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Abstract

This study proposes a model of non-unitary time discounting and examines its welfare implications.

A key feature of our model lies in the disparity of time discounting between multiple distinct goods,

which induces an individual’s preference reversals even though she normally discounts her future utilities

for each good. After characterizing the time-consistent decision-making by such an individual in a

general setting, we compare welfare achieved in the market economy and welfare in the planner’s

allocation from the perspective of all selves across time. Under certain situations, the selves in early

periods strictly prefer the social planner’s allocation, whereas the selves in future periods strictly prefer

the market equilibrium. Therefore, the welfare implications of our model are quite different from those

in the canonical discounting model and in models of other time-inconsistent preferences.

JEL classification: E21; H21; O41

Keywords: Non-unitary time discounting; Time inconsistency; Time-consistent tax policy.

1 Introduction

Father: “Could you mow the yard tomorrow instead of playing football? After completing the

job, I will give you $20.”

Son: “Really? I will. Then, I can buy a new computer game!”

Tomorrow has come.

Father: “Why are you going out to play football? Mow the yard! You promised yesterday,

didn’t you?”

Son: “Sorry Dad. I no longer think $20 is enough for the job.”
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Why did the boy break his promise? Is it because he is a liar? Of course, there are a number of

possible answers to this question. One possibility, suggested by a large body of experimental evidence, is

that preference reversals frequently occur over time in people’s decision-making. As such, it could be that

the boy first regarded $20 (or purchasing a new game) as preferable, but by the following day, preferred

his leisure activity.

Although only one among many hypothetical answers, this possibility becomes convincing once we

consider the domain effect, or domain independence, often referred to in the experimental psychology

literature.1 The domain effect emerges when the discount rates (or factors) differ depending on their

domains. In the abovementioned example, the domain effect emerges if the boy discounts the utility

from the monetary reward ($20) and that from enjoying the leisure activity (football) differently. For

expositional convenience, let R denote the utility from the monetary reward and F denote the utility

from the leisure activity. We assume R < F ; that is, the boy will never mow the yard if asked to do so

right now. Next, suppose that, on the first day, he evaluates the utility from receiving $20 as β1R, and

that from playing football as β2F , where β1 ∈ (0, 1) and β2 ∈ (0, 1) are the discount factors specific to

the monetary reward and leisure, respectively. Then, if the boy discounts enjoying leisure steeply enough

such that β1R > β2F , he will accept his father’s job offer on the first day.

Hereafter, we refer to such domain-specific discounting as non-unitary discounting. If an individual

discounts her future utilities in a non-unitary way, this can make her decisions time inconsistent. There

has been a recent upsurge of interest in models of time-inconsistent preferences, as pioneered by Strotz

(1955) and Pollak (1968). In this context, the individual’s decision-making process is formulated as

a dynamic non-cooperative game played by her different selves across time, where the current self is

aware that her preferences might change in future, and takes this into account when making the current

decision.2 However, much of the literature focuses on a class of quasi-hyperbolic discounting proposed by

Phelps and Pollak (1968), and popularized by Laibson (1997). Therefore, the purpose of this study is to

develop a simple dynamic theory of non-unitary discounting.

In this study, we develop a simple model of non-unitary time discounting and pursue its welfare

implications. As in Hori and Futagami (2019), an individual discounts her one-period utility functions

of consumption and leisure differently. As the boy does in the earlier example, the individual changes

her mind about the relative importance of consumption and leisure as time progresses. Within this

framework, we compare welfare achieved in the market economy from welfare in the planner’s allocation

from the perspective of all selves across time. The results are no longer straightforward, because as a

result of a lack of commitment, each self of the social planner is also involved in strategic interactions

with her other selves. In fact, in their model with quasi-hyperbolic discounting, Krusell et al. (2002) show

that the allocation in the market economy surprisingly attains strictly higher welfare than that in the

planning allocation. Hiraguchi (2014) extends Krusell et al. (2002) to a general model of non-constant

discounting, including the original as a special case, and shows that their result is robust. At the same

1For example, based on her experimental studies, Chapman (1996) notes that discount rates may be specific to money

and health status. For an excellent discussion on the inconsistency of intertemporal choices due to time discounting, see

Frederick et al. (2002).

2 For example, see Peleg and Yaari (1973) and Goldman (1980) for the game-theoretic foundations of the solution concepts

in Strotz (1955) and Pollak (1968).
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time, a welfare comparison between the competitive and planning economies gives rise to the following

problem. In order to correctly identify which achieves higher welfare in each period, we must control the

difference in the dynamics of the state variables between the two economies. In other words, we cannot

evaluate which of the economies performs better if we focus only on their overall paths.3

Then, we conduct a welfare comparison in two distinct ways. First, we consider the hypothetical

situation in which, in an arbitrarily given period, a self faces the same value of a state variable in both

economies. It is shown that welfare in the social planning case is always strictly higher than that in the

market economy. This means that welfare improvement is always possible from the realized allocation

in the market economy, which contrasts sharply with the findings of Krusell et al. (2002). Second, we

undertake a welfare comparison between the overall paths of the two economies. We show that whether

the planning allocation is more Pareto efficient than the allocation in the market economy depends on

the relative degree of impatience. The following two cases arise. If the individual discounts future leisure

more steeply than she does future consumption, the planning allocation is preferable to the laissez-faire

allocation for all her selves. However, if the reverse is the case, they are not Pareto ranked. In this

case, we show that there is a unique threshold period before which any selves strictly prefer the planning

allocation. However, after this period, they strictly prefer the laissez-faire allocation. This means that

the allocation in the market equilibrium may achieve a more desirable outcome than the social planner

does for the selves in later periods.

As already stated, the most closely related literature to our study is the set of studies on time-

inconsistent preferences resulting from non-geometric discounting. However, our model is also related to

a class of preferences exhibiting temptations. Among others, Banerjee and Mullainthan (2010) consider

a two-period, many-good economy, and classify the goods into two types. The first is a standard good,

the consumption of which in both periods yields the individual’s lifetime utility in period 1. The second

is a “temptation good,” the consumption of which in period 2 is not valued in period 1, but yields utility

once period 2 has arrived. In their two-period model, temptation goods are interpreted as those with a

discount factor of 0. If we set β2 = 0 in the example at the beginning of the introduction, playing football

is a temptation good for the boy. Thus, our model of non-unitary discounting is closely related to their

notion of temptation.4

The remainder of this paper is organized as follows. Section 2 gives the illustrative example of non-

unitary discounting, and explains why the time-inconsistency problem arises. It also provides the Euler

equation in this model. Section 3 then extends the framework to a dynamic general equilibrium model

and characterizes the market equilibrium. Section 4 compares welfare in the market economy to that in

the social planner’s allocation. It also shows the existence of the time-consistent policies by the benevolent

government. Section 5 concludes.

3In Subsection 4.4 (p. 56) of their paper, Krusell et al. (2002) make the same argument.

4 In other words, in the model of Banerjee and Mullainthan (2010), time inconsistency occurs. By contrast, as is well

known, Gul and Pesendorfer (2001) propose a utility function (and give its axiomatic foundations) that exhibits temptation,

but that is free from time inconsistency.
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2 Preliminary

2.1 Time-inconsistency Problem due to Non-unitary Discounting

We start with a consumer’s optimization in a two-good model, provided that all prices are exogenously

constant. Time is discrete and indexed by t = 0, 1, 2, . . . There are two distinct goods, c and x. Preferences

of an infinitely lived consumer in period t are given as the following utility function:

Ut = u(ct) + βcu(ct+1) + β2cu(ct+2) + β3cu(ct+3) + · · ·

+ v(xt) + βxv(xt+1) + β2xv(xt+2) + β3xv(xt+3) + · · ·

=

∞∑

t′=t

(
βt

′−t
c u(ct′) + βt

′−t
x v(xt′)

)
, (1)

where u(c) and v(x) denote the one-period utility functions from consuming c and x, respectively. Both

u and v are twice differentiable and satisfy u′(c) > 0, v′(x) > 0, u′′(c) < 0, and v′′(x) < 0. Parameters

βc ∈ (0, 1) and βx ∈ (0, 1) are the subjective discount factors for goods c and x, respectively. If βc = βx

always holds, then the utility function (1) is a canonical one. In this study, we allow the case of βc ̸= βx,

that is, the consumer discounts utility from different sources at different rates.

