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Abstract

We introduce a new concept which extends von Neumann and Mor-
genstern’s maximin strategy solution by incorporating ‘individual ra-
tionality’ of the players. Maximin equilibrium, extending Nash’s value
approach, is based on the evaluation of the strategic uncertainty of the
whole game. We show that maximin equilibrium is invariant under
strictly increasing transformations of the payoffs. Notably, every finite
game possesses a maximin equilibrium in pure strategies. Considering
the games in von Neumann-Morgenstern mixed extension, we demon-
strate that the maximin equilibrium value is precisely the maximin
(minimax) value and it coincides with the maximin strategies in two-
person zerosum games. We also show that for every Nash equilibrium
that is not a maximin equilibrium there exists a maximin equilibrium
that Pareto dominates it. Hence, a strong Nash equilibrium is always
a maximin equilibrium. In addition, a maximin equilibrium is never
Pareto dominated by a Nash equilibrium. Finally, we discuss max-
imin equilibrium predictions in several games including the traveler’s
dilemma.
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1 Introduction

In their ground-breaking book, von Neumann and Morgenstern (1944, p.
555) describe the maximin strategy1 solution for two-person games as follows:

“There exists precisely one solution. It consists of all those impu-
tations where each player gets individually at least that amount
which he can secure for himself, while the two get together pre-
cisely the maximum amount which they can secure together. Here
the ‘amount which a player can get for himself’ must be under-
stood to be the amount which he can get for himself, irrespective
of what his opponent does, even assuming that his opponent is
guided by the desire to inflict a loss rather than to achieve a
gain.”

This immediately gives rise to the following question: “What happens
when a player acts according to the maximin principle but knowing that
other players do not necessarily act in order to decrease his utility?”. We
are going to capture this type of behavior by assuming that players are
‘individually rational’ and letting this be common knowledge among players.
In other words, the contribution of the current paper can be considered as
incorporating the maximin principle and ‘rationality’ of the players in one
concept calling it maximin equilibrium. Our solution coincides with maximin
strategy solution when the rationality assumption is dropped.

Note that it is recognized and explicitly stated by von Neumann and
Morgenstern several times that their approach can be questioned by not cap-
turing the cooperative side of non-zerosum games. But this did not seem to
be a big problem at that time and it is stated that the applications of the
theory should be seen in order to reach a conclusion.2 After more than a
half-century of research in this area, maximin strategies are indeed consid-
ered to be too defensive in non-strictly competitive games in the literature.
Since a maximin strategist plays any game as if it is a zerosum game, this
leads to an ignorance of her opponent’s utilities and hence the preferences of
her opponent. These arguments call for a revision of the maximin strategy
concept in non-zerosum games.

1We would like to note that the famous minimax (or maximin) theorem was proved
by von Neumann (1928). Therefore, it is generally referred as von Neumann’s theory of
games in the literature.

2For example, see von Neumann and Morgernstern (1944, p. 540).
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In Section 2, we present the framework and introduce the concept of max-
imin equilibrium. Maximin equilibrium extends Nash’s value approach to the
whole game and evaluates the strategic uncertainty of the game by follow-
ing a similar method as von Neumann’s maximin strategy notion. We show
that every finite game possesses a maximin equilibrium in pure strategies.
Moreover, maximin equilibrium is invariant under strictly increasing trans-
formations of the utility functions of the players. In Section 3, we extend the
analysis to the games in von Neumann-Morgenstern mixed extension. We
demonstrate that maximin equilibrium exists in mixed strategies too. We
also show that for every Nash equilibrium that is not a maximin equilibrium
there exists a maximin equilibrium that Pareto dominates it. Hence, a strong
Nash equilibrium is always a maximin equilibrium. In addition, a maximin
equilibrium is never Pareto dominated by a Nash equilibrium. Furthermore,
we show by examples that maximin equilibrium is neither a coarsening nor
a special case of correlated equilibrium or rationalizable strategy profiles.

In Section 4, we show that a strategy profile is a maximin equilibrium if
and only if it is a pair of maximin strategies in two-person zerosum games.
In particular, the maximin equilibrium value is precisely the minimax value
whenever the latter exists. In Section 5, we discuss the maximin equilibrium
in n-person games. All the results provided in Section 2 and in Section 3
hold in n-person games.

2 Maximin equilibrium

In this paper, we use a framework for the analysis of interactive decision
making environments as described by von Neumann and Morgenstern (1944,
p. 11):

One would be mistaken to believe that it [the uncertainty] can
be obviated, like the difficulty in the Crusoe case mentioned in
footnote 2 on p. 10, by a mere recourse to the devices of the the-
ory of probability. Every participant can determine the variables
which describe his own actions but not those of the others. Nev-
ertheless those ‘alien’ variables cannot, from his point of view, be
described by statistical assumptions. This is because the others
are guided, just as he himself, by rational principles –whatever
that may mean– and no modus procedendi can be correct which
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does not attempt to understand those principles and the interac-
tions of the conflicting interests of all participants.

For simplicity, we assume that there are two players whose finite sets of
pure actions are X1 and X2 respectively. Moreover, players’ preferences over
the outcomes are assumed to be a weak order (i.e. transitive and complete) so
that we can represent those preferences by the ordinal utility functions u1, u2 :
X1×X2 → R which depends on both players’ actions. As usual, the notation
x in X = X1 ×X2 represents a strategy profile.3 In short, a two-person non-
cooperative game Γ can be denoted by the tuple ({1, 2}, X1, X2, u1, u2). We
distinguish between the game Γ and its von Neumann-Morgenstern mixed
extension. Clearly, the mixed extension of a game requires more assumptions
to be made and it will be treated separately in Section 3. When it is not
clear from the context, we refer the original game as the pure game or the
deterministic game to not to cause a confusion with the games in mixed
extension. Starting from simple strategic decision making situations, we
firstly introduce a deterministic theory of games in this section.4

As it is formulated and explained by von Neumann and Morgenstern
(1944), playing a game is basically facing an uncertainty which can not be
resolved by statistical assumptions. This is actually the crucial difference
between strategic games and decision problems. Our aim is to extend von
Neumann’s approach on resolving this uncertainty.

