lclogit2: An enhanced module to estimate latent class conditional logit models

Yoo, Hong Il

Durham University

10 November 2019

Online at https://mpra.ub.uni-muenchen.de/97014/
MPRA Paper No. 97014, posted 23 Nov 2019 07:12 UTC
lclogit2: An enhanced module to estimate latent class conditional logit models

Hong Il Yoo
Durham University Business School
Durham University
Durham, UK
h.i.yoo@durham.ac.uk

Abstract. This paper describes lclogit2, an enhanced version of lclogit (Pacifico and Yoo, 2013). Like its predecessor, lclogit2 uses the Expectation-Maximization (EM) algorithm to estimate latent class conditional logit (LCL) models. But it executes the EM algorithm’s core algebraic operations in Mata, and runs considerably faster as a result. It also allows linear constraints on parameters to be imposed in a more convenient and flexible manner. It comes with parallel command lclogitml2, a new standalone program that uses gradient-based algorithms to estimate LCL models. Both lclogit2 and lclogitml2 are supported by a new postestimation tool, lclogitwtp2, that evaluates willingness-to-pay measures implied by estimated LCL models.

Keywords: st0001, lclogit2, lclogitml2, lclogitwtp2, lclogit, mixlogit, fmm, finite mixture, mixed logit

1 Introduction

The latent class conditional logit (LCL) model extends the conditional logit model (clogit in Stata) by incorporating a discrete representation of unobserved preference heterogeneity. Algebraically, the LCL likelihood function is a finite mixture of C different conditional logit likelihood functions. Stata 15 has introduced the fmm command that estimates a wide range of finite mixture models; as of Stata 16, however, fmm does not support clogit as a component model. The community-contributed lclogit command (Pacifico and Yoo, 2013) allows Stata users to estimate LCL. But it underutilizes Stata’s computing capabilities available via the Mata environment, and does not allow the component conditional logit models to share any parameter in common.

This paper describes lclogit2, an enhanced version of lclogit. Like its predecessor, lclogit2 applies Bhat’s (1997) Expectation-Maximization (EM) algorithm to obtain the maximum likelihood estimates (MLEs) of LCL. The EM algorithm is an attractive method to maximize the non-concave log likelihood function of LCL because it offers greater numerical stability than usual Newton-type techniques that ml maximize applies. Train (2008) provides a masterful summary of the source of this advantage.

lclogit2 comes with a parallel command, lclogitml2, which estimates LCL using the usual techniques for maximum likelihood estimation. While lclogitml2 is fully functional as a standalone program, the command may be also utilized as a postesti-
Enhanced module to estimate latent class logit

Enhanced module to estimate latent class logit. The EM algorithm used by lclogit2 (and by lclogit, for that matter) produces coefficient estimates without standard errors. To draw statistical inferences, users may pass active lclogit2 estimates as starting values to lclogitml2, and obtain the usual ml maximize output table with standard errors.

Major differences between lclogit2 and lclogit modules may be summarized as follows. To facilitate discussion, let β_c denote a vector of coefficients for the c^{th} clogit component, or latent class, of LCL.

First, lclogit2 estimates a given LCL specification considerably faster than lclogit, by using Mata to execute the core algebraic operations of the EM algorithm. lclogit executes the same operations in the regular Stata environment.

Second, lclogit2 allows β_c to include homogeneous coefficients that are identical across classes, as well as heterogeneous coefficients that vary across classes. Hole’s (2007a) mixlogit command can estimate a mixed logit model that includes a combination of non-random coefficients and multivariate normal random coefficients. The new feature of lclogit2 allows estimation of a latent class counterpart to such a model specification. lclogit assumes that every coefficient is heterogeneous.

Third, lclogit2 can incorporate any set of linear constraints on β_c for $c = 1, 2, \cdots, C$, defined using Stata’s constraint command. The constraints may apply within a class (e.g. two different coefficients in β_1 are equal to 0), as well as across different classes (e.g. a coefficient in β_1 and the corresponding coefficient in β_2 are the same). lclogit can incorporate within-class constraints only, and has peculiar syntax requirements for inputting the constraints.

Fourth, lclogitml2 is a standalone estimation command. lclogitml, which accompanies lclogit, is simply a wrapper that passes lclogit estimates to another community-contributed command, gllamm (Rabe-Hesketh et al., 2002). This difference brings about several advantages.

a. lclogitml2 uses a log likelihood evaluator coded in Mata. It estimates a given LCL specification considerably faster than gllamm which uses an evaluator coded in the regular Stata environment.

b. lclogitml2 can inherit linear constraints defined for lclogit2. In contrast, to impose the same constraints across lclogit and lclogitml, users must define a set of constraints to comply with the syntax requirements of lclogit, and another set of constraints to comply with those of gllamm.

c. lclogitml2 is better suited to estimating a model with a large number of heterogeneous coefficients. Suppose that each β_c consists of K heterogeneous coefficients so that there are a total of $C \times K$ heterogeneous coefficients to estimate. In ml model’s vernacular, lclogitml2 will add C “equations” where each equation comprises K coefficients for a particular class. In contrast, gllamm will add $C \times K$ equations, where each equation’s intercept is a particular coefficient. With a large $C \times K$, a call to gllamm (via lclogitml) may fail with an error message stat-
ing that some equation is not found, presumably because there is a limit on the number of equations that \texttt{ml model} can receive from \texttt{gllamm}.

Finally, when \texttt{lclogit2} or \texttt{lclogitml2} results are active, a new postestimation tool, \texttt{lclogitwtp2}, can calculate willingness-to-pay (WTP) measures implied by the coefficient estimates. Within each class \(c\), the WTP for attribute \(k\) is calculated as the ratio of the coefficient on that attribute to another coefficient which can be interpreted as the marginal utility of money. In non-market valuation studies, such WTP measures are often the main parameters of interest. To derive the WTP measures from \texttt{lclogit} or \texttt{lclogitml} estimates, users need to write their own postestimation programs.

