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Abstract

Noncausal, or anticipative, α-stable processes generate trajectories featuring locally explosive episodes akin to

speculative bubbles in financial time series data. For (Xt) a two-sided infinite α-stable moving average (MA),

conditional moments up to integer order four are shown to exist provided (Xt) is anticipative enough. The functional

forms of these moments at any forecast horizon under any admissible parameterisation are obtained by adding to

the literature on arbitrary, not necessarily symmetric bivariate α-stable random vectors the functional forms of the

third and fourth order conditional moments, as well as the second order moment in the case α = 1 with skewed

spectral measure. The dynamics of noncausal processes simplifies during explosive episodes and allows to express

ex ante crash odds at any horizon in terms of the MA coefficients and of the tail index α. The results are illustrated

in a synthetic portfolio allocation framework and an application to the Nasdaq and S&P500 series is provided.

Keywords: Noncausal processes, Multivariate stable distributions, Conditional dependence, Extremal dependence

Explosive bubbles, Prediction, Crash odds, Portfolio allocation
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1 Introduction

Dynamic models often admit solution processes for which the current value of the variable is

a function of future values of an independent error process. Such solutions, called anticipa-

tive or noncausal, have attracted increasing attention in the financial and econometric liter-

atures. In particular, noncausal processes have been found convenient for modelling locally

explosive phenomena in financial time series such as speculative bubbles [Bec et al. (2019),

Cavaliere et al. (2017), Fries and Zakoian (2019), Gouriéroux and Zakoian (2017), Hecq and Sun (2019),

Hecq et al. (2016), Hecq et al. (2017a), Hecq et al. (2017b), Hencic and Gouriéroux (2015)] (see

also Andrews et al. (2009), Chen et al. (2017), Gouriéroux et al. (2016), Lanne et al. (2012b),
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Lanne and Saikkonen (2011), Lanne and Saikkonen (2013)). Noncausal time series models may of-

fer a possibility to forecast the future trajectories of bubbles and to infer the odds of crashes at future

horizons, enabling for instance portfolio managers to build exit strategies, risk managers to accurately

assess large downside risks during prolonged bull markets, and the regulator to adjust requirements and

restrictions in order to ensure resilience of the financial system. However, lack of knowledge about the

predictive distribution of noncausal processes is impeding the ability to forecast them, thus limiting their

use in practical applications. Numerical procedures have been proposed to empirically approximate the

conditional distribution of noncausal processes [Gouriéroux and Jasiak (2016), Lanne et al. (2012a)].

These however become computationally unaffordable beyond the simpler noncausal models and one

or two-step ahead prediction horizons, face accuracy limitations when it comes to capturing the

dynamics during extreme events [Gouriéroux et al. (2019), Voisin and Hecq (2019)], and provide limited

theoretical guarantees regarding the quality of the approximation. Partial results have been obtained

by Gouriéroux and Zakoian (2017) for the noncausal autoregression of order 1 (AR(1)) driven by

independent and identically distributed (i.i.d.) stable errors. This process is defined as the stationary

solution of
Xt = ρXt+1 + εt, εt

i.i.d.
∼ S(α, β, σ, 0), (1.1)

where 0 < |ρ| < 1, and S(α, β, σ, 0) denotes the univariate α-stable distribution with tail parameter

α ∈ (0, 2), asymmetry β ∈ [−1, 1] and scale σ > 0. Figure 1 depicts a typical simulated path of a

noncausal stable AR(1) featuring multiple bubbles. Despite being an infinite variance process, condi-

Figure 1: Sample path of the solution of (1.1) with εt
i.i.d.
∼ S(1.7, 0.8, 0.1, 0) and ρ = 0.95.

tional moments of Xt+h given Xt can be shown to exist up to integer order four for any horizon h,

and Gouriéroux and Zakoian (2017) obtained expressions of the conditional expectation and variance in

special cases - symmetric stable errors (β = 0) and Cauchy errors (α = 1, β = 0) respectively. Provided

the expressions of the conditional moments are derived, this suggests that point forecasts of noncausal
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processes based on their conditional expectation, variance, skewness and kurtosis could be formulated -as

opposed to other predictors specifically introduced to circumvent the infinite variance of α-stable pro-

cesses, such as minimum Lα-dispersion or maximum covariation (Karcher et al. (2013) and the references

therein). This paper extends and exploits the literature on the conditional moments of arbitrary bivari-

ate α-stable random vectors [Cioczek-Georges and Taqqu (1995a), Cioczek-Georges and Taqqu (1995b),

Cioczek-Georges and Taqqu (1998), Hardin et al. (1991), Samorodnitsky and Taqqu (1994) (ST94 here-

after)] to propose a complete characterisation of the first four moments of Xt+h|Xt, for (Xt) an infinite

two-sided moving average process driven by α-stable errors

Xt =
∑

k∈Z

akεt+k, εt
i.i.d.
∼ S(α, β, σ, 0), (1.2)

where (ak) is a non-random coefficients sequence satisfying mild conditions for (Xt) to be well defined.

AR and ARMA models -whether causal, noncausal, invertible or non-invertible- are encompassed as

a special case of our framework. While the causality or noncausality of the process is not presumed

beforehand,
1

it is surprisingly found that noncausality is crucial for the existence of conditional moments

higher than order α. The functional forms of the conditional moments are derived, and we furthermore

show that the characterisation non-trivially extends to aggregated stable processes defined as linear

combinations of processes of the form (1.2), which were suggested by Gouriéroux and Zakoian (2017)

to allow for bubbles with a variety of growth rates to appear on a single trajectory. We show that

the conditional distribution of Xt+h given Xt = x displays dramatic simplifications when x → ±∞,

providing illuminating interpretations on the behaviour of noncausal processes during explosive episodes

and allowing to quantify the crash odds of bubble models.

Section 2 starts by recalling characterisations and properties of multivariate stable distributions,

and provides our results on the conditional moments up to order four of arbitrary bivariate α-stable

vectors. Section 3 proposes a sufficient condition on the coefficients (ak) for the existence of conditional

moments, characterises their functional forms when they exist, and derives their asymptotic behaviour

and the collapse odds of explosive episodes. Our results suggest that bubbles of the AR(1) feature a non-

aging, or memory-less, property. We illustrate through an example how our results extend to continuous

time processes. Section 4 provides the extension to aggregated stable processes. Section 5 provides an

illustration of our results in a synthetic portfolio selection framework where investors optimise on the

quantities of a speculative asset as well as on the holding horizon, and proposes an application of the

crash odds evaluation on the Nasdaq and S&P500 series. Proofs and complementary results are collected

in a Supplementary file.

1
A moving average process (1.2) is said to be purely causal if ak = 0 for k > 0 and purely noncausal if ak = 0 for k < 0.
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2 Conditional moments of bivariate α-stable vectors

We begin by recalling some characterisations of multivariate stable distributions and then propose new

functional forms of higher-order conditional moments in the bivariate case. Letting α ∈ (0, 2), a random

vector X = (X1, . . . , Xd) is said to be an α-stable random vector in R
d (see Theorem 2.3.1 in ST94) if

there exists a unique pair (Γ, µ0), where Γ is a finite measure on the Euclidean unit sphere Sd and µ0 a

vector in R
d, such that, for any u ∈ R

d, the characteristic function of X writes

E

[

ei〈u,X〉
]

= exp

{

−

∫

Sd

|〈u, s〉|α
(

1 − i sign(〈u, s〉)w(α, 〈u, s〉)

)

Γ(ds) + i 〈u, µ0〉

}

, (2.1)

where 〈·, ·〉 is the canonical scalar product, w(α, s) = tg
(

πα
2

)

, if α 6= 1, and w(1, s) = − 2
π ln |s| otherwise,

for s ∈ R. The measure Γ and the vector µ0 are respectively called the spectral measure and the shift

vector of X. The pair (Γ, µ0) is said to be the spectral representation of X. In the univariate case, (2.1)

boils down to E[eiuX ] = exp
{

− σα|u|α
(

1 − iβ sign(u)w(α, u)
)

+ iuµ
}

, for some σ > 0, β ∈ [−1, 1] and

µ ∈ R. Stable distributions are known to have very little moments. However, the distribution of one

component conditionally on the others can have more moments according to the degree of dependence

between them. In the bivariate case, if X = (X1, X2) is an α-stable random vector with spectral measure

Γ, satisfying ∫

S2

|s1|−νΓ(ds) < +∞, for some ν ≥ 0, (2.2)

then, E
[

|X2|γ
∣

∣X1 = x
]

< +∞ for almost every x if 0 ≤ γ < min(α + ν, 2α + 1) < 5 (see Theorem 5.1.3

in ST94 for details).

We give formulae for the conditional moments up to order four of arbitrary (not necessarily sym-

metric) α-stable bivariate vectors (X1, X2), that is, up to the maximum admissible integer or-

der under the most favourable dispositions of the above sufficient condition for the existence of

the conditional moments. The conditional moments of bivariate α-stable vectors were studied

in a series of papers in the 90s [Cioczek-Georges and Taqqu (1994), Cioszek-Georges and Taqqu

(1995a,b), Cioczek-Georges and Taqqu (1998), Hardin et al. (1991), Samorodnitsky and Taqqu (1991),

ST94, Wu and Cambanis (1991)] (see also Cambanis and Fotopoulos (1995), Cambanis et al. (1992),

Fotopoulos (1998), Miller (1978)) but only the functional forms of the first and second order mo-

ments received attention in the literature. The conditional expectation of arbitrary α-stable

bivariate vectors is the most comprehensively understood (see for instance Hardin et al. (1991),

Samorodnitsky and Taqqu (1991)). The conditional variance was also studied but most exclu-

sively in the Symmetric α-Stable (SαS) case (see Cambanis and Fotopoulos (1995), Fotopoulos (1998),

Wu and Cambanis (1991)). One notable exception is Theorem 3.1 in Cioczek-Georges and Taqqu (1995a)
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which states without proof a functional form of the conditional variance for an arbitrary, skewed bivariate

α-stable vector for α 6= 1. We therefore provide a proof for the second moment as well and fill the gap for

α = 1. In the rest of this section, we assume without loss of generality that the shift vector µ0 = (µ0
1, µ0

2)

is zero.
2

We first state our results in the case α 6= 1 and include the conditional expectation provided in

Theorem 5.2.2 by Samorodnistky and Taqqu for comprehensiveness.

Theorem 2.1 Let (X1, X2) be an α-stable random vector with spectral representation (Γ, 0).

For α ∈ (0, 2) \ {1}, and letting Γ satisfy (2.2) with ν > 1 − α if α ∈ (0, 1),

E

[

X2

∣

∣

∣X1 = x
]

= κ1x +
a(λ1 − β1κ1)

1 + a2β2
1

[

aβ1x +
1 − xH(x)

πfX1
(x)

]

. (2.3)

For α ∈ (1/2, 2) \ {1} and Γ satisfying (2.2) with ν > 2 − α,

E

[

X2
2

∣

∣

∣X1 = x
]

= κ2x2 +
ax(λ2 − β1κ2)

1 + (aβ1)2

[

aβ1x +
1 − xH(x)

πfX1
(x)

]

(2.4)

−
α2σ2α

1

πfX1
(x)

H
(

2, θ1; x
)

.

For α ∈ (1, 2) and Γ satisfying (2.2) with ν > 3 − α,

E

[

X3
2

∣

∣

∣X1 = x
]

= κ3x3 +
ax2(λ3 − β1κ3)

1 + (aβ1)2

[

aβ1x +
1 − xH(x)

πfX1
(x)

]

(2.5)

−
α2σ2α

1

2πfX1
(x)

[

xH
(

2, θ2; x
)

+ ασα
1 H
(

3, θ3; x
)

]

.

For α ∈ (3/2, 2) and Γ satisfying (2.2) with ν > 4 − α,

E

[

X4
2

∣

∣

∣X1 = x
]

= κ4x4 +
ax3(λ4 − β1κ4)

1 + (aβ1)2

[

aβ1x +
1 − xH(x)

πfX1
(x)

]

(2.6)

−
α2σ2α

1

πfX1
(x)

[

x2

2
H
(

2, θ4; x
)

+
αxσα

1

6
H
(

3, θ5; x
)

+
α2σ2α

1

3
H
(

4, θ6; x
)

]

.

Here, a = tg (πα/2), and for p ∈ {1, 2, 3, 4}, when they exist,

σα
1 =

∫

S2

|s1|αΓ(ds), β1 =

∫

S2
s<α>

1 Γ(ds)

σα
1

,

κp =

∫

S2
(s2/s1)p|s1|αΓ(ds)

σα
1

, λp =

∫

S2
(s2/s1)ps<α>

1 Γ(ds)

σα
1

,

(2.7)

where y<r> = sign(y)|y|r for any y, r ∈ R. For any n ∈ N, θi = (θi1, θi2) ∈ R
2, x ∈ R, H is defined by

H(n, θi; x) =

∫ +∞

0
e−σα

1
uα

un(α−1)
(

θi1 cos(ux − aβ1σα
1 uα) + θi2 sin(ux − aβ1σα

1 uα)
)

du, (2.8)

2
This can be done without loss of generality because, assuming the conditional moment of order p exists, E

[

Xp
2

∣

∣X1 = x
]

=

E
[

(X2 −µ0
2 +µ0

2)p
∣

∣X1 −µ0
1 = x−µ0

1

]

=
∑p

j=0
Cj

p(µ0
2)p−j

E
[

X̃j
2

∣

∣X̃1 = x̃
]

where x̃ = x−µ0
1, and (X̃1, X̃2) = (X1 −µ0

1, X2 −µ0
2)

has the same spectral measure as (X1, X2) and zero shift parameter.
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and we denote H( · ) := H
(

0, (0, 1); ·
)

, and fX1
( · ) := 1

π H
(

0, (1, 0); ·
)

.
3

Finally, θ1 = (θ11, θ12) in (2.4)

is given by

θ11 = κ2
1 − a2λ2

1 + a2β1λ2 − κ2, θ12 = a(λ2 + β1κ2) − 2aλ1κ1, (2.9)

and the remaining θi’s in (2.5)-(2.6), which depend only on α, β1, and the κp’s and λp’s above, are given

in (D.1)-(D.10) in the Supplementary file. If α < 1 and β1 = 1 (resp. β1 = −1), Relations (2.3) and

(2.4) are well defined only for x ≥ 0 (resp. x ≤ 0).

We now give the formulae for the second conditional moment when α = 1.
4

As for the conditional

expectation when (X1, X2) is not S1S, two different results hold according to whether the marginal

distribution of X1 is skewed or symmetric.

Theorem 2.2 Let (X1, X2) be α-stable, with α = 1 and spectral representation (Γ, 0), where Γ satisfies

(2.2) with ν > 1. Then, for almost every x,

E

[

X2
2

∣

∣

∣X1 = x
]

= σ2
1(a2q2

0 − κ2
1) +

2σ1λ1

β1

(

σ1κ1 − aq0(x − µ1)
)

+
λ2

β1

(

(x − µ1)2 − σ2
1

)

+
(

aσ1q0(λ1 − β1κ1) + (κ1λ1 − λ2)(x − µ1)
) 2σ1U(x)

β1πfX1
(x)

+
(

λ2 + β1κ2 − 2κ1λ1 + a2σ1β1(λ2
1 − β1λ2)W (x)

) σ1

β1πfX1
(x)

,

if β1 6= 0, and

E

[

X2
2

∣

∣

∣X1 = x
]

= σ2
1(κ2 + a2q2

0 − κ2
1) − 2aσ1κ1q0(x − µ1) + κ2(x − µ1)2

+ aσ1(λ2 − 2λ1κ1)
FX1

(x) − 1/2

fX1
(x)

+
aσ1λ1

πfX1
(x)

[

2
(

aσ1q0 − κ1(x − µ1)
)

V (x) + aσ1λ1W (x)

]

,

if β1 = 0. Here, a = 2/π, σ1, β1, the κp’s and the λp’s are as in (2.7), and

U(x) =

∫ +∞

0
e−σ1t sin

(

t(x − µ1) + aσ1β1t ln t
)

dt,

V (x) =

∫ +∞

0
e−σ1t(1 + ln t) cos

(

t(x − µ1) + aσ1β1t ln t
)

dt,

W (x) =

∫ +∞

0
e−σ1t(1 + ln t)2 cos

(

t(x − µ1) + aσ1β1t ln t
)

dt,

q0 =
1

σ1

∫

S2

s2 ln |s1|Γ(ds), µ1 = −a

∫

S2

s1 ln |s1|Γ(ds).

The previous expressions of the conditional moments simplify when one considers the asymptotics with

respect to the conditioning variable, as X1 = x becomes large.

3
Notice that fX1

is the density of X1 ∼ S(α, β1, σ1, 0) when α 6= 1.
4
See Theorem 5.2.3 in ST94 for the functional form of the conditional expectation in the case α = 1.
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Proposition 2.1 Let p ∈ {1, 2, 3, 4} and let (X1, X2) be α-stable with α ∈ (0, 2), and spectral represen-

tation (Γ, 0) such that the conditional moment of order p exists. If |β1| 6= 1, then

x−p
E

[

Xp
2

∣

∣

∣X1 = x
]

−→
x→+∞

κp + λp

1 + β1
, x−p

E

[

Xp
2

∣

∣

∣X1 = x
]

−→
x→−∞

κp − λp

1 − β1
,

and if |β1| = 1 and β1x → +∞, then,

x−p
E

[

Xp
2

∣

∣

∣X1 = x
]

−→κp.

Remark 2.1 When |β1| 6= 1, both the left and right tail of the density of X1 display power law decay

as O(|x|−α−1). However, when β1 = −1 for instance, the distribution of X1 is said to be totally skewed

to the left: the left tail still decays as O(|x|−α−1), but the right tail decays much faster and another

asymptotics holds (see Theorem 5.2.2 in Zolotarev (1986) for details).

3 Conditional moments of noncausal α-stable processes

Operating the arsenal of properties of multivariate α-stable distributions we provide in the previous

section, we study the existence and functional forms of the conditional moments of noncausal α-stable

infinite moving average processes, before focusing on the dynamics during extreme events and discussing

the implications for the prediction of bubble crash odds. An example at the end of the section illustrates

how the results extend to continuous time.

3.1 Existence and functional forms of conditional moments

Let us consider (Xt) a two-sided MA(∞) process as in (1.2) with coefficients (ak) satisfying

∑

k∈Z

|ak|s < +∞, for some s ∈ (0, α) ∩ [0, 1], (3.1)

and in addition for α = 1, β 6= 0,
∑

k∈Z

|ak|
∣

∣

∣ln |ak|
∣

∣

∣ < +∞. (3.2)

Conditions (3.1)-(3.2) ensure that
∑

k∈Z akεt+k converges absolutely almost surely so that (Xt) is well

defined. Because the error sequence (εt) is α-stable distributed, the bivariate vector (Xt, Xt+h), for any

horizon h, is itself α-stable and the results from the previous section apply. This is a consequence of

the following lemma, which provides the spectral representation of more general, discrete time vectors of

linear moving averages driven by α-stable i.i.d. errors.