Suppose that Alfa (he) and Beta (she) make a non-binding agreement
(x1, x2) in X in a two-person game. Alfa faces an uncertainty by keeping the
agreement since he does not know whether Beta will keep it. Von Neumann’s
maximin method to evaluate this uncertainty is to calculate the minimum
payoff of Alfa with respect to all conceivable deviations by Beta.5 That is,
Alfa’s evaluation vx1x2 (or the utility) of keeping the agreement (x1, x2) is
vx1x2 = minx′

2∈X2
u1(x1, x

′
2). Note that for all x2, the evaluation of Alfa for

the profile (x1, x2) is the same, i.e. vx1x2 = vx1x
′
2
for all x′

2 ∈ X2. Therefore,
it is possible to attach a unique evaluation vx′

1
for every strategy x′

1 ∈ X1

of Alfa. Second step is to make a comparison between those evaluations

3As is standard in game theory, we assume that what matters is the consequence of
strategies (consequentialist approach) so that we can define the utility functions over the
strategy profiles.

4Note that all the definitions we present can be extended in a straightforward way to
n-person games which will be introduced in Section 5.

5Because, it is assumed that Beta might have a desire to inflict a loss for Alfa. Note
that von Neumann also included mixed strategies but here we would like to keep it simple.
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of the strategies. For that, von Neumann takes the maximum of all such
evaluations vx′

1
with respect to x′

1 which yields a unique evaluation for the
whole game, i.e. the value of the game is v1 = maxx′

1∈X1
vx′

1
. In other words,

the unique utility that Alfa can guarantee by facing the uncertainty of playing
this game is v1. Accordingly, it is recommended that Alfa should choose a
strategy x∗

1 ∈ argmaxx′
1∈X1

vx′
1
which guarantees the value v1.

We would like to extend von Neumann’s method in such a way that
Alfa takes into account the ‘individual rationality’ of Beta when making the
evaluations and vice versa. Let us fix some terminology. As usual, a strategy
x′
i ∈ Xi is said to be a profitable deviation for player i with respect to the

profile (xi, xj) if ui(x
′
i, xj) > ui(xi, xj).

Definition 1. A player is called individually rational at x in X if she does
not make a non-profitable deviation from it.

We assume that players are individually rational, each player assumes
that the other players are individually rational and that this is common
knowledge.6 Let us construct the approach we take step by step and state
its implications. We have proposed a notion of individual rationality which
allows Beta to keep her agreement or to deviate to a strategy for which she
has strict incentives to do so. This is reminiscent of individual rationality
constraint in economics in the sense that individually rational behavior al-
ways yield higher or equal utility than individually non-rational behavior.
By this assumption, Alfa can rule out non-profitable deviations of Beta from
the agreement (x1, x2) which helps decreasing the level of uncertainty he is
facing. Now, Alfa’s evaluation v1(x1, x2) of the uncertainty for keeping the
agreement (x1, x2) can be defined as the minimum utility he would receive
under any individually rational behavior of Beta. Let us define the value
function formally.

Definition 2. Let Γ = (X1, X2, u1, u2) be a two-person game. The function
v : X → R× R is called the value function of Γ if for every i 6= j and for all
x = (xi, xj) ∈ X, the i’th component of v = (vi, vj) satisfies

vi(x) = min{ inf
x′
j∈Bj(x)

ui(xi, x
′
j), ui(x)},

6See Lewis (1969) for a detailed discussion and see Aumann (1976) for a formal defini-
tion of common knowledge in a Bayesian setting.
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where the better response correspondence of player j with respect to x is
defined as

Bj(x) = {x′
j ∈ Xj|uj(xi, x

′
j) > uj(x)}.

Remark. Note that for all x and all i, we have ui(x) ≥ vi(x). This is because
one cannot increase a payoff but can only (weakly) decrease it, by definition
of the value function.

As a consequence, it is not in general true for a strategy x′
2 6= x2 that we

have the equality v1(x1, x2) = v1(x1, x
′
2). Because, the better response set of

Beta with respect to (x1, x2) is not necessarily the same as the better response
set of her with respect to (x1, x

′
2). Therefore, we cannot assign a unique value

to every strategy of Alfa anymore. Instead, the evaluation of the uncertainty
can be encoded in the strategy profile as in the value notion of Nash (1950,
1951). Nash defines the value of the game (henceforth the Nash-value) to a
player as the payoff that the player receives from a Nash equilibrium when
all the Nash equilibria lead to the same payoff for the player. We extend
Nash’s value approach to the full domain of the game, that is, we assign a
value to each single strategy profile including, of course, the Nash equilibria.
Notice that when a strategy profile is a Nash equilibrium, the value of a
player at this profile is precisely her Nash equilibrium payoff.7 In particular,
if the Nash-value exists for a player then the player’s value of every Nash
equilibria is the Nash-value of that player. As a result of assigning a value to
the profiles rather than the strategies, we can no longer refer to a strategy
in the same spirit of a maximin strategy since a strategy in this setting only
makes sense as a part of a strategy profile as in a Nash equilibrium. But note
that there are two evaluations that are attached to the profile (x1, x2), one
for Alfa and one for Beta since she also is doing similar inferences as him.

To illustrate what a value function of a game looks like, let us consider the
game Γ in Figure 1 which is played by Alfa and Beta. It can be interpreted as
the prisoner’s dilemma game with an option to remain silent. Each prisoner
has three options to choose from, namely remain ‘Silent’, ‘Deny’ or ‘Confess’
and let the utilities be as in Figure 1. Notice that if the strategy ‘Silent’ is
removed from the game for both players then we would obtain the prisoner’s
dilemma.

7This is because there is no individually rational deviation from a Nash equilibrium,
hence infimum over empty set is plus infinity which implies the value of a player at a Nash
equilibrium equals its payoff.
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Γ =

Silent Deny Confess
Silent 100, 100 100, 105 0, 1
Deny 105, 100 95, 95 0, 200

Confess 1, 0 200, 0 1, 1

v(Γ) =

Silent Deny Confess
Silent 100, 100 100, 0 0, 1
Deny 0, 100 0, 0 0, 1

Confess 1, 0 1, 0 1, 1

Figure 1: Prisoner’s dilemma with an option to remain silent and its value
function.

