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Abstract:  

 

This article performs simulations with different small samples considering the regression 

techniques of OLS, Jackknife, Bootstrap, Lasso and Robust Regression in order to stablish the best 

approach in terms of lower bias and statistical significance with a pre-specified data generating 

process -DGP-. The methodology consists of a DGP with 5 variables and 1 constant parameter 

which was regressed among the simulations with a set of random normally distributed variables 

considering samples sizes of 6, 10, 20 and 500. Using the expected values discriminated by each 

sample size, the accuracy of the estimators was calculated in terms of the relative bias for each 

technique. The results indicate that Jackknife approach is more suitable for lower sample sizes as 

it was stated by Speed (1994), Bootstrap approach reported to be sensitive to a lower sample size 

indicating that it might not be suitable for stablish significant relationships in the regressions.  The 

Monte Carlo simulations also reflected that when a significant relationship is found in small 

samples, this relationship will also tend to remain significant when the sample size is increased.   
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Introduction 

One situation that might happen while we’re trying to analyze data and make empirical inferences 
over a phenomenon is that we may have a low (or reduced) number of observations. This is usually 

associated with the lack of confidence in the estimations, especially when we’re opting for the 
regression analysis in the multivariate framework.  

One answer to avoid this problem is to perform descriptive statistics and proceed with the 

deduction patterns, however one could ask: are we really sure that our estimations are unreliable 

(they really lack of confidence?) when we’re regressing a model in the presence of low 
observations? Naturally, the literature supports this idea from different perspectives, as an example 

Bujang, Sa’at, & Tg Abu Bakar Sidik (2017) studies state that in order to obtain coefficients closer 

to the population parameters we need around 300 observations.  

But if our phenomenon has not been studied (or documented) properly in order to obtain a 

significant number of observations, should we discard immediately the multiple regression 

technique to analyze it? The aim of this paper is to provide evidence that regression can have 

consistent estimates of the coefficients when we’re dealing with low number of observations.  

The methodology consists mainly in the use of Monte Carlo simulations derived from a linear data 

generating process -DGP- to perform conclusions about the bias of the estimated coefficients in 

the regression framework. The estimation techniques involve ordinary least squares -OLS-, 

Jackknife, Bootstrap, Robust Regression and Lasso approaches.   

 

Some studies related 

The number observations can be classified in general terms as it can be found in the study of Mason 

& Perreault  (1991) where a sample size of 30 or lesser is considerate small, samples around 150 

observations can be considered as moderate and finally, samples bigger than 250 or 300 are tagged 

as large.  One interesting problem that arises in small samples are relative to the statistical 

inferences, in fact “using a sample smaller than the ideal increases the chance of assuming as true 

a false premise” (Faber & Fonseca, 2014). This implies considering the two types of errors in 

statistical hypothesis testing, the type I and II errors. In simple words, the first type of error refers 

that our null hypothesis 𝐻0 (relative to a specific proposition) is true but we reject it, while the 

second type of error refers when our 𝐻0 is false but we don’t reject it.  

Small sample size and incorrect inferences in the parameters’ significance test are studied by 
Colquhoun (2014) indicating that a p-value lesser than 5% might not be statistical significant since 
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the results are derived from “underpowered statistical inferences”. From this, the risk of using a 
small size would be the possibly type I error in the regression framework.  

More from this idea can be found in another study of Forstmeier, Wagenmakers, & Parker (2017) 

where the problem of false-positive findings can be derived from a decreased sample size and 

incorrect p-values. Also, the problem of statistical inferences is correlated with the replication 

procedure, in other words, the last two types of errors seems to be sensitive to the number of 

replications in a way that the results derived from one inference might not match the result of a 

similar exercise concerning a similar set of data. This is a fair point in the analysis, the number of 

replications might affect the statistical inference and the overall converge rate to the population 

parameters of the estimations, so it should be taken in account. This idea lead to a basic statement: 

as we increase the number of replications of an experiment, we’re getting closer and closer to the 
expected behavior of the population parameters in the inference.  

This authors also make a valid point regarding some underlying assumptions of the estimations, 

for example autocorrelation, correct specifications, no omitted variables in general. In this case, 

small sample size inferences can be harmful where also the ordinary least squares assumptions are 

not satisfied.  

A remarkable study performed by Holmes Finch & Hernandez Finch (2017) start by analyzing 

tools like Lasso, Elastic net, Ridge regression and the Bayesian approach regarding the situation 

when we got high dimensional multivariate data relative to an even bigger number of variables. In 

this case, the number of independent variables maybe close or equal to the sample size, yielding 

in unstable coefficients and standard errors (this ones are needed to the formulation of the 

hypothesis testing procedure) (Bühlmann & Van De Geer, 2011). The result of this experiments 

tends to demonstrate that regularization methods, in particular the ridge regression approach where 

more accurate in terms to control bias and type I errors produced in the estimations with low 

sample data for multiple regression analysis.  

Speed (1994) tries to contribute to the solution of low sample size in the regression framework, 

considering sample reuse validation techniques. These techniques refer to the Jackknife and 

Bootstrap approaches related to the multiple regression estimation. An important statement of this 

author is:  

“Researchers should note that the overwhelming case is that reduction in sample size is far more 

likely to reduce the likelihood of finding any significant relationships than to increase it. This is 

due to the way that sample size affects test power. The researcher sets the level of type I error (the 

probability of accepting a hypothesis when false in reality) in any test, normally at 0-05, and critical 

values calculated for the given size of sample. Small sample sizes are no more likely to result in 

wrongfully claiming a relationship exists than is the case for larger samples.” (Speed, 1994, pág. 