Lemma 3.1 Let 0 < α < 2. For εt
i.i.d.
∼ S(α, β, σ, µ) and real deterministic sequences (ak,i)k, i =

1, . . . , m, m ≥ 2, each satisfying (3.1)-(3.2), let Xt = (X1,t, . . . , Xm,t), with Xi,t =
∑

k∈Z ak,iεt+k, and
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denote ak = (ak,1, . . . , ak,m) for k ∈ Z. Then, Xt is an α-stable random vector in R
m, with spectral

representation (Γ, µ0) given by

Γ = σα
∑

s=±1

∑

k∈Z

1 + sβ

2
‖ak‖αδ{ sak

‖ak‖

}, µ0 =
∑

k∈Z

akµ − 1{α=1}
2

π
σβ

∑

k∈Z

ak ln ‖ak‖, (3.3)

where δ{x} is the Dirac measure at point x ∈ R
m, ‖ · ‖ stands for the Euclidean norm, and by convention,

if for some k ∈ Z, ak = 0, i.e. ‖ak‖ = 0, then the kth term vanishes from the sums.

The results on bivariate stable vectors thus immediately apply to Xt = (Xt, Xt+h) with ak = (ak, ak−h).

A sufficient condition for the existence of conditional moments is given in the following proposition as

well as their functional forms.

Proposition 3.1 Let (Xt) be an α-stable two-sided MA(∞) process, 0 < α < 2, β ∈ [−1, 1], σ > 0,

satisfying (1.2), (3.1)-(3.2) and let h ≥ 1.

ι) Assume there is ν > 0 such that
∑

k∈Z

(

a2
k + a2

k−h

)
α+ν

2 |ak|−ν < ∞. (3.4)

Then E[|Xt+h|γ |Xt] < ∞ for 0 ≤ γ < min(α + ν, 2α + 1).

ιι) For α 6= 1, the moments E[Xp
t+h|Xt], p = 1, 2, 3, 4, when they exist, are given by Theorem 2.1 with

σα
1 = σα

∑

k∈Z

|ak|α, β1 = β

∑

k∈Z

a<α>
k

∑

k∈Z

|ak|α
, κp =

∑

k∈Z

|ak|α
(

ak−h

ak

)p

∑

k∈Z

|ak|α
, λp = β

∑

k∈Z

a<α>
k

(

ak−h

ak

)p

∑

k∈Z

|ak|α
.

ιιι) For α = 1, let (X̃t, X̃t+h) := (Xt, Xt+h) − µ0 where µ0 is the shift vector as in Lemma 3.1. Then,

the second order moment of X̃t+h|X̃t is given in Theorem 2.2 with the κp’s, λp’s, σ1, β1 as in ιι) and

q0 = β
∑

k∈Z

ak−h ln

(

|ak|

a2
k + a2

k−h

)

/
∑

k∈Z

|ak|, µ1 = −
2σβ

π

∑

k∈Z

ak ln

(

|ak|

a2
k + a2

k−h

)

.

By convention, in all the points above, if (ak, ak−h) = (0, 0), then the kth term vanishes from the sums.

Note that the left-hand side of (3.4) is an increasing function of ν. Thus, if (3.4) holds for some ν0 > 0,

it then holds for any 0 ≤ ν ≤ ν0, and if it fails for ν0, it then fails for all ν ≥ ν0. Causal processes, say

of the form
∑

k≤0 akεt+k with a0 = 1, automatically fail condition (3.4) for all ν > 0, as (ah, a0) = (0, 1)

and the hth term of the sum is finite only if ν = 0.
5

Conversely, (3.4) may hold for some ν > 0 for

noncausal processes provided the coefficients (ak) do not decay too fast as k → +∞. In fact, the slower

5
In the case of symmetric errors (β = 0), Theorem 1.1 by Cioczek-Georges and Taqqu (1995b) allows to conclude that

causal processes hence do not have finite conditional moments for orders higher than α.
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the decay of (ak) as k → +∞, the higher the values of ν for which (3.4) will hold. It is easy to show

that (3.4) holds for any ν ≥ 0 as soon as (ak) decays geometrically or hyperbolically, guaranteeing the

existence of conditional moments up to order 2α+1 at all prediction horizons for most noncausal ARMA

and fractionally integrated processes.
6

From a computational perspective, the conditional moments of Xt+h given Xt = x can be inexpen-

sively calculated for various horizons h and conditioning values x. Indeed, the functions H
(

n, θ; x
)

,

n = 2, 3, 4, appearing in Theorem 2.1 can be decomposed into ahun(x) + bhvn(x), where ah and bh are

constants depending only on h and fixed parameters of the process, while un(x) = H(n, (0, 1); x) and

vn = H(n, (1, 0); x) are simple integrals which need only to be computed once for a given conditioning

value x. Figure 2 shows the match between theoretical and empirical conditional moments of an ARMA

process with causal, noncausal, invertible and noninvertible roots for different horizons as a function

of the conditioning value. The empirical conditional moments were computed using Nadaraya-Watson

estimator across 2000 simulated trajectories of 107 observations each. The 0.05-0.95 interquantile interval

across simulations are also displayed and show that even with 107 observations, the uncertainty around

the estimate can be large.

Example 3.1 (Noncausal α-stable AR(1)) Let (Xt) be the noncausal α-stable AR(1) solution of

(1.1) with α 6= 1 (for simplicity), β ∈ [−1, 1] and 0 < |ρ| < 1. Then E[|Xt+h|γ |Xt] < +∞ for 0 ≤ γ <

2α + 1 and any h ≥ 1, and the first four conditional moments, when they exist, are given by Proposition

3.1 with

σα
1 =

σα

1 − |ρ|α
, β1 = β

1 − |ρ|α

1 − ρ<α>
, κp = |ρ|αhρ−hp, λp = β1

(

ρ<α>)hρ−hp,

for p ∈ {1, 2, 3, 4}. For ρ > 0, a clear interpretation of the distribution Xt+h|Xt = x appears during

explosive/bubble episodes, that is, as x becomes large relative to the central values of process (Xt).

Denoting by µ(x, h), σ2(x, h), γ1(x, h) and γ2(x, h) the conditional expectation, variance, skewness and

excess kurtosis of Xt+h given Xt = x respectively, when they exist, we have

µ(x, h) ∼ (ρ−hx)ραh, γ1(x, h) −→ s
1 − 2ραh

√

ραh(1 − ραh)
,

σ2(x, h) ∼ (ρ−hx)2ραh(1 − ραh), γ2(x, h) −→
1

ραh
+

1

1 − ραh
− 6,

as β1x → +∞ if |β1| = 1, x → ±∞ if |β1| 6= 1, and s = 1 (s = −1) if x → +∞ (x → −∞).

6
It is possible to find noncausal processes for which conditional moments are finite up to order γ strictly within (α, 2α+1),

with γ moreover depending on the prediction horizon. See the Supplementary file for an example.
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Figure 2: Conditional expectation, standard deviation, skewness and excess kurtosis (in rows) at horizons h = 1, 3, 5, 10

(in columns) of the ARMA process (1 − 0.9F )(1 − 0.5B)Xt = (1 + 0.2F )(1 − 0.3B)εt, εt
i.i.d.
∼ S(1.9, 0.8, 0.2, 0) for conditional

values x ∈ (−3, 5) (x-axis of each plot, the bounds -3 and 5 corresponding respectively to the 0.0003 and 0.9996 quantiles

of the marginal distribution of Xt). Red solid lines: theoretical moments ; Blue dotted lines: average of Nadaraya-Watson

estimators (bandwidth=0.1) across 2000 simulated trajectories of 107 observations each ; Grey shaded areas: 0.05-0.95

interquantile interval across simulations. F and B denote respectively the forward and backward shift operators.

3.2 Extreme events and applications to crash odds for bubbles

3.2.1 Crash odds for bubbles of the noncausal AR(1): a memory-less property

The strikingly simplistic forms of the conditional moments during bubble episodes given above are char-

acteristic of a weighted Bernoulli distribution charging probability ραh to the value ρ−hx and probability

1 − ραh to 0. It is thus natural to interpret ραh as the probability that the bubble survives at least h

more time steps, conditionally on having reached the level Xt = x.
7

This interpretation implies that

7
The interpretation of ραh as a survival probability of bubbles is also reached using point processes (see the Supplementary

file). The convergence in distribution of Xt+h/Xt during extreme events towards this behaviour can furthermore be formally

proven [Fries (2018)].
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the survival probability does not depend on the current scale of the bubble. Surprisingly, given that the

noncausal AR(1) is a Markov process, it would further imply that the survival probability of bubbles

does not depend at all on the past history. In fact, the bubbles generated by the stable noncausal AR(1)

appear to display a memory-less property characterised by an exponential survival probability exactly

similar, e.g., to that of radioisotopes.
8

It can be fully characterised by its so-called half-life: the duration

h1/2 such that the survival probability at horizon h1/2 is 1/2. For a noncausal AR(1) with parameters ρ

and α, the half-life of bubbles is given by

h1/2 = −
ln 2

α ln ρ
. (3.5)

This property could be appealing from a financial and economic perspective as it implies that the

crash date cannot be known with certainty by traders, hence ensuring a form of no-arbitrage condition.
9

At the same time, it would imply that no sophisticated method could allow a forecaster to say anything

more regarding the future of AR(1) bubbles than «growth or crash» with the probabilities above. In

the case of non-Markov noncausal processes or if the extreme errors driving bubbles are assumed to be

endogenous rather than i.i.d. (as in Blasques et al. (2018)), past history would however play a more

central role for prediction. We suggest lower and upper bounds of the quantity (3.5) and of crash odds

for the ongoing growth episodes of the Nasdaq and S&P500 indexes in Section 5.

3.2.2 Dynamics of noncausal stable MA(∞) during extreme events

An apparent simplification of the dynamics during extreme events can also be found to hold for more

general MA(∞). The following Corollary is an immediate consequence of Propositions 2.1 and 3.1.

Corollary 3.1 Let (Xt) satisfying (1.2), (3.1)-(3.2) with a non-negative coefficients sequence (ak) sat-

isfying (3.4) for some ν > 0. For h ≥ 1, let the almost surely finite random variable Ah such that

P

(

Ah =
ak−h

ak

)

=
|ak|α

∑

l∈Z |al|α
, for all k ∈ Z. Then, for p = 1, 2, 3, 4, if the moments exist,

E

[

(Xt+h

Xt

)p
∣

∣

∣

∣

Xt = x

]

−→ E[(Ah)p],

as β1x → +∞ if |β1| = 1 and x → ±∞ if |β1| 6= 1.

8
Beside the fact that the survival probabilities indeed both belong to the exponential family, we use this analogy here to

stress the unpredictable character of the crash occurrence. While it is possible to accurately predict the average decay of

large amount of a certain radioisotope with time, predicting the disintegration of a single nucleus is more of a gamble.
9
The scale invariance is a typical property of power-law distributed extreme events, which stems from α-stable errors in

our framework. It is thus possible that a similar memory-less property of bubbles still holds for other distributions with

power-law tails such as the t-student which is commonly invoked for bubble modelling.
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Although only a result about the convergence of moments, Corollary 3.1 seems to suggest that the

conditional distribution of Xt+h/Xt becomes close to that of Ah during extreme events. This intuition

can actually be formalised and results such as the following can be shown to hold:

For all k ∈ Z, δ > 0, P

(

∣

∣

∣

Xt+h

Xt
−

ak−h

ak

∣

∣

∣ < δ

∣

∣

∣

∣

Xt > x

)

−→
x→∞

∑

ℓ∈Jk

|aℓ|
α

∑

l∈Z

|al|α
, (3.6)

where Jk :=

{

ℓ ∈ Z :

∣

∣

∣

∣

aℓ−h

aℓ
−

ak−h

ak

∣

∣

∣

∣

< δ

}

. The demonstration of such results is outside the scope of the

current paper and is considered elsewhere [Fries (2018)].

3.2.3 Crash odds for bubbles of noncausal stable processes

This has important implications in the context of speculative bubble modelling for the evaluation of

crash odds. Assume for instance that a noncausal process of the form Xt =
∑

k≥0 akεt+k, ak > 0 and

ak/ak+1 ≥ c > 0 for all k ≥ 0,
10

is considered to model a certain type of bubble. If (3.6) holds, the crash

probability at horizon h of Xt, observed extreme at date t, can then be expressed by

P

(

∣

∣

∣

Xt+h

Xt

∣

∣

∣ < δ

∣

∣

∣

∣

Xt > x

)

−→
x→∞

h−1
∑

k=0
|ak|α

∑

k≥0
|ak|α

:= p∞,h, (3.7)

for δ > 0 small enough. Similarly to the interpretation of the noncausal AR(1), one can notice that

the crash probability of bubbles does not depend on their current scale. Contrary to the noncausal

AR(1) however, the survival probabilities could in general be different if the past history of the bubble

was accounted for in the conditioning.
11

We illustrate here through simulations that the probability on

the left-hand side indeed converges towards the right-hand side limit as the conditioning value x grows

larger. We simulated a trajectory of N = 108 observations of a noncausal AR(3) process and computed

the following estimator of the probability (3.7):

p̂q,h :=

(

N−h
∑

t=1

1{|Xt+h/Xt|<δ}∩{Xt>q}

)

/
N−h
∑

t=1

1{Xt>q}, (3.8)

for several horizons h and several quantiles q of the marginal distribution of Xt. Table 1 gathers the

results of this exercise and one can notice that the empirical probabilities become very close to the claimed

theoretical ones as q reaches the 0.99-quantile of Xt and beyond. To evaluate such probability in practice,

only the knowledge of the coefficients (ak) and of the tail parameter α is required, the asymmetry does

10
This assumption ensures that (ak) does not display wild variations after k = 0 which could be mistaken with the crash.

11
To investigate this question, one has to characterise the conditional distribution of Xt+h given more past information,

e.g., Xt, Xt−1... This problem is also out of the scope of the current paper and is addressed in Fries (2018).
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h 1 2 3 4 5 6 7 8 9 10 15 20

q0.8 22.9 34.8 44.8 52.3 58.2 62.8 66.4 69.2 71.5 73.2 77.9 79.3

q0.9 25.2 39.4 51.3 60.3 67.3 72.5 76.5 79.6 82.0 83.4 88.2 89.4

p̂q,h q0.99 23.0 40.1 56.4 68.2 76.9 83.2 87.8 91.0 93.3 94.9 98.2 98.8

q0.999 22.0 40.3 56.9 69.4 78.5 85.0 89.5 92.7 94.8 96.4 99.3 99.8

q0.9999 21.6 40.0 56.8 69.2 78.3 84.9 89.5 92.7 94.8 96.3 99.3 99.9

p∞,h 21.6 40.0 56.7 69.1 78.2 84.6 89.2 92.5 94.7 96.3 99.4 99.9

Table 1: Theoretical and empirical crash probabilities (3.7) and (3.8) (in percentages) at several horizons h of the noncausal

AR(3) (1 − 0.8F )(1 − 0.4F )(1 + 0.3F )Xt = εt, εt
i.i.d.
∼ S(1.6, 1, 0.25, 0). The empirical probabilities were computed on a

trajectory of N = 108 observations, with δ = 0.01 and for q = qa several a-quantiles of the marginal distribution of Xt.

not intervene if the coefficients (ak) are non-negative, and the location and scale play no role.

It is worth emphasising that the asymptotics in (3.7) is with respect to the level x of the trajectory

and not to a sample size: in principle, the limiting probability can accurately quantify the crash odds

of an extreme episode even if no data or no previous episode was observed on the trajectory before. In

practice, if one estimates the coefficients ak’s (for which a low-dimensional parametric form could be

assumed), estimation uncertainty depending on the sample size might enter (3.7). However, even if no

extreme episode has been observed before, one could still resort to theoretical considerations and priors

to propose likely dynamics and bubble shapes that may occur in the future to study different scenarii -as

typically done with stress tests in macroprudential analysis [Hanson et al. (2011)].

3.3 Continuous time: an example of power-law bubbles with long memory

With the following example, we illustrate that our results can be extended without difficulty to

continuous time, and that noncausal linear processes can encompass local dynamics which are con-

sidered to be typically nonlinear or even non-stationary. The process chosen here is inspired

from the Johansen-Ledoit-Sornette (JLS) bubble literature (see for instance Johansen et al. (1999),

Sornette (2003), Sornette (2017), Sornette and Johansen (2001)) and is characterised by trajectories

(«prices») featuring bubbles with power-law growth close to the peak
12

while exhibiting long memory in

the returns at the same time. We define Xt for all t ∈ R as

Xt =

∫ ∞

t
f(x − t)M(dx), with f(x) =

1

a1xd1 + a2xd2
1{x>0}, (3.9)

12
The power-law growth here is a property of the shape of the trajectory close to the bubble peak which JLS derive using

a physical approach. It should not be confused with the power-law distribution of the extreme events that we mentioned

earlier, which is a property of the scale of the trajectory due to the α-stable errors. Both coexist in this example.
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where a1, a2, d1, d2 are positive constants, d1 < d2, and M is an α-stable random measure with constant

skewness intensity equal to β and Lebesgue control measure (see Chapter 3 Definition 3.3.1 in ST94 for

details). Similarly to the baseline path interpretation in Fries and Zakoian (2019), when a realisation of

the random measure M attributes an extreme mass in the vicinity of a certain date tc, the trajectory

of Xt can be locally approximated up to a multiplicative constant by Xt ≈ f(tc − t). Close to the

bubble peak, the trajectory is thus dominated by the term with smaller exponent and explodes at the

same speed as x−d1/a1, before suddenly collapsing. Further in the tail of the bubble, the trajectory

is dominated by the term with greater exponent and decays as x−d2/a2, inducing long memory. In

contrast with the JLS framework which focuses on a single financial bubble viewed as non-stationary

phenomenon resulting from a nonlinear physical system, the example process (3.9) is strictly stationary

and can generate multiple bubbles whose dynamics are mimicking that of JLS bubbles close to the peak.
13

This process is well-defined and stationary if
∫

R
|f(x)|αdx < +∞ which is equivalent to

1

d2
< α <

1

d1
. (3.10)

One can show that (Xt, Xt+h) is bivariate α-stable, obtain its spectral representation, and apply the

properties of Section 2. In particular, the conditional moments E[|Xt+h|γ |Xt] are finite at least up to

order γ < min(α + ν, 2α + 1) for any ν ≥ 0 such that
∫

R+
|f(x − h)|α+ν/|f(x)|νdx < +∞, i.e.,

ν <
1

d1
− α. (3.11)

For α ∈ (3/2, 2), the fourth order conditional moment is finite provided 0 < d1 < 1/4. Theorem 2.1 then

provides the functional forms of the moments with,

σα
1 =

∫

R

|f(x)|αdx, β1 = β, κp =
1

σα
1

∫

R+

(

f(x − h)

f(x)

)p

|f(x)|αdx, λp = βκp,

for p = 1, 2, 3, 4. Similarly to the noncausal processes in discrete time, it can be shown that the conditional

moments simplify by Proposition 2.1 during extreme events:

E

[

(Xt+h

Xt

)p
∣

∣

∣

∣

Xt = x

]

−→
x→±∞

E

[(

f(U − h)

f(U)

)p]

,

where U is a random variable with density g(u) =
|f(u)|α

∫

R
|f(s)|αds

for u ∈ R. Again, from this convergence

of the moments, we may suspect that the conditional distribution Xt+h/Xt becomes close to that of

f(U − h)/f(U) during extreme events. If we admit this, then the crash probability can be obtained as

P

(

∣

∣

∣

Xt+h

Xt

∣

∣

∣ < δ

∣

∣

∣

∣

Xt > x

)

−→
x→∞

∫ h

0
g(u)du, for δ small enough.

