Table 4: Forecasting Aluminum Prices with Commodity Currencies, )/* � ,. -. 
Out-of-Sample Analysis with the ENCNEW Test

 

Notes: 10%, 5% and 1% critical values are 0.764, 1.161 and 2.278 respectively for ENCNEW when excess parameters are 1. P is the 

number of one-step-ahead forecasts, R the sample size of the first estimation window. The AR(1) benchmark corresponds to model 1 

in Table 1 when the coefficient associated with the exchange rates is set to zero. Similarly, the RW with drift and the Driftless RW 

benchmarks correspond to models 2 and 3 in Table 1 respectively, when coefficients associated with the exchange rates are set to 

zero. Source: Author’s elaboration. 

 

(1) (2) (3) (4) (5)

Benchmark Model Aluminum
Aluminum 3 

month

Aluminum 

15 month

Aluminum 

27 month

1.49** 1.43** 1.30** 1.07*

1.58** 1.49** 1.36** 1.13*

Driftless RW

0.51 0.44 0.48 0.52

RW with drift

AR(1)

4.07*** 4.11*** 4.15*** 4.27***

Panel E: South Africa

4.03*** 4.01*** 4.02*** 4.16***

Driftless RW

2.36*** 2.32*** 2.44*** 3.19***

RW with drift

AR(1)

2.51*** 2.65*** 2.81*** 2.58***

Panel D: New Zealand

2.57*** 2.71*** 2.94*** 2.78***

Driftless RW

3.78*** 3.72*** 4.47*** 4.80***

RW with drift

AR(1)

0.54

Panel C: Chile

0.88* 1.38** 0.90* 0.86*

Driftless RW

RW with drift

0.84* 1.34** 0.63

Panel B: Canada

AR(1) -0.09 -0.21 0.11 0.35

3.92***

Driftless RW 3.18*** 3.60*** 3.92*** 3.84***

RW with drift 3.30*** 3.72*** 3.99***

Panel A: Australia

AR(1) 1.22** 1.00* 0.44 0.99*

ENCNEW
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Figure 1: Forecasting the future price of Aluminum 27-months with the Chilean Peso 

 
Source: Authors’ elaboration. 

 

3.3 Forecast Accuracy 

 

Thus far we have exclusively carried out inference to compare the population MSPE of the 

models in Table 1 with the population MSPE of our benchmarks. Nevertheless, due to sampling 

error, the model displaying the lowest MSPE at the population level, may not necessarily be 

displaying the lowest MSPE at the sample level. For this reason, Table 5 shows out-of-sample 

coefficients of determination (�../0 ) inspired in Goyal and Welch (2008) and Pincheira (2013). 

This statistic is defined as 

  

�../0 � 1 	 12�
312�
456789:;< 

Where 12�
3 denotes the out-of-sample MSPE when predicting aluminum returns with a 

combined prediction built as the simple average of the forecast coming from the models 

including commodity currencies and the forecast coming from a Random Walk with drift. We 

use a combined forecast instead of the pure forecast built with commodity currencies, because 

by allowing for some shrinkage, we should be able to outperform the benchmarks at the sample 

level whenever the core statistic of the ENCNEW test is positive. See Pincheira (2013) for further 

details about this interesting property. In our notation 12�
456789:;< represents the out-of-

sample MSPE of the RW with drift7. Notice that a zero value for �../0  implies that both 

predictive strategies, our combination and the RW with drift, produce similarly accurate 

forecasts at the sample level. In contrast, negative values indicate that the simple RW 

outperforms our combination that contains the information of commodity currencies. Finally, a 

                                                           
7
 In other words, a model that predicts commodity returns with a constant only. 
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positive value indicates just the opposite: our combined forecast outperforms the simple RW at 

a sample level. 

Table 5: In-Sample and Out-of-Sample *+ when Forecasting Aluminum Prices with 

Commodity Currencies 

 

Notes: P represents the number of one-step-ahead forecasts, R the sample size of the first estimation window. OOS R2 stands for 

Out-of-Sample R0. OOS R2 are constructed inspired in Goyal and Welch (2008) and Pincheira (2013). Source: Authors’ elaboration. 

Some interesting features of Table 5 are worth mentioning. First, with some exceptions, �../0  

tend to be smaller than their in-sample counterparts; this is consistent with a vast literature 

reporting discrepancies between in-sample and out-of-sample forecast evaluations. Second, 

�../0  are always positive across all exercises and exchange rates with only one exception. 