91) 
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This interpretation is indeed useful since it states that low sample relationships are more likely to 

be found when the sample size increases over the experiments. In fact, there are some literature 

which also critiques the role of large samples in the estimations, arguing that anything becomes 

significant. Within this idea we can find the study of Lin, Lucas Jr. & Shmueli (2013) where they 

affirm that as the sample size is increasing, the p-value starts to decrease drastically to 0, which 

could lead to statistical significant results which are not sensitive over the regression analysis. 

Meanwhile a low sample size is more sensitive to the correlation between the variables (this 

implies sensibilization to the changes too) leading to think that large sample size might find 

significant results when it’s just an overwhelming product of the power of the sample without 

accurately indicating real (or strong) relationships among the variables. In fact, Faber & Fonseca 

(2014) appoints that samples cannot be either too big or too small in order to perform statistical 

inferences.  

Up to this point we’re facing problems on both sides of the sample size, too much can be 
misleading and unsensitive to true relations among the variables (which can be specially the case 

in the regression analysis) and on the opposite, when we got a little sample size, we might have 

results that are inconsistent across replications driving to errors of type 1.  
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Methodology 

 

The main idea of the methodology is to perform Monte Carlo approximations across different 

types of estimations which involves OLS, Jackknife, Bootstrap, Lasso and Robust Regression, 

assuming a multivariate data generating process in a linear form as it follows:  𝑦𝑖 = 𝛼 + 𝛾𝑥1,𝑖 + 𝛿𝑥2,𝑖 + 𝜃𝑥3,𝑖 + 𝜗𝑥4,𝑖 + 𝜑𝑥5,𝑖 + 𝑢𝑖 ( 1 )  

Equation (1) is calibrated setting the population parameters 𝛼, 𝛾, 𝛿, 𝜃, 𝜗, 𝜑 as all equal to 10 for 

the i observations. The objective is to identify which of the estimation types suits better in terms 

of accuracy of the estimators. In this case, across the simulations it is assumed that  𝑥𝑗~𝑁(0,1)             ,             𝑢𝑖~𝑁(0,1) ( 2 )  

From (1) we’re setting the number of replications to 10, 100 and 500 while the number of 

observations would be set as first to 6 in order to induce on purpose the micronumerosity 

phenomenon and see how the estimators react to this problem, also the other number of 

observations are set to 10, 20 and 500. There’s no need to test a higher number of observations 
since empirical literature has established that overall significance and unbiasedness is influenced 

by a large sample size. The relative bias of the estimators among the coefficients would be 

expressed as a relative difference from the population parameter, following a general idea that:  

𝐵𝑖𝑎𝑠 = | 𝛽𝑗 − 𝛽𝑗̅𝛽𝑗 | ( 3 )  

Where 𝛽𝑗 represents the parameter of the 𝑗 variable contained in equation (1) and 𝛽𝑗̅ represents the 

estimated parameters. The overall bias can be expressed in terms of expected values as it follows:  

𝑂. 𝐵. = | 𝛽𝑗 − 𝐸(𝛽𝑗)̅̅ ̅̅𝛽𝑗 | ( 4 )  

Where the mean value of the estimated parameters would be our expected value 𝐸(𝛽𝑗)̅̅ ̅̅  of the 

coefficients by each type of regression. In this case, the bias would be expressed in terms of 

percentage, indicating that 0 would be closer to a perfect match with the true parameter.  

In order to see change in the statistical significance of the coefficients, single Monte Carlo 

simulations would be presented in the usual regression output for each type of estimation (OLS, 

jackknife, bootstrap, lasso and robust regression) with the different size in observations as 

mentioned before, then the bias results would be presented for each type of estimation 

discriminated by size of the sample and number of replications.  
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Results 

Statistical significance 

 

The OLS simulation practiced, establish that the pattern of statistical significance for all estimators 

will remain as long as the sample size is increasing, the special case of micronumerosity tend to 

disrupt the statistical significance as expected, but the yielding estimators seems to be closer to the 

DGP.  

 

Table 1 OLS Monte Carlo simulation with different sizes 

  (1) (2) (3) (4) 

VARIABLES y y y y 

          

x1 9.549 9.288*** 9.915*** 9.991*** 

 (0) (0.440) (0.208) (0.0468) 

x2 10.36 9.915*** 10.01*** 9.961*** 

 (0) (0.491) (0.200) (0.0499) 

x3 8.952 9.709*** 10.27*** 9.979*** 

 (0) (0.362) (0.211) (0.0457) 

x4 10.66 10.44*** 9.977*** 10.04*** 

 (0) (0.295) (0.207) (0.0453) 

x5 10.70 9.233*** 10.59*** 10.02*** 

 (0) (0.530) (0.289) (0.0506) 

Constant 8.902 9.979*** 10.10*** 9.997*** 

 (0) (0.394) (0.225) (0.0463) 

     
Observations 6 10 20 500 

R-squared 1.000 0.999 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own elaboration 

As an interesting thing to consider, the 𝑅2 values changes when we estimate the DGP with 20 

observations, to a lower accuracy (but still closer to 1) in the context of 500 observations, this is 

proof that the property of consistency among the OLS estimator is achievable (and of course all 

classical assumptions of the linear regression model are also satisfied). This tends to indicate that 

the affirmation of Speed (1994) regarding to the relationships found in small sample size tend to 

remain as the size of the sample increases.  