13
To be fully consistent with JLS, one should also include a log-periodic oscillating component in f . This poses no difficulty

but makes the presentation cumbersome so we omit it.
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4 Aggregated noncausal α-stable processes

In order to encompass trajectories featuring bubbles of different growth rates,

Gouriéroux and Zakoian (2017) introduced an aggregated process defined as the linear combination of

multiple AR(1):

Xt =
J
∑

j=1

πjXj,t, Xj,t = ρjXj,t+1 + εj,t, 0 < |ρj | < 1, j = 1, . . . , m, (4.1)

where πj ∈ R for j = 1, . . . , J and (εj,t)t∈Z

i.i.d.
∼ S(α, βj , σj , 0) are mutually independent sequences of

i.i.d. errors. Sample trajectories of (Xt) feature bubble episodes with various rates of increase 1/ρj ,

j = 1, . . . , J . Unlike for the latent (Xj,t)’s, nothing is known about the predictive distribution of Xt+h

given its past, even in this simpler case of an aggregation of AR(1) processes. We give results regarding the

conditional distribution of Xt+h given Xt in the framework where the (Xj,t)’s involved in the aggregation

are two-sided MA(∞) processes.

Definition 4.1 Let (X1,t), . . . , (XJ,t) be J ≥ 1 stable moving averages, each satisfying (1.2), (3.1)-(3.2),

for some coefficients sequences (aj,k)k and mutually independent error sequences εj,t
i.i.d.
∼ S(α, βj , σj , 0),

j = 1, . . . , J . Let also (πj)j=1,...,J be scalars and define (Xt) as

Xt =
J
∑

j=1

πjXj,t, for t ∈ Z.

We will call such process (Xt) an α-stable aggregated moving average, an aggregated process, or simply, a

stable aggregate, and call (Xj,t), j = 1, . . . , J the latent moving averages of (Xt).

The following proposition is a consequence of the fact that the vector (Xt, Xt+h) =
∑J

j=1 πj(Xj,t, Xj,t+h)

is itself α-stable and its spectral measure Γh is actually a mixture of the spectral measures Γj,h of each

vector (Xj,t, Xj,t+h) as: Γh =
∑J

j=1 |πj |αΓj,h (see Lemma H.1 for details).

Proposition 4.1 Let (Xt) be an α-stable aggregate with latent moving averages (X1,t), . . . , (XJ,t) as in

Definition 4.1 with 0 < α < 2. Let h ≥ 1.

ι) Assume there is ν > 0 such that

for all j = 1, . . . , J,
∑

k∈Z

(

a2
j,k + a2

j,k−h

)
α+ν

2 |aj,k|−ν < ∞. (4.2)

Then E[|Xt+h|γ |Xt] < ∞ for 0 ≤ γ < min(α + ν, 2α + 1).

ιι) For α 6= 1, the first four conditional moments of Xt+h|Xt, when they exist, are given by Theorem 2.1

with
σα

1 =
J
∑

j=1

|πj |ασα
1,j , β1 = E(B), κp = E(Kp), λp = E(Lp), for p ∈ {1, 2, 3, 4},
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where B, Kp and Lp are discrete random variables such that P
(

(B, Kp, Lp) = (β1,j , κp,j , λp,j)
)

= wj,

wj = |πj |ασα
1,j/

∑J
i=1 |πi|

ασα
1,i for j = 1, . . . , J , and where σ1,j, β1,j, κp,j and λp,j denote the quantities

defined in Proposition 3.1 where (ak)k, σ and β are replaced by (aj,k)k, σj and βj.

ιιι) For α = 1, let (X̃t, X̃t+h) := (Xt, Xt+h) − µ0 where µ0 = (µ0
1, µ0

2) where µ0 is as in Lemma H.1.

Then, the second order moment of X̃t+h|X̃t is given by Theorem 2.2 with the κp’s, λp’s, σ1 and β1 as

above and

q0 = E(Q0), µ1 =
J
∑

j=1

πjµ1,j ,

where Q0 is a discrete random variable such that, for p ∈ {1, 2}, P
(

(B, Kp, Lp, Q0) =

(β1,j , κp,j , λp,j , q0,j)
)

= wj, for j = 1, . . . , J , and q0,j, µ1,j denote the quantities defined in Proposition

3.1 with (ak)k, σ and β replaced by (aj,k)k, σj and βj.

The above proposition straightforwardly applies to the aggregated noncausal stable AR(1) defined in

(4.1). Notice that for the non-aggregated noncausal AR(1), ρ > 0 is sufficient to guarantee the linearity

of the conditional expectation, but merely assuming ρj > 0 for j = 1, . . . , J for the aggregated process

(Xt) does not guarantee linearity in general. Linearity of the conditional expectation (2.3) is achieved if

and only if λ1 − β1κ1 = 0, which is equivalent to Cov
(

B, K1
)

= 0 if ρj > 0 for j = 1, . . . , J . Based on

this, it is easy to construct examples for which x 7−→ E
[

Xj,t+h

∣

∣Xj,t = x
]

are all linear in x for any j and

h, and yet such that y 7−→ E
[

Xt+h

∣

∣Xt = y
]

is a non-linear function of y.

From a statistical perspective, a strategy to estimate agnostically the coefficients sequences (aj,k)k, j =

1, . . . , J could exploit 1) the fact that exceedances above high thresholds of a stable MA process behave

as a marked point process [Rootzen (1978)], the marks being normalised sample paths of, say, (Xj,t),

and are asymptotically of the same shape as (. . . , aj,−1, aj,0, aj,1, . . .). Practical procedures to identify

these marks and provide estimates of (at least some) aj,k’s could leverage declustering schemes such as in

Ferro and Segers (2003). An estimation strategy could also exploit 2) the fact that the spectral measure

of, say, (Xt, . . . , Xt+n) is a mixture of the spectral measures of the latent (Xj,t, . . . , Xj,t+n). The extremal

dependence of sample paths of (Xt) could thus be analysed by adapting Boldi and Davison (2007) to the

case of mixtures of spectral measures of sum-stable vectors.

5 Applications

This section presents two applications of our results. The first one uses the conditional moments up to

order four in a synthetic portfolio allocation framework. The second one illustrates how one can evaluate

crash odds of real series by fitting noncausal models.
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5.1 Portfolio selection

It has been recently found that the incorporation of higher order moments for portfo-

lio optimisation can lead to substantial improvements of the assets allocation strategies

[Harvey et al. (2010), Holly et al. (2011), Jondeau and Rockinger (2006), Lai (1991), Lai et al. (2006)],

and efforts are deployed to efficiently capture time-varying higher moments into the al-

location program [Bernardi and Catania (2018), Boudt et al. (2015), González-Pedraz et al. (2015),

Harvey and Siddique(1999), Jondeau and Rockinger (2012)]. Two approaches to account for higher or-

der moments in the choice of the optimal portfolio are polynomial goal programming (PGP) and the

maximisation of the Taylor expansion of a utility function, a common one being the constant relative risk

aversion (CRRA) utility. For speculative assets typically, asymmetry and heavy-tails in returns can be

expected to be of crucial importance for the (non-)investment decision. We illustrate in the framework

of noncausal stable processes how the functional forms of the conditional moments in Theorem 2.1 can

be used to perform portfolio selection. We consider a simple framework where an investor endowed with

an initial wealth Wt at present date t has the choice between a speculative asset Xt and a safer asset

St. The investor has an investment horizon H: at date t, she will decide of the share ω (resp. 1 − ω)

to invest in the speculative asset (resp. safer asset), and of the intermediate horizon h ≤ H at which

she commits to liquidate its holding of speculative asset and to invest the proceedings in the safer as-

set until t + H. This leads to an optimisation problem of the terminal wealth Wt+H (or overall return

Rt+H = (Wt+H − Wt)/Wt)) in both the allocation ω and the intermediate horizon h. We will consider

time to be continuous and that Xt follows a continuous time noncausal stable AR(1) as in (1.1) with

a non-zero location parameter,
14

and that the safer asset follows a geometric Brownian motion (GBM)

dynamics with drift r and volatility σ. The processes (Xt) and (St) will be assumed independent. For a

given strategy (ω, h), the terminal wealth can be expressed as

Wt+H = Wt
St+H

St+h

(

ω
Xt+h

Xt
+ (1 − ω)

St+h

St

)

.

The CRRA utility maximisation program of the terminal wealth and its fourth order Taylor approxima-

tion around the expected terminal wealth read [Jondeau and Rockinger (2006)]

max
(ω,h)

E[U(Wt+H)|Xt, St] ≈
4
∑

k=0

U (k)(W t+H)

k!
E

[

(Wt+H − W t+H)k
∣

∣

∣Xt, St

]

, (5.1)

14
I.e., a noncausal stable Ornstein-Uhlenbeck (OU) process. There is a one-to-one correspondence between a given stable

AR(1) and its OU analogue and one can show that it is valid to use the results of Example 3.1 as if h was real instead of

integer. We therefore define (Xt) as in (1.1) to avoid introducing additional notations.
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where U(c) = c1−γ/(1 − γ), for a risk aversion parameter γ > 0, and W t+H = E[Wt+H |Xt, St]. A PGP

program can be specified as (inspired from Aksaraylı and Pala (2018), Lai (1991), Lai et al. (2006))

min
(ω,h)

(

1 + |d1 − R∗|
)γ1

+
(

1 + |d2 − V ∗|
)γ2

+
(

1 + |d3 − S∗|
)γ3

+
(

1 + |d4 − K∗|
)γ4

,

s.t. Rω,h + d1 = R∗, Vω,h − d2 = V ∗, Sω,h + d3 = S∗, Kω,h − d4 = K∗, di ≥ 0,

(5.2)

where Rω,h, Vω,h, Sω,h, Kω,h denote respectively the conditional expectation, variance, skewness and

excess kurtosis of the returns Rt+H for a given strategy (ω, h) ; R∗, V ∗, S∗, K∗ denote the optima of

the subprograms max(ω,h) Rω,h, min(ω,h) Vω,h, max(ω,h) Sω,h, min(ω,h) Kω,h ; and the γi’s are non-negative

parameters weighting the preference of the investor to pursue optimality of one moment over the others.

In both approaches, it is just a matter of algebra using the independence between (Xt) and (St) to express

the objective functions in terms the moments of Xt+h|Xt and the parameters.

As an experiment, we numerically solve the above programs for the following parameterisations. For

the process Xt, we set ρ = 0.7, with errors εt
i.i.d.
∼ S(1.7, 1, 2, 3). One unit of time can be thought as

a year and we take H = 2 ; the bubbles of Xt hence grow roughly at an annual rate of 1/ρ ≈ 43%,

and have a half-life of − ln 2/α ln ρ ≈ 13.7 months. For the safer asset, we set both the annual return

r and volatility σ to 2%. We consider a CRRA investor with γ = 5 and a more risk averse one with

γ = 10, as well as two PGP investors with equal weighting (γ1, γ2, γ3, γ4) = (1, 1, 1, 1) and more kurtosis

sensitive weighting (1, 1, 1, 4). While the starting value of St does not matter, the starting value of Xt

deeply modifies the investment landscape. We thus set several starting values for Xt = x corresponding

to quantiles of the marginal distribution of Xt, from central to extreme. We assume unit initial wealth

and search for optima (ω∗, h∗) in the set [−1, 1] × [0, 2], thus allowing short strategies. Table 2 reports

the results. Given that the programs are likely non-convex, there is in general no unique optimum. All

attained solutions achieving comparable (global) optimality are reported. We rounded ω∗ to the closest

percentage point, h∗ to the closest month, and by convention, if ω∗ = 0, we report h∗ = 0 as well.

One can notice that for initial values of the speculative asset close to the stationary baseline, the optimal

strategies are rather passive. The price Xt is more likely to follow a noisy trajectory around its central

level, while the safer asset offers a higher and surer reward. Higher initial values of the speculative asset

give evidence that the coming months or years will be dominated by the explosive regime: there is a

possibility of gaining immense returns compared to the safer asset, but with great risk of loosing the bet.

The optimal strategies are much more active in this case, both in quantities and in holding horizons. The

CRRA investors almost exclusively bet on a crash occurring at some point before the terminal horizon,

and will opt to short the speculative asset. The more risk averse will halve its bet in terms of quantities

compared to the less risk averse one. The PGP investors may choose between two types of equally
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Xt = x q0.5 q0.6 q0.7 q0.8 q0.9 q0.95 q0.99 q0.999 q0.9999

CRRA

γ = 5

(7,1)

(2,10)

(1,20)

(4,1)

(-5,24)

(-12,24) (-18,24) (-23,24) (-23,24) (-15,24) (-10,24) (-10,24)

γ = 10

(7,1)

(2,6)

(1,15)

(5,1)

(-2,24)

(3,1)

(-6,24)

(1,1)

(-9,24)

(-11,24) (-11,24) (-7,24) (-5,24) (-5,24)

PGP

(1,1,1,1)

(0,0) (0,0) (8,21)

(0,0)

(-27,9)

(22,18)

(-59,10)

(30,18)

(-82,10)

(33,18)

(-89,10)

(30,19)

(-71,10)

(24,19)

(-53,10)

(23,19)

(-48,10)

(1,1,1,4)
(0,0) (-1,7) (-2,12) (28,15)

(-62,11)

(44,15)

(-98,11)

(50,15)

(-100,11)

(47,15)

(-95,11)

(38,15)

(-69,11)

(36,15)

(-62,11)

Table 2: Optimal investment strategies (ω∗, h∗), where ω∗ is reported in percent of the portfolio and h∗ in months, of

programs (5.1) and (5.2). The speculative asset Xt is assumed noncausal AR(1) as in (1.1) with ρ = 0.7, εt
i.i.d.
∼ S(1.7, 1, 2, 3),

while the safer follows a GBM with drift r = 0.02 and volatility σ = 0.02. Initial price of the speculative asset is set to

x = qa, for several a-quantiles of the marginal distribution. Reading example: for a PGP investor with weights (1, 1, 1, 4),

and for an initial value of the speculative asset x = q0.8, two distinct strategies achieve comparable global optimality: 1)

a strategy long by 28% of the speculative asset with holding horizon of 15 months, and 2) a strategy short by -62% with

holding horizon of 11 months.

optimal -according to their criterion- strategies: long or short. The long strategies are characterised by

lower (absolute) quantities but longer holding horizons compared to the short strategies. If the more

kurtosis-sensitive investor chooses the long strategy, she will bet significantly higher quantities compared

to the less kurtosis-sensitive investor, but with holding horizons down by several months. If she opts

for the short strategy, she will bet more aggressively on the collapse of the bubble both in quantities

and horizons. Unlike the CRRA investors, the PGP investors will not short these aggressive quantities

beyond a year. The risk would be to reach the terminal horizon with the bubble still ongoing and hence

endure heavy losses.

5.2 Evaluating the odds of crashes of real series

In this section, we consider two series commonly studied in the speculative bubble literature: the Nasdaq

and S&P500 indexes (see e.g. Phillips et al. (2015), Phillips et al. (2011)). We will focus on the almost

uninterrupted growth episodes since the aftermath of the 2008 crisis up to 2019 and suggest an ex

ante analysis. At the cost of assuming that these explosive episodes in the data can be modelled as

ongoing realisations of AR(1) bubbles climbing towards exogenous power-law-scaled peaks, we will be
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Figure 3: Monthly Nasdaq and S&P500 indexes, non-adjusted for inflation (upper and lower left respectively), from

02/1971 to 09/2019. The arrows and vertical dotted lines indicate the period of analysis, from 12/2008 to 09/2019. Right

panels: regressions of log prices against time (data in points, fit in red solid lines).

in the position to propose an evaluation of the crash odds based on the half-lives h0.5 given in (3.5).

This requires to provide values for the AR coefficient ρ and the tail parameter α. Under the AR(1)

assumption, bubbles should have an exponential shape t 7→ ρ−t up to a multiplicative constant, and the

parameter ρ could thus be estimated locally by fitting an exponential trend on the explosive episode

- or conveniently, by fitting a linear regression on the logarithm of the data. Fitting the regression

ln(Xt) = at + b on the monthly Nasdaq and S&P500 series from December 2008 to September 2019, we

obtain estimates â of a, from which we deduce ρ̂ = exp(−â). Turning to the literature regarding the

tail parameter α, studies mostly report values ranging from slightly below one to four for financial series

(Ibragimov and Prokhorov (2016) and the references therein).
15

The widest range of plausible values

compatible with our framework would thus be α ∈ [0.5, 2] (we include 2 as the limit for an α-stable index

arbitrarily close to 2). Assuming a uniform prior for α on [0.5, 2] and neglecting the (small) estimation

uncertainty around â, this suggests the range
ln 2

2â
≤ h0.5 ≤

2 ln 2

â
for the half-lives of corresponding AR(1)

bubbles. Furthermore, from a half-life h0.5, one can compute the likelihood of collapse at any desired

horizon h as 1−(1/2)h/h0.5 . We provide the corresponding ranges for the odds of a crash occurring within

15
We further note that reported values above two are not necessarily evidence against the infinite variance α-stable

hypothesis [McCulloch (1997)].
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Growth rate

â

Annualised

AR coef. ρ̂

Plausible

range for α

Half-life range

in years

Odds of crash

within one year

Nasdaq
Nominal 1.2 · 10−2 0.86 [0.5 – 2] [2.4 – 9.5] [7.0% – 25%]

Infl. adj. 1.1 · 10−2 0.88 [0.5 – 2] [2.7 – 11] [6.2% – 23%]

S&P500
Nominal 9.3 · 10−3 0.89 [0.5 – 2] [3.0 – 13] [5.3% – 21%]

Infl. adj. 8.0 · 10−3 0.91 [0.5 – 2] [3.5 – 15] [4.5% – 18%]

Table 3: Estimated growth rates â of exponential trends fitted on the nominal and real Nasdaq and S&P500 indexes

(monthly data from 12/2008 to 09/2019) ; Corresponding annualised AR(1) coefficients ρ̂ = exp(−12â) ; Ranges of the

half-lives ĥ0.5 = ln 2/12âα (in years) with uniform prior on α ∈ [0.5, 2] ; Corresponding ranges for crash odds within one

year 1 − (1/2)1/ĥ0.5 .

the next year. Figure 3 displays the series and the fits, and Table 3 gathers the estimates. To remain

agnostic as to whether we should consider nominal or real prices, depending on what is more relevant with

respect to the behaviours and motives of economic agents sustaining the growth, we include estimates

for the inflation-adjusted indexes.
16

This analysis suggests relatively important crash odds within one

year ranging from 4.5 to 25%. Tighter ranges could be obtained by estimating the tail parameter α.