As shown by Ubfal (2016) and Hori and Futagami (2019), the time-inconsistency problem arises

when βc ̸= βx. This is because such good-specific discounting induces an intertemporal variation in an

intratemporal marginal rate of substitution (MRS). Assume two dates, t and T (> t). From (1), we obtain

the following relationship for all cT > 0 and xT > 0:

(
βx
βc

)T−t v′(xT )

u′(cT )︸ ︷︷ ︸
≡−dcT /dxT |dUt=0

⋛
v′(xT )

u′(cT )︸ ︷︷ ︸
≡−dcT /dxT |dUT=0

,

if and only if βx ⋛ βc. The left-hand side is the MRS between cT and xT evaluated in period t, whereas

the right-hand side is the same MRS evaluated in period T . Thus, as the evaluation date is updated, the

consumer changes her mind about the relative importance between the two goods when βc ̸= βx. For

example, suppose βc > βx: consumption of good x is less postponable than good c from the perspective

of the current consumer. This means that the current consumer does not consider future consumption of

good x to be especially important. However, the above relationship shows that as the evaluation date t

approaches the execution date T , consumption of good x becomes more attractive than under her original

plan.

Note that the driving force of time inconsistency is significantly distinguished from the Phelps–Pollak–

Laibson preferences of quasi-hyperbolic discounting. In their preferences, the driving force is a time

variation of the intertemporal MRS between consumption of a single good in two adjacent periods.

2.2 Intrapersonal Game and the Euler Equation

Then, how does such a preference reversal influence a consumer’s intertemporal behavior? We follow

Phelps–Pollak–Laibson to formulate the consumer’s problem as a dynamic intrapersonal game, where the

consumer is composed of a sequence of their distinct “selves” indexed by period t. In their continuous-

time model of non-unitary discounting, Hori and Futagami (2019) derive the (generalized) Euler equation
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under the situation in which a consumer in a period cannot commit to her future selves’ actions. To

obtain clear-cut results, however, Hori and Futagami (2019) follow the calculation procedure developed

by Barro (1999) and thus, specify the functional form of instantaneous utilities from the beginning. By

contrast, our discrete-time framework enables us to derive the Euler equation with general functional

forms of u and v.

The consumer’s flow budget constraint is given by

at+1 = Rat − ct − pxt, (2)

where at denotes the asset holding in period t, R > 1 is the gross interest rate, and p > 0 is the price

of good x. To focus on a single individual’s saving behavior, we assume that prices are exogenous and

ignore wage income here, both of which are relaxed when we introduce non-unitary discounting into a

dynamic general equilibrium model in Section 3.

Throughout the study, we assume that each self is sophisticated so that she takes her next self’s

decision-making into account. Specifically, the self in period t rationally expects her next self’s decisions

to be given by ct+1 = φc(at+1) and xt+1 = φx(at+1), where functions φc and φx are unknown still to

be solved. Once they are given, at+2 is accordingly given by at+2 = g(at+1), where g(a) is given by

g(a) ≡ Ra− φc(a)− pφx(a) from the budget constraint (2). Thus, the self in period t decides the level of

assets in the next period at+1 with the knowledge that it affects the subsequent self’s actions.5

The optimization problem of the self in a period with her assets given by a is formulated as

V (a) = max
c,x,a′

{
u(c) + v(x) + βcVc(a

′) + βxVx(a
′)
∣∣ a′ = Ra− c− px

}
,

where V is the value function associated with this problem. In addition, functions Vc and Vx are defined

as the solutions to the following functional equations:

Vc(a
′) = u(φc(a

′)) + βcVc(g(a
′)), Vx(a

′) = v(φx(a
′)) + βxVx(g(a

′)).

Concerning the intratemporal decision, we obtain v′(xt)/u
′(ct) = p, which means simply that the MRS

between ct and xt equals the relative price p. Concerning the dynamic decision, we obtain the following

proposition:

Proposition 1. The Euler equation in this model is given by

u′(ct) = βcu
′(ct+1)R+ (βx − βc)

dVx(at+1)

dat+1
,

or equivalently

v′(xt) = βxv
′(xt+1)R+ (βc − βx)p

dVc(at+1)

dat+1
.

Proof. See the Appendix.

If βx = βc, the second term on the right-hand side does not appear, leading to the canonical Euler

equation. By contrast, if βx ̸= βc, the second term additionally provides the marginal cost (or reward) of

5 Throughout the study, we focus on the case in which each self employs Markov strategies whereby she makes a decision

based only on the state variables, in this case, her assets.
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savings. The intuition behind the emergence of this additional term is explained as follows. Suppose that

the self in period t marginally increases her savings at the cost of marginal disutility u′(ct). In response,

the self in period t + 1 changes consumption for both goods by dφc(at+1)/dat+1 and dφx(at+1)/dat+1

units. The resulting marginal utility for this self is given by

d

dat+1
[Vc(at+1) + Vx(at+1)] = u′(ct+1)R.

The proof is given in the Appendix. However, the self in period t evaluates dVx(at+1)/dat+1 by its βx

times, not by βc. Then, the marginal utility for the self in period t is βc
dVc(at+1)
dat+1

+ βx
dVx(at+1)

dat+1
, which is

less (more) than βcu
′(ct+1)R when βx < (>) βc. In other words, the next self’s consumption additionally

provides the current self with the marginal cost (reward) of savings.

3 Dynamic General Equilibrium Model

As shown in the previous section, a key feature of our model lies in the disparity of time discounting

between multiple distinct goods. To obtain macroeconomic implications of this aspect and pursue its

welfare implications, we now extend the model to a dynamic general equilibrium model. Following Hori

and Futagami (2019), we assume that households differently discount their utility from consumption of a

good and their utility from consumption of leisure.

3.1 Production

A final good is used for consumption and investment. The production function takes a Cobb–Douglas

form, Yt = AKα
t L

1−α
t , where Y , K, and L denote the amount of output, demand for capital, and demand

for labor, respectively. The parameter A > 0 is the level of total factor productivity and α ∈ (0, 1) is a

constant that specifies the share of capital income in total output. Let Xt ≡ Kt/Lt denote the ratio of

aggregate demand for capital to that for labor. Then, perfect competition results in

rt = r(Xt) ≡ AαXα−1
t , wt = w(Xt) ≡ A(1− α)Xα

t . (3)

3.2 Households

There is a continuum of homogeneous households with unit mass. Each household (denoted as “she” in

this paper) is endowed with one unit of time, and now derives her utility from consumption of the good

and leisure time. Letting lt denote her labor supply, her consumption of leisure is 1 − lt. The utility

function is now given by Ut =
∑∞

t′=t[(β
t′−t
c u(ct′) + βt

′−t
l v(1 − lt′)], where βc ∈ (0, 1) and βl ∈ (0, 1) are

the discount factors applied to her consumption of the good and leisure time, respectively.