Additionally, they range between -2.5% and 8.6%, with the Chilean Peso showing a remarkably 

high average of 6.6%, followed by the New Zealand Dollar with an average of 6.4%. Third, 

results with the South African Rand are decently good as all entries are positive. This is in sharp 

contrast with the poor outcomes shown previously with the ENCNEW test. Finally, we find 

some instability in �../0  across different exercises. For instance, the average �../0  using the 

Australian Dollar with �/� � 0.4 is 6.3%, while the comparable figure with �/� � 2 is only 

(1) (2) (3) (4) (5)

Aluminum
Aluminum 3 

month

Aluminum 

15 month

Aluminum 

27 month

In-Sample R2 0.033 0.045 0.068 0.073

OOS R2 P/R=2 0.020 0.027 0.037 0.040

OOS R2 P/R=0.4 0.058 0.063 0.066 0.064

In-Sample R2 0.015 0.029 0.026 0.036

OOS R2 P/R=2 -0.025 0.006 0.007 0.018

OOS R2 P/R=0.4 0.008 0.014 0.018 0.014

In-Sample R2 0.132 0.142 0.164 0.169

OOS R2 P/R=2 0.058 0.066 0.083 0.086

OOS R2 P/R=0.4 0.054 0.058 0.062 0.059

In-Sample R2 0.070 0.083 0.096 0.106

OOS R2 P/R=2 0.038 0.041 0.059 0.063

OOS R2 P/R=0.4 0.077 0.077 0.076 0.079

In-Sample R2 0.026 0.027 0.029 0.027

OOS R2 P/R=2 0.011 0.012 0.013 0.012

OOS R2 P/R=0.4 0.043 0.040 0.036 0.031

Australia

Canada 

Chile

New Zealand 

South Africa 
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3.1%.  All in all, even considering these instabilities, at the sample level we find encouraging 

results with the five currencies. 

3.4 Mean Directional Accuracy and Principal Components (PC) 

 

In this section we report some additional evidence of predictability. First, we forecast aluminum 

returns using the first principal component of the sum of the first two lags of the returns of our 

five exchange rates. In Table A3 in Appendix 2 we report our in-sample results. In this case, 

using quite similar specifications as those in Table 1, this first principal component is 

statistically significant at the 5% level for spot and future returns, with a coefficient of 

determination varying between 8.7% and 10.3%8.  

Additionally, Table 6 next shows results of the ENCNEW out-of-sample test when predicting 

with this principal component. The evidence here is remarkably strong. In 22 out of 24 cases, 

our models outperform the benchmarks at the 10% significance level. Furthermore, in 20 out of 

24 cases our models outperform the benchmarks at the 1% significance level.  

All in all, the first principal component constructed here seems to be a good tool to summarize 

the predictive ability of the five currencies, with remarkably strong out-of-sample results. 

Table 6: Out-of-sample analysis with the first principal component

 

Notes: P is the number of one-step-ahead forecasts, R the sample size of the first estimation window. The AR(1) benchmark 

corresponds to model 1 in Table 1 when the coefficient associated with the exchange rates is set to zero. Similarly, the RW with drift 

and the Driftless RW benchmarks correspond to models 2 and 3 in Table 1 respectively, when coefficients associated with the 

exchange rates are set to zero. The main difference with specifications in Table 2 is that here we now replace the sum of the first two 

lags of currency returns with the first principal component of the sum of the first two lags of the returns of our five exchange rates. 

Critical values of the ENCNEW test are reported in Clark and McCracken (2001). Source: Author’s elaboration. 

                                                           
8
 The only difference with specifications in Table 1 is that we now replace the sum of the first two lags of currency 

returns with the first principal component of the sum of the first two lags of the returns of our five exchange rates. 
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It is also fairly usual in the forecasting literature to study the direction of the forecasts instead of 

their MSPE, see, for example, Yin-Wong, Chinn, García-Pascual and Zhang (2019). With this in 

mind, we place our attention next on the success rate of our currencies when predicting 

whether aluminum contracts are going up or down. Our test is based on the simple average of 

the following variable >�:  

>� � ?10				�@			
	A∆�������BA∆���
�����B > 0
	A∆�������BA∆���
�����B ≤ 0 

The idea here is to explore the plausible inverse relationship between the currency of 

commodity exporting countries and the international price of key commodities like aluminum. 

Therefore, an increase in the price of the American dollar in a given country in period t should 

forecast a decrease in aluminum prices in the next period. The variable >� 	computes a “hit” 

every time an exchange rate movement is followed by an opposite movement in aluminum 

prices. In Table 7 we report the Mean Directional Accuracy (DA) for each currency and each 

type of aluminum contract during our sample period. DA is simply computed as the sample 

average of our >� variable. 