Recent approaches robust to unavailable extreme values such as developed in Zou et al. (2017) could be

promising in that respect, as one could typically consider the crash date to be missing from the dataset.

6 Concluding remarks

We provided functional forms for the conditional moments up to order four of arbitrary bivariate α-

stable random vectors (X1, X2) as well as their asymptotic behaviours when the conditioning variable

takes extreme values. Embedding two-sided MA(∞) processes into this framework, we could describe

in detail the conditional dependence of Xt+h on Xt. We have shown that noncausality plays a crucial

role in the finiteness of conditional moments, and provided functional forms for the latter up to the

fourth order, when they exist. We furthermore obtained unique insights into the extremal dependence of

(Xt, Xt+h), which is a topic of interest on its own [Ledford and Tawn (2003), Wadsworth et al. (2017)],

but especially in the context of bubble modelling: during the extreme «bubble» episodes that such

processes generate, we have shown that the dynamics simplifies and can be easily interpreted, revealing

for instance a memory-less or non-aging property of AR(1) bubbles. We demonstrated how crash odds

can be evaluated ex ante in the framework of these models, even on local bubble events of real data. We

16
We use a seasonally adjusted Consumer Price Index provided by the Federal Bank of Saint Louis.

fred.stlouisfed.org/series/CPIAUCSL
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illustrated through examples the ability of noncausal processes to encompass local dynamics which are

considered typically non-linear or even non-stationary, and how they can be applied in practice for horizon

selection in portfolio problems with speculative assets. Statistical methods for agnostically estimating

the coefficients (ak) of the MA representation, e.g. under low dimensionial restrictions, and for robustly

estimating the tail index α in locally non-stationary events could enable more refined evaluation of the

crash odds. We also have shown how the main results extend to aggregated processes, including the

existence and the form of the conditional moments. Thorough investigation of their a priori much richer

dynamics and of the statistical aspects is left for further research.
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A Complementary results

A.1 Existence of moments and superexponential decay of (ak): a boundary case

As pointed after Proposition 3.1, noncausal ARMA and fractionally integrated processes whose MA

coefficients decay at geometric and hyperbolic speed satisfy condition (3.4) for all ν > 0.
17

Such processes

hence admit finite conditional moments at least up to order 2α + 1. Theorem 5.1.3 by Samorodnitsky

and Taqqu, Theorems 1.1, 1.2 in Cioczek-Georges and Taqqu (1995b) however point to the fact that

intermediate cases may arise where moments are finite at most up to order α+ν for some value of ν such

that α < α+ν < 2α+1. We propose here a noncausal MA(∞) process with super-exponentially decaying

MA coefficients which can reach any intermediate value of the boundary. Consider the noncausal process

defined for all t ∈ Z by Xt =
∑+∞

k=0 akεt+k with ak = exp{1 − eak}, a > 0, for all k ≥ 0, and let (εt) be

an i.i.d. symmetrically distributed α-stable error sequence. Letting ν ≥ 0, the general term of the series

in (3.4) reads for all k ≥ h

(a2
k + a2

k−h)
α+ν

2 |ak|−ν =
(

1 + (ak−h/ak)2)
α+ν

2 |ak|α

=
(

1 + exp{2eak(1 − e−ah)}
)

α+ν
2

exp{−α(1 − eak)}

∼
k→+∞

exp
{

eak[(1 − e−ah)(α + ν) − α
]

+ α
}

,

which is the term of an absolutely convergent series if and only if (1 − e−ah)(α + ν) − α < 0, hence if and

only if

ν < α

(

1

1 − e−ah
− 1

)

. (A.1)

Because we assume (εt) to be symmetrically distributed, Theorems 1.1 and 1.2 in

Cioczek-Georges and Taqqu (1995b) allow to consider (3.4) and (A.1) as sufficient and necessary

17
Provided there are no index k such that ak−h 6= 0 and ak = 0.
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conditions for the finiteness of E[|Xt+h|γ |Xt], 0 ≤ γ < min(α + ν, 2α + 1), in most configurations of

α and ν (see within Cioczek-Georges and Taqqu (1995b) for details). In particular, one can see that

for a fixed prediction horizon h ≥ 1, the upper bound (A.1) on ν can lie anywhere between 0 and +∞

according to the parameter a. The smaller a > 0, i.e., the slower the decay, the higher the bound on

ν, and conversely, the greater a (faster decay), the smaller the upper bound on ν for the existence of

conditional moments.

Furthermore, contrary to the case where (ak) decays at geometric or hyperbolic speeds, the finiteness

of E[|Xt+h|γ |Xt] also depends on the prediction horizon h. Most notably, for any fixed decay speed a,

on can see that the bound (A.1) tends to 0 as h → +∞. For a decay parameter a small enough, the

moments E[|Xt+h|γ |Xt] may thus be finite up to order 2α + 1 for short-term prediction horizons while

being finite only up to order α for longer-term prediction horizons.

A.2 Interpreting ραh using point processes

The quantity ραh appearing in Example 3.1 and subsequent comments has the intuitive interpretation of

a survival probability at horizon h of a bubble generated by (1.1). This conclusion can also be reached

using point processes under the less restrictive assumption that the errors of (1.1) belong to the domain

of attraction of an α-stable distribution. Consider n observations X1, . . . , Xn of (1.1) where now (εt) is

an i.i.d. sequence of random variables such that:

P(|ε0| > x) = x−αL(x), and lim
x→∞

P(ε0 > x)

P(|ε0| > x)
→ c ∈ [0, 1],

with L a slowly varying function at infinity. Let an = inf{u : P(|ε0| > u) ≤ n−1}. Then, adapting Section

3.D in Davis and (1985), we can study the time indexes k ∈ {1, . . . , n} for which a−1
n Xk falls outside

the interval (−x, x), for x > 0, that is, the time indexes for which (Xt) undergoes extreme events. The

corresponding point process converges as the number of observations n grows to infinity:

n
∑

k=1

δ(k/n,a−1
n Xk)

(

· ∩ Bx

)

d
−→

+∞
∑

k=1

ξkδΥk
,

where δ is the Dirac measure, Bx = (0, +∞) ×
(

(−∞, −x) ∪ (x, +∞)
)

, {Υk, k ≥ 1} are the points of

a homogeneous Poisson Random Measure (PRM) on (0, +∞) with rate x−α,
18

and ξk = Card{i ∈ Z :

Jk|ρi| > 1} where {Jk, k ≥ 1} are i.i.d. on (1, +∞), independent of {Υk}, with common density:

f(z) = αz−α−1
1(1,+∞)(z). (A.2)

18
See Daley and Vere-Jones (2007): {Υk, k ≥ 1} are the points of a homogeneous PRM on (0, +∞) with rate x−α if

and only if, for any ℓ ≥ 1, nonnegative integers a1, . . . , aℓ and b1, . . . , bℓ such that ai < bi ≤ ai+1, i = 1, . . . , ℓ, and any
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The sequences {Υk} and {ξk} are interpreted (see Leadbetter and Nandagopalan (1989)) as describing

respectively the occurrence dates of clusters of extreme events and the size of these clusters (i.e. the

number of co-occurring extreme events, which here corresponds to the duration of bubble episodes).

Since ξk = Card{i ∈ Z : Jk|ρi| > 1} = arg maxi≥1{Jk > |ρ|−i}, we can obtain explicitly the distribution

of the bubble duration using (A.2). For any h ≥ 1,

P

(

ξk ≥ h
)

= P

(

Jk > |ρ|−h
)

= |ρ|αh,

which as announced, is precisely the probability parameter of the Bernoulli variable intervening in the

suggested interpretation in Example 3.1.

B Preliminary elements for the proof of the main results

B.1 Notations for the proofs of Theorem 2.1 and Proposition 2.1

The proof of Theorem 2.1 is quite involved and relies on techniques used in

[Cioczek-Georges and Taqqu (1994), Cioczek-Georges and Taqqu (1998)]. It consists in differenti-

ating the conditional characteristic function of X2|X1 up to the fourth derivation order and evaluating

the derivatives at 0 to obtain the conditional moments. Formal computation of the derivatives yields

divergent terms for the third and fourth order derivatives, as well as for the second order derivative

when 1/2 < α < 1 and special manipulations are needed (in particular the «appropriate integration by

parts» in Cioczek-Georges and Taqqu (1994) (p.106) as well as an additional manipulation to obtain the

fourth derivative). We first introduce some notations to make the presentation of the proof as compact

as possible, then provide the derivatives in Lemma B.1 and finally show Theorem 2.1 by obtaining the

functional forms of the conditional moments.

Let X = (X1, X2) be an α-stable vector, with 0 < α < 2, α 6= 1, and spectral representation (Γ, 0).

Its characteristic function will be denoted ϕX(t, r) for any (t, r) ∈ R
2, and reads

ϕX(t, r) = exp

{

−

∫

S2

g1(ts1 + rs2)Γ(ds)

}

, (B.1)

where g1(z) = |z|α − iaz<α> for z ∈ R, and a = tg(πα/2). As we assume σ1 > 0 so that X1 is not

degenerate, the conditional characteristic function of X2 given X1 = x, denoted φX2|x(r) for r ∈ R,

nonnegative integers n1, . . . , nℓ:

P

(

N(ai, bi] = ni, i = 1, . . . , ℓ
)

=

ℓ
∏

i=1

[x−α(bi − ai)]
ni

ni!
exp
{

−x−α(bi − ai)
}

,

where N(ai, bi] denotes the number of terms of {Υk, k ≥ 1} falling in the half-open interval (ai, bi], i = 1, . . . , ℓ.
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equals

φX2|x(r) := 1 +
1

2πfX1
(x)

∫

R

e−itx
(

ϕX(t, r) − ϕX(t, 0)
)

dt. (B.2)

where fX1
denotes the density of X1 ∼ S(α, β1, σ1, 0). The following notation of the H family function

will be more handy than that in (2.8): for any y > −1 and θ = (θ1, θ2) ∈ R
2, define the function

H(y, θ; · ) for x ∈ R as

H(y, θ; x) =

∫ +∞

0
e−σα

1
uα

uy
(

θ1 cos(ux − aβ1σα
1 uα) + θ2 sin(ux − aβ1σα

1 uα)
)

du, (B.3)

For z ∈ R, denote also,
g2(z) = z<α−1> − ia|z|α−1, (B.4)

g3(z) = |z|α−2 − iaz<α−2>. (B.5)

Often, we shall invoke functions of the form

r 7−→

∫

R

e−itxϕX(t, r)fp1

1 (t, r) . . . fpm
m (t, r)dt, (B.6)

where m ≤ 3 and the fi’s will be functions of the type fi(t, r) =
∫

S2
gji(ts1 +rs2)ski

1 sℓi
2 Γ(ds), for ji = 2, 3,

ki, ℓi ∈ Z for which fi is well defined and positive integer exponents pi’s. As a shorthand when no

ambiguity is possible, we shall denote functions like (B.6) by

Λ

(∫

S2

gj1
sk1

1 sℓ1

2

)p1
(∫

S2

gj2
sk2

1 sℓ2

2

)p2

. . .

up to the mth term.

B.2 Lemma B.1 for the proof of Theorem 2.1

Lemma B.1 Let (X1, X2) be an α-stable vector, 0 < α < 2,α 6= 1, with conditional characteristic

function φX2|x as given in (B.2). Let r ∈ R. If 1 < α < 2, or if 0 < α < 1 and (2.2) holds with ν > 1−α,

the first derivative of φX2|x is given by

φ
(1)
X2|x(r) =

−α

2πfX1
(x)

Λ

(∫

S2

g2s2

)

. (B.7)

If 1/2 < α < 2 and (2.2) holds with ν > 2 − α, the second derivative is given by

φ
(2)
X2|x(r) =

−α

2πfX1
(x)

[

ixΛ

(∫

S2

g2s2
2s−1

1

)

+ α

{

Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g2s1

)

− Λ

(∫

S2

g2s2
2

)2
}]

, (B.8)

If 1 < α < 2 and (2.2) holds with ν > 3 − α, the third derivative is given by

φ
(3)
X2|x(r) =

−α

2πfX1
(x)

(

ix
(

(α − 1)I1 − αI2

)

+ α2(I3 − I4) + α(α − 1)(I5 + I6 − 2I7)

)

, (B.9)
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with

I1 = Λ

(∫

S2

g3s3
2s−1

1

)

, I5 = Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g3s2s1

)

,

I2 = Λ

(∫

S2

g2s2

)(∫

S2

g2s2
2s−1

1

)

, I6 = Λ

(∫

S2

g2s1

)(∫

S2

g3s3
2s−1

1

)

,

I3 = Λ

(∫

S2

g2s2

)3

, I7 = Λ

(∫

S2

g2s2

)(∫

S2

g3s2
2

)

,

I4 = Λ

(∫

S2

g2s1

)(∫

S2

g2s2

)(∫

S2

g2s2
2s−1

1

)

.

If 3/2 < α < 2 and (2.2) holds with ν > 4 − α, the fourth derivative is given by

φ
(4)
X2|x(r) =

−α

2πfX1
(x)

[

iαx

(

α
(

3J1 − 2J2

)

+ (α − 1)
(

2J3 − 3J4 + J5

)

)

+ αx2J6 − (α − 1)x2J7

+ α2(α − 1)

(

J8 + J9 + J10 − 3
(

2J11 + J12 − J13

)

)

(B.10)

+ α(α − 1)2
(

4J14 − 3J15 − J16

)

+ α3
(

3J17 − J18 − J19

)

]

,

with

J1 = Λ
(

∫

S2

g2s2
2s−1

1

)(

∫

S2

g2s2

)2
, J11 = Λ

(

∫

S2

g2s2
2s−1

1

)(

∫

S2

g3s2s1

)(

∫

S2

g2s2

)

,

J2 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g2s1

)(

∫

S2

g2s2

)

, J12 = Λ
(

∫

S2

g3s3
2s−1

1

)(

∫

S2

g2s1

)(

∫

S2

g2s2

)

,

J3 = Λ
(

∫

S2

g3s4
2s−2

1

)(

∫

S2

g2s1

)

, J13 = Λ
(

∫

S2

g3s2
2

)(

∫

S2

g2s2

)2
,

J4 = Λ
(

∫

S2

g3s3
2s−1

1

)(

∫

S2

g2s2

)

, J14 = Λ
(

∫

S2

g3s3
2s−1

1

)(

∫

S2

g3s2s1

)

,

J5 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g3s2s1

)

, J15 = Λ
(

∫

S2

g3s2
2

)2
,

J6 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g2s2

)

, J16 = Λ
(

∫

S2

g3s4
2s−2

1

)(

∫

S2

g3s2
1

)

,

J7 = Λ
(

∫

S2

g3s4
2s−2

1

)

, J17 = Λ
(

∫

S2

g2s2
2s−1

1

)(

∫

S2

g2s1

)(

∫

S2

g2s2

)2
,

J8 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g3s2
1

)(

∫

S2

g2s2

)

, J18 = Λ
(

∫

S2

g2s2

)4
,

J9 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g3s2s1

)(

∫

S2

g2s1

)

, J19 = Λ
(

∫

S2

g2s3
2s−2

1

)(

∫

S2

g2s1

)2(
∫

S2

g2s2

)

,

J10 = Λ
(

∫

S2

g3s4
2s−2

1

)(

∫

S2

g2s1

)2
.

C Proof of Lemma B.1

For each of the derivatives, the proof involves two main steps: 1) justifying inversion of integral and

derivation signs 2) computation of the derivative.
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C.1 Justifying inversion of integral and derivation signs

C.1.1 Justifying inversion: First derivative

Case α ∈ (0, 1)

Assume α ∈ (0, 1). We begin with the first derivative of the imaginary part of φX2|x.

d

dr

(

ImφX2|x(r)
)

=
−1

2πfX1
(x)

lim
h→0

1

h

∫

R

[

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

sin

(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

− e
−
∫

S2
|ts1+rs2|αΓ(ds)

sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

]

dt

=
−1

2πfX1
(x)

lim
h→0

1

h

∫

R

[

sin

(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

− sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

]

× exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

dt

−
1

2πfX1
(x)

lim
h→0

1

h

∫

R

[

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

− exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

]

× sin

(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

dt

:= I1 + I2. (C.1)

The integrand of I1 converges to

−αa cos
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

×

∫

S2

|ts1 + rs2|α−1s2Γ(ds) × exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

Using the mean value theorem, the triangle inequality and the inequality −|x + y|α ≤ −|x|α + |y|α when

0 < α < 1, the integrand of I1 can be bounded for any h, |h| < |r|, by

∣

∣

∣cos(y)
∣

∣

∣

(

∣

∣

∣

a

h

∣

∣

∣

∫

S2

∣

∣

∣(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>
∣

∣

∣Γ(ds)

)

exp
{

∫

S2

−|ts1|α + |rs2|αΓ(ds)
}

≤ 2|a|e|r|ασα
2 e−σα

1
|t|α
∫

S2

|ts1 + rs2|α−1Γ(ds), (C.2)

where σ2 =
(

∫

S2
|s2|αΓ(ds)

)1/α
, y ∈ R, and we used the bound

∣

∣

∣

∣

(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>

h

∣

∣

∣

∣

≤ 2|ts1 + rs2|α−1|s2|, (C.3)
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for ts1 + rs2 6= 0, which is a consequence of ||1 + z|<α> − 1| ≤ 2|z|, for z ∈ R (see Lemma C.3 (ιι) below).