2 Latent class conditional logit

Consider decision maker \(n\) making a choice from \(J\) alternatives in each of \(T\) choice occasions, where \(n = 1, 2, \cdots, N\). Alternative \(j\) available to her in occasion \(t\) is described by a row vector of \(K\) attributes, \(x_{njt}\). Denote by \(y_{njt}\) a binary indicator that equals 1 if her choice is alternative \(j\), and 0 otherwise. Under the conditional logit model (\texttt{clogit} in Stata), the joint likelihood of her \(T\) choices is given by

\[
P_n(\beta) = \prod_{t=1}^{T} \prod_{j=1}^{J} \left(\frac{\exp(x_{njt}\beta)}{\sum_{k=1}^{J} \exp(x_{njt}\beta)} \right)^{y_{njt}}
\]

where \(\beta\) is a column vector of \(K\) coefficients, which can be interpreted as the marginal utilities of the corresponding entries in \(x_{njt}\). As a matter of fact, \texttt{clogit} (and for that matter, \texttt{lclogit2} and \texttt{lclogitml2}) can also accommodate data sets with \(T\) varying across decision makers, and \(J\) varying across decision makers and/or choice occasions. While \(T\) and \(J\) in equation (1) must be more accurately written as \(T_n\) and \(J_{nt}\), the subscripts will be omitted for notational simplicity.\(^1\)

The latent class conditional logit (LCL) extends the conditional logit by incorporating a discrete representation of unobserved preference heterogeneity across decision makers. Specifically, LCL assumes that there are \(C\) distinct types, or “classes”, of decision makers, and that each class \(c\) makes choices consistent with its own \texttt{clogit} model with utility coefficient vector \(\beta_c\). Suppose that the probability that decision maker \(n\) belongs to class \(c\) is given by a fractional multinomial logit specification

\[
\pi_{nc}(\Theta) = \frac{\exp(z_n\theta_c)}{1 + \sum_{l=1}^{C-1} \exp(z_n\theta_l)}
\]

where \(z_n\) is a row vector of decision maker \(n\)’s characteristics and the usual constant regressor (i.e. 1); \(\theta_c\) is a conformable column vector of membership model coefficients for class \(c\), with \(\theta_C\) normalized to 0 for identification; and \(\Theta = (\theta_1, \theta_2, \cdots, \theta_{C-1})\)

\(^1\) The Stata user manual also omits the subscripts from \(T\) and \(J\) when explaining conditional logit and related models.
Enhanced module to estimate latent class logit

denotes a collection of the $C - 1$ identified membership coefficient vectors. Under LCL, the joint likelihood of decision maker n’s choices is given by

$$L_n(B, \Theta) = \sum_{c=1}^{C} \pi_{nc}(\Theta) P_n(\beta_c)$$

where $B = (\beta_1, \beta_2, \cdots, \beta_C)$ denote a collection of the C utility coefficient vectors, and each $P_n(\beta_c)$ is obtained by evaluating equation (1) at $\beta = \beta_c$.

The sample log likelihood function under LCL can be constructed by adding up the natural log of $L_n(B, \Theta)$ across N decision makers in the sample. The command lclogit2 computes the maximum likelihood estimates (MLEs) of B and Θ by using Bhat’s (1997) Expectation-Maximization (EM) algorithm to maximize the sample log likelihood function. The command lclogitm2 computes the MLEs of the same coefficients by using gradient-based maximization techniques that Stata’s ml programs rely on. Unless the EM algorithm has been terminated prior to achieving convergence, lclogitm2 must produce the same estimates as the existing lclogit2 estimates, when the gradient-based maximization run uses the latter set of estimates as initial values. Train (2008) provides a lucid explanation for this equivalence.\footnote{As a primer to Train (2008), readers may consult Fiebig and Yoo (2019) and Pacifico and Yoo (2013). The former provides an intuitive description of the surrogate objective function that Bhat’s EM algorithm uses in lieu of the sample log likelihood function. The latter provides a short summary of algebraic operations involved in maximizing the surrogate objective function.}

\section{Estimation: lclogit2 and lclogitm2}

Both lclogit2 and lclogitm2 commands require the same data structure as clogit and its extensions, such as mixlogit (Hole, 2007a) and lclogit (Pacifico and Yoo, 2013). To aid clarification, consider the notation introduced in Section 2. The data y_{njt}, x_{njt} and z_n for each distinct triplet of indices \{n, j, t\} must be organized into a separate row in the data file (i.e. an observation in Stata’s vernacular). Within a block of data rows associated with consumer n, y_{njt} and x_{njt} thus vary from row to row, whereas z_n is repeated across all rows.

The syntax diagram for lclogit2 is as follows.

\begin{verbatim}
lclogit2 depvar [varlist1] [if] [in], group(varname) rand(varlist2) nclasses(#) [, id(varname) membership(varlist3) constraints(numlist) seed(#) iterate(#) ltolerance(#) tolerance(#) tolcheck noglog]
\end{verbatim}

The syntax diagram for lclogitm2 is very similar.

\begin{verbatim}
lclogitm2 depvar [varlist1] [if] [in], group(varname) rand(varlist2) nclasses(#) [, id(varname) membership(varlist3) constraints(numlist) seed(#) from(init_specs) noninteractive_options]
\end{verbatim}
The indicator \(y_{njt} \) in Section 2 refers to each observation on the dependent variable, \(\text{depvar} \). Within a block of data rows associated with consumer \(n \) and choice occasion \(t \), \(\text{depvar} \) must be equal to 1 in the row describing the alternative that she actually chose, and 0 in all the other rows.

Each command has three required options. The required option \(\text{group(varname)} \) is identical to the namesake option in \(\text{clogit} \), \(\text{mixlogit} \) and \(\text{lclogit} \), and specifies a numeric variable that identifies distinct choice occasions faced by different decision makers. In the context of equation (1), the variable in question tells Stata which \(J \) data rows to use when evaluating the \(\text{clogit} \) formula inside the large round brackets. The variable must take a unique numeric value for each distinct pair of \(n \) and \(t \), and the value must be repeated across all \(J \) data rows associated with that pair.

The required option \(\text{rand(varlist2)} \) is similar to the namesake option in \(\text{mixlogit} \), and specifies attribute variables whose utility coefficients are assumed to vary from class to class. Sometimes, users may wish to constrain a subset of utility coefficients to be identical across all classes. Such constraints can be conveniently requested by using the optional \(\text{varlist1} \) to specify those attributes with class-invariant utility coefficients.\(^3\) To avoid contradiction, no variable must appear in both \(\text{varlist2} \) and \(\text{varlist1} \). The attribute vector \(x_{njt} \) in Section 2 refers to each observation on \(\text{varlist2} \) (and, if specified, \(\text{varlist1} \)).

Finally, the required option \(\text{nclasses(#)} \) specifies the number of classes, \(C \) in equation (3). In empirical research, it is common practice to choose the preferred number of classes by estimating a latent class conditional logit (LCL) specification repeatedly with different candidate values for \(C \), and inspecting which value optimizes the Bayesian Information Criterion (BIC). See Section 5 for further discussion.

