
Munich Personal RePEc Archive

Neural Network Associative Forecasting

of Demand for Goods

Osipov, Vasiliy and Zhukova, Nataly and Miloserdov,

Dmitriy

St. Petersburg Institute for Informatics and Automation of Russian

Academy of Sciences, St. Petersburg, Russia

23 September 2019

Online at https://mpra.ub.uni-muenchen.de/97314/

MPRA Paper No. 97314, posted 02 Dec 2019 10:09 UTC



Neural Network Associative Forecasting of Demand for 

Goods  *

Vasiliy Osipov, Nataly Zhukova, Dmitriy Miloserdov 

St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, 39, 

14 Line, St. Petersburg 199178, Russia 

osipov_vasiliy@mail.ru, nazhukova@mail.ru, dmmil94@yandex.ru 

Abstract. This article discusses the applicability of recurrent neural networks 

with controlled elements to the problem of forecasting market demand for 

goods on the four month horizon. Two variants of forecasting are considered. In 

the first variant, time series are used to train the neural network, including the 

real demand values, as well as pre-order values for 1, 2 and 3 months ahead. In 

the second variant, there is an iterative forecasting method. It predicts the de-

mand for the next month at each step, and the training set is supplemented by 

the values predicted for the previous months. It is shown that the proposed 

methods can give a sufficiently high result. At the same time, the second ap-

proach demonstrates greater potential. 

Keywords: Recurrent Neural Network, Machine Learning, Data Mining, De-

mand Forecasting. 

1. Introduction 

To date, the following methods are used to predict economic indicators: individual 

and collective expert assessments, forecast extrapolation, statistical methods, system-

structural methods, methods of mathematical and computer modeling, neural network 

methods [1]. Hybrid approaches based on the analysis of economic time series in sev-

eral stages are known [2, 3]. The temporal regularized matrix factorization approach 

is proposed for multivariate series [4]. 

 Neural network methods are widly used [5-10]. In particular, the paper [8] noted 

the superiority of neural network algorithms over the ARIMA model in solving the 

problem of forecasting prices for agricultural products. The paper [9] investigates the 

applicability of artificial neural networks (ANNs) to economic analysis based on cur-

rency indicators. The article [10] proposes a hybrid neural network model and its ap-

plication for stock price forecasting. Many works are devoted to forecasting the de-

mand for various goods and services [11-18]. To predict the demand for utilities, such 

as water, heat and electricity, among others, neural networks of group method of data 
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handling (GMDH) [11], gray neural networks (GNN) [12], multilayer neural net-

works of direct distribution [13] and evolutionary algorithms [14] are used. Multilayer 

perceptron [15-17] and convolutional network [18] were used to predict the demand 

for consumer goods. However, they have certain drawbacks. In particular, GNN is 

characterized by a local optimum problem, which makes it impossible to achieve high 

accuracy of forecasts. Feedforward networks, such as a multilayer perceptron or con-

volutional network, do not have associative memory, which does not allow taking into 

account hidden patterns within the object under study. 

Well-known architectures of recurrent neural networks (RNN) are also not without 

drawbacks. Their capabilities do not go far beyond classification and pattern recogni-

tion. The depth of information processing in them is low, at the same time there is a 

high redundancy of storage. There are problems with the extraction of previously pro-

cessed information from memory, as well as with ensuring the stability of the RNS. 

Basically, the above shortcomings are related to the inadequacy of the structure and 

methods of associative-spatial information processing in such networks. 

Architecture of RNN can be classified according to the criterion meet the require-

ments of working in real time. The first class includes perceptron-based RNN, such as 

recurrent multilayer perceptron, Elman network, and real-time RNN. These networks 

can work in real time, but do not differ in the depth of information processing. The 

second class of networks is designed for deeper data processing. These include Hop-

field's associative memory, Cosco networks, and Kohonen's self-organizing maps. 

To solve the existing problems, it is necessary to combine the properties of the two 

types of networks described above. Recurrent neural networks with controlled ele-

ments are proposed as such a tool. Such RNN are a structure of two identical layers of 

neurons and a control unit [19]. Each neuron of one layer is connected by synapses 

with all neurons of another layer, while synaptic connections between neurons of one 

layer are absent. A neuron can be in three States: waiting, arousal, and refractoriness. 

Initially, all neurons are in the standby state. When the total charge at the input of the 

neuron exceeds a certain threshold, it goes into a state of excitation. In this case, a 

single pulse is generated at the output of the neuron, after which it passes into a state 

of refractoriness and remains in it for a specified time. 