Suppose that the prisoners Alfa and Beta are in the same cell and they can
freely discuss what to choose before they submit their strategies. However,
they will make their choices in separate cells, that is, non-binding pre-game
communication is allowed. Suppose that Beta is trying to convince Alfa
to make an agreement on playing, for example, the profile (Deny, Deny).
Alfa would fear that Beta may not keep her agreement and may unilaterally
deviate to ‘Confess’ leaving him a utility of 0. Accordingly, the value of the
profile (Deny, Deny) to Alfa is 0 as shown in the bottom table in Figure
1. Now, suppose somebody offers to make an agreement on (Silent, Silent).
Beta would not fear a unilateral profitable deviation ‘Deny’ of Alfa since she
still gets 100 in that case. Alfa’s utility does not change too in case of a
unilateral profitable deviation of Beta to ‘Deny’. In other words, the value
of the profile (Silent, Silent) is (100, 100) which is equal to its payoff vector
in Γ.

The second and the last step is to make comparisons between the evalua-
tions of the strategy profiles. We maximize the value function by the Pareto
optimality principle. Now, let us formally define the maximin equilibrium.

Definition 3. Let (X1, X2, u1, u2) be a two-person game and let v = (vi, vj)
be the value function of the game. A strategy profile x = (xi, xj) where
i 6= j is called maximin equilibrium if for every player i and every x′ ∈ X,
vi(x

′) > vi(x) implies vj(x
′) < vj(x).

Notice that if we do not assume individual rationality of the players then
we recover maximin strategy concept. That is, our solution would coincide
with maximin strategy solution. To see this, we may interpret the better
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response correspondence of player j with respect to a profile x, i.e. Bj(x),
as being the belief of player i about player j’s possible strategies. Maximin
strategy corresponds to the case in which a player’s belief about her opponent
is the whole strategy set of the opponent. That is, player i does not take
individual rationality of the opponent into account. With this interpretation,
the maximin principle can be incorporated with stronger or weaker rationality
assumptions, even with different ones for different players, by following the
same method we follow in this section. Mutatis mutandis, there would not
be a change in the results of this section.

Going back to the example in Figure 1, observe that the game has a unique
Nash equilibrium (Confess, Confess) with a payoff vector of (1, 1). Observe
also that the profile (Silent, Silent) is the Pareto dominant profile of the value
function, so it is the maximin equilibrium with a value of (100, 100). More-
over, the maximin equilibrium (Silent, Silent) has another property which
may deserve attention. Suppose that players agree on playing it. Alfa has
a chance to make a unilateral profitable deviation to ‘Deny’ but he cannot
rule out a potential profitable deviation of Beta to the strategy ‘Deny’. If
this happens, Alfa would receive 95 which is strictly less than what he would
receive if he did not deviate to ‘Deny’. But Beta is also in the exactly same
situation. As a result, it seems that none of them would actually deviate
from the agreement (Silent, Silent).

We obtain maximin equilibrium by evaluating each single strategy profile
in a game. One of the reasons of extending Nash (1950)’s value argument is
the following. A Nash equilibrium is solely based on the evaluation of the
outcomes that might occur as a consequence of a player choosing one strategy
with the outcomes that might occur as a consequence of an opponent choos-
ing another strategy. Therefore, it seems to be quite questionable whether
the Nash-value represents an evaluation of the strategic uncertainty of the
whole game or only of these outcomes. Since a Nash equilibrium completely
ignores the outcomes that might occur under any other strategy choices of
the players no matter how high their utilities are, this ignorance might lead
to a disastrous outcome for both players in strategic games. One can see
this clearly in the traveler’s dilemma game which is illustrated in Figure 2
and which was introduced by Basu (1994). If players play the unique Nash
equilibrium, then they ignore a large part of the game which is mutually
beneficial for both of them, but mutually beneficial trade is perhaps one of
the most basic principles in economics.
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100 99 · · · 3 2
100 100, 100 97, 101 · · · 1, 5 0, 4
99 101, 97 99, 99 · · · 1, 5 0, 4
...

...
...

. . .
...

...
3 5, 1 5, 1 · · · 3, 3 0, 4
2 4, 0 4, 0 · · · 4, 0 2, 2

Figure 2: Traveler’s dilemma

In the traveler’s dilemma, the payoff function of a player i if she plays xi

and her opponent plays xj is defined as ui(xi, xj) = min{xi, xj}+ r · sgn(xj −
xi) for all xi, xj in X = {2, 3, ..., 100} where r > 1 determines the magnitude
of reward and punishment which is 2 in the original game. Regardless of the
magnitude of the reward/punishment, the unique Nash equilibrium is (2, 2)
which is also the unique outcome of the process of iterated elimination of
strictly dominated strategies.

It is shown by many experiments that players do not on average choose
the Nash equilibrium strategy and that changing the reward/punishment
parameter r affects the behavior observed in experiments. Goeree and Holt
(2001) found that when the reward is high, 80% of the subjects choose the
Nash equilibrium strategy but when the reward is small about the same
percent of the subjects choose the highest. This finding is a confirmation of
Capra et al. (1999). There, play converged towards the Nash equilibrium
over time when the reward was high but converged towards the other extreme
when the reward was small. On the other hand, Rubinstein (2007) found (in a
web-based experiment without payments) that 55% of 2985 subjects choose
the highest amount and only 13% choose the Nash equilibrium where the
reward was small. These results are actually not unexpected. The irony is
that if both players choose almost8 any ‘irrational’ strategy but their Nash
equilibrium strategy, then they both get strictly more payoff than they would
get by playing the Nash equilibrium. Moreover, the strategy ‘2’ is the worst
reply in all those cases. In fact, the Nash equilibrium is the only profile which
has this property in the game.

To find the maximin equilibria we first need to compute the value of the
traveler’s dilemma. The value function of player i is given by

8If one modifies the payoffs of the game such that ui(xi, 3) = 2.1 and ui(xi, 4) = 2.1
for all i and all xi ∈ {4, 5, ..., 100}, then one can even remove ‘almost’ from this sentence.
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vi(xi, xj) =































xj − 2, if xi > xj for xi ∈ X

xi − 3, if xi = xj for xi ∈ X \ {2}

2, if xi = xj = 2

xi − 5, if xi < xj for xi ∈ X \ {4, 3, 2}

0, if xi < xj for xi ∈ {4, 3, 2}.