Going further with the jackknife estimation, it can be observed that it cannot be computed in the 

presence of perfect micronumerosity, leading to the impossibility to even approach to get a result 

from observed coefficients, among the statistical significance it also remains across sample size, 

suggesting the same result from OLS.  
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Table 2 Jackknife estimation with different sample size 

  (1) (2) (3) (4) 

VARIABLES y y y y 

          

x1 - 9.733*** 10.25*** 10.00*** 

 - (0.470) (0.358) (0.0445) 

x2 - 9.892*** 9.891*** 9.926*** 

 - (0.296) (0.380) (0.0454) 

x3 - 10.42*** 10.33*** 10.02*** 

 - (0.667) (0.296) (0.0445) 

x4 - 11.04*** 10.09*** 9.977*** 

 - (0.523) (0.403) (0.0476) 

x5 - 10.29*** 9.627*** 10.03*** 

 - (0.784) (0.401) (0.0434) 

Constant - 9.454*** 9.830*** 10.04*** 

 - (0.433) (0.282) (0.0462) 

     
Observations 6 10 20 500 

R-squared - 0.999 0.998 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own elaboration 

The goodness of fit of the model tends to be reduced as the sample size is increased considering 

this type of estimation, we can also see that the coefficients vary from the ones estimated via OLS.  

The bootstrap estimation is presented in the table and display results a little bit different from the 

OLS and the jackknife, in the induced model with micronumerosity the coefficients can be 

computed, however, standard errors cannot be estimated.   

Table 3 Bootstrap estimation with different sizes 

  (1) (2) (3) (4) 

VARIABLES y y y y 

          

x1 10.06 10.26** 9.651*** 10.01*** 

 (0) (4.026) (0.214) (0.0512) 

x2 9.375 10.67** 10.23*** 9.958*** 

 (0) (4.408) (0.264) (0.0359) 

x3 10.85 9.744*** 10.40*** 10.02*** 

 (0) (2.750) (0.200) (0.0379) 

x4 10.24 10.27 9.718*** 10.05*** 

 (0) (8.483) (0.177) (0.0422) 

x5 10.68 10.15*** 9.959*** 10.01*** 

 (0) (3.871) (0.238) (0.0479) 

Constant 11.34 10.50*** 10.04*** 9.993*** 

 (0) (2.564) (0.286) (0.0396) 

     
Observations 6 10 20 500 
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R-squared 1.000 0.993 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own elaboration 

According to the Monte Carlo experiment with the bootstrap technique, it can be seen that as the 

sample size is increasing, the statistical significance will also be increased. The variables 𝑥1, 𝑥2 

and 𝑥4 demonstrate this situation, where for example with n=10, for 𝑥4 there wasn’t a statistically 
significant relation with 𝑦 in the regression model. Then as soon as we increased the sample size 

to n=20 the variable turned to be significant, the similar case can be observed with 𝑥1 and 𝑥2 where 

they only were significant at a 5% with n=10. Then with n=20 they become significant at 1%, 

indicating that the bootstrap approach is sensitive to number of observations regarding to the 

coefficient hypothesis testing. Which might suggest is not a good idea to perform this technique 

with low sample size since it might discard a real relationship among the variables.  

Following with the Lasso regression, micronumerosity doesn’t allow the estimation of the 
coefficients. And the overall statistical significance remains equal across regressions with different 

sample sizes. This result indicate that estimations are consistent across models using the right 

variables with the specific function formal equally to the DGP.  

Table 4 Lasso estimations with different sizes 

  (1) (2) (3) (4) 

VARIABLES y y y y 

          

x1 - 11.18*** 10.09*** 10.03*** 

 - (0.832) (0.242) (0.0453) 

x2 - 9.605*** 9.785*** 9.913*** 

 - (0.376) (0.272) (0.0452) 

x3 - 10.70*** 9.866*** 10.07*** 

 - (0.551) (0.264) (0.0442) 

x4 - 9.441*** 9.585*** 9.873*** 

 - (0.355) (0.235) (0.0421) 

x5 - 10.17*** 9.861*** 9.984*** 

 - (0.397) (0.336) (0.0433) 

     
Observations 6 10 20 500 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own elaboration 

It can be noted that Lasso regression omits the constant parameter, but the highest possible good 

of fit has been selected according to the variables.  Thus, the statistical significance of the 

estimators prevails across the models with different sample sizes. However, it is necessary to 

appoint that Lasso regression doesn’t look directly at the p-values or the standard errors, since its 

sole objective is to isolate a model where the predictions becomes more suitable according to the 

data (StataCorp, 2019).  
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The robust regression estimates are similar to the ones done with Lasso and jackknife in terms that 

the model cannot be estimated when micronumerosity is present. The other results related to the 

statistical significance of the estimators indicate that when we’re in the context of short samples, 

the relationships remain significant as the number of observations increase.  