Letting kt denote the amount of capital held by the individual in period t, the flow budget constraint

is given by

kt+1 = Rtkt + wtlt − ct,

where Rt ≡ rt+1− δ and δ ∈ [0, 1] is the depreciation rate of capital. The aggregate variable Xt is taken

as given by each individual.
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Here, let us redefine at as

at ≡ kt +
∞∑

t′=t

wt′∏t′

ν=tRν

,

meaning that at is now total wealth, which is given by the sum of capital and human wealth. Under the

additional condition that limT→∞(
∏T

t=0Rt)
−1aT+1 = 0, which is the transversality condition and indeed

holds in equilibrium, the above budget constraint is rewritten as6

at+1 = Rtat − ct − wt(1− lt). (4)

Once we replace p with wt and xt with 1− lt, we find that each self faces the same problem as identified

in the previous section, except that the prices Rt and wt are now time-varying. Therefore, we have to

formulate each self’s expectation about how these values evolve over time. The self in period t rationally

expects the law of motion of Xt as

Xt+1 = G(Xt), (5)

where function G is a function to be solved. Since Rt = R(Xt) ≡ r(Xt)+ 1− δ and wt = w(Xt), equation

(5) captures the individual’s expectation for the prices in the next period.

Therefore, the optimization problem is recursively formulated as

V (a,X) = max
c,l,a′

{u(c) + v(1− l) + βcVc(a
′, G(X)) + βlVl(a

′, G(X))}, (6)

subject to equation (4). In this problem, functions Vc(a,X) and Vl(a,X) on the right-hand side are

defined in the same manner as the previous section:

Vc(a,X) = u(φc(a,X)) + βcVc(g(a,X), G(X)),

Vl(a,X) = v(1− φl(a,X)) + βlVl(g(a,X), G(X)),

where φc(a,X) and φl(a,X) are the policy functions for c and l. Function g is defined as g(a,X) ≡

R(X)a− φc(a,X)− w(X)(1− φl(a,X)) which gives the level of assets in the next period. Following the

same calculation procedure as Proposition 1, we obtain the following equations:

v′(1− lt)

u′(ct)
= w(Xt), (7)

u′(ct) = βcu
′(ct+1)R(G(Xt)) + (βl − βc)

dVl(at+1, G(Xt))

dat+1
. (8)

3.3 Equilibrium

The Euler equation (8) is very informative when we grasp how and why the time-inconsistency problem

arises in this class of preferences. At the same time, however, note that the unknown function Vl exists

in this equation, meaning that we cannot analytically characterize the equilibrium unless we specify the

one-period utility functions to obtain the functional form of Vl. Therefore, we specify u and v as

u(c) = ln c, v(1− l) = ζ ln(1− l), ζ > 0,

respectively. Under this specification, we first show the following lemma:

6Using the definition of at and limT→∞(
∏

T

t=0
Rt)

−1aT+1 = 0, the intertemporal budget constraint is given by at =
∑∞

t′=t
(
∏

t
′

ν=t
Rν)

−1(ct′ + wt′(1− lt′)) for all t = 0, 1, 2 . . . Then, we obtain Rtat = at+1 + ct + wt(1− lt).
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Lemma 1. Given at and Xt, at+1 is given by at+1 = g(at, Xt) = γR(Xt)at, where γ is defined as

γ ≡
βc + λ

1 + λ
∈ (0, 1),

and λ is

λ ≡
ζ

1 + ζ

βl − βc
1− βl

.

Proof. See the Appendix.

Therefore, λ gives the criterion for whether the preferences exhibit non-unitary discounting, since it

deviates from zero if and only if βc ̸= βl. To analytically obtain the equilibrium, we must also assume

full depreciation of capital:

Assumption 1. δ = 1.

This assumption is restrictive, but is made in common with many existing studies that examine time-

inconsistent preferences for the purpose of analytical characterization of the equilibrium (Krusell et al.,

2002; Hiraguchi, 2014, 2016). We show that even under such a restrictive situation, welfare implications

of our model dramatically change when λ takes a non-zero value.

The market-clearing conditions are given by Kt = kt and Lt = lt, which jointly mean Xt = kt/lt. We

then derive the competitive equilibrium by use of a simple “guess and verify” method. We first guess that

the equilibrium labor supply is constant over time, lt = leqm. We then guess that the functional form of

G is

G(X) = seqmAXα.

In other words, we guess that the saving rate is constant over time. In addition, we guess that the saving

rate seqm satisfies

seqm < α,

which is verified in the equilibrium.

We now derive seqm and leqm, and verify that these are indeed constant over time. Based on Assump-

tion 1, we can rewrite human wealth as the following simple expression:

∞∑

t′=t

wt′∏t′

ν=t rν
=

1− α

(α− seqm)leqm
kt, (9)

where the detailed derivation process is given in the Appendix. Then, equation (9) gives total wealth at

as

at = a(kt) ≡

[
1 +

1− α

(α− seqm)leqm

]
kt.

Substituting this result, equation (3), and Xt = kt/l
eqm into equation at+1 = γR(Xt)at shown in Lemma

1 yields the following dynamic equation of kt:

kt+1 = γαAkαt (l
eqm)1−α, (10)

meaning that

seqm = γα ∈ (0, α).

8



The equilibrium consumption is accordingly given by (1 − seqm)A(kt)
α(leqm)1−α. Finally, substituting

this result into equation (7), we obtain leqm as

leqm =
1− α

1− α+ ζ(1− γα)
∈ (0, 1), (11)

which is indeed constant over time.

Given the initial condition k0 > 0, the equilibrium sequence of capital is determined from (10). Let

{keqmt } denote the sequence. Once it is determined, the sequence of all other variables is determined

accordingly.

Proposition 2. There is a unique competitive equilibrium path in this model.

By incorporating quasi-hyperbolic discounting into a simple neoclassical growth model and assuming

a logarithmic utility function, Krusell et al. (2002) show that observational equivalence holds between

their model and the standard geometric discounting model.7 Barro (1999) shows the same property in

his continuous-time model of non-constant rate of time preferences. Such observational equivalence also

holds between our non-unitary discounting model and the standard discounting model. Consider an

economy in the same environment as ours, except that the representative individual’s preference is given

by
∑∞

t′=t γ
t[ln ct + ζ ln(1 − lt)]. The equilibrium conditions in such a model are given by (10) and (11).

At first glance, this result appears to show that the standard model or the model of quasi-hyperbolic

discounting can replicate all our findings. This conjecture is not correct because, as we show in the next

section, our model yields welfare implications that differ markedly from these preferences.

4 Welfare Implications

In this section, we show that the competitive equilibrium characterized in the previous section generates

inefficiencies. For this purpose, we first derive the allocation by the social planner who can directly affect

the resource constraint by her decisions. The social planner’s preferences are the same as those of the

individual in Section 3, and she cannot commit to her future selves’ decisions. Thus, as in the case of the

market economy, distinct selves of the planner play an intrapersonal game.

The optimization problem of the planner in a period is given by

V sp(k) = max
k′,l

{
ln(Akαl1−α − k′) + ζ ln(1− l) + βcV

sp
c (k′) + βlV

sp
l (k′)

}
,

where V sp(k) is the value function of the household when the social planner directly designs the alloca-

tion without a market mechanism. Functions V sp
c (k) and V sp

l (k) are given by the following functional

equations:

V sp
c (k) = ln

[
Akα(φspl (k))1−α − gsp(k)

]
+ βcV

sp
c (gsp(k)),

V sp
l (k) = ζ ln(1− φspl (k)) + βlV

sp
l (gsp(k)).

7See Proposition 2 of their paper.
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Lemma 2. In the social planner’s allocation, lt = lsp and kt+1 = sspAkαt (l
sp)1−α, where

ssp = βcα,

lsp =
1− α

1− α+ ζ(1− βcα)
.

Proof. See the Appendix.