Observe that the maximum of the value function is (97, 97) which is
assumed at (100, 100). Hence, the profile (100, 100) is the unique maximin
equilibrium and (97, 97) is the value of it. Note that as the reward parameter
r increases, the value of the maximin equilibrium decreases. When r is higher
than or equal to 50, the unique maximin equilibrium becomes the profile (2, 2)
which is also the unique Nash equilibrium of the game. This seems to explain
both the convergence of play to (100, 100) when the reward is small, and the
convergence of play to (2, 2) when the reward is big.

An ordinal utility function is unique up to strictly increasing transforma-
tions. Therefore, it is crucial for a solution concept (which is defined with
respect to ordinal utilities) to be invariant under those operations. The fol-
lowing proposition shows that maximin equilibrium possesses this property.

Proposition 1. Maximin equilibrium is invariant under strictly increasing
transformations of the utility function of the players.

Proof. Let Γ = (Xi, Xj, ui, uj) and Γ̂ = (Xi, Xj, ûi, ûj) be two games such
that ûi and ûj are strictly increasing transformations of ui and uj respec-
tively. Firstly, we show that the components v̂i and v̂j of the value function
v̂ are strictly increasing transformations of the components vi and vj of v,

respectively. Notice that Bj(x) = B̂j(x), that is

{x′
j ∈ Xj|uj(xi, x

′
j) > uj(x)} = {x′

j ∈ Xj|ûj(xi, x
′
j) > ûj(x)}.

It implies that argminx′
j∈Bj(x) ui(xi, x

′
j) = argminx′

j∈B̂j(x)
ûi(xi, x

′
j) such that

vi(x) = min{ui(xi, x̄j), ui(x)} and v̂i(x) = min{ûi(xi, x̄j), ûi(x)} for some
x̄j ∈ argminx′

j∈Bj(x) ui(xi, x
′
j). Since ûi is a strictly increasing transformation

of ui, we have either vi(x) = ui(xi, x̄j) if and only if v̂i(x) = ûi(xi, x̄j) or
vi(x) = ui(x) if and only if v̂i(x) = ûi(x) for all xi, xj and all x̄j. It follows
that showing vi(x) ≥ vi(x

′) if and only if v̂i(x) ≥ v̂i(x
′) is equivalent to

showing ui(x) ≥ ui(x
′) if and only if ûi(x) ≥ ûi(x

′) for all x, x′ in X which is
correct by our supposition.
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a b c
a 1, 1 3, 3 1, 1
b 3, 1 3, 3 3, 4
c 3, 3 1, 3 4, 1

a b c I
a 1, 1 3, 3 1, 1 −1, 0
b 3, 1 3, 3 3, 4 −1, 0
c 3, 3 1, 3 4, 1 −1, 0
I 0,−1 0,−1 0,−1 0, 0

Figure 3: Two games Γ (left) and Γ′ (right). In the former, the payoffs to the
Nash equilibria and to the maximin strategies are the same while it changes
in the latter.

Secondly, a profile y is a Pareto optimal profile with respect to v if and
only if it is Pareto optimal with respect to v̂ because each vi is a strictly
increasing transformation of v̂i. As a result, the set of maximin equilibria of
Γ and Γ̂ are the same.

The following proposition shows the existence of maximin equilibrium in
pure strategies. This may be especially a desired property in games where
players cannot or are not able to use a randomization device. It might be
also the case that a commitment of a player to a randomization device is
implausible. In those games, we can make sure that there exists at least one
maximin equilibrium.

Theorem 1. Every finite game has a maximin equilibrium in pure strategies.

Proof. Since Pareto dominance relation is reflexive and transitive a Pareto
optimal strategy profile with respect to the value function of a finite game
always exists.

Moreover, maximin equilibria are invariant under addition of “irrelevant
strategies” to a game. In other words, suppose that we add new strategies
to a game Γ calling the new game Γ′ and that all new outcomes are strictly
less preferred to the outcomes in Γ. Then the set of maximin equilibria in
Γ′ are the same as the ones in Γ. For example, let us consider the games
shown in Figure 3. All the Nash equilibria yield the same (expected) payoff
vector (3, 3) in Γ. Observe that the unique maximin strategy is ‘b’ for both
players which guarantees each of them to receive a payoff of 3. Notice also
that (b,b) is the only maximin equilibrium which is not a Nash equilibrium
in this game.
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Although the point we want to make is different, it is of importance
to note the historical discussion about this type of games where the Nash
equilibria payoffs are equal to the payoffs that can be guaranteed by play-
ing maximin strategies. Harsanyi (1966) postulates that players should use
their maximin strategies in those games which he calls unprofitable. Luce
and Raiffa (1957) and Aumann and Maschler (1972) argue that maximin
strategies seem preferable in those games. In short, in the games similar to
Figure 3, the arguments supporting maximin strategies are so strong that it
led some game theory giants to prefer them over the Nash equilibria of the
game. These arguments, however, may disappear when we add an ‘irrelevant’
strategy ‘I’ to the game for both players. Notice that the Nash equilibria in
Γ are also Nash equilibria in Γ′. By contrast, the maximin strategies in Γ
disappears. That is, the new maximin strategy in Γ′ is ‘I’ for both players
and it guarantees zero.9 On the other hand, all maximin equilibria including
(b,b) remains unchanged in Γ′.

3 The mixed extension of games

3.1 Maximin equilibrium

The mixed extension of a two-player non-cooperative game is denoted by
(∆X1,∆X2, u1, u2) where ∆Xi is the set of all simple probability distributions
over the set Xi.

10 It is assumed that the preferences of the players over
the strategy profiles satisfy weak order, continuity and the independence
axioms.11 As a result, those preferences can be represented by von Neumann-
Morgenstern (expected) utility functions u1, u2 : ∆X1×∆X2 → R. A mixed
strategy profile is denoted by p ∈ ∆X where ∆X = ∆X1 ×∆X2.