Bound (C.2) does not depend on h and is integrable with respect to t. Indeed, invoking Lemma C.5 with

η = α − 1, b = p = 0, and (2.2) with ν > 2 − α > 1 − α

∣

∣

∣

∣

∣

∫

R

e−σα
1

|t|α
∫

S2

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
|s1|α−1Γ(ds)dt −

∫

R

∫

S2

e−σα
1

|t|α |t|α−1|s1|α−1Γ(ds)dt

∣

∣

∣

∣

∣

≤

∫

S2

|s1|α−1
∫

R

e−σα
1

|t|α

∣

∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
− |t|α−1

∣

∣

∣

∣

∣

dtΓ(ds)

≤ const

∫

S2

|s1|α−1+ν |s1|−νΓ(ds)

≤ const

∫

S2

|s1|−νΓ(ds)

< +∞, (C.4)

and the integrability with respect to t follows from the fact that
∫

R
e−σα

1
|t|α |t|α−1dt < +∞. Hence the

Lebesgue dominated convergence theorem applies to I1 and we can invert integration and derivation.

Focusing on I2, its integrand tends to

−α

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds) exp

{

−

∫

S2

|ts1 + rs2|αΓ(ds)

}

sin

(

tx − a

∫

S2

|ts1 + rs2|<α>Γ(ds)

)

.

Using the inequality

∣

∣

∣

∣

(ts1 + (r + h)s2)α − (ts1 + rs2)α

h

∣

∣

∣

∣

≤ |ts1 + rs2|α−1|s2|,

for ts1 + rs2 6= 0, which is a consequence of ||1 + z|α − 1| ≤ |z|, for z ∈ R (Lemma C.3 (ι) below) and the

inequality |e−x − e−y| ≤ e−ye|x−y||x − y|, for x, y ∈ R, we can bound the integrand of I2 for any |h| < |r|

by

exp

{

−

∫

S2

|ts1 + rs2|αΓ(ds)

}

exp

{∣

∣

∣

∣

∫

S2

|ts1 + (r + h)s2|α − |ts1 + rs2|αΓ(ds)

∣

∣

∣

∣

}

×

∣

∣

∣

∣

1

h

∫

S2

|ts1 + (r + h)s2|α − |ts1 + rs2|αΓ(ds)

∣

∣

∣

∣

≤ e2|r|ασα
2 e−σα

1
|t|α
∫

S2

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
|s1|α−1Γ(ds).

The integrability with respect to t is deduced as for (C.4) using Lemma C.5 with η = α − 1, b = p = 0.

Thus, the Lebesgue-dominated convergence theorem applies to I2 and we can invert integration and

derivation. The real part of φX2|x(r) can be treated in a similar way, allowing us to derivate under the

integral.
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Case α ∈ (1, 2)

Assume α ∈ (1, 2). Just as for the case α ∈ (0, 1), the imaginary part of φX2|x is given by (C.1)

d

dr

(

ImφX2|x(r)
)

= I1 + I2.

The integrands of I1 and I2 still converges to the same limits, however a different argument is needed to

bound them. For |h| < |r|, the mean value theorem, the triangle inequality and the inequality of Lemma

C.4, yield the following bound for the integrand of I1
(

∣

∣

∣

a

h

∣

∣

∣

∫

S2

∣

∣

∣(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>
∣

∣

∣Γ(ds)

)

e|r|ασα
2 e−21−ασα

1
|t|α , (C.5)

where y ∈ R. By the triangle inequality and the mean value theorem, we have for some u ∈

(

min
(

ts1 +

(r + h)s2, ts1 + rs2

)

, max
(

ts1 + (r + h)s2, ts1 + rs2

)

)

∣

∣

∣

∣

∫

S2

(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>Γ(ds)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

S2

αhs2|u|α−1Γ(ds)

∣

∣

∣

∣

≤ α|h|

∣

∣

∣

∣

∫

S2

|t|α−1 + 2|r|α−1Γ(ds)

≤ α|h|Γ(S2)(|t|α−1 + 2|r|α−1) (C.6)

Thus, (C.5) can be bounded by

α|a|Γ(S2)e|r|ασα
2 e−21−ασα

1
|t|α(|t|α−1 + 2|r|α−1),

which is certainly integrable with respect to t on R for α > 1. Let us now turn to I2. We have again by

the mean value theorem,
∣

∣

∣

∣

|ts1 + (r + h)s2|α − |ts1 + rs2|α

h

∣

∣

∣

∣

≤ α(|t|α−1 + 2|r|α−1),

if |h| < |r|, and thus

∣

∣

∣

∣

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

− e
−
∫

S2
|ts1+rs2|αΓ(ds)

h

∣

∣

∣

∣

≤ max

(

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

, e
−
∫

S2
|ts1+rs2|αΓ(ds)

)

×

∫

S2

∣

∣

∣

∣

|ts1 + (r + h)s2|α − |ts1 + rs2|α

h

∣

∣

∣

∣

Γ(ds)

≤ Γ(S2)e|2r|ασα
2 e−21−ασα

1
|t|αα(|t|α−1 + 2|r|α−1), (C.7)

by Lemma C.1 (C.18) and Lemma C.4. The latter bound is again integrable with respect to t on R.

Hence the dominated convergence theorem applies to I1, I2 and therefore to
d

dr

(

ImφX2|x(r)
)

and we can

invert the integration and derivation signs. Similar arguments show the dominated convergence theorem

applies to the real part of the conditional characteristic function as well.
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C.1.2 Justifying inversion: Second derivative

Case α ∈ (1/2, 1)

In an expanded fashion, φ
(1)
X2|x(r) can be written,

φ
(1)
X2|x(r) =

−α

2πfX1
(x)

[

J1 − aJ2 − i(J3 + aJ4)
]

, (C.8)

with,

J1(r) =

∫

R

e
−
∫

S2
|ts1+rs2|αΓ(ds)

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)dt,

J2(r) =

∫

R

e
−
∫

S2
|ts1+rs2|αΓ(ds)

sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

∫

S2

|ts1 + rs2|α−1s2Γ(ds)dt,

J3(r) =

∫

R

e
−
∫

S2
|ts1+rs2|αΓ(ds)

sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)dt,

J4(r) =

∫

R

e
−
∫

S2
|ts1+rs2|αΓ(ds)

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

∫

S2

|ts1 + rs2|α−1s2Γ(ds)dt.

To obtain φ
(2)
X2|x(r), we will show that the dominated convergence theorem applies to J ′

1. Let us consider,

J ′
1(r) = lim

h→0

1

h

∫

R

[

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

×

∫

S2

(ts1 + (r + h)s2)<α−1>s2Γ(ds)

− exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

×

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)

]

dt

= lim
h→0

1

h

∫

R

[

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

− exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

]

× cos
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)dt

+ lim
h→0

1

h

∫

R

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

(C.9)

×

[

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

− cos
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

]

10



×

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)dt

+ lim
h→0

1

h

∫

R

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

×

[

∫

S2

(ts1 + (r + h)s2)<α−1>s2Γ(ds) −

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)

]

dt

:= K1 + K2 + K3. (C.10)

It can be shown that the dominated convergence theorem applies to K1 following the proof in

Cioczek-Georges and Taqqu (1994) (p.105) for I1. Consider K2. The integrand converges to

αa

(

∫

S2

|ts1 + rs2|α−1s2Γ(ds)

)(

∫

S2

(ts1 + rs2)<α−1>s2Γ(ds)

)

× sin
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

.

Using the mean value theorem, (C.3) and the triangle inequality, we can bound the integrand for any

|h| < |r| by

∣

∣

∣

∣

∣

1

h

∫

S2

(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>Γ(ds)

∣

∣

∣

∣

∣

× | sin(y)|e2|r|ασα
2 e−|t|ασα

1

∫

S2

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
|s2||s1|α−1Γ(ds)

≤ 2e2|r|ασα
2

(

∫

S2

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
|s1|α−1Γ(ds)

)2

e−|t|ασα
1 (C.11)

where y ∈ R. The bound (C.11) does not depend on h and is integrable with respect to t: invoking (2.9)

Lemma 2.2 in Cioczek-Georges and Taqqu (1994),

∣

∣

∣

∣

∣

∫

R

∫

S2

∫

S2

e−σα
1

|t|α
∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1∣
∣

∣t + r
s′

2

s′
1

∣

∣

∣

α−1
|s′

1|α−1|s1|α−1Γ(ds)Γ(ds′)dt (C.12)

−

∫

R

∫

S2

∫

S2

e−σα
1

|t|α |t|2α−2dtΓ(ds)Γ(ds′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

S2

∫

S2

|s′
1|α−1|s1|α−1

∫

R

e−σα
1

|t|α
[

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1∣
∣

∣t + r
s′

2

s′
1

∣

∣

∣

α−1
−
∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1∣
∣

∣t
∣

∣

∣

α−1

+
∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1∣
∣

∣t
∣

∣

∣

α−1
− |t|2α−2

]

dtΓ(ds)Γ(ds′)

∣

∣

∣

∣

∣

≤

∫

S2

∫

S2

|s′
1|α−1|s1|α−1

∫

R

e−σα
1

|t|α
[

∣

∣

∣

∣

∣

∣

∣t + r
s′

2

s′
1

∣

∣

∣

α−1
− |t|α−1

∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1

+

∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−1
− |t|α−1

∣

∣

∣

∣

|t|α−1

]

dtΓ(ds)Γ(ds′)
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≤ const

(

∫

S2

|s1|α−1Γ(ds)

)2

< +∞, (C.13)

where const is a constant depending only on α and σα
1 . The integrability of (C.11) follows from (C.13), the

fact that
∫

R
e−σα

1
|t|α |t|2α−2dt < +∞ and (2.2) with ν > 2 − α > 1 − α. Hence the dominated convergence

theorem applies to K2. Let us now turn to K3: «this is [a] case when appropriate "integration by parts"

is needed» (Cioczek-Georges and Taqqu (1994)). With the change of variable t′ = t +
hs′

2

s′
1

,

K3 = lim
h→0

1

h

[

∫

R

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

×

∫

S2

(t +
hs′

2

s′
1

+
rs′

2

s′
1

)<α−1>s′
2s′

1
<α−1>

Γ(ds′)dt

−

∫

R

exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

×

∫

S2

(t +
rs′

2

s′
1

)<α−1>s′
2s′

1
<α−1>

Γ(ds′)dt

]

= lim
h→0

1

h

∫

R

∫

S2

[

exp

{

−

∫

S2

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

∣

∣

∣

∣

α

Γ(ds)

}

× cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

− exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

]

×

(

t + r
s′

2

s′
1

)<α−1>

s′
2s′

1
<α−1>

Γ(ds′)dt

= lim
h→0

1

h

∫

R

∫

S2

1
hs′

2

s′

1

[

cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

− cos
(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)
)

]

× exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

(

t + r
s′

2

s′
1

)<α−1>

s′
2

2
|s′

1|α−2Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

1
hs′

2

s′

1

[

exp

{

−

∫

S2

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

∣

∣

∣

∣

α

Γ(ds)

}

− exp
{

−

∫

S2

|ts1 + (r + h)s2|αΓ(ds)
}

]

× cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

×

(

t + r
s′

2

s′
1

)<α−1>

s′
2

2
|s′

1|α−2Γ(ds′)dt
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= K31 + K32.

The case of K32 is similar to that of I22 in Cioczek-Georges and Taqqu (1994) (p.106-108), the dominated

convergence theorem applies. We focus on K31. Its integrand converges to

sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

exp

{

−

∫

S2

|ts1 + rs2|αΓ(ds)

}

×

(

x − αa

∫

S2

|ts1 + rs2|α−1s1Γ(ds)

)(

∫

S2

(ts′
1 + rs′

2)<α−1>s′
2

2
s′

1
−1

Γ(ds′)

)

.

Using the mean value theorem and Lemma C.3 (ιι), we can bound the integrand of K31 for any |h| < |r|

by

| sin(y)|e2|r|ασα
2 e−|t|ασα

1

∫

S2

∣

∣

∣

∣

t + r
s′

2

s′
1

∣

∣

∣

∣

α−1

s′
2

2
|s′

1|α−2

×

∣

∣

∣

∣

∣

1
hs′

2

s′

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
hs′

2

s′
1

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

− (ts1 + (r + h)s2)<α>Γ(ds)

)

∣

∣

∣

∣

∣

Γ(ds′)

≤ e2|r|ασα
2 e−|t|ασα

1

∫

S2

∣

∣

∣

∣

t + r
s′

2

s′
1

∣

∣

∣

∣

α−1

s′
2

2
|s′

1|α−2

(

|x| + 2a

∫

S2

∣

∣

∣t + (r + h)
s2

s1

∣

∣

∣

α−1
|s1|Γ(ds)

)

Γ(ds′)

≤ |x|e2|r|ασα
2 e−|t|ασα

1

∫

S2

∣

∣

∣

∣

t + r
s′

2

s′
1

∣

∣

∣

∣

α−1

s′
2

2
|s′

1|α−2Γ(ds′)

+ 2ae2|r|ασα
2 e−|t|ασα

1

∫

S2

∫

S2

∣

∣

∣

∣

t + r
s′

2

s′
1

∣

∣

∣

∣

α−1
∣

∣

∣t + (r + h)
s2

s1

∣

∣

∣

α−1
|s1|s′

2
2
|s′

1|α−2Γ(ds)Γ(ds′).

The integrability with respect to t of the first (resp. second) term is obtained in the same way as for

(C.4) (resp. (C.13)) and concluding using (2.2) with ν > 2 − α. Thus, the dominated convergence

theorem applies to K31, which finally shows that the dominated convergence theorem applies to J ′
1. The

other J ’s can be treated in a similar fashion.

Case α ∈ (1, 2)

After derivation, φ
(1)
X2|x(r) is given by (C.8) with functions J ’s of the form

∫

R

e
−
∫

S2
|ts1+rs2|αΓ(ds)

trig

(

tx − a

∫

S2

|ts1 + rs2|<α>Γ(ds)

)

∫

S2

(ts1 + rs2)<α−1> or α−1s2Γ(ds)dt,

which are similar to deal with. Consider for instance J1(r). It’s derivative can be written as in (C.10)

J ′
1(r) = K1 + K2 + K3.
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For the integrand of K1, we can use (C.7) and the triangle inequality to bound it by

Γ(S2)e|2r|ασα
2 e−21−ασα

1
|t|αα(|t|α−1 + 2|r|α−1)

∫

S2

|ts1 + rs2|α−1|s2|Γ(ds).

Since 0 < α − 1 < 1, we can further bound it by

Γ(S2)e|2r|ασα
2 e−21−ασα

1
|t|αα(|t|α−1 + 2|r|α−1)2,

which is integrable with respect to t. The same bound can be obtained for the integrand of K2 using

the mean value theorem, (C.6) and Lemma C.4. As for K3, there is no need to perform "appropriate

integration by parts" since 0 < α − 1 < 1. Its integrand converges to

(α − 1) exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

cos
(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)
)

∫

S2

|ts1 + rs2|α−2s2
2Γ(ds).

Using Lemmas C.4 and C.3 (ιι), it can be bounded for any |h| < |r| by

2

|h|
Γ(S2)e|2r|ασα

2 e−21−ασα
1

|t|α
∫

S2

|ts1 + rs2|α−2|hs2|Γ(ds),

≤ Γ(S2)e|2r|ασα
2 e−21−ασα

1
|t|α
∫

S2

∣

∣

∣t +
rs2

s1

∣

∣

∣

α−2
|s1|α−2Γ(ds).

We can show that this bound is integrable with respect to t using Lemma C.5 with η = α − 2, b = 0 and

p = 0, the fact that
∫

R
e−21−ασα

1
|t|α |t|α−2dt < +∞ for α ∈ (1, 2) and (2.2) with ν > 2 − α. The dominated

convergence theorem thus applies and we get

φ
(2)
X2|x(r) =

−α

2πfX1
(x)

[

− α

∫

R

e−itxϕX(t, r)
(

∫

S2

g2(ts1 + rs2)s2Γ(ds)
)2

dt

+ (α − 1)

∫

R

e−itxϕX(t, r)
(

∫

S2

g3(ts1 + rs2)s2
2Γ(ds)

)

dt

]

, (C.14)

with g3(z) = |z|α−2 − iaz<α−2> for z ∈ R. Integrating by parts the terms |ts1 + rs2|<α−2> or α−2 involved

in the expression
∫

R
e−itxϕX(t, r)

(

∫

S2
g3(ts1 + rs2)s2

2Γ(ds)
)

dt yields the expression (B.8) obtained in the

case α ∈ (1/2, 1). Hence, the same functional form for the second order conditional moment (2.4) in

Theorem 2.1 holds when α > 1.

C.1.3 Justifying inversion: Third derivative

Let α ∈ (1, 2) and let (2.2) hold with ν > 3 − α. Starting from the second derivative of φ
(2)
X2|x(r) given at

(B.8), with obvious notations

φ
(2)
X2|x(r) =

−α

2πfX1
(x)

[

ixI1(r) + α(I3(r) − I2(r))
]
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On the one hand, it can be shown that the dominated convergence theorem applies to I ′
1 using the

usual arguments the fact that (2.2) holds with ν > 3 − α. On the other hand, after some elementary

manipulations, we get that

I3 − I2 =

∫

R

e
−itx+ia

∫

S2
(ts1+rs2)<α>Γ(ds)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

×

∫

S2

∫

S2

{

(ts1 + rs2)<α−1>(ts′
1 + rs′

2)<α−1> − a2|ts1 + rs2|α−1|ts′
1 + rs′

2|α−1

− ia

(

|ts1 + rs2|α−1(ts′
1 + rs′

2)<α−1> + (ts1 + rs2)<α−1>|ts′
1 + rs′

2|α−1
)

}

×
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt

The previous expression can be decomposed into terms of the form

∫

R

∫

S2

∫

S2

trig

(

− tx + a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

× e
−
∫

S2
|ts1+rs2|αΓ(ds)

× |ts1 + rs2|<α−1> or α−1 × |ts′
1 + rs′

2|<α−1> or α−1

×
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt,

where «trig» is to be replaced by a sine or cosine function. Each of these terms can be treated in a similar

way to show that the dominated convergence theorem applies. We will consider

J(r) =

∫

R

∫

S2

∫

S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

× |ts1 + rs2|α−1(ts′
1 + rs′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt.

We have

J ′(r) = lim
h→0

1

h

∫

R

∫

S2

∫

S2

[

cos

(

tx − a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

− cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

]

× e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

|ts1 + (r + h)s2|α−1(ts′
1 + (r + h)s′

2)<α−1>

×
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

×

[

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

− e
−
∫

S2
|ts1+rs2|αΓ(ds)

]
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× |ts1 + (r + h)s2|α−1(ts′
1 + (r + h)s′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

×

[

|ts1 + (r + h)s2|α−1 − |ts1 + rs2|α−1

]

× (ts′
1 + (r + h)s′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

×

[

(ts′
1 + (r + h)s′

2)<α−1> − (ts′
1 + rs′

2)<α−1>

]

× |ts1 + rs2|α−1
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)dt

:= K1 + K2 + K3 + K4.