For inference we consider the following hypotheses: 

��: 
�>�� ≤ 	0.5 

�E: 
�>�� > 	0.5 

When the null hypothesis is rejected, it means that the “hit rate” that can be achieved by looking 

at exchange rates is greater than the 50% rate of a pure luck forecast. We compute a Diebold and 

Mariano (1995) and West (1996) test (DMW t-stat) to analyze differences against this pure luck 

benchmark. Results are displayed in Table 7. Notice that the DA is above 50% in all exercises. 

Moreover, we reject the null of “pure luck” in all exercises with just two exceptions. 
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Table 7:  Mean directional accuracy using the sign of the lagged exchange rates 

Notes: DA stands for Mean Directional Accuracy and represents the rate at which each currency return correctly forecast the sign of 

aluminum returns. Statistical significance is carried out with a Diebold and Mariano (1995) and West (1996) t-test against a 0.5 pure 

luck benchmark. We use HAC standard errors according to Newey-West (1987, 1994). 

The evidence presented in Table 7 is quite interesting in several ways. First, despite our 

previous results of weak predictability with the South African Rand, the evidence using the DA 

metric is striking: the hit rate is close to 60% in every exercise, rejecting the null at the 1% 

significance level for both spot and futures aluminum contracts. Surprisingly, the South African 

Rand provides one of the highest hit rates in Table 7. Second, results with the Australian and 

New Zealand Dollars are also remarkably good. Their hit rates are above 50% across all 

aluminum contracts. Furthermore, the null of a pure luck benchmark is rejected in 7 out of the 8 

corresponding entries in Table 7. Third, the case of the Chilean Peso is the best across all our 

five currencies, with a hit rate ranging from 59.7% to 66.2%. The null of pure luck is rejected for 

all aluminum contracts with the Chilean currency.  

We also explore DA using principal component analysis. To that end we engage again in the 

traditional environment used for out-of-sample evaluation. This means that we divide our 

sample period in two windows: an initial estimation window of size R, and an evaluation 

window of size P, just like we explain by the end of section 2. We focus on the following simple 

specification:  

∆������F�� � G + �@� + ��F� 

where @� represents the first principal component of the set of five exchange rate returns9.  

Differing from the out-of-sample exercise carried out in sections 3.2 and 3.3, where we only 

update the estimates of the parameters G and � in each rolling window, here we also update the 

computation of the first principal component of the five exchange rate returns in every rolling 

window.  This is to make sure we are implementing a fully out-of-sample exercise. 

                                                           
9
 As explained in footnote 8, here we also use the first principal component of the sum of the first two lags of the 

returns of the five exchange rates. 
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Table 8 shows the hit rates of these exercises. We see that DA in every entry in Table 8 is above 

50%, ranging from 52.9% through an outstanding 81.0%. Interestingly, we reject the null of a 

pure luck benchmark in 6 out of 8 cells in the table. 

In summary, taken individually or jointly in a principal component, the evidence presented 

here suggests that our commodity currencies perform remarkably well when forecasting the 

direction-of-change of aluminum contracts.  

 

Table 8: Mean directional accuracy using principal components 

Notes: DA stands for mean Directional Accuracy and represents the rate at which our simple model (loaded with the first principal 

component of the sum of the first two lags of the returns of the five exchange rates) correctly forecast the sign of aluminum returns. 

Statistical significance is evaluated with a Diebold and Mariano (1995) and West (1996) t-test against a 0.5 pure luck benchmark. We 

use HAC standard errors according to Newey-West (1987, 1994). 

4. Concluding Remarks 

 

In this paper we show that the exchange rates of some commodity exporter countries have the 

ability to predict the price of spot and future contracts of aluminum. We show this using a 

number of different exercises including in-sample regressions and out-of-sample analyses. We 

also show that the first principal component of our sample of exchange rates is a useful way to 

summarize the predictive information contained in our set of commodity currencies. Our 

results are consistent with the present-value model for exchange rate determination and 

provide new evidence about the ability that commodity currencies may have to forecast both 

futures and spot commodity prices.  

While we detect some heterogeneity in the predictive ability of different individual currencies, 

the evidence presented here suggests that our commodity currencies, either individually or 

jointly, perform remarkably well when forecasting spot and futures contracts of aluminum. 

Our results indicate that some of the exchange rates of countries that heavily rely on base metal 

exports have the ability to predict aluminum contracts. Nevertheless, our analyses also indicate 

that the currencies of economies with little or no production of base metals, like New Zealand 



 

 

17 
 

and South Africa, have some ability to forecast aluminum prices. One possible explanation for 

this result relies on the important and positive correlation between the commodity exports of 

these countries and aluminum prices.  