We do not need another definition for maximin equilibrium with respect
to mixed strategies; one can just interpret the strategies in Definition 2 and
in Definition 3 as being mixed. Harsanyi and Selten (1988, p. 70) argue that
invariance with respect to positive linear transformations of the utilities is a
fundamental requirement for a solution concept. The following proposition

9It is clear that whichever game we consider, it is possible to make maximin strategies
disappear by this way.

10For a detailed discussion of the mixed strategy concept, see Luce and Raiffa (1957, p.
74)’s influential book in game theory.

11For more information see, for example, Fishburn (1970).
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shows that maximin equilibrium has this property.

Proposition 2. The maximin equilibria of a game in mixed extension is
unique up to positive linear transformations of the utilities.

We omit the proof since it follows essentially the same steps as the proof
of Proposition 1. The following lemma illustrates a useful property of the
value function of a player.

Lemma 1. The value function of a player is upper semi-continuous.

Proof. In several steps, we show that the value function vi of player i in a
game Γ = (∆X1,∆X2, u1, u2) is upper semi-continuous.

Firstly, we show that the better reply correspondence Bj : ∆Xi×∆Xj ։

∆Xj is lower hemi-continuous. For this, it is enough to show the graph of
Bj defined as follows is open.

Gr(Bj) = {(q, pj) ∈ ∆X ×∆Xj| pj ∈ Bj(q)}.

Gr(Bj) is open in ∆X × ∆Xj if and only if its complement is closed. Let
[(pj, qi, qj)

k]∞k=1 be a sequence in [Gr(Bj)]
c = (∆X×∆Xj)\Gr(Bj) converging

to (pj, qi, qj) where p
k
j /∈ Bj(q

k) for all k. That is, we have uj(p
k
j , q

k
i ) ≤ uj(q

k)
for all k. Continuity of uj implies that uj(pj, qi) ≤ uj(q) which means pj /∈
Bj(q). Hence [Gr(Bj)]

c is closed which implies Bj is lower hemi-continuous.
Next, we define ûi : ∆Xi ×∆Xj ×∆Xj → R by ûi(qi, qj, pj) = ui(pj, qi)

for all (qi, qj, pj) ∈ ∆Xi × ∆Xj × ∆Xj. Since ui is continuous, ûi is also
continuous. In addition, we define ūi : Gr(Bj) → R as the restriction of ûi

to Gr(Bj), i.e. ūi = ûi|Gr(Bj)
. The continuity of ûi implies the continuity of

its restriction ūi which in turn implies ūi is upper semi-continuous.
By the theorem of Berge (1959, p. 115)12 lower hemi-continuity of Bj

and lower semi-continuity of −ūi : Gr(Bj) → R implies that the function
−v̄i : ∆Xi × ∆Xj → R defined by −v̄i(q) = suppj∈Bj(q)

−ūi(pj, q) is lower

semi-continuous.13 It implies that the function v̄i(q) = infpj∈Bj(q) ūi(pj, q) is
upper semi-continuous.
As a result, the value function of player i defined by vi(q) = min{v̄i(q), ui(q)}
is upper semi-continuous because the minimum of two upper semi-continuous
functions is also upper semi-continuous.

12We follow the terminology, especially the definition of upper hemi-continuity, presented
in Aliprantis and Border (1994, p. 569).

13We use the fact that a function f is lower semi-continuous if and only if −f is upper
semi-continuous.
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A B C D
A 2, 2 0, 0 1, 1 0, 0
B 0, 0 90, 80 3, 3 90, 90
C 1, 100 100, 80 −1,−1 −3,−2
D 3, 1 75, 0 0, 0 230, 0

Figure 4: A game Γ in mixed extension.

The following theorem shows that maximin equilibrium exists also in
mixed strategies.

Theorem 2. Every finite game in mixed extension has a maximin equilib-
rium.

Proof. Let us define vmax
i = argmaxq∈∆X vi(q) which is a non-empty compact

set because ∆X is compact and vi is upper semi-continuous by Lemma 1.
Since vmax

i is compact and vj is also upper semi-continuous the set vmax
ij =

argmaxq∈vmax
i

vj(q) is non-empty and compact. Clearly, the profiles in vmax
ij

are Pareto optimal with respect to the value function which means vmax
ij is

a non-empty compact subset of the set of maximin equilibria in the game.
Similarly, one may show that the set vmax

ji is also a non-empty compact subset
of the set of the maximin equilibria.

For an illustrative example, let us consider the game in Figure 4 played by
Alfa and Beta. Observe that it has a unique Nash equilibrium (D,A) whose
payoff vector is (3,1). An interesting phenomenon occurs if we change, ceteris
paribus, the payoff of u1(C,D) from−3 to−4. Let us call the new game Γ′. It
has the same pure Nash equilibrium (D,A) as Γ plus two mixed ones. Among
them, the Pareto dominant Nash equilibrium is [(0, 41

46
, 5
46
, 0), (0, 47

52
, 0, 5

52
)]

whose expected payoff vector is (90, 80).14 Note that by passing from Γ′ to
Γ we just slightly increase Alfa’s relative preference of the worst outcome
(C,D) with respect to the other outcomes and also that ordinal preferences
remain the same. From economics viewpoint the question arises: Should
ceteris paribus effect of increasing the payoff of u1(C,D) from −4 to −3 be
substantially high with respect to the solutions of the two games? According
to maximin equilibrium the answer is negative. For instance, there is a

14The other Nash equilibrium is approximately [(0, 0.01, 0.001, 0.98), (0.20, 0.88, 0, 0.09)]
whose expected payoff vector is approximately (88.11, 1.14).
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F O
F 2, 1 0, 0
O 0, 0 1, 2

F O
F 2, 2 0, 1
O 0, 1 1, 3

Figure 5: Two strategically equivalent battle of the sexes games.

maximin equilibrium [B, (0, 28
31
, 0, 3

31
)] in Γ whose value is approximately 80.9

for both players. Moreover, it remains to be a maximin equilibrium with
the same value in Γ′.15 Actually, it turns out that the value of a player at a
strategy profile is continuous as a function of her utility at this profile. The
following proposition shows this result formally.

Proposition 3. Let Γ = (∆X1,∆X2, u1, u2) be a game and fix a strategy
profile p ∈ ∆X1×∆X2. Everything else being equal, if we increase (decrease)
ui(p) by ǫ > 0 then vi(p) weakly increases (decreases) by at most ǫ.