Optional options for \(\text{lclogit2} \) include:

- \(\text{id(varname)} \) is identical to the namesake option in \(\text{mixlogit} \) and \(\text{lclogit} \), and specifies a numeric identifier variable for decision makers. This variable is expected to identify which block of data rows is associated with each decision maker \(n \); its value must vary from decision maker to decision maker, but remain constant within all data rows for the same decision maker. The default is to assume that \(\text{group(.)} \) and \(\text{id(.)} \) are identical, which is equivalent to assuming that each decision maker has faced only one choice occasion (i.e. \(T = 1 \)).

- \(\text{membership(varlist3)} \) specifies independent variables for the class membership model in equation (2), except the constant regressor of 1 which is always assumed to be included. Together with the constant regressor, each observation on \(\text{varlist3} \) makes up \(z_n \), the vector of decision maker \(n \)’s characteristics. Within a block of

\(^3\) Mixed logit models are sometimes specified to include multivariate normal random coefficients on all attributes except price, the coefficient on which is assumed to be identical across decision makers. As Revelt and Train (1998) have noted, the homogeneous price coefficient makes it easier for gradient-based numerical maximizers to find a solution, and ensures that the implied willingness-to-pay for each non-price attribute has a finite expected value. To estimate a latent class conditional logit version of this specification, users may include the price variable in \(\text{varlist1} \) and the rest of attribute variables in \(\text{varlist2} \).
data rows associated with decision maker \(n \), the numerical values of \(varlist3 \) must remain constant across all rows. The default is to assume that \(varlist3 \) is empty, i.e. \(z_n \) only includes the constant regressor.

- \texttt{constraints(numlist)} specifies linear constraints to be applied during estimation. The constraints must be defined using Stata command \texttt{constraint}, prior to estimation. The default is to impose no such constraints.

When using \texttt{constraint}, note that equation names for the utility coefficients on \(varlist1 \) and \(varlist2 \) are \texttt{Fix} and \texttt{Class‘c’}, respectively, where \texttt{‘c’} refers to a particular class number. The coefficient on \(varname \) in \(varlist1 \) is, therefore, \texttt{[Fix]varname}. The coefficient on \(varname \) in \(varlist2 \) is \texttt{[Class1]varname} for Class 1, \texttt{[Class2]varname} for Class 2 and so on.

- \texttt{seed(#)} sets the seed for pseudo uniform random numbers used in computing starting values. See Pacifico and Yoo (2013) for the detailed procedure. The default is \texttt{c(seed)}.

- \texttt{iterate(#)} specifies the maximum number of iterations. The default is 1000.

- \texttt{ltolerance(#)} specifies the tolerance for the log likelihood. When the relative increase in the log likelihood over the last five iterations is less than the specified value, \texttt{lclogit2} declares convergence. The default is 0.00001.

- \texttt{tolcheck} requests the use of an extra convergence criterion to reduce the chance of false declaration of convergence. If this option is used, \texttt{lclogit2} will declare convergence when (1) the relative increase in the log likelihood is smaller than \texttt{ltolerance()} AND (2) the relative difference in the coefficient vector is smaller than \texttt{tolerance()} over the last five iterations.

- \texttt{tolerance(#)} specifies the tolerance for the coefficient vector. The default is 0.0004.

- \texttt{nolog} suppresses the display of an iteration log.

As the syntax diagram above shows, many of the optional options for \texttt{lclogit2} are also available for \texttt{lclogitml2}. Optional options unique to \texttt{lclogitml2} are as follows.

- \texttt{from(init_specs)} is identical to the namesake option of \texttt{mixlogit} (Hole, 2007a), and supplies custom starting values for the utility and membership coefficients, i.e. \(B \) and \(\Theta \) in equation (3). The default starting values are obtained by applying the same procedure as what Pacifico and Yoo (2013) describe for \texttt{lclogit}.

- \texttt{noninteractive_options} refer to extra options for use with \texttt{ml model} in noninteractive mode. See the Stata help file for \texttt{ml model}.

4 Postestimation: lclogitpr2, lclogitcov2 and lclogitwtp2

Both lclogit2 and lclogitml2 are supported by three postestimation commands: lclogitpr2, lclogitcov2, and lclogitwtp2. For each decision maker, lclogitpr2 predicts choice probabilities associated with each alternative in each choice situation that she has faced, as well as her class membership probabilities. lclogitcov2 computes variances and covariances of class-specific utility coefficients $\beta_1, \beta_2, \ldots, \beta_C$, by considering them as a discrete random variable with probability masses given by class membership probabilities $\pi_{n1}(\Theta), \pi_{n2}(\Theta), \ldots, \pi_{nC}(\Theta)$. Finally, lclogitwtp2 converts estimated utility coefficients into implied willingness-to-pay (WTP) measures, in a similar manner as Hole’s (2007b) wtp works on clogit coefficients.

The remainder of this section focuses on the syntax diagram for lclogitwtp2, which provides a new postestimation tool that is not available for lclogit. The other two postestimation commands have the same functionalities and syntax diagrams as lclogitpr and lclogitcov that support lclogit, apart from the “2” suffix. Pacifico and Yoo (2013) describe lclogitpr and lclogitcov in detail.

4.1 Syntax for lclogitwtp2

The attribute vector x_{njt} typically includes a pecuniary attribute, the utility coefficient on which can be associated with the marginal utility of money. Very often, the pecuniary attribute measures the cost of acquiring a particular alternative. For example, in Oviedo and Yoo (2017), each alternative is a reforestation project, and the cost is a required increase in the decision maker’s tax liabilities to finance that project. In some applications, the pecuniary attribute may measure income generated by a particular alternative instead. For example, in Doiron and Yoo (2017), each alternative is a junior nursing job and the amount of income is salary earned from that job.

In most non-market valuation studies, the index function $x_{njt}\beta$ is assumed to be linear in the pecuniary attribute. The marginal utility of money is then equal to -1 times the cost coefficient, or alternatively to the income coefficient itself. Let $\beta_{k,c}$ be an entry in β that is the utility coefficient on attribute k. The WTP for attribute k can be evaluated as $-1 \times \beta_{k,c}/\beta_{cost,c}$ or $\beta_{k,c}/\beta_{income,c}$, depending on whether the pecuniary attribute measures cost or income.4

In the “cost” case, the syntax diagram for lclogitwtp2 is:

```
lclogitwtp2, cost(varname) [ , nonlc nlcom nlcom_options ]
```

Similarly, in the “income” case, the syntax diagram for lclogitwtp2 is:

```
lclogitwtp2, income(varname) [ , nonlc nlcom nlcom_options ]
```

4. Note that the WTP measure is class-invariant only when both numerator and denominator coefficients are class-invariant. Even when the numerator (denominator) coefficient is constrained to be class-invariant, the WTP measure varies from class to class as long as the denominator (numerator) coefficient does.
The required option \texttt{cost(varname)} or \texttt{income(varname)} identifies the pecuniary attribute variable, the coefficient on which enters the denominator of the WTP formula. When \texttt{lclogit2} estimates are active, \texttt{lclogitwtp2} simply reports the implied WTP measures. When \texttt{lclogitml2} results are active, it also acts as a wrapper for Stata’s \texttt{nlcom} command, which it uses to computes standard errors and confidence intervals for the implied WTP measures.