Provided that the debate on the ability that commodity currencies have to predict commodity 

prices is far from settled, we think that the crystal clear results that we report here are useful to 

shed some light to the discussion. An interesting avenue for further research would consider 

the extension of our analysis to explore the ability that commodity currencies may have to 

predict aluminum prices at long horizons.  
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Appendix 

Appendix 1. Present-value model for exchange rate determination. 

The present-value model posits that an exchange rate SI is closely related to a vector of 

fundamentals FI containing observable and unobservable components. Using this model, Engel 

and West (2005) express the exchange rate as follows: 

2� � KLM�
N

�O�

�[Q′S�F�] 

where EI represents the conditional expectation based on information available at time t, and 	ω  

is a vector of unobservable weights. 

One of the key implications of this result is that exchange rates may Granger-cause their 

individual fundamentals. We remark here that this result poses a major empirical challenge 

since weights and some fundamentals are unobservable.  
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Appendix 2. Tables  

Table A1: Main commodity exports of our countries according to CRR (2010). 

Source: Chen, Rossi and Rogoff (2010). 

 

 

Table A2: Correlations with aluminum of the main exports of our countries in different 

sample periods. 

Note: These correlations are calculated over the log-differences of each series. 

 

Main Products Wt. Main Products Wt. Main Products Wt. Main Products Wt. Main Products Wt.

Coking Coal 14.70 Crude Oil 21.40 Copper 100.00 Lamb 12.50 Gold 48.00

Steaming Coal 9.70 Lumber 13.60 Wholemeal 10.60 Platinum 30.00

Gold 9.40 Pulp 12.80 Beef 9.40 Coal 22.00

Iron ore 9.30 Nat. Gas 10.70

Base metals Wt. Base metals Wt. Base metals Wt. Base metals Wt. Base metals Wt.

Aluminum 8.10 Aluminum 5.00 Copper 100.00 Aluminum 8.30 - -

Copper 2.80 Copper 2.00

Lead 0.70 Nickel 2.40

Zinc 1.50 Zinc 2.30

Wt. Wt. Wt. Wt. Wt.

Total Base 

Metals

13.10 Total Base 

Metals

11.70 Total Base 

Metals

100.00 Total Base 

Metals

8.30 Total Base 

Metals

-

Composition of the commodity price indices in CRR

Australia Canada Chile New Zealand South Africa

Coal Gold Iron ore Copper Lead Zinc Bloomberg Average Correlation

1999Q3-2018Q4 - 0.28 - 0.76 0.55 0.71 0.68 0.57

2007Q3-2018Q4 - 0.27 0.51 0.84 0.60 0.70 0.78 0.60

20013Q1-2018Q4 0.24 0.30 0.24 0.69 0.55 0.57 0.44 0.42

Oil Lumber Pulp Nat. Gas Copper Nickel Zinc Bloomberg Average Correlation

1999Q3-2018Q4 0.55 0.41 0.48 0.28 0.76 0.56 0.71 0.68 0.53

2007Q3-2018Q4 0.65 0.42 0.59 0.40 0.84 0.70 0.70 0.78 0.61

20013Q1-2018Q4 0.43 0.39 0.39 0.27 0.69 0.56 0.57 0.44 0.44

Copper Average Correlation

1999Q3-2018Q4 0.76 0.76

2007Q3-2018Q4 0.84 0.84

20013Q1-2018Q4 0.69 0.69

Lamb Beef Agricultur Non Fuel Average Correlation

1999Q3-2018Q4 0.38 0.21 0.61 0.76 0.49

2007Q3-2018Q4 0.50 0.32 0.68 0.81 0.58

20013Q1-2018Q4 0.21 0.38 0.10 0.41 0.28

Gold Platinum Coal Bloomberg Average Correlation

1999Q3-2018Q4 0.28 0.53 - 0.68 0.49

2007Q3-2018Q4 0.27 0.56 - 0.78 0.54

20013Q1-2018Q4 0.30 0.33 0.24 0.44 0.33

3-month 15-mont 27-month Average Correlation

1999Q3-2018Q4 0.996 0.976 0.945 0.97

2007Q3-2018Q4 0.998 0.991 0.972 0.99

20013Q1-2018Q4 0.9895 0.973 0.949 0.97

Panel F: Futures

Correlations

Panel A: Australia

Panel B: Canada

Panel C: Chile

Panel D: New Zealand

Panel E: South Africa
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Table A3. In-sample analysis with the first principal component 

 
Note: We use specification 1 in Table 2 but using the first principal component of the sum of the first two lags of the returns of our 

five exchange rates as the relevant predictor. 