Table 5 Robust Regression with different sizes 

  (1) (2) (3) (4) 

VARIABLES y y y y 

         

x1 - 9.866*** 9.883*** 10.02*** 

 - (0.443) (0.282) (0.0442) 

x2 - 11.04*** 9.560*** 9.978*** 

 - (0.618) (0.255) (0.0460) 

x3 - 10.15*** 10.35*** 10.02*** 

 - (0.611) (0.290) (0.0415) 

x4 - 9.315*** 10.16*** 9.972*** 

 - (1.361) (0.333) (0.0441) 

x5 - 10.88*** 10.25*** 9.963*** 

 - (0.649) (0.215) (0.0430) 

Constant - 10.58*** 9.949*** 10.02*** 

 - (0.935) (0.226) (0.0444) 

 -    
Observations 6 9 20 500 

R-squared - 1.000 0.999 0.998 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Source: Own elaboration 

An interesting thing to appoint is that as long as we’re having a large sample regarding our 
regressions, the goodness of fit tends to be reduced somewhat across estimations. This led to the 

conclusion that 𝑅2 is sensitive to the number of observations among the sample, in a really little 

inverse relationship.  

Bias behavior of the parameters 

 

This section consists of the results for each type of estimation (OLS, jackknife, bootstrap, lasso 

and robust regression) referring to the distributions across replications for the coefficients, kernel 

densities were used for each coefficient of the different 𝑥 variables in order to provide analysis 

regarding the importance of the number of replications.  

Ordinary Least Squares 
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Considering a number of 6 observations, the coefficients for each variable tend to be somewhat 

unstable when the number of replications is low, meaning that in the presence of micronumerosity 

the estimators are less likely to be trustable. As replications are increased to 100 and 500, the 

estimators seems to converge to their true value of 10, the situation clearly implies that across 

regressions with random data, as long as we replicate enough times the experiments, the expected 

value seems to be close to our DGP, it should be noted that OLS estimators stills covers some 

extreme values which would be affecting the consistency across replications, as we can see it in 

the graphical pattern.   

 

Graph 1 OLS - Distributions of the Coefficients with n=6 

 

 

Source: Own elaboration 
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This results proofs evidence that under micronumerosity, OLS estimates are unstable so it should 

be avoided at all cost. Considering the 500 replications for the 6 observations regression with OLS, 

the descriptive statistics for each coefficient reflects an undeniable reality. The minimum and 

maximum values are out of scale regarding to our DPG where each coefficient equal to 10, even 

when the mean value is somewhat closer, the results yield unstable. 

Table 6 OLS Descriptive Statistics with n=6 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.78 13.529 -86.594 243.693 
 _b_x2 500 13.807 102.362 -588.518 2199.746 
 _b_x3 500 7.444 49.54 -1044.307 199.705 
 _b_x4 500 10.553 28.372 -306.405 526.281 
 _b_x5 500 4.668 62.136 -1043.826 62.116 
 _b_cons 500 5.83 92.71 -2015.365 188.439 

Source: Own elaboration 

Now considering the number of observations as 10, the following pattern of distributions can be 

found:  

 

Graph 2 OLS - Distributions of the Coefficients with n=10 
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Source: Own elaboration 

There is a quick and stable rate of convergence relative to the distributions of the estimators for 

each variable which is depicted across replications. The distributions tend to be normal as the 

simulation number increase, leading to the true value of the estimators for all 𝑥 variables and the 

constant term. The descriptive statistics are shown ahead considering 500 hundred replications of 

the Monte Carlo simulations with n=10 observations.  

Table 7 OLS Descriptive Statistics n=10 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.937 .575 5.552 11.942 

 _b_x2 500 9.994 .599 7.56 12.789 

 _b_x3 500 9.957 .688 2.325 12.944 

 _b_x4 500 10.007 .583 8.089 14.52 

 _b_x5 500 9.999 .582 5.572 12.208 

 _b_cons 500 10.002 .535 7.253 12.053 
Source: Own elaboration 

 

We can see that the minimum and maximum values for the 500 hundred replications with n=10 

tends to be more stable than when n=6 which is the micronumerosity simulation. In this case the 

mean values are also more accurate in terms to approach to the data generating process of equation 

(1).  
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Now considering the number of observations to 20, the pattern of the distributions for each 

parameter is shown ahead, indicating a possibly significant difference from the n=10 exercise 

because of the shape of the curves for each distribution are different.  

Graph 3 OLS - Distributions of the Coefficients with n=20 

 

 

The range of the distribution is somewhat more accurate (from 9 to 11 in the x axis) for all 

replications with the 20 observations, this tends to indicate that the precision of the estimates is 

increasing as expected. However, the shape of the curve is somewhat different but stills relies over 

10. Which is a sign of the consistency and unbiasedness property of the estimator.  The descriptive 

statistics from the 500-replication exercise within this number of observations reflects a good 

precision of the estimators.   
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Table 8 OLS Descriptive Statistics with n=20 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.979 .274 8.95 10.736 

 _b_x2 500 10.018 .269 9.145 11.104 

 _b_x3 500 10.003 .284 9.126 11.082 

 _b_x4 500 10.007 .268 8.834 11.139 

 _b_x5 500 10.002 .275 8.8 10.889 

 _b_cons 500 9.998 .271 9.262 10.837 
Source: Own elaboration 

Finally, as a comparing exercise, we’re setting the number of observations to 500 in order to 
understand the behavior of the coefficients’ distribution.  

 

Graph 4 OLS - Distributions of the Coefficients with n=500 
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Source: Own elaboration 

As expected, the higher number of observations tend to have a faster converging rate to the true 

value of the parameters than the other simulations with lesser observations, the accuracy of the 

regressions are shown in the descriptive statistics ahead.  