Proof. There are two cases. Case 1: Define infp2∈B2(p) u1(p1, p2′) = u1 and
suppose that u1(p) > u1 so that v1(p) = u1. Then, for the new value v′1
we still have v′1(p) = u1 so v1(p) remains unchanged. Case 2: Suppose that
u1(p) ≤ u1 so that u1(p) = v1(p). If u1 < u1(p)+ǫ then we have v′1(p) = u1 <
u1(p)+ǫ = v1(p)+ǫ. If u1 ≥ u1(p)+ǫ then v′1(p) = u1(p)+ǫ = v1(p)+ǫ. The
case when the value of a player decreases can be shown by following similar
steps as above.

Since the above proposition is true for every profile, it also holds for
maximin equilibria. Note also that increasing the utility of a player at a
profile does not affect the value of the player at the other profiles. Hence,
suppose we increase Alfa’s payoff of any profile by ǫ > 0 in a game Γ and call
the new game Γ′. Then it is not possible to find a maximin equilibrium p in
Γ so that Alfa’s value at p is strictly larger than Alfa’s value of any maximin
equilibrium in Γ′.

For another illustrative example consider the battle of the sexes game
presented on the left in Figure 5. Alfa and Beta have each two choices to make
between ‘Opera’ (O) and ‘Football’ (F). There are two maximin equilibria in

15Note that we have given one example of maximin equilibrium whose value is equal for
both players, but there can be other maximin equilibria as well. In addition, the maximin
equilibrium is given with respect to the mixed extension of the game. If we do not allow
for mixed strategies, then (B,B) would be the only maximin equilibrium in deterministic
games Γ and Γ′.
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this game which are (O,O) and (F,F) that are also Nash equilibria. Given
the information, it does not seem possible to define a unique ‘solution’ to this
game. One might be tempted to propose that the solution of this game should
be the mixed Nash equilibrium [(2

3
, 1
3
), (1

3
, 2
3
)] whose expected payoff vector

is (2
3
, 2
3
) because it seems more ‘distinguishable’. This temptation, however,

may disappear when we consider the game on the right in Figure 5. In this
game, it seems that the profile (F,F) is also ‘distinguishable’ and it Pareto
dominates the mixed Nash equilibrium [(2

3
, 1
3
), (1

3
, 2
3
)] whose payoff is (2

3
, 5
3
).

Notice that the payoffs of Beta in the second game is just a positive linear
transformation of the payoffs in the first game. Therefore, these two games
must have the same solution in whatever way we define it; assuming that a
solution must be invariant with respect to different numerical representation
of the utilities.

3.2 The relation of maximin equilibrium with the other

concepts

Nash equilibrium is probably the most well-known solution concept in game
theory. Let us state Nash (1950)’s path-breaking theorem formally: Every
finite game in mixed extension possesses at least one strategy profile p such
that pi ∈ argmaxp′i∈∆Xi

ui(p
′
i, pj). The following two propositions illustrate

Pareto dominance relation between Nash equilibrium and maximin equilib-
rium.

Proposition 4. For every Nash equilibrium that is not a maximin equilib-
rium there exists a maximin equilibrium that Pareto dominates it.

Proof. If a Nash equilibrium q in a game is not a maximin equilibrium, then
there exists a maximin equilibrium p whose value v(p) Pareto dominates v(q).
It implies that p Pareto dominates q in the game since the payoff vector of
the Nash equilibrium q is the same as its value.

The following corollary shows that a strong Nash equilibrium (Aumann,
1959) is always a maximin equilibrium.

Corollary 1. A strong Nash equilibrium is a maximin equilibrium.

Proof. Suppose that a profile is a strong Nash equilibrium. Then it is Pareto
optimal and there is no individually rational deviation from it which implies
that it is a maximin equilibrium.
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Proposition 5. A maximin equilibrium is never Pareto dominated by a Nash
equilibrium.

Proof. By contradiction, suppose that a Nash equilibrium q Pareto dominates
a maximin equilibrium p. It implies that the value of q also Pareto dominates
the value of p. But this is a contradiction to our supposition that p is a
maximin equilibrium.

The two propositions above are closely linked but one does not follow
from the other. Proposition 4 does not exclude the existence of a Nash
equilibrium that is both Pareto dominated by a maximin equilibrium and
Pareto dominates another maximin equilibrium. Proposition 5 shows that
this is not the case.

Note that maximin equilibrium is distinct from rationalizable strategy
profiles (Bernheim, 1984 and Pearce, 1984) and correlated equilibrium (Au-
mann, 1974) since maximin equilibrium is not necessarily an outcome of the
iterated elimination of strictly dominated strategies. As discussed earlier,
the profile (2,2) is the only outcome of this process in the traveler’s dilemma,
but it is not a maximin equilibrium.

One might wonder whether there is a relationship between the maximin
(minimax) decision rule16 in decision theory and the maximin equilibrium.
Imagine a one-player game in which the decision maker is to make a choice
between several gambles. In that case, maximin equilibrium boils down to
expected utility maximization just like maximin strategies and Nash equi-
librium. In other words, the decision maker has to choose the gamble with
the highest expected utility. However, according to maximin decision rule,
a decision maker has to choose the gamble which maximizes the utility with
respect to the worst state of the world (whose outcome is the minimum) even
though the probability assigned to it is very small.

4 Zerosum games

Two-person zerosum games are both a historically and theoretically impor-
tant class in game theory. We illustrate the relationship between the equilib-
rium solution of von Neumann (1928) and the maximin equilibrium in this
class of games. The following lemma will be useful for the next proposition.

16See Wald (1950) for maximin decision rule and see Gilboa and Schmeidler (1989) for
an axiomatization of it.
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Lemma 2. Let (Y1, Y2, u1, u2) be a two-person zerosum game where Yi is not
necessarily finite. Then vi(yi, yj) = infy′j∈Yj

ui(yi, y
′
j) for each i 6= j.

Proof. Suppose that there exists ȳj ∈ Yj such that ȳj ∈ argminy′j∈Yj
ui(yi, y

′
j).