The two optional options are relevant only when \texttt{lclogitml2} results are active:

- \texttt{nonlcom} requests that the command skip the \texttt{nlcom} step, and report the WTP measures without test statistics. The default is to execute the \texttt{nlcom} step.
- \texttt{nlcom_options} refer to options for \texttt{nlcom}. See the Stata help file for \texttt{nlcom}.

\section{Examples}

Just as \texttt{clogit}, both \texttt{lclogit2} and \texttt{lclogitml2} require that the data \(y_{njt}, x_{njt} \) and \(z_n \) for each distinct triplet of indices \(\{n, j, t\} \) (see Section 2 for the notation) be organized into a separate row in the data file. As an example, consider \texttt{transport.dta} available on the Stata Press website.\footnote{This is an example data file used by Stata 16’s new \texttt{cmxtmixlogit} command, which allows users to estimate mixed logit models for panel data. In comparison to Hole’s (2007a) \texttt{mixlogit}, the new command provides more choices over mixing distributions and Monte Carlo integration methods.} This fictitious data file has been generated to imitate a sample of \(N = 500 \) decision makers choosing from \(J = 4 \) alternative transport modes (car, public transport, bicycle or walk) in each of \(T = 3 \) choice situations. Each choice occasion refers to a different time of the year, so the decision maker’s age in decades \((\text{age}) \), income in $0,000s \((\text{income}) \), and full or part-time employment status \((\text{parttime}) \) may vary from occasion to occasion. Each alternative mode is described by its cost \((\text{trcost}) \) in $s and required travel time \((\text{trtime}) \) in hours. Before proceeding, the contents of \texttt{trtime} will be modified to measure savings in travel time relative to walking. Following this change, the coefficient on \texttt{trtime} can be interpreted as the marginal utility of one hour saving in travel time relative to walking.

\begin{verbatim}
. use https://www.stata-press.com/data/r16/transport
(Transportation choice data)
. qui by id t: replace trtime = trtime[4] - trtime[_n]
\end{verbatim}

The first 12 rows of the data file are displayed below. The variables \texttt{id}, \texttt{t}, and \texttt{alt} identify decision makers \((n = 1, 2, \cdots, 500) \), choice occasions \((t = 1, 2, 3) \), and alternatives \((j = 1, 2, 3, 4) \), respectively. Each row of \texttt{choice} is \(y_{njt} \), and each row of \texttt{trcost} and \texttt{trtime} is \(x_{njt} \). Decision maker 1 turns out to be someone who traveled by car in all three occasions. While each row of \texttt{age}, \texttt{income} and \texttt{parttime} records the decision maker’s characteristics, it is repeated only within a choice occasion, not across all data rows associated with the same decision maker. In other words, the row does not make up \(z_n \), and the three variables cannot be included \texttt{varlist3} to model membership probabilities. Instead, users may consider interacting each demographic variable with
trcost and trtime, and including the interaction terms in varlist1 or varlist2. As Train (2009, §3) explains, including the interaction terms is equivalent to specifying the utility coefficient on each attribute as a linear function of the demographic variables.

```plaintext
. list in 1/12, sepby(t)

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>alt</th>
<th>choice</th>
<th>trcost</th>
<th>trtime</th>
<th>age</th>
<th>income</th>
<th>parttime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Car</td>
<td>1</td>
<td>4.14</td>
<td>0.01</td>
<td>3.0</td>
<td>3 Full-time</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Public</td>
<td>0</td>
<td>4.74</td>
<td>-0.29</td>
<td>3.0</td>
<td>3 Full-time</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Bicycle</td>
<td>0</td>
<td>2.76</td>
<td>-0.23</td>
<td>3.0</td>
<td>3 Full-time</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Walk</td>
<td>0</td>
<td>0.92</td>
<td>0.00</td>
<td>3.0</td>
<td>3 Full-time</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Car</td>
<td>1</td>
<td>8.00</td>
<td>0.25</td>
<td>3.2</td>
<td>5 Full-time</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Public</td>
<td>0</td>
<td>3.14</td>
<td>0.27</td>
<td>3.2</td>
<td>5 Full-time</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Bicycle</td>
<td>0</td>
<td>2.56</td>
<td>0.21</td>
<td>3.2</td>
<td>5 Full-time</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Walk</td>
<td>0</td>
<td>0.64</td>
<td>0.00</td>
<td>3.2</td>
<td>5 Full-time</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Car</td>
<td>1</td>
<td>1.76</td>
<td>0.41</td>
<td>3.4</td>
<td>5 Part-time</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Public</td>
<td>0</td>
<td>2.25</td>
<td>0.09</td>
<td>3.4</td>
<td>5 Part-time</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Bicycle</td>
<td>0</td>
<td>0.92</td>
<td>-0.47</td>
<td>3.4</td>
<td>5 Part-time</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Walk</td>
<td>0</td>
<td>0.58</td>
<td>0.00</td>
<td>3.4</td>
<td>5 Part-time</td>
<td></td>
</tr>
</tbody>
</table>
```

Just as clogit, lclogit2 and lclogitml2 require a variable that identifies all data rows associated with each distinct pair of decision maker \(n\) and choice occasion \(t\). As the first command line below shows, such a variable can be generated using the egen command’s group(.) function. To include alternative-specific intercepts in the latent class conditional logit (LCL) model, the second command line creates alternative-specific constants. Variable asc1 is set to 1 in all data rows for car and 0 everywhere else. Variables asc2, asc3 and asc4 are similarly defined in relation to public transport, bicycle and walk, respectively. The last variable will be excluded from the model to achieve identification.

```plaintext
. egen gid = group(id t)
. qui tab alt, gen(asc)
```

How many classes, \(C\), should LCL allow for? In many empirical studies, including my own (Yoo and Doiron, 2013; Doiron and Yoo, 2017; Oviedo and Yoo, 2017; Doiron and Yoo, 2020), this question is addressed by repeatedly estimating the same LCL model with different numbers of classes, and inspecting which number leads to the best model in terms of the Bayesian Information Criterion (BIC). lclogit2 calculates and stores the estimated model’s BIC in `bic`, facilitating this specification search process.\(^6\)