We will show that we can apply the dominated convergence theorem to the Ki’s. Let us begin with K1.

Its integrand converges to

αa

∫

S2×S2×S2

sin

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

× |ts1 + rs2|α−1(ts′
1 + rs′

2)<α−1>|ts′′
1 + rs′′

2|α−1s′′
2

[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)Γ(ds′′).

For any h, |h| < |r|, the integrand of K1 can be bounded using the mean value theorem on the cosine

and Lemma C.4 by

|a|

|h|

∣

∣

∣

∣

∫

S2

(ts1 + (r + h)s2)<α> − (ts1 + rs2)<α>Γ(ds)

∣

∣

∣

∣

e2α|r|ασα
2 e−21−ασα

1
|t|α

×

∣

∣

∣

∣

∫

S2

∫

S2

|ts1 + (r + h)s2|α−1(ts′
1 + (r + h)s′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)

∣

∣

∣

∣

. (C.15)

Hence, by inequality (C.6) and given that 0 < α − 1 < 1, the quantity (C.15) can be bounded by

α|a|Γ(S2)e2α|r|ασα
2 e−21−ασα

1
|t|α(|t|α−1 + 2|r|α−1)

×

∣

∣

∣

∣

∫

S2

∫

S2

|ts1 + (r + h)s2|α−1(ts′
1 + (r + h)s′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)

∣

∣

∣

∣

≤ α|a|Γ(S2)e2α|r|ασα
2 e−21−ασα

1
|t|α(|t|α−1 + 2|r|α−1)3

(

Γ(S2) +

∫

S2

|s1|−1Γ(ds)

)

≤ const e−21−ασα
1

|t|α(|t|α−1 + 2|r|α−1)3,

where const is a finite nonnegative constant because of (2.2) with ν > 3 − α > 1 and the fact that Γ is a

finite measure. This last bound, independent of h, is integrable with respect to t on R. The dominated
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convergence theorem applies to K1. Consider now K2. Its integrand converges to

α

∫

S2×S2×S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

(C.16)

× |ts1 + rs2|α−1(ts′
1 + rs′

2)<α−1>(ts′′
1 + rs′′

2)<α−1>s′′
2

[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)Γ(ds′′)

By (C.7), the integrand of K2 can be bounded by

Γ(S2)e|2r|ασα
2 e−21−ασα

1
|t|αα(|t|α−1 + 2|r|α−1)

∣

∣

∣

∣

∫

S2

∫

S2

|ts1 + (r + h)s2|α−1(ts′
1 + (r + h)s′

2)<α−1>
[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)

∣

∣

∣

∣

Which can be further bounded by an integrable function of t in a similar way as for the integrand of K1.

The dominated convergence theorem applies to K2. Consider now K3. Its integrand converges to

(α − 1)

∫

S2

∫

S2

cos

(

tx − a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

× (ts1 + rs2)<α−2>(ts′
1 + (r + h)s′

2)<α−1>s2

[

s2
2s−1

1 s′
1 − s2s′

2

]

Γ(ds)Γ(ds′)

Using Lemmas C.4, C.3 (ι) and the triangle inequality, the integrand of K3 can be bounded by

1

|h|
e|r|ασα

2 e−21−ασα
1

|t|α
∫

S2

∫

S2

|hs2||ts1 + rs2|α−2|ts′
1 + (r + h)s′

2|α−1
∣

∣

∣s2
2s−1

1 s′
1 − s2s′

2

∣

∣

∣Γ(ds)Γ(ds′)

≤ e|r|ασα
2 Γ(S2)

∫

S2

e−21−ασα
1

|t|α |ts1 + rs2|α−2(|t|α−1 + 2|r|α−1)
∣

∣

∣1 + |s1|−1
∣

∣

∣Γ(ds)

To show the integrability with respect to t of the last bound we make use of Lemma C.5 with η =

α − 2, b = 0, α − 1 and p = 0 and the fact that with 1 < α < 2,
∫

R
e−21−ασα

1
|t|α |t|α−2dt < +∞ and

∫

R
e−21−ασα

1
|t|α |t|2α−3dt < +∞

e|r|ασα
2 Γ(S2)

∫

S2

∣

∣

∣1 + |s1|−1
∣

∣

∣

∫

R

e−21−ασα
1

|t|α |s1|α−2
∣

∣

∣t + r
s2

s1

∣

∣

∣

α−2
(|t|α−1 + 2|r|α−1)dtΓ(ds)

≤ e|r|ασα
2 Γ(S2)

∫

S2

∣

∣

∣1 + |s1|−1
∣

∣

∣|s1|α−2

[

∫

R

e−21−ασα
1

|t|α
∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−2
− |t|α−2 + |t|α−2

∣

∣

∣

∣

|t|α−1dt

+ 2|r|α−1
∫

R

e−21−ασα
1

|t|α
∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−2
− |t|α−2 + |t|α−2

∣

∣

∣

∣

dt

]

Γ(ds)

≤ e|r|ασα
2 Γ(S2)

∫

S2

∣

∣

∣1 + |s1|−1
∣

∣

∣|s1|α−2

[

∫

R

e−21−ασα
1

|t|α
∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−2
− |t|α−2

∣

∣

∣

∣

|t|α−1dt

+ 2|r|α−1
∫

R

e−21−ασα
1

|t|α
∣

∣

∣

∣

∣

∣

∣t + r
s2

s1

∣

∣

∣

α−2
− |t|α−2

∣

∣

∣

∣

dt

+

∫

R

e−21−ασα
1

|t|α |t|2α−3dt

+ 2|r|α−1
∫

R

e−21−ασα
1

|t|α |t|α−2dt

]

Γ(ds)
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≤ const

∫

S2

∣

∣

∣1 + |s1|−1
∣

∣

∣|s1|α−2Γ(ds)

≤ const
(

∫

S2

|s1|α−2Γ(ds) +

∫

S2

|s1|α−3Γ(ds)
)

,

which is finite because of (2.2) with ν > 3−α. Hence, the dominated convergence theorem applies to K3.

The case of K4 is similar, using Lemma C.3 (ιι) instead of (ι) to bound the term

∣

∣

∣

∣

(ts′
1 +(r+h)s′

2)<α−2> −

(ts′
1 + rs′

2)<α−2>

∣

∣

∣

∣

. The dominated convergence theorem applies to all the Ki’s and we can invert the

integration and derivation signs in J ′.

C.1.4 A special manipulation to obtain the fourth derivative

Before derivating φ
(3)
X2|x, we follow the advice stated in Cioczek-Georges and Taqqu (1998) (p.48) and

integrate by parts the terms containing
∫

S2
g3(ts1 + rs2)s3

2s−1
1 Γ(ds) and

∫

S2
g3(ts1 + rs2)s2

2Γ(ds), namely

I1, I6 and I7. This is done in order to guarantee the validity of the representation of the fourth derivative

when (2.2) holds for any ν > 4 − α. If we did not do this step first, the obtained fourth derivative would

be valid only when (2.2) holds with ν > 5 − α. We obtain

φ
(3)
X2|x(r) =

−α

2πfX1
(x)

[

iαx
(

I11 − I2 + I62 − 2I72

)

− x2I12

+ α2
(

I3 − I4 − 2I71 + I61

)

+ α(α − 1)
(

I5 − I63 + 2I73

)

]

, (C.17)

where, in addition to I2, I3, I4 and I5 defined in the Lemma,

I11 = Λ

(∫

S2

g2s3
2s−2

1

)(∫

S2

g2s1

)

, I12 = Λ

(∫

S2

g2s3
2s−2

1

)

,

I61 = Λ

(∫

S2

g2s3
2s−2

1

)(∫

S2

g2s1

)2

, I71 = Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g2s1

)(∫

S2

g2s2

)

,

I62 = Λ

(∫

S2

g2s3
2s−2

1

)(∫

S2

g2s1

)

, I72 = Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g2s2

)

,

I63 = Λ

(∫

S2

g2s3
2s−2

1

)(∫

S2

g3s2
1

)

, I73 = Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g3s2s1

)

.

Both justification and computation of the fourth derivative are obtained by starting from the above

representation of the third derivative.

C.1.5 Justifying inversion: Fourth derivative

Showing that the dominated convergence theorem holds when differentiating (C.17) is the most delicate

for the terms: I5, I63 and I73 -the terms involving the function g3, that is, |ts1 + rs2| to the power α − 2.

Arguments and bounds that have already been encountered can be used for the other ones.
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Let us show the dominated convergence theorem applies to I5. The cases of I63 and I73 are similar.

We decompose I5 into terms of the form

∫

R

∫

S2

∫

S2

trig

(

− tx + a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

× |ts1 + rs2|α−1 or <α−1>|ts′
1 + rs′

2|α−2 or <α−2>s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt.

Consider for instance

J(r) :=

∫

R

∫

S2

∫

S2

cos

(

− tx + a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

e
−
∫

S2
|ts1+rs2|αΓ(ds)

× |ts1 + rs2|α−1|ts′
1 + rs′

2|α−2s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt.

We have

J ′(r) = lim
h→0

1

h

∫

R

∫

S2

∫

S2

[

|ts′
1 + (r + h)s′

2|α−2 − |ts′
1 + rs′

2|α−2
]

|ts1 + (r + h)s2|α−1

× cos

(

− tx + a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

× e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

|ts′
1 + rs′

2|α−2
[

|ts1 + (r + h)s2|α−1 − |ts1 + rs2|α−1
]

× cos

(

− tx + a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

× e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

|ts′
1 + rs′

2|α−2|ts1 + rs2|α−1

×

[

cos

(

− tx + a

∫

S2

(ts1 + (r + h)s2)<α>Γ(ds)

)

− cos

(

− tx + a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

]

× e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt

+ lim
h→0

1

h

∫

R

∫

S2

∫

S2

|ts′
1 + rs′

2|α−2|ts1 + rs2|α−1

× cos

(

− tx + a

∫

S2

(ts1 + rs2)<α>Γ(ds)

)

×

[

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

− e
−
∫

S2
|ts1+rs2|αΓ(ds)

]

s2
2s−1

1 s′
2s′

1Γ(ds)Γ(ds′)dt

:= K1 + K2 + K3 + K4

The integrand of K4 can be bounded using inequality (C.16), (C.7) and invoking Lemma C.5 and (2.2)

with ν > 4 − α. The integrand of K3 can be bounded using (C.6) Lemma C.4, and concluding with
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Lemma C.5 and (2.2) with ν > 4 − α. Focus now on K2. Using Lemmas C.4 and C.3 (ι), its integrand

can be bounded by

e|2r|ασα
2 e−21−ασα

1
|t|α
∣

∣

∣t +
rs′

2

s′
1

∣

∣

∣

α−2∣
∣

∣t +
rs2

s1

∣

∣

∣

α−2
s3

2|s1|α−3|s′
1|α−1|s′

2|.

The later bound does not depend on h and can be shown to be integrable with respect to t using (2.2)

with ν > 4 − α, Lemma C.6 with η = α − 2, z2 = z4 = 0, p = 0 and the fact that
∫

R
e−c|t|α |t|2(α−2) < +∞

for α ∈ (3/2, 2). Let us now turn to the term K1 which is more intricate. Appropriate «integration by

parts» is required. With the change of variable t = t +
hs′

2

s′

1

,

K1 = lim
h→0

1

h

∫

S2

∫

S2

∫

R

[

e
−
∫

S2

∣

∣

∣

∣

(

t−
hs′

2

s′

1

)

s1+(r+h)s2

∣

∣

∣

∣

α

Γ(ds)

− e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

]

× cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

×

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

∣

∣

∣

∣

α−1

|ts′
1 + rs′

2|α−2s2
2s−1

1 s′
2s′

1dtΓ(ds)Γ(ds′)

+ lim
h→0

1

h

∫

S2

∫

S2

∫

R

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

× cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

×

[

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

∣

∣

∣

∣

α−1

−

∣

∣

∣

∣

ts1 + (r + h)s2

∣

∣

∣

∣

α−1
]

× |ts′
1 + rs′

2|α−2s2
2s−1

1 s′
2s′

1dtΓ(ds)Γ(ds′)

+ lim
h→0

1

h

∫

S2

∫

S2

∫

R

e
−
∫

S2
|ts1+(r+h)s2|αΓ(ds)

×

[

cos

(

(

t −
hs′

2

s′
1

)

x − a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

Γ(ds)

)

− cos

(

tx − a

∫

S2

(

ts1 + (r + h)s2

)<α>

Γ(ds)

)]

×
∣

∣ts1 + (r + h)s2

∣

∣

α−1
|ts′

1 + rs′
2|α−2s2

2s−1
1 s′

2s′
1dtΓ(ds)Γ(ds′)

:= K11 + K12 + K13.

It can be shown that the generalised Lebesgue convergence theorem applies to the terms K11 and K12

following the proof in Cioczek-Georges and Taqqu (1998) (p.50-52). Regarding the integrand of K13,

using the mean value theorem on the cosine, Lemma C.4 and (C.6), we get for |h| < |r|

1
∣

∣

∣

hs′

2

s′

1

∣

∣

∣

e|2r|ασα
2 e−21−ασα

1
|t|α
∣

∣ts1 + (r + h)s2

∣

∣

α−1
|ts′

1 + rs′
2|α−2s2

2|s1|−1|s′
2|2
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×

∣

∣

∣

∣

∣

hs′
2

s′
1

x + a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + (r + h)s2

)<α>

−

(

ts1 + (r + h)s2

)<α>

Γ(ds)

∣

∣

∣

∣

∣

≤
1

∣

∣

∣

hs′

2

s′

1

∣

∣

∣

e|2r|ασα
2 e−21−ασα

1
|t|α
∣

∣ts1 + (r + h)s2

∣

∣

α−1
|ts′

1 + rs′
2|α−2s2

2|s1|−1|s′
2|2

×

[

∣

∣

∣

hs′
2

s′
1

x
∣

∣

∣+
∣

∣

∣a
hs′

2

s′
1

∣

∣

∣

∫

S2

|s1||ts1 + (r + h)s2|α−1Γ(ds)

]

≤ e|2r|ασα
2 e−21−ασα

1
|t|α
∣

∣

∣t +
rs′

2

s′
1

∣

∣

∣

α−2
s2

2|s1|−1s′
2

2
|s′

1|α−2

×
(

|t|α−1 + |2r|α−1)
[

|x| + |a|Γ(S2)(|t|α−1 + |2r|α−1)

]

.

The last bound can be shown to be integrable with respect to t using Lemma C.7 with η = α − 2,

b = 0, α − 1, 2(α − 1), p = 0 and (2.2) with ν > 4 − α. We established that we can invert the derivation

and integration signs in all the Ki’s, hence in J ′.

C.1.6 Lemmas for justifying the inversions in the proof of Lemma B.1

The following elementary lemmas, stated without proof, are used to establish Lemma B.1.

Lemma C.1 For x, y ∈ R,

|e−x − e−y| ≤ e− min(x,y)|x − y|, (C.18)

|e−x − e−y| ≤ e−ye|x−y||x − y|. (C.19)

Lemma C.2 For α > 1 and x, y ∈ R,

max
(

21−α|x|α − |y|α, 21−α|y|α − |x|α
)

≤ |x + y|α ≤ 2α−1
(

|x|α + |y|α
)

.

Lemma C.3 For z ∈ R and 0 < b ≤ 1,

(ι)
∣

∣

∣|1 + z|b − 1
∣

∣

∣ ≤ |z|,

(ιι)
∣

∣

∣|1 + z|<b> − 1
∣

∣

∣ ≤ 2|z|.

Lemma C.4 (Lemma 3.3, Cioszek-Georges and Taqqu (1998)) For α > 1 and t, r ∈ R,

exp
{

−

∫

S2

|ts1 + rs2|αΓ(ds)
}

≤ exp{|r|ασα
2 } exp{−21−ασα

1 |t|α}.

Lemma C.5 (Lemma 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds

for c > 0, 0 < α < 2, −1 < η < 0 and −1 − η < b:

∫

R

exp(−c|t|α)
∣

∣

∣|t + z|η − |t|η
∣

∣

∣|t|bdt ≤ const. |z|p
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with

0 ≤ p < b + η + 1 for − 1 − η < b < 0,

and

0 ≤ p < η + 1 or b ≤ p < b + η + η + 1, p ≤ 1 for 0 ≤ b.

const. depends only on c, α, η, b and p.

Lemma C.6 (Corollary 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds

for c > 0, 0 < α < 2, −1/2 < η < 0 and 0 ≤ p < 2η + 1:

∫

R

exp(−c|t|α)
∣

∣

∣|t + z1|η|t + z3|η − |t + z2|η|t + z4|η
∣

∣

∣dt ≤ const. (|z1 − z2|p + |z3 − z4|p),

where const depends only on c, α, η and p.

Lemma C.7 (Lemma 3.12, Cioszek-Georges and Taqqu (1998)) The following inequality holds

for c > 0, 0 < α < 2, −1 < η < 0, b ≥ 0 and 0 ≤ p < η + 1:

∫

R

exp(−c|t|α)
∣

∣

∣|t + z1|η − |t + z2|η
∣

∣

∣|t|bdt ≤ const. |z1 − z2|p,

where const depends only on c, α, η, b and p.

C.2 Computation of the derivatives

We detail the computation of the second order derivative highlighting where appropriate integration by

parts intervenes. The computations are similar for the third and fourth order derivatives.

Note that if f(x) = |x|b, for x, b ∈ R, b 6= 0, then for x 6= 0, f ′(x) = bx<b−1> and if f : x 7−→ x<b>,

then f ′(x) = b|x|b−1. This can be shown by distinguishing the cases x > 0 and x < 0.

φ
(2)
X2|x(r) =

∂

∂r
φ

(1)
X2|x(r)

=
−α

2πfX1
(x)

lim
h→0

1

h

[

∫

R

∫

S2

e−itxϕX(t, r + h)g2(ts1 + (r + h)s2)s2Γ(ds)dt

−

∫

R

∫

S2

e−itxϕX(t, r)g2(ts1 + rs2)s2Γ(ds)dt

]

=
−α

2πfX1
(x)

lim
h→0

1

h

∫

R

∫

S2

e−itx
[

ϕX(t, r + h) − ϕX(t, r)

]

g2(ts1 + (r + h)s2)s2Γ(ds)dt

+
−α

2πfX1
(x)

lim
h→0

1

h

∫

R

∫

S2

e−itxϕX(t, r)

[

g2(ts1 + (r + h)s2) − g2(ts1 + rs2)

]

s2Γ(ds)dt
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:= A1 + A2.