Table 9 OLS Descriptive Statistics n= 500 

 Variable Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 10.002 .043 9.883 10.149 

 _b_x2 500 9.999 .044 9.857 10.112 

 _b_x3 500 9.998 .043 9.878 10.115 

 _b_x4 500 10.001 .044 9.86 10.13 

 _b_x5 500 10.001 .044 9.807 10.132 

 _b_cons 500 10.001 .044 9.873 10.134 
Source: Own elaboration 

 

Jackknife 

 

This type of estimation cannot be performed in the presence of perfect micronumerosity so 

distribution analysis cannot be done with the case of 6 observations. Moving ahead with 10 

observations, the behavior of the distributions of the parameters according to different replications 

are shown in the next graphs.  

 

Graph 5 Jackknife - Distributions of the Coefficients with n=10 
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Source: Own elaboration 

It appears that the range of the different parameters’ distributions in the case of 100 replications is 
higher than the rest of the simulations considering 10 observations, something particular but yet 

over the long-run not important since the mean value of all replications stills converge to the true 

value. The shape of the distributions cannot be established as better from the OLS, since the range 

varies widely. From this, descriptive statistics would be useful.  

Table 10 Jackknife Descriptive Statistics n=10 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.999 .554 8.398 12.178 

 _b_x2 500 10.024 .594 8.152 12.835 

 _b_x3 500 9.987 .554 7.092 12.61 

 _b_x4 500 10.009 .63 7.176 12.303 

 _b_x5 500 10.001 .577 7.451 12.494 

 _b_cons 500 9.997 .565 7.9 13.709 
Source: Own elaboration 

 

The expected value of the parameters is more accurate in the jackknife simulations than it is with 

the OLS, also the standard deviation tends to be lower for the jackknife approach. Considering 

now a sample size of 20 observations, the following pattern can be observed. 
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Graph 6 Jackknife - Distributions of the Coefficients with n=20 

 

 

 

Source: Own elaboration 

Jackknife estimation seems to be more unstable with a lower number of replications considering 

n=20, however we’re not sure yet if it’s suitable better than OLS by the graphic interpretation, 

looking at the descriptive statistics  

Table 11 Jackknife Descriptive Statistics n=20 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.985 .284 8.913 10.834 

 _b_x2 500 9.986 .272 8.936 10.74 

 _b_x3 500 9.988 .273 9.249 10.867 

 _b_x4 500 9.978 .274 9.097 10.769 

 _b_x5 500 9.99 .276 9.181 10.766 

 _b_cons 500 10.006 .274 9.219 10.895 
 Source: Own elaboration 
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The estimations with jackknife seem to be pretty close to the ones performed with OLS at this 

number of observations, however OLS seems to have the advantage to be more stable with lesser 

replications than Jackknife does and the expected value with n=20 of the estimators is closer to 

the DGP than it is for jackknife.  

Finally, with 500 observations, it is noted that jackknife has the counterpart to require a higher and 

significant time of computing during the estimations.  

Graph 7 Jackknife - Distributions of the Coefficients with n=500 

 

 

Source: Own elaboration 
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The jackknife distribution with n=500 seems to converge somewhat equal to the OLS estimations. 

If we analyze the statistics relative to the OLS for the same number of observations we’ll find that 
the OLS performs better in terms of the standard deviation and minimum and maximum values 

closer to 10.  

Table 12 Jackknife Descriptive Statistics n=500 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 500 10.002 .045 9.865 10.126 

 _b_x2 500 10.001 .044 9.814 10.128 

 _b_x3 500 9.999 .046 9.848 10.133 

 _b_x4 500 10 .043 9.879 10.154 

 _b_x5 500 10 .045 9.875 10.154 

 _b_cons 500 10 .043 9.875 10.106 
Source: Own elaboration 

 

Bootstrap 

 

Similar to the Jackknife approach, bootstrap estimation cannot be performed if the number of 

observations is 6, so it is not allowed perfect micronumerosity. Moving to the analysis with n=10 

we can observe the following patterns of the parameters via bootstrap.  

Graph 8 Bootstrap - Distributions of the Coefficients with n=10 
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Source: Own elaboration 

The pattern related to the lowest replications (10) tends to be unstable with the bootstrap technique 

with n=10, but as it gets more replications the parameters converge to their true value. The 

descriptive statistics are presented ahead indicating a similar behavior to the Jackknife technique.   

 

Table 13 Bootstrap Descriptive Statistics n=10 

 Variable  Replications  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.955 .588 7.653 13.115 

 _b_x2 500 9.968 .552 7.915 12.409 

 _b_x3 500 9.995 .633 6.682 13.314 

 _b_x4 500 10.014 .558 7.865 12.28 

 _b_x5 500 10.015 .556 7.969 13.482 

 _b_cons 500 9.98 .532 7.794 12.132 
Source: Own elaboration 

Moving to n=20, the patterns relative to the lesser replications tend to be more stable than with 

n=10, indicating a sensitive behavior of the bootstrap with lower samples, however stills yielding 

results similar to OLS and Jackknife.  
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Graph 9 Bootstrap - Distributions of the Coefficients with n=20 

 

 

Source: Own elaboration 

As happens with the jackknife, the bootstrap seems to have variations for each distribution of each 

variable when the replication number is set to 100, however the distributions converge as OLS and 

jackknife in the case of bootstrap when replications are set to 500.  