\(^6\) The command also stores the Akaike Information Criterion (AIC) in `aic`, and the Consistent Akaike Information Criterion (CAIC) in `caic`. AIC equals \(-2\ln L + 2m\), where \(\ln L\) is the maximized sample log likelihood, and \(m\) is the total number of estimated parameters (i.e. linearly independent coefficients in \(B\) and \(\Theta\) in equation (3)). BIC and CAIC penalize inclusion of extra parameters using penalty functions that increase in the number of decision makers, \(N\): \(\text{BIC} = -2\ln L + m \ln N\) and \(\text{CAIC} = -2\ln L + m(1 + \ln N)\). In my own experience, BIC and CAIC often favor the same number of classes. AIC almost always prefers a larger number of classes than BIC, but I have often found the convergence of AIC-preferred models dubious: their log likelihood function is often not concave at the supposed maximum.
The `lclogit2` example below shows that BIC is 2316.537 with 2 classes. The 2-class model appears to be an optimal model for this fictitious data file. While not reported, raising the number of classes (in `ncl(.)`) to 3 slightly worsens BIC to 2318.831, and raising it further to 4 results in numerical convergence problems. For each class c, the output table reports the estimates of utility coefficients β_c and membership probability (i.e. class share) $\pi_{nc}(\Theta)$. Users interested in the estimates of Θ can inspect the full coefficient vector stored in $e(b)$. In the present application, since z_n only includes the constant regressor (i.e. `varlist3` is empty), $\pi_{nc}(\Theta)$ is the same across all decision makers. In case $\pi_{nc}(\Theta)$ varies from decision maker to decision maker, the output table will report sample average class shares.

```stata
. lclogit2 choice, ncl(2) rand(trcost trtime asc1 asc2 asc3) group(gid) id(id)
> seed(1234)
Iteration 0: log likelihood = -1235.2979
(output omitted)
Iteration 38: log likelihood = -1124.0883
Iteration 39: log likelihood = -1124.0881
Latent class model with 2 latent classes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Class1</th>
<th>Class2</th>
</tr>
</thead>
<tbody>
<tr>
<td>trcost</td>
<td>-0.421</td>
<td>-1.338</td>
</tr>
<tr>
<td>trtime</td>
<td>1.127</td>
<td>0.599</td>
</tr>
<tr>
<td>asc1</td>
<td>5.213</td>
<td>4.769</td>
</tr>
<tr>
<td>asc2</td>
<td>2.185</td>
<td>2.567</td>
</tr>
<tr>
<td>asc3</td>
<td>1.265</td>
<td>0.851</td>
</tr>
<tr>
<td>Class Share</td>
<td>0.528</td>
<td>0.472</td>
</tr>
</tbody>
</table>

Note: Model estimated via EM algorithm
```

To obtain standard errors for the `lclogit2` estimates, users can pass the estimates through to `lclogitml2` as initial values, as shown below. In the `lclogitml2` output table, equations `Class1`, `Class2` and `Share1` correspond to β_1, β_2 and θ_1, respectively. The estimation results are stored in Stata’s memory under the name `ML2`, to be recalled later in other examples.

```stata
. matrix start = e(b)
. lclogitml2 choice, ncl(2) rand(trcost trtime asc1 asc2 asc3) group(gid) id(id)
> from(start)
Iteration 0: log likelihood = -1124.0873
(output omitted)
Iteration 3: log likelihood = -1124.0873
Latent class model with 2 latent classes
```

Users can request that the `lclogitml2` results be reported in the `lclogit2` output table, by typing `lclogit2` (without any other input) at the command prompt while `lclogitml2` results are active.
Note that in the present example, `lclogitml2` manages to locate a slightly higher sample log likelihood than `lclogit2`, even though, theoretically, the EM algorithm should have located a local maximum. This type of numerical difference may arise because the default of `lclogit2` is to declare convergence when the relative increase in the log likelihood is smaller than `ltolerance()` (see Section 3), whereas `lclogitml2` uses Stata’s gradient-based optimizers that apply a more strict set of convergence criteria (see the help file for `ml maximize`). The `tolcheck` option of `lclogit2`, which was not available for `lclogit`, requests that the EM algorithm add the relative change in the coefficient vector as another criterion. Users who favor numerical accuracy over computational speed may execute `lclogit2` with `tolcheck` to minimize, if not eliminate, the numerical difference.

The new postestimation tool `lclogitwtp2` allows users to convert the utility coefficients for `Class1` and `Class2` into their monetary equivalents, or willingness-to-pay (WTP) measures. Since `trcost` measures the cost of each transport mode, the marginal utility of money is given by $-1 \times$ its coefficient. Thus, `lclogitwtp2` must be executed with `cost(trcost)`, instead of `income(trcost)`, as the required option. The output is displayed below, and includes standard errors and confidence intervals produced by `nlcom`, because the active results are for `lclogitml2`. Had the active results been for `lclogit2` instead, only the first table in the output would have been displayed. The coefficient on `trtime` in each class measures how much (in $s) each person in that class is willing to pay for a one hour saving in their travel time relative to walking. To test a hypothesis involving two or more WTP coefficients, users may execute `lclogitwtp2` with `nlcom`’s `post` option, and then use the `test` command.

8. Based on my experience, if users plan on using `lclogit2` as a tool to obtain initial values for `lclogitml2`, the use of `tolcheck` is unlikely to alter the final results. Even without this option, `lclogit2` can find a solution which is very close to a local maximum, so toggling on `tolcheck` does not affect which maximum `lclogitml2` finally converges to.

9. Hole’s (2007b) `wtp` allows users to choose from three different approaches to computing confidence intervals for WTP, which have been described in Hole (2007c). By acting as a wrapper for `nlcom`, `lclogitwtp2` adopts the first of the three approaches, known as the delta method.
Enhanced module to estimate latent class logit

```
.lclogitwtp2, cost(trcost)
```

Willingness-to-pay (WTP) coefficients

<table>
<thead>
<tr>
<th>WTP for</th>
<th>Class1</th>
<th>Class2</th>
</tr>
</thead>
<tbody>
<tr>
<td>trtime</td>
<td>2.647</td>
<td>0.447</td>
</tr>
<tr>
<td>asc1</td>
<td>12.336</td>
<td>3.556</td>
</tr>
<tr>
<td>asc2</td>
<td>5.169</td>
<td>1.916</td>
</tr>
<tr>
<td>asc3</td>
<td>2.989</td>
<td>0.635</td>
</tr>
</tbody>
</table>

Please wait: `nlcom` is calculating standard errors for the WTP coefficients.