Then vi(yi, yj) = miny′j∈Yj
ui(yi, y

′
j) = ui(yi, ȳj). Suppose, otherwise, that for

all y′j ∈ Yj there exists y′′j ∈ Yj such that ui(yi, y
′′
j ) < ui(yi, y

′
j). It implies

that vi(yi, yj) = infy′j :ui(yi,y′j)<ui(yi,yj) ui(yi, y
′
j) = infy′j∈Yj

ui(yi, y
′
j).

The following proposition shows that a strategy profile is a maximin equi-
librium if and only if it is a pair of maximin strategies in zerosum games.

Proposition 6. Let (Y1, Y2, u1, u2) be a two-person zerosum game where Yi is
not necessarily finite. A profile (y∗1, y

∗
2) ∈ Y1×Y2 is a maximin equilibrium if

and only if y∗1 ∈ argmaxy1 infy2 u1(y1, y2) and y∗2 ∈ argmaxy2 infy1 u2(y1, y2).

Proof. ‘⇒’ Firstly, we show that the value of a maximin equilibrium (y∗1, y
∗
2)

must be Pareto dominant in a zerosum game. By contraposition, suppose
that its value is not Pareto dominant, i.e. there is another maximin equi-
librium (ŷ1, ŷ2) such that vi(y

∗
1, y

∗
2) > vi(ŷ1, ŷ2) and vj(y

∗
1, y

∗
2) < vj(ŷ1, ŷ2) for

i 6= j. By Lemma 2, we have v1(y
∗
1, y

∗
2) = v1(y

∗
1, ŷ2) and v2(ŷ1, ŷ2) = v2(y

∗
1, ŷ2).

It implies that the value of (y∗i , ŷj) Pareto dominates the value of (y∗1, y
∗
2)

which is a contradiction to our supposition that (y∗1, y
∗
2) is a maximin equi-

librium. Since the value of (y∗1, y
∗
2) is Pareto dominant, each strategy is a

maximin strategy of the respective players.
‘⇐’ Suppose that for each i we have y∗i ∈ argmaxyi infyj ui(yi, yj). By Lemma
2, it implies that for all (y′1, y

′
2) ∈ Y1 × Y2 and for each i we have vi(y

∗
1, y

∗
2) ≥

vi(y
′
1, y

′
2) . Hence the value of (y

∗
1, y

∗
2) is Pareto dominant which implies that

it is a maximin equilibrium.

Corollary 2. In a zerosum game, maximin equilibrium and equilibrium co-
incide whenever an equilibrium exists.

As a result, maximin equilibrium indeed generalizes the maximin strategy
concept of von Neumann (1928) from zerosum games to non-zerosum games.
To sum up, existence of an equilibrium in a zerosum game implies that equi-
libria and maximin equilibria coincide. But note that maximin equilibrium
may exists even though an equilibrium does not exists. In any case, maximin
equilibrium is a pair of maximin strategies in zerosum games.

For an illustrative example let us consider the following game to be played
by Alfa and Beta at a television program. Initially, Beta has to make a choice
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Beta

Beta
l

Beta

r

(

1 0
0 −1

)

· · · · · ·Alfa · · · · · ·

(

1 −1
0 10

)

Figure 6: The game (∆X,∆Xl ∪∆Xr, u,−u).

between the left door and the right door. She is not allowed to commit to
a randomization device nor is she allowed to use a device by herself for
this choice. If she picks the left door, they will play the game at the left
of Figure 6. If she picks the right door, they will play the game at the
right of Figure 6. At this stage, players may commit to mixed strategies by
submitting them on a computer. Alfa will not be informed which normal-
form game he is playing. This situation can be represented by the zerosum
game (∆X,∆Xl∪∆Xr, u,−u) in which Alfa chooses a mixed strategy in ∆X
and Beta chooses a mixed strategy in either ∆Xl or in ∆Xr.

Notice that there is no equilibrium in this game. There are, however,
maximin strategies for each player that are (11

12
, 1
12
) ∈ ∆X guaranteeing −1

12

and (0, 1) ∈ ∆Xl guaranteeing 0. By Proposition 6, this pair is also the
unique maximin equilibrium whose payoff vector is (−1

12
, 1
12
). However, max-

imin equilibrium does not necessarily say that this is the payoff that players
should expect by playing their part of the maximin equilibrium. Rather, the
unique maximin equilibrium value of this game is (−1

12
, 0). In other words,

the unique value of the game to Alfa is −1
12

given the individual rationality
of Beta and the unique value of the game to Beta is 0 given the individual
rationality of Alfa. If the television programmer modifies the game so that
Beta is allowed to commit to a randomization device in the beginning, then
the game would have an equilibrium [(11

12
, 1
12
), (0, 11

12
, 0, 1

12
)] which is also a

maximin equilibrium. Note that Beta is now able to guarantee the payoff 1
12
.

As a result, the unique value of the modified game would be (−1
12
, 1
12
).

Speaking of the importance of committing to mixed strategies, let us
consider the following zerosum game in Figure 7 which was discussed in Au-
mann and Maschler (1972). Suppose that players cannot commit playing
mixed strategies but a randomization device, e.g. a coin, is avaliable. Be-
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L R
L 0, 0 2,−2
R 3,−3 1,−1

Figure 7: A zerosum game.

fore the coin toss, the maximin strategy (1
2
, 1
2
) of Alfa guarantees the highest

expected payoff of 1.5 in the mixed extension. However, after the coin toss
Alfa still needs to make a decision whether playing according to the outcome
of the toss or not. Actually, for both players playing strategy R guarantees
more than playing L after the randomization. Hence the maximin equilib-
rium of this deterministic game is (R,R) whose value is (1,−2) whereas the
values of the profiles (L,L),(L,R) and (R,L) are (0,−3), (0,−2) and (1,−3)
respectively. Note that if players are allowed to use mixed strategies then
the maximin equilibrium is [(1

2
, 1
2
), (1

4
, 3
4
)].

5 Maximin equilibrium in n-person games

Firstly, we define the value function. For this, we replace the way vi is written
in Definition 2 to vi(p) = min{infp′−i∈B−i(p) ui(pi, p

′
−i), ui(p)} where B−i(p) is

defined as follows. Firstly for each S ⊆ N \ {i} and each p ∈ ∆X define

BS
−i(p) = {(p̂S, p−S) ∈ ∆X−i| uk(p̂k, p−k) > uk(p) for all k ∈ S}.