Layers are divided into logical fields of the same size and contain C = M×L×D×Q 

neurons, where D and Q are the size of the logical field horizontally and vertically, M 

and L are the number of fields in the layer horizontally and vertically. Information 

signals in this type of network are distributed in the form of single pulses of excited 

neurons. The control unit implements spatial shifts of these signals during transmis-

sion from one layer to another. The shifts are made by values multiple of D and Q. 

This is necessary to avoid conflicts between neurons in the network. In addition, due 

to shifts, the network can be endowed with various logical structures (linear, spiral, 

loop, etc.). 

The information to be processed by the RNN is encoded as a sequence of binary 

matrices of size D×Q, where the value "0" corresponds to the neuron in the waiting 

state, and the value "1" corresponds to the excited neuron. Thus, the dimension of the 

RNN fields is chosen taking into account the possibility of encoding the processed 

information in the form of a sequence of binary matrices of the appropriate size. 
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The encoded data is then sequentially "written" to the RNN field, called the "input" 

field. Submission of the next binary matrix is possible after the neurons of this field 

will come out of the state of refractoriness, in which they entered after the "record" of 

the previous matrix on them. In this case, the control unit carries out spatial shifts of 

information signals in the process of their passage through the RNN, as a result of 

which they enter the field, called the "output", where they are "read". Due to the pres-

ence of an internal logical structure in the RNN, a one-to-one correspondence is es-

tablished between the input and output signals. In the process of signal propagation 

within the RNN, the control unit can regulate the degree of associative interaction 

between the processed signals, neuronal excitation thresholds, the rate of learning 

weights, as well as accelerate or slow down the internal time of the RNN. Networks 

of this type are focused on continuous processing of signal sequences (for example, 

time series, the values of which are encoded in a format perceived by the network). 

There are known methods of using RNN with controlled elements for forecasting 

[20]. This article proposes to evaluate the effectiveness of forecasting demand for 

goods on the basis of available data on the background of demand, as well as data on 

the amount of pre-order of goods for 1, 2 and 3 months ahead. 

Section 2 of this article describes the structure of the available data and their fea-

tures, after which the task of the study is formulated. Section 3 describes the method 

of forecasting time series on a recurrent neural network with controlled elements, as 

well as methods of forecasting in relation to available data on demand for goods. Sec-

tion 4 is devoted to the analysis of the results and their discussion. In conclusion, the 

main points of the study are briefly described, the shortcomings and prospects of the 

proposed approaches are presented. 

2. Structure of initial data and problem statement 

The source data is a set of files in Microsoft Excel format. Each file corresponds to a 

specific product. The demand information is presented in the form of tables, the rows 

of which correspond to the months of observation. Depending on the product, the 

number of lines varies from 15 to 48. For example, if there are 24 lines in the file, it 

means that for the corresponding product the observation was carried out during the 

last two years. The columns of this table correspond to the numerical index of the 

month, the volume of real demand for the month, as well as the value of pre-order for 

1, 2 and 3 months ahead. For example, if you are considering a 20th month, you will 

see the volume of real demand for the 20th month, as well as the volume of pre-order 

for the 21st, 22nd, and 23rd months. Demand values are normalized and lie in the 

range from 0 to 1. It should be noted that real demand and/or pre-order data may not 

be available for some months. In such situations, the value of demand in the table is 

assumed to be 0. In addition, there may be occasional outliers, such as ultra-low or 

near-peak demand values in individual months, which differ significantly from the 

overall trend in demand for a given commodity during the observation period. 

Based on the available data on the volume of real demand and pre-orders, the task 

is to forecast real demand for a horizon equal to 4 months. 
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3. Ways of neural network associative forecasting 

Forecasting of real demand with the help of RNN with controlled elements is based 

on its ability to call information associatively. To do this, its layers are configured by 

the control unit into a spiral structure. At the level of neural network channels such 

RNN can be represented as Fig. 1. Promotion of signals from input to output in it is 

provided by spatial shifts in their transmission from one layer of RNN to another [19]. 

 

Fig. 1. RNN forecasting scheme with controlled elements. Here 1 is the data called from asso-

ciative memory (a predicted result), 2 is direction associative call signals from the memory, and 

3 is the movement of the original signals. 

Available data on demand for goods are encoded in a format perceived by the net-

work, and then fed to its layers. In the process of their passage through the RNN, an 

associative model is built on its synapses. Before the start of forecasting, the current 

data supply to the network is interrupted, and the process of associative processing of 

already received signals is dramatically accelerated. Also, the associative call of sig-

nals from memory in the direction of the input is amplified. As a result, the signals 

processed in the RNN are called future events from memory. 