C1_trtime:	_b[Class1:trtime] / (-1 * _b[Class1:trcost])
C1_asc1:	_b[Class1:asc1] / (-1 * _b[Class1:trcost])
C1_asc2:	_b[Class1:asc2] / (-1 * _b[Class1:trcost])
C1_asc3:	_b[Class1:asc3] / (-1 * _b[Class1:trcost])
C2_trtime:	_b[Class2:trtime] / (-1 * _b[Class2:trcost])
C2_asc1:	_b[Class2:asc1] / (-1 * _b[Class2:trcost])
C2_asc2:	_b[Class2:asc2] / (-1 * _b[Class2:trcost])
C2_asc3:	_b[Class2:asc3] / (-1 * _b[Class2:trcost])

```
.choice Coef. Std. Err. z P>|z| [95% Conf. Interval]
C1_trtime 2.647337 1.474857 1.79 0.073 -.2433291 5.538003
C1_asc1 12.33594 2.028533 6.08 0.000 8.360084 16.31179
C1_asc2 5.169268 1.391943 3.71 0.000 2.441109 7.897426
C1_asc3 2.989299 1.301158 2.30 0.022 .4390759 5.539522
C2_trtime .446605 .1479973 3.02 0.003 .1565356 .7366744
C2_asc1 3.556041 .250291 14.21 0.000 3.06548 4.046603
C2_asc2 1.916459 .150539 12.73 0.000 1.621408 2.21151
C2_asc3 .6346396 .1225004 5.18 0.000 .3945432 .8747359
```

Both `lclogit2` and `lclogitml2` allow users to impose any set of linear constraints, defined by Stata’s `constraint` command in the usual manner. The constraints may apply within the same class, as well as between different classes. In contrast, `lclogit` can incorporate within-class constraints only, and has peculiar syntax requirements for inputting the constraints. The `lclogitml2` example below constrains the coefficient on `trcost` to be the same across Class 1 and Class 2. The output is omitted from reporting because it is identical in substance to another output example to follow immediately.

```
.constraint 1 [Class1]trcost = [Class2]trcost
.est restore ML_2
(results ML_2 are active now)
.matrix start = e(b)
.lclogitml2 choice, ncl(2) rand(trcost trtime asc1 asc2 asc3) group(gid) id(id)>
> from(start) constraint(1)
[output omitted]
```

In a two-class model, constraining a coefficient to be the same across Class 1 and Class 2 is equivalent to making that coefficient class-invariant. Users can introduce class-invariant coefficients more conveniently by moving relevant attribute variables from `varlist2` in `rand(.)` to `varlist1`, as illustrated below. The required option `rand(.)` and

10. See Pacillico and Yoo (2013) for further information.
associated distinction between varlist1 and varlist2 are irrelevant to lclogit. The older command assumes that all coefficients vary from class to class, and expects all attribute variables to be specified in the position of varlist1.

```
est restore ML_2
(results ML_2 are active now)
lclogitml2 choice trcost, ncl(2) rand(trtime asc1 asc2 asc3) group(gid) id(id)
> continue
Iteration 0: log likelihood = -1237.2847 (not concave)
[output omitted]
Iteration 7: log likelihood = -1145.5241
Latent class model with 2 latent classes

| choice | Coef.  | Std. Err. | z    | P>|z|   | [95% Conf. Interval] |
|--------|--------|-----------|------|--------|----------------------|
| Class1 |        |           |      |        |                      |
| trtime | .5789143 | .1667984  | 3.47 | 0.001  | .2519954 .9058331   |
| asc1   | 3.829321 | .2540867  | 15.07 | 0.000  | 3.33132 4.327321   |
| asc2   | 1.998434 | .1799878  | 11.10 | 0.000  | 1.645664 2.351203  |
| asc3   | .6756294 | .1481346  | 4.56  | 0.000  | .385291  .9659678  |
| Class2 |        |           |      |        |                      |
| trtime | 1.448878 | .8711226  | 1.66 | 0.096  | -.2584903 3.156247 |
| asc1   | 8.941724 | .4994205  | 9.31 | 0.000  | 6.980894 10.70255  |
| asc2   | 3.430455 | .8777397  | 3.96 | 0.000  | 1.733317 5.134794  |
| asc3   | 1.995432 | .8943151  | 2.23 | 0.026  | .2426063 3.748257  |
| Share1 |   _cons | .235064 | .160667 | 1.46  | 0.143  | -.0798374 .5499655 |
| Fix    | trcost  | -.9392836 | .0506779 | -18.53 | 0.000  | -1.038611 -.8399567 |
```

Ironically, the EM algorithm used by lclogit2 estimates an unconstrained model faster than a more parsimonious model that includes class-invariant coefficients or other types of between-class constraints on utility coefficients (Fiebig and Yoo, 2019). As usual, the ml maximize techniques used by lclogitml2 tend to estimate constrained models faster than unconstrained models, and users may therefore consider the sequence of estimation runs above as the default approach: using lclogit2 to estimate an unconstrained model, and then feeding the unconstrained estimates as starting values to lclogitml2 that imposes desired constraints. When the constrained maximum is far away from the unconstrained maximum, the default approach may result in convergence failure. In such cases, users may let lclogit2 impose the constraints despite the resulting slowdown, and exploit the EM algorithm’s numerical stability to locate the

11. The EM algorithm fits an unconstrained model by estimating C separate clogit models to compute parameters $\beta_1, \beta_2, \cdots, \beta_C$. This class-by-class estimation approach, however, becomes no longer viable when some constraints apply between different classes. For example, whenever there is at least one class-invariant coefficient, the EM algorithm must carry out a computationally demanding task of estimating all C utility coefficient vectors simultaneously. Train (2009, p.308) reports a similar drawback of the Bayesian procedure for estimating mixed logit models; the procedure achieves convergence much faster when the model involves only random coefficients than when it involves a combination of random and non-random coefficients.
Enhanced module to estimate latent class logit

The new lclogit2 and lclogitml2 commands take advantage of Mata, and can reduce computer run times considerably relative to their predecessors, especially when the number of estimated parameters is large. On a Windows 10 laptop with Intel i5-8250U CPU and 16-GB RAM, for example, the new commands can estimate the unconstrained 2-class model above almost twice faster than their predecessors: the lclogit2 run achieves convergence in about 11 seconds and the subsequent lclogitml2 run in 9 seconds, whereas the equivalent lclogit and lclogitml runs take about 24 and 17 seconds, respectively. The run time difference becomes more perceptible when the number of classes is increased to 3: the lclogit2 and lclogitml2 runs take about 75 and 30 seconds, whereas the lclogit and lclogitml runs take about 160 and 70 seconds. Of course, using Mata does not alter the fact that estimating a finite mixture model like LCL is a computer-intensive task. lclogit2 and lclogitml2 estimation runs in authentic applications (as opposed to the present application using an example data file) may still take several hours, if not days, of computer time.12