Hereafter, let {kspt } denote the sequence of capital realized in the social planner’s allocation.

4.1 Market Equilibrium versus Social Planning

We introduce the following function:

V eqm(k) ≡ V (a(k), k/leqm),

where function V (·, ·) on the right-hand side is the value function of the household in the market economy,

defined in equation (6). In this study, we compare welfare achieved in the market economy with that in

the planner’s allocation from the perspective of all selves. In other words, we compare V eqm(keqmt ) and

V sp(kspt ) for all t = 0, 1, 2, . . .

If βc = βl, the value of parameter γ becomes equal to βc and then seqm = ssp and leqm = lsp. This

yields the standard result that the competitive equilibrium achieves the socially optimal allocation. By

contrast, if βc ̸= βl, this theorem no longer holds.

Lemma 3. Suppose that βc > (<) βl. Then, seqm < (>) ssp and leqm < (>) lsp.

Proof. As shown in Lemma 2, both ssp and lsp are independent of βl. Meanwhile, the equilibrium saving

rate seqm is given by γα, which is strictly increasing with respect to βl from the definition of γ. The

equilibrium labor supply leqm is given by equation (11), which is also strictly increasing with respect to

βl.

Lemma 3 states that if consumption of a good is more (less) postponable than leisure is, then the

saving rate in the market equilibrium is lower (higher) than under the social planner’s allocation. It also

states that the equilibrium labor supply becomes low (high).

Welfare Comparison in the Initial Period: The difference in the household’s saving- and working

behaviors between the two economies induces the difference in the value function between them: V j ,

j ∈ {eqm, sp}. We first focus on this difference and obtain the following proposition.

Proposition 3. Suppose that βc ̸= βl. Then, V eqm(k) < V sp(k) always holds for all k > 0.

Proof. See the Appendix.

This proposition states that given her capital holding k, a self in any period strictly prefers the social

planning allocation than the market equilibrium allocation. Indeed, since the initial stock of capital

is the same in both economies, Proposition 3 states that from the perspective of the initial self, social

planning always achieves higher welfare than the market economy does. This result contrasts sharply with
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the findings of Krusell et al. (2002), whose quasi-hyperbolic discounting model shows that the market

equilibrium always performs better than the planning economy.

Welfare Comparison in the Subsequent Periods: Then, does this result apply to the other selves?

The difference in the household’s behavior also induces the difference in the level of capital in the subse-

quent periods. In this model, we can explicitly solve the sequence of capital in both economies:

kjt = K(sj , lj , t)

≡ exp

{
αt ln k0 +

1− αt

1− α
ln
[
sjA(lj)1−α

]}
, j ∈ {eqm, sp}. (12)

As is apparent from (12), K(s, l, t) is strictly increasing with respect to both s and l. Then, Lemma 3

yields the following lemma.

Lemma 4. Suppose that βc > (<) βl. Then, given keqm0 = ksp0 = k0 > 0, keqmt < (>) kspt for all

t = 1, 2, . . .

In addition, we can show that

Lemma 5. V j(k) is a strictly increasing function for all j ∈ {eqm, sp}.

Proof. See the Appendix.

Then, we arrive at the following proposition, showing that in the case of βc > βl, the allocation in

the market economy is Pareto dominated by that of the social planning from the perspective of all selves

across time.

Proposition 4. Suppose that βc > βl. Then, given keqm0 = ksp0 = k0 > 0, V eqm(keqmt ) < V sp(kspt ) for all

t = 0, 1, 2 . . .

Proof. Lemmas 4, 5, and Proposition 3 in the main body jointly show this proposition.

Next, consider the case of βl > βc. In this case, comparison of V eqm(keqmt ) and V sp(kspt ) is not

straightforward. In the Appendix, we provide the proof for the following proposition.

Proposition 5. Suppose that βl > βc. Then, there exists a unique βl ∈ (βc, 1). When βc < βl < βl,

there exists a unique T ∗ > 0, such that V eqm(keqmt ) > V sp(kspt ) if and only if t ≥ T ∗.

Proof. See the Appendix.

Proposition 5 states that the equilibrium allocation can achieve a more desirable outcome than the

social planner’s allocation for the selves in later periods. The intuition behind this result is explained as

follows. As stated in Lemma 3, the household cannot help saving excessively in the market economy when

βl > βc. Indeed, as shown in Proposition 3, this induces a welfare loss for the individual. However, such

a decision by the household is favorable for her future selves, because the assets of these selves increase

rapidly.

Based on the above results, can we then accept that surprising conclusion that, in the long run,

a laissez-faire environment performs a better job than the social planner does? We must be cautious
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when answering this question, To clarify this point, we focus on the case of βc < βl < βl. Then, from

Propositions 3 and 5, there exists a period t ≥ T ∗, such that the following two inequalities are satisfied

simultaneously:

V sp(kspt ) < V eqm(keqmt ) < V sp(keqmt ).

The first inequality shows that the market equilibrium is more desirable than social planning for the self

in this period, because she can obtain more assets in the market economy. However, the second inequality

also shows that, given keqmt , the self strictly prefers the allocation by the social planner. Thus, the market

equilibrium is suboptimal and welfare improvement is always possible from its realized allocation.

4.2 Implications of Tax Policies

Finally, we now introduce government activity to the market economy. We assume that the government

imposes taxes on individuals’ wage income, capital income, and savings. Letting τr,t ∈ (0, 1), τw,t ∈ (0, 1),

and τi,t ≥ 0 denote the rates of these taxes, the household’s budget constraint now becomes

(1 + τi,t)kt+1 = (1− τr,t)rtkt + (1− τw,t)wtlt − c. (13)

We assume that there is no government expenditure and the government’s budget must be balanced in

each period. The government’s budget constraint is given by

τr,trtKt + τw,twtLt + τi,tKt+1 = 0. (14)

From (14), one of the tax rates is determined by the other two rates. We choose τw,t and τi,t as independent

variables, which are denoted by τt = (τw,t, τi,t).

Our goal is to design a tax policy that is time consistent. The timing of events in period t is as follows:

(i)given kt, the government sets τt to maximize the household’s utility; (ii)given the prices and tax rates,

the household and firms make their decisions to maximize their own objectives; (iii)all markets clear, and

lt, ct, and prices are determined; (iv)the values of τrt and kt+1 are determined from the budget constraints

of the individual and the government. In other words, the government solves the problem in each period.

Let us call the derived tax rates τ t the time-consistent tax policy.

Proposition 6. The pair of constant tax rates τ = (τw, τ i) is the time-consistent tax policy if they are

given by

τw = 0, τ i =
ζ

1 + ζ

(
1− βc
βc

βl
1− βl

− 1

)
.

Proof. See the Appendix.

Accordingly, τ r is given by −βcτ i. Since both the saving tax rate and the wage income tax rate turn

out to be constant over time under the time-consistent tax policy, the saving rate and labor supply are

given by the pair (seqm(τ ), leqm(τ )).

Lemma 6. In the market economy with a time-consistent tax policy τ ,

1. (seqm(τ ), leqm(τ )) = (ssp, lsp);

2. τ i ⋚ 0 if and only if βc ⋛ βl.

12



The proof of this lemma is given in the proof of Proposition 6. The first property means that under the

time-consistent tax policy, τ , the allocation by the social planner is replicated in the equilibrium. Then,

the second property shows that the individual’s savings must be subsidized (taxed) when βc > (<) βl.

This result is intuitive given that, in the market economy, each individual’s saving rate is excessively low

(high) if she discounts future consumption at a lower (higher) rate than she does future leisure.

5 Concluding Remarks

We propose a dynamic model in which an individual’s non-unitary time discounting induces preference

reversals. We first characterize the market equilibrium in which the individual’s decision-making satisfies

time consistency. Then, from the normative point of view, we derive the following summarized results.