The above method of forecasting can be applied to the existing data structure in 

two ways. The first way involves encoding all available information into a single se-

quence and obtaining its predicted values for the 4-month horizon (F1, F2, F3, F4), as 

shown in Fig. 2. 
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In the second way, the prediction occurs in 4 consecutive steps (see Fig. 3). At the 

first step, the RNN provides data including information about the real demand and 

pre-order of goods for 1 month in advance. As a result, the time series {Real} is sup-

plemented with the forecast value for the first month (F1) at the network output. In the 

second step, this augmented time series is fed back into the neural network, but this 

time it is combined with pre-order data for the second month. The result is a forecast 

for the second month (F2). In the third and fourth steps, the values of F3 and F4 are 

obtained in the same way, with the peculiarity that in the fourth step, the time series 

"{Real} F1 F2 F3" is not supplemented with pre-order information due to its absence. 

 

Fig. 2. The first way of forecasting. 

 

Fig. 3. The second way of forecasting. 
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The advantage of the first way of forecasting is the ease of implementation and a 

small number of operations. At the same time, the second way allows to fine-tune the 

associative model for forecasting. 

4. Forecasting results and analysis 

To meet the forecasts was configured of a neural network with spiral structure of size 

3×5 logical fields. The logical fields were 10×12 = 120 neurons in size, where the 

first 100 neurons were assigned to encode the real demand value, the next 20 to en-

code the pre-order values for the 1st, 2nd and 3rd months. Coding was carried out by 

the interval method, when each neuron is put in accordance with a certain interval of 

the total range of possible values of this value. Neuron index is defined as I = Cur-

rentValue×(MaxValue–MinValue)/CountOfNeurons, where Current_Value is the en-

coded value, Max_Value and Min_Value are respectively, the maximum and mini-

mum possible values of this value, Count_Of_Neurons is the number of neurons allo-

cated for encoding. 

 Checking the effectiveness of the above ways was performed for 15 items of goods 

(i = 1...15). In each case, the last 4 values (k = 1...4) were selected for prediction, 

while the previous ones were used for training the RNN and building an associative 

model. The obtained values of Fk forecasts were compared with the real values of Rk 

by the mean absolute percentage error (MAPE), mean absolute error (MAE) and root-

main-square error (RMSE) metrics. 

 

 

 
The results of calculations are shown in tables 1 and 2. 
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Table 1. Prediction accuracy for the first way. 

Table 2. Prediction accuracy for the second way. 

The results of calculations show some advantage of the second way in comparison 

with the first. Thus, according to the MAPE metric, the accuracy was on average 

higher on 9.95%, the increase of MAE was 0.0235, and RMSE is 0.0344. It is also 

worth noting that neither in the first nor in the second case there is a monotonous de-

crease in the average accuracy of the forecast from F1 to F4. Thus, in the first way of 

forecasting, the maximum average accuracy was achieved for F4, and in the second 

way the best result is given for F2. This phenomenon is explained by the fact that in-

ternal regularities in the predicted time series, which due to the associativity of the 

RNN can be detected by it, do not always correlate with the monthly interval of 

recording the volumes of real demand. Moreover, depending on the structure of the 

data and the way of training, different patterns begin to play the greatest role in fore-

casting. This explains the fact that in the first and second ways of forecasting, the best 

accuracy of the forecast is obtained for different months. 

5. Conclusion 

The results of the study on neural network forecasting of demand for goods showed 

the following.  Traditional neural network solutions do not allow achieving high accu-

racy of forecasts due to their inherent limitations and disadvantages. A new method is 

proposed based on the use of RNN with controlled elements. In accordance with this 

MAPE MAE RMSE

F1 41.1462 0.1176 0.1597

F2 56.9379 0.1264 0.1609

F3 44.4890 0.1700 0.2528

F4 26.6199 0.0776 0.1231

Average 43.0482 0.1229 0.1741

MAPE MAE RMSE

F1 37.5744 0.1062 0.1481

F2 24.5587 0.0629 0.0924

F3 31.7938 0.1175 0.1563

F4 38.4544 0.1110 0.1619

Average 33.0953 0.0994 0.1397
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method, two ways of forecasting are proposed. According to the first way, the con-

trolled elements of RNN are trained on all available data and generate forecast de-

mand values for the 4-month horizon. In accordance with the second way, forecasting 

is carried out in four consecutive steps. At each step, the demand is predicted for the 

next month, and the training set is supplemented with the values predicted for the 

previous months. The proposed ways are tested for 15 items of goods, the results of 

which are compiled tables of efficiency. It is shown that the second way gives a rela-

tively high accuracy, although it requires more operations. The proposed ways can be 

applied in practice in forecasting demand for various goods. 