6 Applications to other types of logit models

As explained by Cameron and Trivedi (2005, p.498) and reiterated by Yan and Yoo (2019), the conditional logit (\texttt{clogit} in Stata) formula inside the big brackets of equation (1) nests binary logit (\texttt{logit}) and multinomial logit (\texttt{mlogit}) formulas as special cases. Thus, in principle, users can use \texttt{clogit} to obtain the same estimation results as \texttt{logit} and \texttt{mlogit}. In practice, this requires reorganization of data beforehand. In the \texttt{reshape} command’s vernacular, \texttt{clogit} requires that the data be in “long” form, with multiple rows per each group identified by \texttt{group(.)}, whereas \texttt{logit} and \texttt{mlogit} require that the data be in “wide” form, with one row per each group. Adkins (2011) provides a detailed Stata example showing how to reorganize \texttt{logit} and \texttt{mlogit} data for the \texttt{clogit} analysis, which he attributes to Cameron and Trivedi (2010).

\texttt{lclogit2} and \texttt{lclogitml2} can estimate latent class extensions of \texttt{logit} and \texttt{mlogit}, once the data have been suitably reorganized in accordance with Adkins’s (2011) example. Stata 15 has introduced a new command \texttt{fmm} that can estimate latent class extensions of several baseline models including \texttt{logit} and \texttt{mlogit}.13 For cross sec-

12 Doiron and Yoo (2020) report a 4-class latent class model for a sample of 234 individuals making choices in a collective total of 11,208 occasions. The model specification was more specialized than LCL as it incorporated a variant of LCL known as latent class heteroskedastic rank-ordered logit (LHROL) (Yoo and Doiron, 2013), but the estimation routine was based on essentially the same Mata codes as \texttt{lclogit2} and \texttt{lclogitml2}. On a Windows 7 desktop with Intel i7-4790 CPU and 32-GB RAM, estimating 291 parameters of the 4-class model took 21 hours at the EM algorithm step, and additional 110 hours at the subsequent gradient-based optimization step that used \texttt{technique(nr)}.

13 As of Stata 16, \texttt{fmm} cannot estimate the latent class conditional logit because it does support \texttt{clogit} as a component model. But \texttt{fmm} supports another type of logit model known as ordered logit (\texttt{ologit}). \texttt{clogit} and \texttt{ologit} are non-nested models, albeit both of them nest \texttt{logit} as special cases: there is no data reorganization trick that allows users to apply \texttt{clogit} to replicate \texttt{ologit} results. Consequently, \texttt{lclogit2} and \texttt{lclogitml2} cannot estimate latent class extensions of \texttt{ologit},
tional data \((T = 1)\), the latent class logit and mlogit models that lclogit2 and lclogitml2 estimate are equivalent to what \texttt{fmm} estimates. But \texttt{fmm} cannot estimate models for panel data \((T \geq 2)\) that consider preference class membership as the decision maker’s time-invariant characteristic, i.e. models which assume that someone from Class \(c\) has the utility coefficient vector of that class throughout all time periods or choice occasions.\(^{14}\) lclogit2 and lclogitml2 can estimate such panel models, once a variable identifying decision makers has been specified in option \texttt{id(.)}.

Some stated preference surveys ask the decision maker to rank-order all alternatives from most to least preferred, instead of simply asking her to choose her most preferred alternative. A popular baseline model for analyzing rank-ordered data is the rank-ordered logit (rologit) model. Suppose that the decision maker rank-orders three different jobs described by salary, availability of on-site parking (1 for abundant and 0 for limited) and full-time contract status (1 for yes and 0 for no).\(^{15}\) The data organization example below satisfies rologit’s requirements, and the dependent variable \texttt{rank} shows that the decision maker’s most preferred job is job A (\texttt{rank} = 3) and least preferred job is job B (\texttt{rank} = 1), with job C coming in between (\texttt{rank} = 2).\(^{16}\)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{group} & \textbf{rank} & \textbf{job} & \textbf{salary} & \textbf{parking} & \textbf{fulltime} \\
\hline
1. & 1 & 3 & [1] A & 1500 & 1 & 1 \\
2. & 1 & 1 & [2] B & 2500 & 1 & 0 \\
\hline
\end{tabular}
\end{table}

As Train (2009, pp. 156-158) points out, rologit is so closely related to clogit that users may apply clogit to replicate rologit, and the extensions of clogit such as \texttt{mixlogit} to estimate the corresponding extensions of rologit. It follows that users can use lclogit2 and lclogitml2 to estimate what Yoo and Doiron (2013) call the latent class rank-ordered logit (LROL) model.\(^{17}\) This requires that the rank-ordered data be reorganized in a way that allows clogit to replicate rologit. Under

14. The assumption of time-invariant class membership parallels how unobserved individual heterogeneity is handled in continuous mixture models such as random effects probit (\texttt{xtprobit}) and panel data mixed logit (\texttt{cmxtmixlogit}). The latent dependent variable model for \texttt{xtprobit} assumes that the intercept randomly varies across decision makers but remains constant within a decision maker. The latent dependent variable model for \texttt{cmxtmixlogit} assumes that the utility coefficients randomly vary across decision makers but remain constant within a decision maker.

15. This example is motivated by Yoo and Doiron (2013) and Doiron and Yoo (2020) that analyze rank-ordered data on entry-level nursing jobs at Australian hospitals. In the actual data, each job is described by salary and 11 non-salary attributes which include, \textit{inter alia}, parking availability, full-time contract status, the hospital’s reputation, and opportunities for professional development.

16. That a higher level of \texttt{rank} indicates a more preferred alternative is the default assumption of rologit.

17. Yoo and Doiron (2013) also describe a variant of LROL called latent class heteroskedastic rank-ordered logit (LHROL), which accounts for the notion that the decision maker may find it easier (or harder) to tell what her best alternative is than what her second-best alternative is. A Stata program for estimating LHROL is available on the \textit{Canadian Journal of Economics} data archive page for Doiron and Yoo (2020). The program does not come with any help file, but it shares similar syntax diagrams with lclogit2 and lclogitml2.
Enhanced module to estimate latent class logit

rologit, the probability of ranking job A, job C and job B as best, second-best and worst, respectively, is given by a product of two clogit probabilities: the probability of choosing job A from \{A, B, C\} and that of choosing job C from \{B, C\}.\(^{18}\) Therefore, in Train’s vernacular, the rank-ordered data above can be “exploded” into data on two “pseudo-choices”, where the first pseudo-choice is made from \{A, B, C\} and the second pseudo-choice is made from \{B, C\}. The command block below explodes the rank-ordered data as suggested, and displays the resulting pseudo-choice data that satisfy the data organization requirements of clogit.