Table 14 Bootstrap Descriptive Statistics n=20 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.977 .288 8.93 11.161 

 _b_x2 500 9.986 .288 9.015 10.734 

 _b_x3 500 9.998 .277 9.019 10.957 

 _b_x4 500 10.013 .279 9.185 11.261 

 _b_x5 500 10.009 .275 8.953 10.988 

 _b_cons 500 9.988 .273 8.885 10.678 
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Source: Own elaboration 

Going further with the bootstrap technique and using n=500 observations, the graphical pattern 

indicates some better adjustment regarding to lower replications.  

Graph 10 Bootstrap - Distributions of the Coefficients with n=500 

 

 

Source: Own elaboration 

The pattern of the distributions among the coefficients when the number of replications is set to 

500 tends to be more different from the OLS and the Jackknife estimations, which might suggest 

that bootstrap performs different distributions for each estimator even when the OLS and jackknife 

tend to converge the distribution for all estimators with the same number of n=500 observations. 

According to the descriptive statistics, bootstraps seems to be as efficient as OLS and Jackknife 
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specially because of the mean value of the coefficients, it’s stills as accurate relative to this 

expected value in comparison.  

Table 15 Bootstrap Descriptive Statistics n=500 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.998 .044 9.881 10.099 

 _b_x2 500 10.003 .044 9.847 10.128 

 _b_x3 500 9.997 .045 9.866 10.14 

 _b_x4 500 9.996 .042 9.875 10.112 

 _b_x5 500 10.005 .045 9.861 10.141 

 _b_cons 500 10.002 .045 9.878 10.163 
Source: Own elaboration 

 

Lasso regression 

 

As mentioned before, lasso cannot compute the model when the number of observations is equal 

to 6, so we’re going straight to the analysis with 10 observations, the graphical pattern is shown 
ahead.  

Graph 11 Lasso - Distributions of the Coefficients with n=10 
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Source: Own elaboration 

The graphs suggest that the distributions are different for each variable across replications, in that 

case the constant coefficient remains with difference ranges when its converging to the true 

parameter. The descriptive statistics suggest that from the 500 simulations some of them failed and 

were just covering up to 307 replications, the constant term was the only which remained across 

regressions however even when the mean value it’s somewhat accurate, the minimum and 
maximum values are varying more than the coefficients associated with 𝑥 variables. 

Table 16 Lasso Descriptive Statistics n=10 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 317 9.484 1.963 .287 20.51 

 _b_x2 317 9.444 2.142 .014 23.37 

 _b_x3 314 9.371 1.921 .657 17.363 

 _b_x4 318 9.382 2.063 .29 19.233 

 _b_x5 307 9.457 1.841 .894 12.664 

 _b_cons 500 10.108 4.509 -11.102 27.153 
Source: Own elaboration 

 

Proceeding with lasso estimations with n=20 we watch the graphical pattern associated to the 

distribution of the parameters as it follows:  
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Graph 12 Lasso - Distributions of the Coefficients with n=20 

 

 

Source: Own elaboration 

According to the distributions, the estimators associated to the different variables seem to behave 

over a wide range during the simulations with n=20 observations. Relying to the descriptive 

statistics we can find a significant range regarding to 𝑥1 variable and the constant term in the 

regression. Also, some simulations failed to accomplish the main total of 500, which tends to 

indicate that lasso approach is sensitive to the number of replications and the overall range of the 

estimators across replications.  

Table 17 Lasso Descriptive Statistics n=20 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 476 9.889 .635 1.037 10.743 

 _b_x2 474 9.908 .296 8.608 10.746 

 _b_x3 474 9.904 .276 8.965 10.901 
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 _b_x4 474 9.903 .31 8.986 10.962 

 _b_x5 474 9.917 .272 8.957 10.609 

 _b_cons 500 9.98 1.002 2.243 19.351 
Source: Own elaboration 

The descriptive statistics tend to indicate some instability of the lasso regression with n=10 and 

20, which would be judge in overall with the 500 observations simulations. Proceeding with the 

analysis with n=500 simulations, the graphical pattern is shown ahead.  

Graph 13 Lasso - Distributions of the Coefficients with n=500 

 

 

Source: Own elaboration 

The distribution seems not to converge to the exact value of the DGP, lasso regression also seems 

to perform a different distribution relative to the other 𝑥 variables and the constant coefficient. 

This doesn’t mean Lasso regression is inconsistent, since it’s close to 10, however is not as 

consistent as other estimations are. The descriptive statistics of the estimated parameters tends to 
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confirm this idea since the expected value of the estimators is not as close to the other types of 

estimations, also it tends to have a standard deviation a little bit higher than the others.  

Table 18 Lasso Descriptive Statistics n=500 

Variable Obs Mean Std.Dev. Min Max 

_b_x1 500 9.934 .043 9.81 10.075 

_b_x2 500 9.934 .047 9.791 10.097 

_b_x3 500 9.936 .046 9.795 10.067 

_b_x4 500 9.934 .044 9.784 10.059 

_b_x5 500 9.935 .044 9.807 10.054 

_b_cons 500 9.999 .046 9.873 10.14 
Source: Own elaboration 

 

Robust regression 

 

The last type of estimation we’re analyzing is the robust regression, this one cannot be estimated 
with n=6 observations (the perfect micronumerosity case) so we’re going straight forward to set 
n=10 observations and perform the graphical distribution patterns.  