BS
−i(p) is the set of (n − 1)-tuple strategy profiles in which the players in

S make a unilateral profitable deviation with respect to p. To represent all
such profiles for all S ⊆ N \ {i}, we define the correspondence B−i(p) =
⋃

S⊆N\{i} B
S
−i(p). Accordingly, a strategy profile is a maximin equilibrium if

its value is not Pareto dominated. Moreover, every result in Section 2 and
in Section 3 is valid in n-person games. The proofs are essentially the same
as the ones given in Section 2 and in Section 3.

Even in a purely non-cooperative framework, strategic thinking in n-
person games may be quite different than in two-person games. Let us con-
sider the game in Figure 8 played by Alfa, Beta and Juliet to show that even
the unique Nash equilibrium can be “fragile” in games with more than two
players. This game has a unique Nash equilibrium which is approximately
[(0.65, 0.35, 0), (0.25, 0.75), (0.68, 0.32)] whose payoff vector is approximately
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D E
A 1, 1, 1 0, 0, 1
B 4, 6, 2 0, 4, 6
C −2, 1, 1 0, 0, 2

D E
A −2,−1, 6 3, 3,−2
B 3, 4, 3 −1, 5, 8
C 4, 0, 0 −1, 0, 1

Figure 8: A three player game where player 3 chooses between the matrices
L (left) and R (right).

(0.71, 2.12, 2.39). Note that the Nash-value of Juliet is the highest so she
seems to be the most advantageous player in the game. Suppose that Juliet
naively thinks that she is doing the ‘best’ by playing her part of the Nash equi-
librium. Even without any communication, Alfa and Beta may unilaterally
deviate from the Nash equilibrium to the strategies ‘B’ and ‘C’ respectively
after which they both receive (3.68 and 5.36, respectively) strictly more than
their Nash equilibrium payoff which causes the Nash equilibrium to “break
down”. As a result, Juliet ends up with a strictly less payoff (2.32) than her
payoff at the Nash equilibrium.

Notice that potential deviations of Alfa and Beta are costless, because the
strategy ‘B’ of Alfa is a best response to the Nash equilibrium strategies of
the other players and ‘D’ of Beta is also best response to the Nash equilibrium
strategies of the others. Note also that these deviations are not coalitional
deviations. We do not claim that when a player deviates, the other also must
deviate. It could very well be the case that Alfa unilaterally deviates to ‘B’
but Beta sticks to her Nash equilibrium strategy or vice versa. In this case,
Alfa would not lose anything. What ‘breaks the Nash equilibrium down’
is the very possibility that by anticipating the situation Beta also deviates
to ‘D’. In addition, holding the Nash equilibrium strategy (0.68, 0.32) of
Juliet fixed, the profile (B,D) is the Pareto dominant Nash equilibrium in
the game played by Alfa and Beta! Consequently, the very argument that
players have no incentive to unilaterally deviate at a Nash equilibrium does
not hold in this example. Since every pure strategy in the support of a
mixed Nash equilibrium is a best response, every mixed Nash equilibrium and
even sometimes a pure Nash equilibrium may, potentially, have the problem
described above in n-person games.17

17It is well-known that a Nash equilibrium is not necessarily immune to profitable coali-
tional deviations. Therefore some refinements of Nash equilibrium has been proposed such
as strong Nash equilibrium (Aumann, 1959) and coalition-proof Nash equilibrium (Bern-
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In fact, von Neumann and Morgenstern (1944, p. 32) strikingly anticipate
the problem we discussed above years before the emergence of Nash equilib-
rium: “Imagine that we have discovered a set of rules for all participants to be
termed as “optimal” or “rational” each of which is indeed optimal provided
that the other participants conform. Then the question remains as to what
will happen if some of the participants do not conform. If that should turn
out to be advantageous for them and, quite particularly, disadvantageous to
the conformists then the above “solution” would seem very questionable. We
are in no position to give a positive discussion of these things as yet but we
want to make it clear that under such conditions the “solution,” or at least
its motivation, must be considered as imperfect and incomplete.”

Maximin equilibrium can be modified to incorporate coalitions in n-
person games, we just need to define the better reply correspondence allowing
coalitional profitable deviations and define the value function with respect to
this. Accordingly, a profile is called strong maximin equilibrium if its value
is not Pareto dominated. By the same argument in Theorem 1, it exists
in pure strategies in the deterministic game. Regarding the mixed exten-
sion of games, one may show the existence of strong maximin equilibrium
by following the similar steps as in Lemma 1 and in Theorem 2. Regarding
the three-player game above, both the maximin equilibrium and the strong
maximin equilibrium is the profile (B,D, (1

2
, 1
2
)) whose value is (3, 4, 2.5). In

other words, by playing their part of the maximin equilibrium each player
guarantees her value under any profitable deviation of the other players.

6 Conclusion

In this paper, we extended von Neumann’s maximin strategy solution in
strategic games by incorporating individual rationality of the players. Max-
imin equilibrium extends Nash’s value approach to the whole game and eval-
uates the strategic uncertainty of the game by following a similar method
as von Neumann’s maximin strategy notion. We showed that maximin equi-
librium is invariant under strictly increasing transformations of the payoffs.
Notably, every finite game possesses a maximin equilibrium in pure strate-
gies.

heim et al., 1987). These concepts, however, have the non-existence problem and they are
sometimes interpreted with pre-play communication.
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Considering the games in von Neumann-Morgenstern mixed extension, we
demonstrated that maximin equilibrium exists in mixed strategies as well.
Moreover, we showed that a strategy profile is a maximin equilibrium if
and only if it is a pair of maximin strategies in two-person zerosum games.
In particular, a maximin equilibrium and an equilibrium coincide whenever
the latter exist in those games. Furthermore, we showed that for every
Nash equilibrium that is not a maximin equilibrium there exists a maximin
equilibrium that Pareto dominates it. Hence, a strong Nash equilibrium
is always a maximin equilibrium. Besides, a maximin equilibrium is never
Pareto dominated by a Nash equilibrium. The concept introduced in this
paper opens up several research directions such as further exploration in
extensive form games and in repeated games.
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