1. gen choice = [rank == 3]
2. expand 2, gen(sb)
3. drop if rank == 3 & sb == 1
4. replace choice = [rank == 2] if sb == 1
5. egen gid = group(group sb)
6. list, sepby(gid)

<table>
<thead>
<tr>
<th>group</th>
<th>rank</th>
<th>job</th>
<th>salary</th>
<th>parking</th>
<th>fulltime</th>
<th>choice</th>
<th>sb</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>[1] A</td>
<td>1500</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>[2] B</td>
<td>2500</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>[3] C</td>
<td>2000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>[2] B</td>
<td>2500</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>[3] C</td>
<td>2000</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Given several pseudo-choice data blocks organized as above, clogit that replicates rologit must be executed with option group(gid), so that Stata can correctly identify data rows to be used in evaluating each clogit probability. lclogit2 and lclogitml2 must be executed with options group(gid) and id(group), where the variable group in option id(.) allows Stata to recognize that the utility coefficients remain invariant across all pseudo-choice situations exploded from the same choice situation. In case more than one choice situation is observed per decision maker, id(.) can be altered to specify a variable that identifies individual decision makers instead.

There is a well-known variant of rank-ordering known as best-worst scaling (BWS) (Louviere, Flynn and Marley, 2015). In an “object case” BWS task, the decision maker examines a set of attributes, say \{salary, parking, contract type\}, and states which of those attributes are the most important (best) and least important (worst) to her decision making. A popular baseline model for analyzing object case BWS data is the maximum difference (max-diff) logit model. Once its psychological foundations are stripped away, the max-diff logit model is algebraically identical to clogit, meaning that users can apply lclogit2 and lclogitml2 to estimate what Yoo and Doiron (2013) call the latent class max-diff logit model. Specifically, when there are \(K\) attributes, the max-diff logit model is algebraically identical to a clogit model defined over \(K \times (K-1)\)

\(^{18}\) In general, when there are \(J\) alternatives, a rologit probability is given by a product of \(J - 1\) clogit probabilities. The component clogit probabilities are the probability of choosing the best from all \(J\) alternatives; that of choosing the best from of \(J - 1\) alternatives excluding the first best; that of choosing the best from \(J - 2\) alternatives excluding the first and second best; and so on.
alternatives, where each alternative is a particular 2-permutation of the K attributes, i.e. a distinct candidate pair of the best and worst attributes. To facilitate the max-diff analysis, the BWS data for the three-attribute example may be organized as follows.

<table>
<thead>
<tr>
<th>group</th>
<th>choice</th>
<th>salary</th>
<th>parking</th>
<th>contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

In the present example, each data row describes one of the $3 \times 2 = 6$ candidate best-worst pairs. An attribute takes a value of 1 in the row where it makes up the most important or “best” element of the pair, and -1 where it makes up the least important or “worst” element. The decision maker’s BWS response appears in row 4, where the dependent variable choice takes a value of 1, and attributes parking and contract take values of 1 and -1, respectively: the decision maker has stated that parking is the best attribute, and contract type is the worst attribute. Given several BWS data blocks organized in this way, the max-diff logit model can be estimated by running a clogit regression of choice on any $K - 1 = 2$ out of the $K = 3$ attributes, where one attribute is omitted to achieve identification and option group(group) must be specified to identify choice situations. lclogit2 and lclogitm2 can be used to extend the baseline clogit model in the usual manner. Note that the clogit index ($x_{njt} \beta$ in Section 2) for each row is now the best-worst utility difference of the pair that it describes, for example $\beta_{parking} - \beta_{contract}$ in row 4. The sobriquet max-diff refers to the assumption that the decision maker chooses the pair that maximizes the best-worst utility difference.

Another type of BWS known as “profile case” BWS is identical to the object case, apart from that each attribute in question is associated with a particular level descriptor. For example, the decision maker may examine and state the best and worst out of three attribute-levels, {salary of 2000, limited on-site parking, part-time contract}. The max-diff logit model for this type of response is algebraically identical to clogit too, and the data can be organized in a similar way as the object case example. For a full example of how to organize profile case data, see the Canadian Journal of Economics data archive page for Doiron and Yoo (2020).

lclogit2 and lclogitm2 assume that the latent class conditional logit (LCL) model has been specified in what Train and Weeks (2005) classify as the “prefer-

19. Yoo and Doiron (2013) and Doiron and Yoo (2020) provide further information on identification and interpretation of the max-diff logit model’s coefficients, and their comparisons to the traditional clogit utility coefficients. Neither the max-diff logit model nor BWS elicitation method is our own contribution, though I believe that empirical economists may find our exposition more accessible than other comparable sources. The statistical and data collection methods originate from a series of papers by Louviere, Flynn and Marley, which are referenced in their book (Louviere, Flynn and Marley, 2015).
Enhanced module to estimate latent class logit
cence space.” Each estimated coefficient on an attribute is a utility coefficient, and \texttt{lclogitwtp2} should be used to obtain the corresponding willingness-to-pay (WTP) measure. An alternative approach is to reparameterize the model in the “WTP space,” by specifying the sample log likelihood directly as a function of the WTP measures. Hole’s (2007a; 2015) \texttt{mixlogit} and \texttt{mixlogitwtp} commands allow users to estimate multivariate normal mixture logit models in the preference space and WTP space, respectively. The two commands lead to substantively different estimation results because, as explained by Train and Weeks (2005), multivariate normal utility coefficients do not imply multivariate normal WTP measures and \textit{vice versa}, unless the marginal utility of money is constant across all decision makers.\footnote{A brief explanation for the difference between the preference space and WTP space results would be that a WTP measure is a ratio of two utility coefficients, and a ratio of two normal random variables is not a normal random variable.}

In the context of a finite or discrete mixture logit model which LCL is, whether users estimate the model in one space or another is less critical. As Oviedo and Yoo (2017) point out, the set of mass points in a discrete mixing distribution that maximize the sample log likelihood function is invariant to whether the model is parameterized in the preference space or the WTP space. Therefore, the WTP measures derived from the utility coefficients (using \texttt{lclogitwtp2}) are the same as what users would have obtained if they reparameterized the model to estimate the WTP measures directly.

7 Acknowledgments

I would like to thank an anonymous reviewer for helpful comments and constructive suggestions. I would also like to thank users of \texttt{lclogit} for their feedback on the older command.

8 References

About the authors

Hong Il Yoo is an associate professor in economics at Durham University Business School, Durham University, UK.