References 

1. Lapygin, Yu.: Economic forecasting. Exmo, Moscow (2009). 

2. Zliobaite, I., Bakker, J., Pechenizkiy, M.: Beating the baseline prediction in food sales: 

How intelligent an intelligent predictor is? Expert Systems with Applications 39(1), 

806-815 (2012). https://doi.org/10.1016/j.eswa.2011.07.078 

3. Tsymbalov, E.: Churn Prediction for Game Industry Based on Cohort Classification En-

semble. In: EEML@CLA, pp. 94-100. Moscow (2016) 

4. Yu, H., Rao, N., Dhillon, I.: Temporal Regularized Matrix Factorization for High-dimen-

sional Time Series Prediction. In: NIPS, pp. 847-855. Barcelona (2016) 

5. Pham, D., Xing, L.: Neural Networks for Identification, Prediction and Control. Springer-

Vеrlag, London (1995). DOl: 10.007/978-1-447 1-3244-8 

6. Montavon, G., Orr, G., Müller, K. (Eds.) Neural Networks: Tricks of the Trade. 2nd edn. 

Springer-Vеrlag, Berlin (2012). DOI 10.1007/978-3-642-35289-8 

7. Zhang, X., Hu, L., Zhang L.: An efficient multiple kernel computation method for regres-

sion analysis of economic data. Neurocomputing 118, 58-64 (2013). https://doi.org/

10.1016/j.neucom.2013.02.013 

8. Kohzadi, N., Boyd, M., Kermanshahi, B., Kaastra, I.: A comparison of artificial neural 

network and time series models for forecasting commodity prices. Neurocomputing 10(2), 

169-181 (1996). https://doi.org/10.1016/0925-2312(95)00020-8 

9. Galeshchuk, S.: Neural networks performance in exchange rate prediction. Neurocomput-

ing 172, 446-452 (2016). https://doi.org/10.1016/j.neucom.2015.03.100 

10.Hu, H., Tang, L., Zhang, S., Wang, H.: Predicting the direction of stock markets using 

optimized neural networks with Google Trends. Neurocomputing 285, 188-195 (2018). 

https://doi.org/10.1016/j.neucom.2018.01.038 

11.Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomputing 72 

(1–3), 625-629 (2008). https://doi.org/10.1016/j.neucom.2008.08.006 

12.Wu, W., Wang, X.: The Coal Demand Prediction Based on the Grey Neural Network 

Model. In: LISS 2014. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-

662-43871-8_194 

13.Cubero, R.: Neural networks for water demand time series forecasting. In: Artificial Neur-

al Networks. IWANN 1991. Lecture Notes in Computer Science, vol. 540. Springer, 

Berlin, Heidelberg (2005). https://doi.org/10.1007/BFb0035927 

14.Chramcov, B., Varacha, P.: Usage of the Evolutionary Designed Neural Network for Heat 

Demand Forecast. In: Nostradamus: Modern Methods of Prediction, Modeling and Analy-



9

sis of Nonlinear Systems. Advances in Intelligent Systems and Computing, vol. 192. 

Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33227-2_13 

15.Lo, C.: Back Propagation Neural Network on the Forecasting System of Sea Food Materi-

al Demand. In: Advances in Computer Science and Education Applications. Communica-

tions in Computer and Information Science, vol. 202. Springer, Berlin, Heidelberg (2011). 

https://doi.org/10.1007/978-3-642-22456-0_22 

16.Herrera-Granda, I., et al.: Artificial Neural Networks for Bottled Water Demand Forecast-

ing: A Small Business Case Study. In:  Advances in Computational Intelligence. IWANN 

2019. Lecture Notes in Computer Science, vol. 11507. Springer, Cham (2019). https://

doi.org/10.1007/978-3-030-20518-8_31 

17.Chawla, A., Singh, A., Lamba, A., Gangwani, N., Soni, U.: Demand Forecasting Using 

Artificial Neural Networks—A Case Study of American Retail Corporation. In: Ap-

plications of Artificial Intelligence Techniques in Engineering. Advances in Intelligent 

Systems and Computing, vol. 697. Springer, Singapore (2019). https://doi.org/

10.1007/978-981-13-1822-1_8 

18.Christopher, J., Mou, J., Yin, D.: Convolutional Neural Network Deep-Learning Models 

for Prediction of Shared Bicycle Demand. In: International Conference on Applications 

and Techniques in Cyber Security and Intelligence ATCI 2018. Advances in Intelligent 

Systems and Computing, vol. 842. Springer, Cham (2019). https://doi.org/

10.1007/978-3-319-98776-7_1 

19.Osipov, V., Osipova, M.: Space–time signal binding in recurrent neural networks with 

controlled elements. Neurocomputing 308, 194-204 (2018). https://doi.org/10.1016/j.neu-

com.2018.05.009 

20.Osipov, V.: Neural network with past, present and future time. Information and control 

systems 4, 30-33 (2011).


	Introduction
	Structure of initial data and problem statement
	Ways of neural network associative forecasting
	Forecasting results and analysis
	Conclusion
	References