First, a self in any period strictly prefers the social planning allocation to the laissez-faire allocation,

provided the state variable has the same value. Therefore, our welfare properties differ from those of

previous studies. Second, if we focus on the overall paths of the market equilibrium and social planning,

the following two cases arise. If the individual discounts future leisure more steeply than she does future

consumption, the planning allocation dominates the laissez-faire allocation in the Pareto sense. However,

if she discounts future consumption more steeply than she does future leisure, a conflict can arise among

the different selves of the individual.
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Appendix to
“Welfare Implications of Non-unitary Time Discounting”

A Proof of Proposition 1

We restate the optimization problem of the self in a period:

V (a) = max
c,x,a′

{
u(c) + v(x) + βcVc(a

′) + βxVx(a
′)
∣∣ a′ = Ra+ w − c− px

}
, (A.1)

where Vc and Vx are recursively defined by the following functional equations:

Vc(a) = u(φc(a)) + βcVc(g(a)), Vx(a) = v(φx(a)) + βxVx(g(a)). (A.2)

The first-order conditions (FOCs) of the problem (A.1) are

v′(x)

u′(c)
= p, (A.3)

u′(c) = βc
dVc(a

′)

da′
+ βx

dVx(a
′)

da′
. (A.4)

Differentiating Vc(a) and Vx(a) in (A.2) with respect to a and adding these together, we obtain

d

da
(Vc(a) + Vx(a)) = u′(c)

dφc(a)

da
+ v′(x)

dφx(a)

da
+

(
βc
dVc(a

′)

da′
+ βx

dVx(a
′)

da′

)
dg(a)

da
.

Substituting (A.3) and (A.4) into the right-hand side of this equation, we obtain

d

da
(Vc(a) + Vx(a)) = u′(c)

(
dφc(a)

da
+ p

dφx(a)

da
+
dg(a)

da

)
. (A.5)

Since g(a) is defined as g(a) ≡ Ra− φc(a)− pφx(a),

R =
dφc(a)

da
+ p

dφx(a)

da
+
dg(a)

da
. (A.6)

From (A.5) and (A.6), we obtain the following equation, which appears in the main body:

d

da
(Vc(a) + Vx(a)) = u′(φc(a))R. (A.7)

Substituting (A.7) into (A.4) and evaluating it in period t yields the following Euler equation:

u′(ct) = βcu
′(ct+1)R+ (βx − βc)

dVx(at+1)

dat+1
.

Using (A.3) and (A.7), the above equation is also expressed as

v′(xt) = βxv
′(xt+1)R+ (βc − βx)p

dVc(at+1)

dat+1
.
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B Proof of Lemma 1

To show this lemma, we guess φc(a,X) and Vl(a,X) as follows:

φc(a,X) = µcR(X)a, Vl(a,X) = bl(X) + dl ln a, (B.1)

where µc, bl(X), and dl are the parameters that we have to solve for. From (7), we have

1− φl(a,X) =
ζµcR(X)a

w(X)
. (B.2)

Using this result and the budget constraint (2) in the main body, we obtain

a′ = g(a,X) = γR(X)a, (B.3)

where

γ = 1− (1 + ζ)µc. (B.4)

Using the above guesses and (B.3), we can rewrite the Euler equation (8) as follows:

1

µcR(X)a
= βc

1

µca′
+ (βl − βc)dl

1

a′

=

(
βc

1

µc
+ (βl − βc)dl

)
1

γR(X)a
,

which results in

γ = βc + µc(βl − βc)dl. (B.5)

At the same time, dl (as well as bl(X)) must satisfy the following functional equation:

Vl(a,X) = ζ ln(1− φl(a,X)) + βlVl(g(a,X), G(X))

Substituting (B.1)–(B.3) into the above equation yields

bl(X) + dl ln a = ζ ln a+ βldl ln a+ other terms, (B.6)

which results in dl = ζ/(1− βl). Substituting this into (B.5),

γ = βc + ζµc
βl − βc
1− βl

. (B.7)

From (B.4) and (B.7), we finally obtain

γ =
βc + λ

1 + λ
,

where

λ ≡
ζ

1 + ζ

βl − βc
1− βl

.
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C Derivation of Equation (9)

When δ = 1, human wealth in the main body is expressed as

∞∑

t′=t

wt′∏t′

ν=t(1 + rν − δ)
=

∞∑

t′=t

wt′∏t′

ν=t rν

=

∞∑

t′=t

(
1

∏t′−1
ν=t rν

wt′

rt′

)
. (C.1)

From equation (3),
wt′

rt′
=

1− α

α
Xt′ . (C.2)

To simplify the expression of
∏t′−1

ν=t rν , we first calculate
∑t′−1

ν=t ln rν .

t′−1∑

ν=t

ln rν =
t′−1∑

ν=t

ln
(
AαXα−1

ν

)
(∵ equation (3))

= (α− 1)

t′−1∑

ν=t

lnXν + (t′ − t) ln(Aα). (C.3)

Since we guess that Xt+1 = seqmAXα
t for all t,

lnXν = ln(seqmA) + α lnXν−1 ⇔ lnXν = αν−t lnXt +
1− αν−t

1− α
ln(seqmA). (C.4)

Then,

t′−1∑

ν=t

lnXν =

(
t′−1∑

ν=t

αν−t

)
lnXt +

1

1− α

[
(t′ − t)−

t′−1∑

ν=t

αν−t

]
ln(seqmA)

=
1− αt′−t

1− α
lnXt +

1

1− α

[
(t′ − t)−

1− αt′−t

1− α

]
ln(seqmA)

=
1

1− α

[
lnXt − lnXt′ + (t′ − t) ln(seqmA)

]
,

where we use the fact that lnXt′ satisfies equation (C.4) with ν = t′. Substituting this into the right-hand

side of equation (C.3) yields

t′−1∑

ν=t

ln rν = − lnXt + lnXt′ − (t′ − t) ln(seqmA) + (t′ − t) ln(Aα)

= lnXt′ − lnXt + (t′ − t) ln(α/seqm).

Since
∏t′−1

ν=t rν = exp
[∑t′−1

ν=t ln rν

]
, the above equation implies

t′−1∏

ν=t

rν =
Xt′

Xt

( α

seqm

)t′−t
. (C.5)
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Finally, substituting (C.2) and (C.5) into (C.1), we obtain

∞∑

t′=t

1
∏t′−1

ν=t rν

wt′

rt′
=

∞∑

t′=t

1− α

α
Xt′

Xt′

Xt

( α

seqm

)t′−t

=
1− α

α
Xt

∞∑

t′=t

(
seqm

α

)t′−t

. (C.6)

If seqm ≥ α, (C.6) implies that the human wealth of the household is infinity in any period, which should

be excluded. Since we guess that seqm < α (and show that this inequality holds), equation (C.6) gives

∞∑

t′=t

1
∏t′−1

ν=t rν

wt′

rt′
=

1− α

α− seqm
Xt. (C.7)

Since Xt = kt/l
eqm from the market-clearing conditions for labor and assets, we obtain equation (9).

D Proof of Lemma 2

We state the planner’s problem again here.

V sp(k) = max
k′,l

{
ln(Akαl1−α − k′) + ζ ln(1− l) + βcV

sp
c (k′) + βlV

sp
l (k′)

}
. (D.1)

Assume that the planner in a period expects that if the value of capital is given by k, the next self’s

decisions about savings and labor supply are

k′ = gsp(k), l = φspl (k).