The first limit can be straightforwardly obtained:

A1 =
α2

2πfX1
(x)

∫

R

e−itxϕX(t, r)

(∫

S2

g2(ts1 + rs2)s2Γ(ds)

)2

dt

=
α2

2πfX1
(x)

Λ

(∫

S2

g2s2

)2

.

The second one requires appropriate integration by parts. With the change of variable t′ = t +
hs2

s1
,

A2 =
−α

2πfX1
(x)

lim
h→0

1

h

[ ∫

S2

∫

R

e−itxϕX(t, r)g2(ts1 + (r + h)s2)s2dtΓ(ds)

−

∫

S2

∫

R

e−itxϕX(t, r)g2(ts1 + rs2)s2dtΓ(ds)

]

=
−α

2πfX1
(x)

lim
h→0

1

h

[ ∫

S2

∫

R

e
−i

(

t−
hs2

s1

)

x

ϕX

(

t −
hs2

s1
, r
)

g2(ts1 + rs2)s2dtΓ(ds)

−

∫

S2

∫

R

e−itxϕX(t, r)g2(ts1 + rs2)s2dtΓ(ds)

]

=
α

2πfX1
(x)

∫

S2

∫

R

s2
2s−1

1 g2(ts1 + rs2) lim
h→0

1

−hs2

s1

[

e
−i

(

t−
hs2

s1

)

x

ϕX

(

t −
hs2

s1
, r
)

− e−itxϕX(t, r)

]

dtΓ(ds)

=
α

2πfX1
(x)

∫

S2

∫

R

s2
2s−1

1 g2(ts1 + rs2)

[

− ixe−itxϕX(t, r) + e−itx ∂

∂t
ϕX(t, r)

]

dtΓ(ds)

=
−iαx

2πfX1
(x)

∫

R

e−itxϕX(t, r)

(∫

S2

s2
2s−1

1 g2(ts1 + rs2)Γ(ds)

)

dt

−
α2

2πfX1
(x)

∫

R

e−itxϕX(t, r)

(∫

S2

s1g2(ts1 + rs2)Γ(ds)

)(∫

S2

s2
2s−1

1 g2(ts1 + rs2)Γ(ds)

)

dt

A2 =
−iαx

2πfX1
(x)

Λ

(∫

S2

g2s2
2s−1

1

)

−
α2

2πfX1
(x)

Λ

(∫

S2

g2s2
2s−1

1

)(∫

S2

g2s1

)

Combining the expressions obtained for A1 and A2 yields the second derivative.

D Proof of Theorem 2.1

We here finally evaluate the derivatives of Lemma B.1 at r = 0 to obtain the functional forms of the

conditinal moments. These proofs yield in particular the expressions of the constants θi, i = 1, . . . , 6

which intervene in Theorem 2.1. Lemmas at the end of this section are used to regroup terms and simplify

as much as possible the functional forms.
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D.1 Proof of second order conditional moment (2.4) in Theorem 2.1

The second order derivative of the characteristic function of X2|X1 = x is given by (B.8) in Lemma B.1.

Evaluating it at r = 0 yields

E

[

X2
2

∣

∣

∣X1 = x
]

= −φ
(2)
X2|x(0)

=
α

2πfX1
(x)

∫

R

e−itx+iaσα
1

β1t<α>
e−σα

1
|t|α

×

[

ixσα
1 (κ2t<α−1> − iaλ2|t|α−1) − ασ2α

1 (κ1t<α−1> − iaλ1|t|α−1)2

+ ασ2α
1 (κ2t<α−1> − iaλ2|t|α−1)(t<α−1> − iaβ1|t|α−1)

]

dt

=
ασα

1

2πfX1
(x)

∫

R

e−itx+iaσα
1

β1t<α>
e−σα

1
|t|α

×

[

xaλ2|t|α−1 + ασα
1 |t|2(α−1)

(

κ2 − a2β1λ2 − κ2
1 + a2λ2

1

)

+ ixκ2t<α−1> + iασα
1 t<2(α−1)>

(

2aλ1κ1 − a(λ2 + β1κ2

)

]

dt

=
ασα

1

πfX1
(x)

[

axλ2C1(x) + κ2xS1(x)

− ασα
1

(

κ2
1 − a2λ2

1 + a2β1λ2 − κ2

)

C2(x) − ασα
1

(

a(λ2 + β1κ2) − 2aλ1κ1

)

S2(x)

]

,

where the κi’s and λi’s are given in (2.7). Invoking Lemma D.1 (ιιι) yields

E

[

X2
2

∣

∣

∣X1 = x
]

=
x

1 + (aβ1)2

[

(a2λ2β1 + κ2)x + a(λ2 − κ2β1)
1 − xH(x)

πfX1
(x)

]

−
α2σ2α

1

πfX1
(x)

H
(

2(α − 1), θ1; x
)

= κ2x2 +
ax(λ2 − β1κ2)

1 + (aβ1)2

[

aβ1x +
1 − xH(x)

πfX1
(x)

]

−
α2σ2α

1

πfX1
(x)

H
(

2(α − 1), θ1; x
)

,

where H is given in (B.3) with

θ11 = κ2
1 − a2λ2

1 + a2β1λ2 − κ2, θ12 = a(λ2 + β1κ2) − 2aλ1κ1.
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D.2 Proof of third order conditional moment (2.5) in Theorem 2.1

The third order derivative of the characteristic function of X2|X1 = x is given by (B.9) in Lemma B.1.

It can be shown that the I’s evaluated at r = 0 write

I1 = 2σα
1 H
(

α − 2, θI
1; x

)

, θI
1 =

(

κ3, −aλ3

)

,

I2 = 2σ2α
1 H

(

2(α − 1), θI
2; x

)

, θI
2 =

(

L, −aK

)

,

iI3 = 2σ3α
1 H

(

3(α − 1), θI
3; x

)

, θI
3 =

(

aλ1(3κ2
1 − a2λ2

1), κ3
1 − 3a2κ1λ2

1

)

,

iI4 = 2σ3α
1 H

(

3(α − 1), θI
4; x

)

, θI
4 =

(

a
(

K + β1L
)

, L − a2β1K

)

,

iI5 = iI7 = 2σ2α
1 H

(

2α − 3, θI
5; x

)

, θI
5 =

(

aK, L

)

,

iI6 = 2σ2α
1 H

(

2α − 3, θI
6; x

)

, θI
6 =

(

a(λ3 + β1κ3), κ3 − a2β1λ3

)

,

with K = κ1λ2 + λ1κ2 and L = κ1κ2 − a2λ1λ2. Hence,

E

[

X3
2

∣

∣

∣X1 = x
]

= −iφ
(3)
X2|x(0) =

α

πfX1
(x)

[

− x
(

(α − 1)K1 − αK2

)

+ α2K3 + α(α − 1)K4

]

,

with

K1 = σα
1 H
(

α − 2, θK
1 ; x

)

, with θK
1 = θI

1,

K2 = σ2α
1 H

(

2(α − 1), θK
2 ; x

)

, with θK
2 = θI

2,

K3 = σ3α
1 H

(

3(α − 1), θK
3 ; x

)

, with θK
3 = θI

3 − θI
4

K4 = σ2α
1 H

(

2α − 3, θK
4 ; x

)

, with θK
4 = θI

6 − θI
5.

Invoking Lemma D.1 (ιι) for n = 1, 2 and regrouping the terms, we get

E

[

X3
2

∣

∣

∣X1 = x
]

=
αx2σα

1

πfX1
(x)

(

θK
12C1(x) − θK

11S1(x)

)

+
α

πfX1
(x)

[

αxσ2α
1

2
C2(x)

(

− 2
(

θK
11 + aβ1θK

12

)

+ 2θK
21 − θK

42

)

+
αxσ2α

1

2
S2(x)

(

− 2
(

θK
12 − aβ1θK

11

)

+ 2θK
22 + θK

41

)

+
α2σ3α

1

2
C3(x)

(

2θK
31 + θK

41 + aβ1θK
42

)

+
α2σ3α

1

2
S3(x)

(

2θK
32 + θK

42 − aβ1θK
41

)

]

.
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Using Lemma D.1 (ιιι) yields the conclusion with θ2 = (θ21, θ22), θ3 = (θ31, θ32) such that

θ21 = 3(L + a2β1λ3 − κ3), (D.1)

θ22 = 3a(λ3 + β1κ3 − K), (D.2)

θ31 = a
(

λ3(1 − a2β2
1) + 2β1κ3 + 2λ1(3κ2

1 − a2λ2
1) − 3(K + β1L)

)

, (D.3)

θ32 = κ3(1 − a2β2
1) − 2a2β1λ3 + 2(κ3

1 − 3a2κ1λ2
1) + 3(a2β1K − L), (D.4)

with K = κ1λ2 + κ2λ1, L = κ1κ2 − a2λ1λ2.

D.3 Proof of fourth order conditional moment (2.6) in Theorem 2.1

The conditional moments are obtained by evaluating the derivatives of the conditional characteristic

function at r = 0. We provide here the proof for the fourth order, which yields the expressions of the

vectors θ4, θ5 and θ6 appearing in Equation (2.6) of Theorem 2.1. The fourth order derivative of the

characteristic function of X2|X1 = x is given by (B.10) in Lemma B.1. It can be shown that the J ’s

evaluated at r = 0 write

iJ1 = 2σ3α
1 H

(

3(α − 1), θJ
1 ; x

)

, J11 = J13 = 2σ3α
1 H

(

3α − 4, θJ
11; x

)

,

iJ2 = 2σ3α
1 H

(

3(α − 1), θJ
2 ; x

)

, J14 = 2σ2α
1 H

(

2α − 4, θJ
14; x

)

,

iJ3 = 2σ2α
1 H

(

2α − 3, θJ
3 ; x

)

, J15 = 2σ2α
1 H

(

2α − 4, θJ
15; x

)

,

iJ4 = iJ5 = 2σ2α
1 H

(

2α − 3, θJ
4 ; x

)

, J16 = 2σ2α
1 H

(

2α − 4, θJ
16; x

)

,

J6 = 2σ2α
1 H

(

2(α − 1), θJ
6 ; x

)

, J17 = 2σ4α
1 H

(

4(α − 1), θJ
17; x

)

,

J7 = 2σα
1 H
(

α − 2, θJ
7 ; x

)

, J18 = 2σ4α
1 H

(

4(α − 1), θJ
18; x

)

,

J8 = J9 = J12 = 2σ3α
1 H

(

3α − 4, θJ
8 ; x

)

, J19 = 2σ4α
1 H

(

4(α − 1), θJ
19; x

)

,

J10 = 2σ3α
1 H

(

3α − 4, θJ
10; x

)

,

where θJ
i = (θJ

i1, θJ
i2), for i = 1, . . . , 19,

θJ
11 = a

(

λ2(κ2
1 − a2λ2

1) + 2κ1κ2λ1

)

, θJ
12 = κ2(κ2

1 − a2λ2
1) − 2a2κ1λ1λ2,

θJ
21 = a

(

K + β1L
)

, θJ
22 = L − a2β1K,

θJ
31 = a

(

β1κ4 + λ4

)

, θJ
32 = κ4 − a2β1λ4,

θJ
41 = aK, θJ

42 = L,

θJ
61 = L, θJ

62 = −aK,
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θJ
71 = κ4, θJ

72 = −aλ4,

θJ
81 = L − a2β1K, θJ

82 = −a
(

K + β1L
)

,

θJ
101 = κ4(1 − a2β2

1) − 2a2β1λ4, θJ
102 = −a

(

λ4(1 − a2β2
1) + 2β1κ4

)

,

θJ
111 = θJ

12, θJ
112 = −θJ

11,

θJ
141 = L, θJ

142 = −aK,

θJ
151 = κ2

2 − a2λ2
2, θJ

152 = −2aκ2λ2,

θJ
161 = κ4 − a2β1λ4, θJ

162 = −a
(

λ4 + β1κ4

)

,

θJ
171 = θJ

12 − aβ1θJ
11, θJ

172 = −θJ
11 + aθJ

12,

θJ
181 = κ4

1 − 6a2κ2
1λ2

1 + a4λ4
1, θJ

182 = −4aκ1λ1(κ2
1 − a2λ2

1),

θJ
191 = L(1 − a2β2

1) − 2a2β1K, θ192 = −a
(

K(1 − a2β2
1) + 2β1L

)

,

and K = κ1λ3 + λ1κ3, L = κ1κ3 − a2λ1λ3. Hence,

E

[

X4
2

∣

∣

∣X1 = x
]

= φ
(4)
X2|x(0)

=
−α

πfX1
(x)

[

αx
(

αK1 + (α − 1)K2

)

+ αx2K6 − (α − 1)x2K7 + α2(α − 1)K3 + α(α − 1)2K4 + α3K5

]

,

where

K1 = σ3α
1 H

(

3(α − 1), θK
1 ; x

)

, with θK
1 = 3θJ

1 − 2θJ
2 ,

K2 = σ2α
1 H

(

2α − 3, θK
2 ; x

)

, with θK
2 = 2(θJ

3 − θJ
4 ),

K3 = σ3α
1 H

(

3α − 4, θK
3 ; x

)

, with θK
3 = θJ

10 − 3θJ
11 − θJ

8 ,

K4 = σ2α
1 H

(

2α − 4, θK
4 ; x

)

, with θK
4 = 4θJ

14 − 3θJ
15 − θJ

16,

K5 = σ4α
1 H

(

4(α − 1), θK
5 ; x

)

, with θK
5 = 3θJ

17 − θJ
18 − θJ

19,

K6 = σ2α
1 H

(

2(α − 1), θK
6 ; x

)

, with θK
6 = θJ

6 ,

K7 = σα
1 H
(

α − 2, θK
7 ; x

)

, with θK
7 = θJ

7 .

Invoking Lemmas D.1 (ιι) for n = 1, 2, 3 and D.2, we get

E

[

X4
2

∣

∣

∣X1 = x
]

=
−α

πfX1
(x)

[

x3σα
1

(

θK
72C1(x) − θK

71S1(x)
)

+
αx2σ2α

1

2
C2(x)

(

− θK
22 + 2θK

61 − 2
(

θK
71 + aβ1θK

72

)

−
α − 1

2α − 3
θK

41

)
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+
αx2σ2α

1

2
S2(x)

(

θK
21 + 2θK

62 − 2
(

θK
72 − aβ1θK

71

)

−
α − 1

2α − 3
θK

42

)

]

+
α2xσ3α

1

6
C3(x)

(

6θK
11 + 3

(

θK
21 + aβ1θK

22

)

− 2θK
32 + 5

α − 1

2α − 3

(

aβ1θK
41 − θK

42

)

)

+
α2xσ3α

1

6
S3(x)

(

6θK
12 + 3

(

θK
22 − aβ1θK

21

)

+ 2θK
31 + 5

α − 1

2α − 3

(

θK
41 + aβ1θK

42

)

)

+
α3σ4α

1

3
C4(x)

(

θK
31 + aβ1θK

32 +
α − 1

2α − 3

(

θK
41(1 − a2β2

1) + 2aβ1θK
42

)

+ 3θK
51

)

+
α3σ4α

1

3
S4(x)

(

θK
32 − aβ1θK

31 +
α − 1

2α − 3

(

θK
42(1 − a2β2

1) − 2aβ1θK
41

)

+ 3θK
52

)

]

.

Using Lemma D.1 (ιιι) yields the conclusion. The coefficients θ’s in the expression (2.6) are deduced

from the θK ’s and θJ ’s as follows:

θ41 = −θK
22 + 2θK

61 − 2
(

θK
71 + aβ1θK

72

)

−
α − 1

2α − 3
θK

41, (D.5)

θ42 = θK
21 + 2θK

62 − 2
(

θK
72 − aβ1θK

71

)

−
α − 1

2α − 3
θK

42, (D.6)

θ51 = 6θK
11 + 3

(

θK
21 + aβ1θK

22

)

− 2θK
32 + 5

α − 1

2α − 3

(

aβ1θK
41 − θK

42

)

, (D.7)

θ52 = 6θK
12 + 3

(

θK
22 − aβ1θK

21

)

+ 2θK
31 + 5

α − 1

2α − 3

(

θK
41 + aβ1θK

42

)

, (D.8)

θ61 = θK
31 + aβ1θK

32 +
α − 1

2α − 3

(

θK
41(1 − a2β2

1) + 2aβ1θK
42

)

+ 3θK
51, (D.9)

θ62 = θK
32 − aβ1θK

31 +
α − 1

2α − 3

(

θK
42(1 − a2β2

1) − 2aβ1θK
41

)

+ 3θK
52. (D.10)

D.4 Lemmas for the proof of Theorem 2.1

The following elementary Lemmas, stated without proof, are used to establish Theorem 2.1.

Lemma D.1 Let α ∈ (1, 2), b > 0, c ∈ R. Define for n ≥ 1 and x ∈ R

Cn(x) =

∫ +∞

0
e−btα

tn(α−1) cos(tx − ctα)dt, Fn(x) =

∫ +∞

0
e−btα

tn(α−1)−1 cos(tx − ctα)dt,

Sn(x) =

∫ +∞

0
e−btα

tn(α−1) sin(tx − ctα)dt, Gn(x) =

∫ +∞

0
e−btα

tn(α−1)−1 sin(tx − ctα)dt.

ι) Then the following hold for any n ≥ 1 and x ∈ R

Fn(x) =
α
(

bCn+1(x) − cSn+1(x)
)

+ xSn(x)

n(α − 1)
, Gn(x) =

α
(

cCn+1(x) + bSn+1(x)
)

− xCn(x)

n(α − 1)
.

ιι) For any n ≥ 1, θ1, θ2 ∈ R and x ∈ R:

θ1Fn(x) + θ2Gn(x) =
α
[

Cn+1(x)
(

bθ1 + cθ2

)

+ Sn+1(x)
(

bθ2 − cθ1

)]

+ x
[

− θ2Cn(x) + θ1Sn(x)
]

n(α − 1)
.
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ιιι) We have for x ∈ R, b = σα
1 and c = aβ1σα

1 :

C1(x) =
aβ1xπfX1

(x) + 1 − xH(x)

ασα
1 (1 + (aβ1)2)

, S1(x) =
xπfX1

(x) − aβ1(1 − xH(x))

ασα
1 (1 + (aβ1)2)

.

Lemma D.2 Let α ∈ (3/2, 2), b > 0, c ∈ R. Define for x ∈ R

hc(x) =

∫ +∞

0
e−btα

t2α−4 cos(tx − ctα)dt, hs(x) =

∫ +∞

0
e−btα

t2α−4 sin(tx − ctα)dt.

Then for any θ1, θ2 ∈ R and x ∈ R,

θ1hc(x) + θ2hs(x) =
α2

3(2α − 3)(α − 1)

[

C4(x)
(

θ1(b2 − c2) + 2bcθ2

)

+ S4(x)
(

θ2(b2 − c2) − 2bcθ1

)

]

+
5αx

6(2α − 3)(α − 1)

[

C3(x)
(

cθ1 − bθ2

)

+ S3(x)
(

bθ1 + cθ2

)

]

−
x2

2(2α − 3)(α − 1)

[

θ1C2(x) + θ2S2(x)

]

.

