Sumi, P. Sobana and Delhibabu, Radhakrishnan (2019): Glioblastoma Multiforme Classification On High Resolution Histology Image Using Deep Spatial Fusion Network. Published in: CEUR Workshop Proceedings , Vol. 2479, (26 September 2019): pp. 109-120.
Preview |
PDF
project4.pdf Download (1MB) | Preview |
Abstract
Brain tumor is a growth of abnormal cells in brain, which canbe cancerous or non-cancerous. The Brain tumor have scarce symptomsso it is very difficult to classify. Diagnosing brain tumor with histologyimages will efficiently helps us to classify brain tumor types. Sometimes,histology based image analysis is not accepted due to its variations inmorphological features. Deep learning CNN models helps to overcomethis problem by feature extraction and classification. Here proposed amethod to classify high resolution histology image. InceptionResNetV2is an CNN model, which is adopted to extract hierarchical features with-out any loss of data. Next generated deep spatial fusion network to ex-tract spatial features found in between patches and to predict correct fea-tures from unpredictable discriminative features. 10-fold cross-validationis performed on the histology image. This achieves 95.6 percent accu-racy on 4-class classification (benign, malignant, Glioblastoma, Oligo-dendroglioma). Also obtained 99.1 percent accuracy and 99.6 percentAUC on 2-way classification (necrosis and non-necrosis).
Item Type: | MPRA Paper |
---|---|
Original Title: | Glioblastoma Multiforme Classification On High Resolution Histology Image Using Deep Spatial Fusion Network |
English Title: | Glioblastoma Multiforme Classification On High Resolution Histology Image Using Deep Spatial Fusion Network |
Language: | English |
Keywords: | Glioblastoma Multiforme; Deep spatial fusion network; InceptionResNetV2; classification; patches; CNN |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C45 - Neural Networks and Related Topics I - Health, Education, and Welfare > I1 - Health > I10 - General |
Item ID: | 97315 |
Depositing User: | Dr. Rustam Tagiew |
Date Deposited: | 02 Dec 2019 10:15 |
Last Modified: | 02 Dec 2019 10:15 |
References: | H.O. Lyon, A.P. De Leenheer, R.W. Horobin, W.E. Lambert, E.K.W. Schulte, B.Van Liedekerke, D.H. Wittekind,Standardization of reagents and methods used incytological and histological practice with emphasis on dyes, stains and chromogenicreagents, Histochem. J. 26 (7) (1994) 533–544. Yan Xu, Zhipeng Jia, Yuqing Ai, Fang Zhang, Maode Lai, Eric I-Chao Chang,DeepConvolutional Activation Features For Large Scale Brain Tumor Histopathology Im-age Classification And Segmentation, 2015 IEEE ICASSP Kiichi Fukuma, Hiroharu Kawanaka, Surya Prasath, Bruce J. Aronow and HaruhikoTakase,Feature Extraction and Disease Stage Classification for Glioma Histopathol-ogy Images, 2015 17th International Conference on E-health Networking, Applica-tion and Services (HealthCom) Hojjat Seyed Mousavi, Vishal Monga, Ganesh Rao, Arvind U. K. Rao,Automateddiscrimination of lower and higher grade gliomas based on histopathological imageanalysis, J Pathol Inform 2015, 1-15 Luke Macyszyn, Hamed Akbari, Jared M. Pisapia, Xiao Da, Mark Attiah, VadimPigrish,Yingtao Bi, Sharmistha Pal, Ramana V. Davuluri, Laura Roccograndi, Na-dia Dahmane, Maria Martinez-Lage, George Biros, Ronald L. Wolf, Michel Bilello,Donald M. O’Rourke, and Christos Davatzikos,Imaging patterns predict patient sur-vival and molecular subtype in glioblastoma via machine learning techniques, Neuro-Oncology 2015 Jocelyn Barkerc, Assaf Hoogia, Adrien Depeursingea,b, Daniel L. Rubin,Automatedclassification of brain tumor type in whole-slide digital pathology images using localrepresentative tiles, Elsevier, 2015. Reid Trenton Powell, Adriana Olar, Shivali Narang, Ganesh Rao, Erik Sulman,Gregory N. Fuller, Arvind Rao,Identification of Histological Correlates of Overal lSurvival in Lower Grade Gliomas Using a Bag–of–words Paradigm: A PreliminaryAnalysis Based on Hematoxylin and Eosin Stained Slides from the Lower GradeGlioma Cohort of The Cancer Genome Atlas, 2017 Journal of Pathology Informatics Yan Xu, Zhipeng Jia, Liang-Bo Wang, Yuqing Ai, Fang Zhang, Maode Lai andEricI-Chao Chang,Large scale tissue histopathology image classification, segmenta-tion, and visualization via deep convolutional activation features, 2017 BMC Bioin-formatics. Yonekura A, Kawanaka H, Prasath VBS, Aronow BJ, Takase H,Improving the gen-eralization of disease stage classification with deep CNN for glioma histopathologicalimages, In: International workshop on deep learning in bioinformatics, biomedicine,and healthcare informatics (DLB2H); 2017. pp 1222–1226 30. Asami Yonekura, Hiroharu Kawanaka,V. B. Surya Prasath, Bruce J. Aronow,Haruhiko Takase,Automatic disease stage classification of glioblastoma multiformehistopathological images using deep convolutional neural network, Korean Society ofMedical and Biological Engineering and Springer-Verlag GmbH Germany, part ofSpringer Nature 2018 Simonyan, K., Zisserman, A.:Very deep convolutional networks for large-scaleimage recognition. arXiv preprint arXiv:1409.1556 (2014) Greig, D.M., Porteous, B.T., Seheult, A.H.:Exact maximum a posteriori estima-tion for binary images. Journal of the Royal Statistical Society. Series B (Method-ological) pp. 271–279 (1989) Nair, V., Hinton, G.E.:Rectified linear units improve restricted boltzmann ma-chines. In: Proceedings of the 27th international conference on machine learning(ICML-10). pp. 807–814 (2010) Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X.,Schmitt, C., Thomas, N.E.:A method for normalizing histology slides for quantita-tive analysis. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEEInternational Symposium on. pp. 1107–1110. IEEE (2009) Kingma, D.P., Ba, J.:Adam: A method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014) Araujo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polonia, A.,Campilho, A.:Classification of breast cancer histology images using convolutionalneural networks. PloS one 12(6), e0177544 (2017) Rakhlin, A., Shvets, A., Iglovikov, V., Kalinin, A.A.:Deep convolutional neuralnetworks for breast cancer histology image analysis. arXiv preprint arXiv:1802.00752(2018) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97315 |