Then, functions V sp
c (k) and V sp

l (k) are given by the following functional equations:

V sp
c (k) = ln

[
Akα(φspl (k))1−α − gsp(k)

]
+ βcV

sp
c (gsp(k)), (D.2)

V sp
l (k) = ζ ln(1− φspl (k)) + βlV

sp
l (gsp(k)). (D.3)

The FOCs of the problem in (D.1) with respect to k′ and l are given by

1

Akαl1−α − k′
= βc

∂V sp
c (k′)

∂k′
+ βl

∂V sp
l (k′)

∂k′
, (D.4)

(1− α)Akαl−α

Akαl1−α − k′
− ζ

1

1− l
= 0. (D.5)

respectively. We make the following guess for V sp
i (i ∈ {c, l}):

V sp
i (k) = ai + di ln k.

From (D.4), we obtain

gsp(k) =
Ψ

1 + Ψ
Akαl1−α, (D.6)

where Ψ is defined as

Ψ ≡ βcdc + βldl. (D.7)
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From (D.5) and (D.6), we obtain

φspl (k) = lsp, where lsp =
(1− α)(1 + Ψ)

ζ + (1− α)(1 + Ψ)
. (D.8)

Since the value of Ψ is still unknown, we substitute (D.6), (D.8), and the guess for V sp
j into (D.2) and

(D.3):

ac + dc ln k = ln

(
1

1 + Ψ
Akα(lsp)1−α

)
+ βc

[
ac + dc ln

(
Ψ

1 + Ψ
Akα(lsp)1−α

)]
,

al + dl ln k = ζ ln(1− lsp) + βl

[
al + dl ln

(
Ψ

1 + Ψ
Akα(lsp)1−α

)]
.

Since the coefficients of both sides must be equal, we can show that

dc =
α

1− βcα
, dl = 0.

Substituting this result into the definition of Ψ, we have

Ψ =
βcα

1− βcα
.

Finally, substituting the obtained value of Ψ into (D.6) and (D.8), we obtain

lsp =
1− α

1− α+ ζ(1− βcα)
,

and

gsp(k) = βcαAk
α(lsp)1−α ⇔ ssp = βcα.

E Proof of Proposition 3

If the saving rate and labor supply are determined so that they are constant over time, we calculate the

utility of a self in period t as follows.

Ut =
∞∑

t′=t

{
βt

′−t
c ln[(1− s)A(kt′)

αl1−α] + βt
′−t
l ζ ln(1− l)

}

=
1

1− βc

[
ln(1− s) + ln

(
Al1−α

)]
+

ζ

1− βl
ln(1− l) +

∞∑

t′=t

βt
′−t
c α ln kt′ . (E.1)

From equation (12) in the main body, we have

ln k′t = αt′−t ln kt +
1− αt′−t

1− α
ln(sAl1−α),

where kt is historically given for the self in period t. Substituting this result into the last term in (E.1)

yields

Ut =
1

1− βc
ln(1− s) +

ζ

1− βl
ln(1− l) +

α

1− βcα
ln k +

βcα ln s+ lnA+ (1− α) ln l

(1− βc)(1− βcα)

=W (s, l, k). (E.2)

Note that the following identity holds:

V i(k) ≡W (si, li, k), i ∈ {eqm, sp}.

To obtain this proposition, we first show the following two lemmas.
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Lemma E.1. There exists a unique pair (s∗, l∗) that maximizes W (s, l, k).

Proof. Since this function is strictly concave in (s, l), the necessary and sufficient conditions for (s∗, l∗)

are given by the following FOCs:

∂W

∂s
= 0 :

1

1− βc

1

1− s
=

βcα

(1− βc)(1− βcα)

1

s
,

∂W

∂l
= 0 :

ζ

1− βl

1

1− l
=

1− α

(1− βc)(1− βcα)

1

l
,

which in turn yield

s∗ = βcα,

l∗ =
1− α

1− α+ ζω(1− βcα)
,

where ω ≡ (1− βc)/(1− βl), which deviates from unity if and only if βc ̸= βl.

We next show the following lemma.

Lemma E.2. ssp(≡ s∗) ⋛ seqm and l∗ ⋛ lsp ⋛ leqm if and only if βc ⋛ βl.

Proof. From their definitions, it follows that (seqm, leqm) = (ssp, lsp) = (s∗, l∗) when βc = βl. From the

proof of Lemma 3 in the main body, we know that seqm and leqm are strictly increasing with respect to

βl, whereas s
sp and lsp are independent of βl. Finally, l∗ is strictly decreasing with respect to βl. Then,

we can show that

ssp ≡ s∗ ⋛ seqm ⇔ βc ⋛ βl,

l∗ ⋛ lsp ⋛ leqm ⇔ βc ⋛ βl.

Having obtained Lemmas E.1 and E.2, we evaluate the ranking between V eqm(k) and V sp(k) by using

the contours of W (s, l, k) in the s-l plane. In panels (a) and (b) of Figure 1, (s∗, l∗) is located at point O,

and the closed curves represent the contours of W (s, l, k). The value of the welfare evaluation function

W (s, l, k) increases as the curves approach O. At any point on the curve passing through point A (B),

V eqm(k) (V sp(k)) is achieved. From Lemma E.2, the distance from points A to O is necessarily farther

than that from points B to O, as long as βc ̸= βl. Furthermore, from this lemma, we can show that points

A and B are located in the same quadrant of the coordinate plane, with its origin given by point O. This

means that when βc ̸= βl, the indifference curve passing through point A is always located outside the

curve passing through point B. Therefore, we show that this proposition holds.

F Proof of Lemma 5

From the definitions of V j(k) and W in (E.2), V j(k) is expressed as

V j(k) =
α

1− βcα
ln k +Aj , j ∈ {eqm, sp},

where Aj is a collection of other terms, independent of k. The above equation shows that V j(k) is strictly

increasing.
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(a) Case of βc > βl (b) Case of βl > βc

Figure 1: Contours of W (s, l, k) and the interrelationship of (s∗, l∗), (seqm, leqm), and (ssp, lsp)

G Proof of Proposition 5

When the saving rate and labor supply are constant over time, the steady state of capital is given by

k = Kss(s, l) ≡ (sA)1/(1−α)l. (G.1)

Thus, the steady state of k in the market equilibrium is Kss(s
eqm, leqm), while that under social planning

is Kss(s
sp, lsp). We define the function Wss(s, l) as follows:

Wss(s, l) ≡W (s, l,Kss(s, l))

=
1

1− βc
ln
[
(1− s)s

α

1−αA
1

1−α l
]
+

ζ

1− βl
ln(1− l).

We verify that V j(Kss(s
j , lj)) ≡ Wss(s

j , lj). By simple calculations, we find that Wss(s, l) is maximized

at (s∗ss, l
∗
ss), where

s∗ss = α, l∗ss =
1− βl

1− βl + ζ(1− βc)
.

To obtain this proposition, we first show the following lemma.

Lemma G.1. Given βc, there exists a unique βl ∈ (βc, 1), such that ssp < seqm < s∗ss and l
sp < leqm < l∗ss

if and only if βc < βl < βl.

Proof. From the proof of Lemma E.2, we show that

ssp < seqm, lsp < leqm ⇔ βl > βc.

Then, our remaining task is to derive the condition under which seqm < s∗ss and l
eqm < l∗ss hold. From its

definition, seqm converges to α(= s∗ss) as βl → 1. Since seqm is strictly increasing with respect to βl, we

first find that

seqm < s∗ss for all βl ∈ (0, 1).
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We next consider the ranking between leqm and l∗ss. From its definition, leqm is strictly increasing with

respect to βl and converges to 1/(1 + ζ) as βl → 1. On the contrary, we can easily verify that l∗ss is

decreasing with respect to βl, and l
∗
ss = 1/(1 + ζ) when βl = βc, and l

∗
ss → 0 as βl → 1. There exists a

unique βl ∈ (βc, 1) such that

leqm < l∗ss ⇔ βl < βl.