 

Graph 14 Robust Regression - Distributions of the Coefficients with n=10 
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Source: Own elaboration 

With 500 simulations, Stata calculated 484 replications, the rest of the remaining replications failed 

in the maximization process. There are some appoints to make here, first: the range of the 

distribution with n=10 observations across replications is way too high in comparison OLS, 

Jackknife, Bootstrap or Lasso types of estimations, second: some of the distributions of some 

variables tend to have spikes closer to the value of 0 indicating that a significant number of times, 

the robust regression adjusted some coefficients as 0. According to the descriptive statistics, the 

mean value of the coefficients tends to converge better than Lasso, however Jackknife and 

Bootstrap perform better with this set of observations.   

Table 19 Robust Regression Descriptive Statistics n=10 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 484 9.704 2.682 -7.252 20.553 

 _b_x2 484 9.732 2.689 -2.542 21.981 

 _b_x3 484 9.494 2.57 0 19.703 

 _b_x4 484 9.794 2.661 -.849 23.795 

 _b_x5 484 9.694 2.949 -1.525 24.251 

 _b_cons 484 9.898 2.408 -4.489 23.887 
Source: Own elaboration 

Moving forward and setting n=20 observations, we can observe that the graphical pattern of the 

distributions for each estimator of each variable is going more accurate with the robust regression 

technique, however no significant changes are from the other types of estimations. 
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Graph 15 Robust Regression - Distributions of the Coefficients with n=20 

 

 

Source: Own elaboration 

The behavior with n=20 observations is far better than with n=10, also these results are consistent 

with a lesser range over the estimators. The mean value of the estimators is getting closer to 10 as 

we increased the number of replications.  

 

Table 20 Robust Regression Descriptive Statistics n=20 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.989 .313 8.915 11.808 

 _b_x2 500 9.981 .324 8.613 11.054 

 _b_x3 500 9.998 .32 8.888 11.283 

 _b_x4 500 9.974 .3 8.499 11.044 

 _b_x5 500 10.003 .317 8.958 10.864 

 _b_cons 500 9.972 .3 8.808 11.054 
Source: Own elaboration 
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Setting the final simulations with n=500, the results of the distributions with kernel densities are 

shown ahead.  

Graph 16 Robust Regression - Distributions of the Coefficients with n=500 

  

 

Source: Own elaboration 

The patterns tend to indicate a convergence to the true value of the parameter as the number of 

replications are increased, also with the descriptive statistics the mean value is closer to 10, leading 

to think that robust regression is also a good option in large samples. 

 

Table 21 Robust Regression Descriptive Statistics n=500 

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 _b_x1 500 9.998 .046 9.802 10.106 

 _b_x2 500 9.997 .043 9.851 10.129 
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 _b_x3 500 10.002 .048 9.856 10.17 

 _b_x4 500 10.002 .046 9.872 10.132 

 _b_x5 500 10.002 .047 9.864 10.154 

 _b_cons 500 10.002 .048 9.83 10.183 
Source: Own elaboration 

Comparing the estimations 

 

In order to synthetize the results of the previous part we can discriminate by the number of 

observations (the lowest) and the descriptive statistics for the coefficients, in this order of ideas 

the mean value of the whole estimators across simulations would be our reference point, standard 

deviation as lower it is the better, and the minimum and maximum values closer to 10 would be 

ranked.  

Table 22 Comparison between Estimations, n=10 

Estimation Type 

n=10 

Expected Value 

of the Estimators 

Expected Std. 

Deviation 
Expected Min Expected Max 

OLS 9,98266667 0,59366667 6,0585 12,7426667 

Jackknife 10,0028333 0,579 7,69483333 12,6881667 

Bootstrap 9,98783333 0,56983333 7,64633333 12,7886667 

Lasso 9,541 2,4065 -1,49333333 20,0488333 

Robust 

Regression 
9,71933333 2,65983333 -2,77616667 22,3616667 

Best Option Jackknife Bootstrap Jackknife Jackknife 
Source: Own elaboration 

 

When we’re considering a set of sample size with n=10 observations in the context of a 6-

coefficient estimation model, the best option is the jackknife estimation technique. It should be 

noted that the number of freedom degrees in the residuals for this case is equal to 4. It is expected 

that when this number gets higher, we might have more accurate estimators from the other 

techniques. 

Table 23 Comparison between Estimations, n=20 

Estimation Type 

n=20 

Expected Value 

of the Estimators 

Expected Std. 

Deviation 
Expected Min Expected Max 

OLS 10,0011667 0,2735 9,0195 10,9645 

Jackknife 9,98883333 0,2755 9,09916667 10,8118333 

Bootstrap 9,99516667 0,28 8,99783333 10,9631667 

Lasso 9,91683333 0,46516667 6,466 12,2186667 

Robust 

Regression 
9,98616667 0,31233333 8,78016667 11,1845 

Best Option OLS OLS/Jackknife Jackknife Bootstrap 
Source: Own elaboration 
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When the number of observations is increased to n=20 and the degrees of freedom are higher to a 

value of 14, the OLS performs quite better in the expected value of the coefficients, mean while 

we got a draw with OLS and jackknife in the case for the minimum expected value of the standard 

deviation.  

Table 24 Comparison between Estimations, n=500 

Estimation Type 

n=500 

Expected Value 

of the Estimators 

Expected Std. 