These results show that this lemma holds.

Lemma G.1 shows that if βc < βl < βl, V
eqm(Kss(s

eqm, leqm)) > V sp(Kss(s
sp, lsp)). If βl > βl, it is

ambiguous which case yields higher welfare. Therefore, we focus on the former situation.

Since V eqm(k0) < V sp(k0), there is at least one period, denoted by T , such that V eqm(keqmt ) > V sp(kspt )

if t ≥ T . Then, we can complete the proof of this proposition by showing that such a period T is unique.

To this end, let qt denote qt ≡ ln kt. Then, we can rewrite (12) in the main body as follows:

(12) ⇔ ln kjt = αt ln k0 + (1− αt) ln
[
(sjA)1/(1−α)lj

]

⇔ qjt = αtq0 + (1− αt)qjss, j ∈ {eqm, sp}, (G.2)

where qjss ≡ ln
[
(sjA)1/(1−α)lj

]
= lnKss(s

j , lj) from equation (G.1). Substituting (G.2) into V j(k), we

obtain V j(kjt ) ≡ Vj(t), where V is given by

Vj(t) ≡
α

1− βcα
[αtq0 + (1− αt)qjss] +Aj .

From Proposition 3, we know that Veqm(0) ≡ V eqm(k0) < V sp(k0) ≡ Vsp(0) always holds. Moreover,

since we consider the case of βc < βl < βl, V
eqm(T ) > Vsp(T ) as T → ∞. Finally, subtracting Veqm(t)

from Vsp(t) yields

Veqm(t)− Vsp(t) =
α(1− αt)(qeqmss − qspss)

1− βcα
+Aeqm −Asp.

Since the value of αt decreases as t increases, Veqm(t′) − Vsp(t′) > Veqm(t) − Vsp(t), for all t′ > t, if

qeqmss − qspss > 0. Note that this condition is automatically satisfied for the case of βl > βc. Thus, there

exists a unique T ∗ > 0, such that Veqm(t) > Vsp(t) if and only if t ≥ T ∗. This proves Proposition 5.

H Analysis of Tax Policies

H.1 Market Equilibrium under the Time-invariant Tax Policy

To obtain the time-consistent tax policy in Proposition 6, we first characterize the market equilibrium

when the tax rates are constant over time: τt = τ for all t, which is necessary to show this proposition.

Let us introduce the following new functions:

r̂(X) ≡ (1− τr)r(X), ŵ(X) ≡ (1− τw)w(X),

where r(X) and w(X) are given by (3), and the new variable:

k̂t+1 = (1 + τi)kt+1.

The household’s budget constraint is then expressed as

k̂t+1 = r̂(Xt)kt + ŵ(Xt)lt − ct. (H.1)
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Lemma H.1. In the market equilibrium with the constant tax policy, the saving rate, labor supply, and

capital income tax rate are given by seqm(τ ), leqm(τ ), and τr(τ ), respectively, where

seqm(τ ) ≡
ψ(α+ (1− α)τw)

ψ + (1 + ζ)(1 + τi)
,

leqm(τ ) ≡
(1− τw)(1− α)(1 + ζ + ψ)

(1 + ζ)[ζ(1 + seqm(τ )τi) + (1− τw)(1− α)(1 + ψ)]
,

τr(τ ) ≡ −
τw(1− α) + τis

eqm(τ )

α
,

and

ψ ≡
βc

1− βc
+ ζ

βl
1− βl

.

Proof. As in the case of the laissez-faire environment in Section 3, the self in period t rationally expects

the law of motion for the aggregate state Xt as equation (5) in the main body. Then, the optimization

problem of the self in a period is given by

V (k,X) = max
c,l,k̂′

{
ln c+ ζ ln(1− l) + βcVc

[
k̂′/(1 + τi), X

′
]
+ βlVl

[
k̂′/(1 + τi), X

′
]}

, (H.2)

subject to the budget constraint (H.1). Functions Vc and Vl here are defined as the following functional

equations:

Vc(k,X) = lnφc(k,X) + βcVc [g(k,X)/(1 + τi), G(X)] , (H.3)

Vl(k,X) = ζ lnφl(k,X) + βlVl [g(k,X)/(1 + τi), G(X)] , (H.4)

respectively, where φc(·) and φl(·) are the policy functions for c and l in this case, and g(·) is given by

g(·) ≡ r̂(·)k + ŵ(·)φl(·)− φc(·).

Hereafter, the arguments of the functions are omitted unless doing so would cause confusion. The

FOCs of the problem (H.2) are

1 + τi
c

= βc
∂Vc
∂k′

+ βl
∂Vl
∂k′

, (H.5)

ŵ

c
=

ζ

1− l
. (H.6)

We derive the equilibrium in this case by use of “guess and verify.” We guess Vi (i ∈ {c, l}) and G are

given by

Vi = ai + bi lnX + di ln(k + ϕX),

G = sAXα.

Then, from (H.1), (H.5), and (H.6), we obtain

l = φl(k,X) ≡ 1−
ζ

1 + ζ +Ψ

r̂

ŵ
(k + ΛX), (H.7)

c = φc(k,X) ≡
r̂

1 + ζ +Ψ
(k + ΛX), (H.8)

k̂′ = g(k,X) ≡
Ψr̂

1 + ζ +Ψ
(k + ΛX)− (1 + τi)ϕG, (H.9)
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where the definition of Ψ is the same as (D.7):

Ψ ≡ βcdc + βldl,

and Λ is given by

Λ ≡
ŵ + ϕG(X)

r̂X

=
(1− τw)(1− α) + (1 + τi)ϕs

(1− τr)α
.

Substituting (H.7)–(H.9) into (H.3) and (H.4), we obtain

bc = −
1− α

(1− βcα)(1− βc)
, dc =

1

1− βc
, bl = −

1

1− βl
, dl =

ζ

1− βl
,

implying that

Ψ = ψ ≡
βc

1− βc
+ ζ

βl
1− βl

.

Meanwhile, because Λ = ϕ holds, we have

ϕ =
(1− τw)(1− α)

(1− τr)α− (1 + τi)s
. (H.10)

Now, we derive the equilibrium saving rate seqm, labor supply leqm, and capital income tax rate τr.

Since Kt+1 = kt+1 in the equilibrium, the household’s saving behavior must be consistent with the law

of motion of aggregate capital in the market equilibrium. Recalling that Xt+1 = kt+1/lt+1, this implies

G(kt/lt)lt+1 = (1 + τi)
−1g(kt, kt/lt) ∀k, l. (H.11)

Using the household’s condition (H.9), the guess G(k/l) = sA(k/l)α, and the guess that labor supply is

constant in the equilibrium, we can rewrite this consistency condition (H.11) as

sl =
ψα(1− τr)

(1 + τi)(1 + ζ + ψ)
(l + ϕ)− ϕs,

which in turn yields

s =
1− τr
1 + τi

ψα

1 + ζ + ψ
. (H.12)

Since τr is still to be determined, we use the government’s budget constraint (equation (14) in the main

body) and X ′ = sAXα to obtain

τr = −
τw(1− α) + τis

α
. (H.13)

Substituting (H.13) into (H.12), we obtain the equilibrium saving rate:

s = seqm(τ ) ≡
ψ(α+ (1− α)τw)

ψ + (1 + ζ)(1 + τi)
.

Then, substituting this result back into (H.10) and (H.13) yields

ϕ = ϕeqm(τ ) ≡
(1− τw)(1− α)

α+ τw(1− α)− seqm(τ )
,

τr = τr(τ ) ≡ −
τw(1− α) + τis

eqm(τ )

α
.
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Finally, we obtain the equilibrium labor supply leqm using the consistency condition leqm = φl(k, k/l
eqm).

From (H.7), this condition is rewritten as

l =
(1− τw)(1− α)(1 + ζ + ψ)− ζ(1− τr)αϕ

(1− τw)(1− α)(1 + ζ + ψ) + ζ(1− τr)α
.

Then, substituting ϕeqm(τ ) and τr(τ ) into this equation and rearranging the terms, we obtain

l = leqm(τ ) =
(1− τw)(1− α)(1 + ζ + ψ)

(1 + ζ)[ζ(1 + seqm(τ )τi) + (1− τw)(1− α)(1 + ψ)]
.

H.2 Definition of the Time-consistent Policy

In this section, we formally define the time-consistent tax policy. Suppose that the government in period

t sets τt = τ̃ ≡ (τ̃w, τ̃i). while the government in the other periods set the tax rates as τ = (τw, τ i). If

τ̃ ̸= τ , there is unilateral deviation of the government in period t. Let G̃(X, τ̃ ) denote the law of motion

of X, which differs from G(X) obtained in the previous section because of the current government’s

one-period deviation. By definition, G̃(X, τ ) ≡ G(X) (i.e., if τ̃ = τ , they are the same function).

Then, the optimization problem of the household in period t (H.2) is replaced by

Ṽ (k,X, τ̃ ) = max
c,l,k̂′

{
ln c+ ζ ln(1− l) + βcVc

[
(1 + τ̃i)

−1k̂′, G̃(X, τ̃ )
]
+ βlVl

[
(1 + τ̃i)

−1k̂′, G̃(X, τ̃ )
]}

.

(H.14)

In equation (H.14), functions Vc and Vl are the same as (H.3) and (H.4), respectively, meaning that the

household’s decision-making is qualitatively the same as that in the previous section. This is simply

because each individual makes her decision taking the factor prices and taxes as given.

Next, we consider the government’s decision-making in period t. In contrast to the household’s

behavior, the government recognizes that it can affect the equilibrium labor supply. In what follows, we

let l̃eqm(τ̃ ) denote the equilibrium labor supply in period t. Owing to the current government’s deviation,

l̃eqm(τ̃ ) can be a different function from leqm(τ ).

We can now define the time-consistent tax policy.

Definition 1. The sequence {τt}
∞
t=0, with τt = τ ∀t = 0, 1, 2 . . ., is the time-consistent tax policy if

∀kt > 0, ∀t = 0, 1, 2 . . . , τ = argmax
τ̃

Ṽ

[
kt,

kt

l̃eqm(τ̃ )
, τ̃

]
.

In other words, the sequence of tax rates {τt}
∞
t=0, with τt = τ ∀t = 0, 1, 2 . . . is the time-consistent

tax policy if any selves of the government cannot obtain a strictly positive welfare gain by these selves’

unilateral one-shot deviation from τ .

H.3 Proof of Proposition 6

We now show Proposition 6. Suppose that the government in period t deviates from τ and sets τt = τ̃ .

We guess that the law of motion of the aggregate state in this period is given by

G(Xt) = s̃tAX
α
t ,
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where s̃t is the equilibrium saving rate in period t, which can differ from seqm(τ ) by the government’s

deviation in this period. Since the pair of tax rates after this period is always given by τ , the equilibrium

labor supply lt+j (j = 1, 2, . . .) is leqm(τ ). Therefore, equation (H.11) now implies

G(k/l)leqm(τ ) = (1 + τi)
−1g(k, k/l) ∀k, l

⇔ s̃tl
eqm(τ ) =

ψα(1− τr)

(1 + τi)(1 + ζ + ψ)
(l + ϕ̃t)− ϕ̃ts̃t, (H.15)

where ϕ̃t is the value of ϕ in period t. In addition, by imposing τ = τ̃ and lt+1 = leqm(τ ) on the

government budget constraint (14), we obtain

τ̃rr(Xt)kt + τ̃ww(Xt)lt + τ̃iG(Xt)lt+1 = 0

⇔ τ̃rα+ τ̃w(1− α) + τ̃is̃t l
eqm(τ ) = 0. (H.16)

From (H.10), (H.15), (H.16), and the consistency condition, φl(k, k/l) = l, the values of s̃t, lt, ϕ̃t, and τ̃r

are determined as the functions of both τ̃ and τ . Let their values be denoted by s̃eqm(τ̃ , τ ), l̃eqm(τ̃ , τ ),

ϕ̃eqm(τ̃ , τ ), and τ̃r(τ̃ , τ ), respectively. Then,

kt+1 = s̃eqm(τ̃ , τ )Akαt (l̃
eqm(τ̃ , τ ))1−α,

ct = (1− s̃eqm(τ̃ , τ ))Akαt (l̃
eqm(τ̃ , τ ))1−α.

Now, we derive the welfare in period t, Ṽ [kt, kt/l̃
eqm(·), τ̃ ]. Since the value of ϕ is given by ϕeqm(τ ) in

the subsequent periods, the following equation holds:

kt+1 + ϕXt+1 =

(
1 +

ϕeqm(τ )

leqm(τ )

)
kt+1.

Substituting these results into equation (H.14) yields

Ṽ

[
kt,

kt

l̃eqm(τ̃ , τ )
, τ̃

]
= ln ct + ζ ln

(
1− l̃eqm

)
+ βc (bc + dc) ln

[
s̃eqm(τ̃ )Akαt (l̃

eqm(τ̃ ))1−α
]

+ other terms,

where “other terms” represent the collection of all terms independent of τ̃ . Note that in the proof of

Lemma H.1, the values of bc and dc are already given and bl + dl = 0 is already verified.

From the above equation, we find that τ̃ affects Ṽ only through s̃eqm and l̃eqm. This implies that

obtaining Ṽ by choosing τ̃ can also be achieved directly by choosing s̃eqm and l̃eqm. The FOCs for s and

l are given by

βc(bc + dc)

s
=

1

1− s
,

(1− α)[1 + βc(bc + dc)]

l
=

ζ

1− l
.

respectively. Letting (s, l) denote the solutions, we explicitly obtain

s = βcα, l =
1− α

1− α+ ζ(1− βcα)
. (H.17)
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The tax policy τ is then determined from

s = s̃eqm(τ , τ ), l = l̃eqm(τ , τ ).

Since s̃eqm(τ , τ ) = seqm(τ ), and l̃eqm(τ , τ ) = leqm(τ ), for all τ , substituting seqm(τ ) and leqm(τ ) in

Lemma H.1 into (H.17) yields the following two equations:

s = seqm(τ ) ⇔ βcα =
ψ(α+ (1− α)τw)

ψ + (1 + ζ)(1 + τi)
,

l = leqm(τ ) ⇔
1− α

1− α+ ζ(1− βcα)
=

(1− τw)(1− α)(1 + ζ + ψ)

(1 + ζ)[ζ(1 + βcατi) + (1− τw)(1− α)(1 + ψ)
.

The former and latter equations yield

1 + τi =
ψ

(1 + ζ)βc
[1− βc + τw(1− α)/α] ,

and

1 + τi =
(1− βc)ψ

(1 + ζ)βc
−
τw
βc

[
1− βcα

α
+

(1− βc)ψ

1 + ζ

]
,

respectively. Then, from the above two equations, we have τw = 0 and τ i =
1− βc

(1 + ζ)βc
ψ − 1. From the

definition of ψ, we then have

τ i =
ζ

1 + ζ

(
1− βc
βc

βl
1− βl

− 1

)
.

Finally, substituting τw = 0 and seqm(τ ) = βcα into (H.13), we obtain τ r = −βcτ i.
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