Deviation 
Expected Min Expected Max 

OLS 10,0003333 0,04366667 9,85966667 10,1286667 

Jackknife 10,0003333 0,04433333 9,85933333 10,1335 

Bootstrap 10,0001667 0,04416667 9,868 10,1305 

Lasso 9,94533333 0,045 9,81 10,082 

Robust 

Regression 
10,0005 0,04633333 9,84583333 10,1456667 

Best Option Bootstrap OLS Bootstrap Lasso 
Source: Own elaboration 

 

Finally, when our sample size is sufficiently large (n=500) the bootstrap technique performs better 

than OLS, Jackknife, Lasso or Robust regression however OLS tends to have a lesser expected 

deviation than the rest. Over this stage since samples are large, there are sufficient arguments to 

prefer one method over other, for example, robust regression wasn’t scored as the best in any of 
these statistics but it would be extremely useful when we got outliers or such things.  

We need to remember that this analysis was performed with random variables which followed 𝑁~(0,1) and the main interest was to analyze the estimations for low samples (the perfect 

micronumerosity case n=6 and the others with n=10, n=20 with 500 hundred simulations). And 

also, the DGP in equation (1) was also established to be a cross-sectional type of data, so no 

autoregressive problems or incorrect specifications were tested for the estimation’s types.  

The relative bias analysis with n=10 observations, suggest that Lasso regression performs the 

worse bias value, reaching a 4.59% calculated from the expected value of the estimators in 

reference with the true parameter, followed by the robust regression with a value of 2.807%. 

Bootstrap and OLS performs far better than this types with respective scores of 0.173% and 

0.122%, the lower bias was obtained with the jackknife approach with a bias of 0.028%.  

Moving to the sample size of n=20 observations, Lasso and robust regression performs also the 

worse value of the relative bias, respectively with values of 0.832% and 0.138%. Jackknife now 

turns to be in the third place with a relative bias of 0.112% while bootstrap has a value of 0.048% 

and the OLS with a score 0.012% indicating a lesser bias.  
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Finally, when the sample size is large (n=500), Lass remains with the worse score in the relative 

bias with a value of 0.547%, meanwhile robust regression has a score of 0.005% of relative bias 

against the DGP. OLS and Jackknife have the same relative bias with a score of 0.003%. The best 

performance in terms of relative bias in this case was obtained with Bootstrap with a score of 

0.002% of relative bias among the simulations, the proceeding graph summarizes this result.  

Graph 17 Relative Bias for each estimation type by sample size 

 

Source: Own elaboration 
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Conclusions 

This paper performed over 1500 simulations distributed among different sample sizes (n=6, n=10, 

n=20 and n=500) with a linear Data Generating Process in order to regress a model with six 

coefficients and five variables, these variables were randomly distributed with zero mean and 

variance of one, the estimations types for the regressions across simulations were the approaches 

of OLS, Jackknife, Bootstrap, Lasso and Robust Regression.  

The statistical significance of the coefficients across the models tend to follow the pattern 

described by Speed (1994) where a significant relationship found in a small sample also will 

prevail when the sample size gets bigger. However, the Bootstrap approach seems to be sensitive 

to the sample size since with n=10 observations it didn’t present a significant relation for one 
variable which was part of the DGP, suggesting that Bootstrap might discard a significant relation 

of certain variables with a small sample size. As soon as the sample size increased to n=20, the 

bootstrap approach presented significant relations with a 5% significance level, and with a larger 

sample size, the statistical significance was of 1%. On the other hand, OLS, Jackknife, Lasso and 

Robust regression performed well in terms of the statistical significance of the coefficients for all 

the variables in the DGP across the Monte Carlo simulations with different sample size.  

Comparing the results with n=10 observations, the best estimation type was performed with the 

Jackknife approach, since the expected value of the coefficients was the best in terms to be closer 

to the true value of the DGP, also this approach suggests a lesser relative bias across the 

replications for the coefficients. Bootstrap on the other hand with this sample size had the lowest 

expected standard deviation. In this case, it is confirmed that Speed (1994) was right in affirming 

that Jackknife and Bootstrap techniques are more suitable in small samples, however the drawback 

of the bootstrap approach is the sensitive in the statistical significance of the coefficients. 

According to these results, the jackknife approach seems to be more suitable for lower sample 

analysis.  

In the case of n=20 observations, OLS obtained the best score regarding the accuracy of the 

estimators across simulations, as a reference for this, the relative bias was the lowest among the 

other estimation’s types. In terms of the expected standard deviation, OLS matched the jackknife 

approach, but the minimum expected value of the estimators across replications of the jackknife 

was closer to the true value than the OLS regressions.  

In the final simulations with n=500 observations, Bootstrap approach performed better than the 

rest of the estimation’s types in terms of the accuracy of the estimator, a relative bias of 0.002% 
regarding from the true parameter was calculated with this approach. Also, the minimum expected 

value of the estimators was closer from this approach than the others, suggesting that bootstrap 

might be more appropriate for large samples.  
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According to the last results and as it is suggested by Speed (1994), researchers should perform 

also jackknife and bootstrap approaches when they’re analyzing relationships from a set of 
variables in the multivariate regression framework, this in order to obtain more accurate 

estimations. However, the statistical significance might not be a good idea to be checked with the 

bootstrap approach since from this study, it was proved that its sensitive to the size of samples and 

might induce to type 1 errors more easily. Jackknife approach seems to be the most reliable method 

to perform correct inferences when the sample size is small.  
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