E Proof of Proposition 2.1 in the case α 6= 1

First assume that |β1| 6= 1. We will focus on the case x → +∞. The case x → −∞ can be obtained by

considering the vector (X1, X2), whose parameter are β∗
1 = −β1, κ∗

1 = −κ1 and λ∗
1 = λ1 and noticing that

E

[

Xp
2

∣

∣

∣X1 = x
]

= E

[

Xp
2

∣

∣

∣− X1 = −x
]

. For p = 1, the result is already known (see Hardin et al. (1991)).

For p = 2, 3, 4, we have from the proofs of (2.4)-(2.6), that

E

[

Xp
2

∣

∣

∣X1 = x
]

=
ασα

1

πfX1
(x)

[

xp−1H
(

α − 1, (aλp, κp); x
)

+
p
∑

i=2

bi,pxp−iH
(

i(α − 1), νi; x
)

]

,

for some coefficients b’s. From the proof of Corollary 3.2 in Hardin et al. (1991), we deduce the following

limit:

xαH
(

α − 1, (aλp, κp); x
)

−→
x→+∞

(

κp + λp

)

sin
(πα

2

)

Γ(α).

We also have

xα+1fX1
(x) −→

x→+∞

1

π
σα

1 (1 + β1) sin
(πα

2

)

Γ(1 + α). (E.1)

Hence,

x−p ασα
1 xp−1

πfX1
(x)

H
(

α − 1, (aλp, κp); x
)

−→
κp + λp

1 + β1
,

as x → +∞. It remains to be shown that

∑p
i=2 bi,pxp−iH

(

i(α − 1), νi; x
)

xp−1H
(

α − 1, (aλp, κp); x
) −→

x→+∞
0. By Theorem 127 in

Titchmarsh (1948), for i = 2, 3, 4,

H
(

i(α − 1), νi; x
)

=
x→+∞

O
(

x−i(α−1)−1
)

.
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Hence,
∣

∣

∣

∣

∣

xp−iH
(

i(α − 1), νi; x
)

xp−1H
(

α − 1, (aλp, κp); x
)

∣

∣

∣

∣

∣

=
x→+∞

O
(

xα(1−i)
)

−→ 0.

Now assume that |β1| = 1. For instance if β1 = 1, the distribution of X1 is totally skewed to the right. On

the one hand, we have λp = β1κp. On the other hand, the right tail of fX1
still decays as (E.1), yielding

the conclusion.

F Proof of Lemma 3.1

The characteristic function of Xt reads, for any u = (u1, . . . , um) ∈ R
m:

ϕXt
(u) = E



exp







i
m
∑

j=1

ujXj,t









 =
∏

k∈Z

E



i





m
∑

j=1

ujak,j



 εt+k



 .

We obtain for α 6= 1,

ϕXt
(u) = exp







−
∑

k∈Z

σα|
m
∑

j=1

ujak,j |α



1 − iβsign
(

m
∑

j=1

ujak,j

)

tg
πα

2



+ i
m
∑

j=1

uj

∑

k∈Z

ak,jµ







. (F.1)

And for α = 1,

ϕXt
(u) = exp







−
∑

k∈Z

σ|
m
∑

j=1

ujak,j |



1 + iβ
2

π
sign

(

m
∑

j=1

ujak,j

)

ln
∣

∣

∣

m
∑

j=1

ujak,j

∣

∣

∣



+ i
m
∑

j=1

uj

∑

k∈Z

ak,jµ







.

(F.2)

Replacing (3.3) in (2.1), we retrieve the two above formulae.

G Proof of the asymptotic moments in Example 3.1

The results in Example 3.1 follow from Proposition 3.1 applied to Xt =
∑

k∈Z ρk
1{k≥0}εt+k. Regarding

the asymptotic behaviours of moments, we give the proof for the excess kurtosis. The other limits and

equivalents are obtained in a similar manner. Letting α ∈ (3/2, 2) ensures the existence of the fourth

order moment. Since we assume ρ > 0, it follows that λp = β1κp for p = 1, 2, 3, 4. Using Proposition 2.1,

one can show that as x tends to infinity

γ2(x, h) −→
κ4 − 4κ1κ3 + 6κ2

1κ2 − 3κ4
1

(

κ2 − κ2
1

)2 − 3.

Substituting the κp’s by ρh(α−p) and rearranging terms yields the conclusion.
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H Proof of Proposition 4.1

We start by showing that when (Xt) is an α-stable aggregate as in Definition 4.1, the bivariate vector

(Xt, Xt+h) is also α-stable and that its spectral measure is a linear combination of the spectral measures

of the (Xj,t, Xj,t+h). We will then be in a position to apply Theorem 2.1.

Lemma H.1 Let (Xt) be an α-stable aggregate, 0 < α < 2, with latent moving averages (X1,t), . . . , (XJ,t)

as in Definition 4.1. By Lemma 3.1, (Xj,t, Xj,t+h), j = 1, . . . , J are all bivariate α-stable. Denote

(Γj,h, µ0
j ) with µ0

j = (µ0
1,j , µ0

2,j) their respective spectral representations.

Then, for any h ≥ 1, (Xt, Xt+h) is a bivariate α-stable vector and its spectral representation, denoted

(Γh, µ0) with µ0 = (µ0
1, µ0

2), is given by

Γh =
J
∑

j=1

|πj |αΓj,h,

and,

µ0
1 =

J
∑

j=1

πj

(

µ0
1,j − 1{α=1}

2

π
σ1,jβ1,j ln |πj |

)

, µ0
2 =

J
∑

j=1

πj

(

µ0
2,j − 1{α=1}

2

π
σ1,jλ1,j ln |πj |

)

.

Proof.

Using the independence between the Xj,t’s and denoting Xj = (Xj,t, Xj,t+h),

E

[

eiuXt+ivXt+h

]

= E

[

exp

{

iu
J
∑

j=1

πjXj,t + iv
J
∑

j=1

πjXj,t+h

}

]

=
J
∏

j=1

E

[

exp

{

i〈uπj , Xj〉

]

=
J
∏

j=1

exp

{

−

∫

S2

|〈uπj , s〉|α
(

1 − i sign(〈uπj , s〉)w(α, 〈uπj , s〉)

)

Γj,h(ds) + i 〈uπj , µ0〉

}

,

When α 6= 1, then w(α, ·) = tg(πα/2) and

E

[

eiuXt+ivXt+h

]

= exp

{

−
J
∑

j=1

|πj |α
∫

S2

|〈u, s〉|α
(

1 − i sign(〈u, s〉)w(α, 〈u, s〉)

)

Γj,h(ds)

}

= exp

{

−

∫

S2

|〈u, s〉|α
(

1 − i sign(〈u, s〉)w(α, 〈u, s〉)

)

Γh(ds)

}

.

When α = 1, with a = 2/π,

E

[

eiuXt+ivXt+h

]

=
J
∏

j=1

exp

{

−

∫

S2

|〈uπj , s〉| + ia〈uπj , s〉 ln |〈ucπj , s〉|Γj,h(ds) + i 〈uπj , µ0
j 〉)

}

= exp

{

−

∫

S2

|〈u, s〉| + ia〈u, s〉 ln |〈u, s〉|
J
∑

j=1

|πj |Γj,h(ds)

+ i
J
∑

j=1

(

〈u, πjµ0
j 〉 − aπj ln |πj |

∫

S2

〈u, s〉Γj,h(ds)
)

}

,
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and

i
J
∑

j=1

(

〈u, πjµ0
j 〉 − aπj ln |πj |

∫

S2

〈u, s〉Γj,h(ds)
)

= i〈u,
J
∑

j=1

πj

(

µ0
j − a ln |πj |

∫

S2

sΓj,h(ds)
)

〉

= i〈u,
J
∑

j=1

πj

(

µ0
j − aσ1,j ln |πj |







β1,j

λ1,j







)

〉.

✷

Let us now prove Proposition 4.1.

ι) By Lemma H.1, we know that the spectral measure of (Xt, Xt+h) writes Γh =
∑J

j=1 |πj |αΓj,h, for

0 < α < 2, where the Γj,h’s are the spectral measures of (Xj,t, Xj,t+h). Hence,
∫

S2
|s1|−νΓh(ds) < +∞ if

and only if for all j = 1, . . . , J ,
∫

S2
|s1|−νΓj,h(ds) < +∞, which proves point ι).

ιι) and ιιι) The forms of the conditional moments follow from Theorems 2.1 and 2.2. The parameters

are obtained using Lemma H.1 by first noticing that,

σα
1 =

∫

S2

|s1|αΓh(ds) =
J
∑

j=1

|πj |α
∫

S2

|s1|αΓj,h(ds) =
J
∑

j=1

|πj |ασα
1,j .

And thus, for instance,

κp =
1

σα
1

∫

S2

(s2/s1)p|s1|αΓh(ds) =
1

σα
1

J
∑

j=1

|πj |α
∫

S2

(s2/s1)p|s1|αΓj,h(ds) =
J
∑

j=1

|πj |ασα
1,j

∑J
i=1 |πi|ασα

1,i

κp,j . ✷

I Proof of Theorem 2.2

Let X = (X1, X2) be an α-stable vector with α = 1 and spectral representation (Γ, 0). Its characteristic

function, denoted ϕX(t, r) for any (t, r) ∈ R
2, reads

ϕX(t, r) = exp

{

−

∫

S2

|ts1 + rs2| + ia(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

}

, (I.1)

with a = 2/π. The conditional characteristic function of X2 given X1 = x, denoted φX2|x(r) for r ∈ R,

is still given by (B.2).

Lemma I.1 Let (X1, X2) be an α-stable random vector with α = 1 and spectral representation (Γ, 0). If

(2.2) holds with ν > 0, the first derivative of φX2|x is given by

φ
(1)
X2|x(r) =

−1

2πfX1
(x)

(

A1 + iaA2

)

,

with

A1 =

∫

R

e−itxϕX(t, r)

(∫

S2

s2(ts1 + rs2)<0>Γ(ds)

)

dt, (I.2)
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A2 =

∫

R

e−itxϕX(t, r)

(∫

S2

s2(1 + ln |ts1 + rs2|)Γ(ds)

)

dt (I.3)

If (2.2) holds with ν > 1, the second derivative of φX2|x is given by

φ
(2)
X2|x(r) =

−1

2πfX1
(x)

(

− B1 + ixB2 + B3

)

, (I.4)

where,

B1 =

∫

R

e−itxϕX(t, r)

(∫

S2

s2(ts1 + rs2)<0> + ias2(1 + ln |ts1 + rs2|Γ(ds)

)2

dt,

B2 =

∫

R

e−itxϕX(t, r)

(∫

S2

(

(ts1 + rs2)<0> + ia(1 + ln |ts1 + rs2|
)

s2
2s−1

1 Γ(ds)

)

dt,

B3 =

∫

R

e−itxϕX(t, r)

(∫

S2

s1(ts1 + rs2)<0> + ias1(1 + ln |ts1 + rs2|Γ(ds)

)

×

(∫

S2

(

(ts1 + rs2)<0> + ia(1 + ln |ts1 + rs2|
)

s2
2s−1

1 Γ(ds)

)

dt.

I.1 Justifying inversion of integral and derivative signs

First derivative

The terms depending on r in the right-hand side of (I.1) are of the form (omitting the factor

1/2πfX1
(x))

∫

R

e
−
∫

S2
|ts1+rs2|Γ(ds)

trig

(

− tx − a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

dt.

Consider for instance the term obtained by replacing trig by the cosine function, denoted I1.

I ′
1(r) = lim

h→0

1

h

∫

R

[

e
−
∫

S2
|ts1+(r+h)s2|Γ(ds)

− e
−
∫

S2
|ts1+rs2|Γ(ds)

]

× cos

(

tx + a

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2|Γ(ds)

)

dt

+ lim
h→0

1

h

∫

R

e
−
∫

S2
|ts1+rs2|Γ(ds)

[

cos

(

tx + a

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2|Γ(ds)

)

− cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

]

dt

:= I11 + I12

The integrand of I11 converges to

−e
−
∫

S2
|ts1+rs2|Γ(ds)

cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)∫

S2

s2(ts1 + rs2)<0>Γ(ds).
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Using (C.19) we can bound the integrand of I11 by

1

|h|

∣

∣

∣

∣

∣

∫

S2

|ts1 + (r + h)s2| − |ts1 + rs2|Γ(ds)

∣

∣

∣

∣

∣

e
−
∫

S2
|ts1+rs2|Γ(ds)

e

∣

∣

∫

S2
|ts1+(r+h)s2|−|ts1+rs2|Γ(ds)

∣

∣

.

By Lemma C.3 (ι) and the triangle inequality, we can further bound it for |h| < |r| by

σ2eσ2(1+|r|)−σ1|t|,

which does not depend on h and is integrable with respect to t on R. The dominated convergence theorem

applies to I11. Turning to I12, its integrand converges to

−ae
−
∫

S2
|ts1+rs2|Γ(ds)

sin

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)∫

S2

s2(1 + ln |ts1 + rs2|)Γ(ds).

Using the mean value theorem on the cosine, its integrand can be bounded by

a

|h|
e

−
∫

S2
|ts1+rs2|Γ(ds)

∣

∣

∣

∣

∣

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2| − (ts1 + rs2) ln |ts1 + rs2|Γ(ds)

∣

∣

∣

∣

∣

≤ aeσ2|r|−σ1|t| 1

|h|

∫

S2

∣

∣

∣

∣

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2| − (ts1 + rs2) ln |ts1 + rs2|

∣

∣

∣

∣

Γ(ds)

:= aeσ2|r|−σ1|t|
(

Q1 + Q2

)

, (I.5)

where the two terms Q1 and Q2 involve integrals over S2∩{s : |ts1+rs2| ≥ 2|h|} and S2∩{s : |ts1+rs2| <

2|h|}. Focus on Q2. Introduce the function f : R+ → R+ defined for any z ≥ 0 by f(z) = z| ln z|. It is such

that f(0) = 0 and for z small enough (0 < z < e−1), f is monotone increasing. Since |ts1 + rs2| < 2|h|,

we also have |ts1 + (r + h)s2| < 3|h|. Thus, for 0 < |h| < (3e)−1, the integrand of Q2 can be bounded by

|h|−1
(

∣

∣

∣f(|3h|)
∣

∣

∣+
∣

∣

∣f(|2h|)
∣

∣

∣

)

≤ 2|h|−1
∣

∣

∣f(|3h|)
∣

∣

∣ ≤ 6
∣

∣

∣ln|3h|
∣

∣

∣

Using Lemma J.1, we can bound the later quantity for any v > 0 by

6v−1
(

2 + |3h|v + |3h|−v
)

.

From |ts1 + rs2|/2 < |h| < (3e)−1, we deduce that |3h|−v <
(

3|ts1 + rs2|/2
)−v

and

6v−1
(

2 + |3h|v + |3h|−v
)

≤ 6v−1
(

2 + e−v +
(

3|ts1 + rs2|/2
)−v)

≤ const1 + const2|ts1 + rs2|−v,

for some nonnegative constants const1 and const2. Hence, the term involving Q2 in I.5 can be further

bounded for any v > 0 by

aeσ2|r|−σ1|t|
(

const1 + const2

∫

S2

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|−vΓ(ds)

)

. (I.6)
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The term with const1 is clearly integrable with respect to t on R. Letting (2.2) hold with ν > 0, choose

some v ∈ (0, min(ν, 1)). We show that the second term is bounded by an integrable function of t as we

did in Equation (C.4) using Lemma C.5 with η = v, b = 0, p = 0, the fact that
∫

R
e−σ1|t||t|−vdt < +∞

and (2.2) with ν > v > 0. There remains to be bounded the part involving Q1 in (I.5). For this term,

we apply the mean value theorem to the function z 7−→ z ln |z| and get that

|h|−1

∣

∣

∣

∣

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2| − (ts1 + rs2) ln |ts1 + rs2|

∣

∣

∣

∣

≤ |h|−1|hs2|
∣

∣

∣1 + ln |u|
∣

∣

∣

≤ 1 +
∣

∣

∣ ln |u|
∣

∣

∣,

for some u ∈ [ts1 + (r + h)s2 ∧ ts1 + rs2, ts1 + (r + h)s2 ∨ ts1 + rs2]. Since Q1 is an integral over

S2 ∩ {s : |ts1 + rs2| ≥ 2|h|}, we have |u| ∈
[

|ts1+rs2|
2 , 2|ts1 + rs2|

]

, and because of the quasi-convexity of

the function z 7−→
∣

∣

∣ ln |z|
∣

∣

∣, we can bound the above term by

1 +

∣

∣

∣

∣

∣

ln

∣

∣

∣

∣

ts1 + rs2

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ln |2(ts1 + rs2)|

∣

∣

∣

∣

∣

≤ const + 2
∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣.

Using Lemma J.1, we can bound this term for any v > 0 by

const + 2v−1
(

2 + |ts1 + rs2|v + |ts1 + rs2|−v
)

≤ const1 + const2|t|v + const3

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|−v

Hence, the term in (I.5) involving Q1 can be bounded for any v > 0 by

aeσ2|r|−σ1|t|
(

const1 + const2|t|v + const3

∫

S2

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|−vΓ(ds)

)

. (I.7)

which can be shown to be integrable with respect to t on R as we did above for the term with Q2. The

dominated convergence theorem applies to I12 and thus to I1. We can derivate φX2|x under the integral

sign.

Second derivative

Let us start with A2, which is the most delicate. It is composed of terms of the form

∫

R

e
−
∫

S2
|ts1+rs2|Γ(ds)

trig

(

− tx − a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

×

(∫

S2

s2(1 + ln |ts1 + rs2|)Γ(ds)

)

dt,

where «trig» stands for sine or cosine. Denoting the one with cosine as K2, we have

K2 = lim
h→0

1

h

∫

R

[

e
−
∫

S2
|ts1+(r+h)s2|Γ(ds)

− e
−
∫

S2
|ts1+rs2|Γ(ds)

]
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× cos

(

tx + a

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2|Γ(ds)

)

×

(∫

S2

s2(1 + ln |ts1 + (r + h)s2|)Γ(ds)

)

dt

+ lim
h→0

1

h

∫

R

e
−
∫

S2
|ts1+rs2|Γ(ds)

[

cos

(

tx + a

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2|Γ(ds)

)

− cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

]

×

(∫

S2

s2(1 + ln |ts1 + (r + h)s2|)Γ(ds)

)

dt

+ lim
h→0

1

h

∫

R

e
−
∫

S2
|ts1+rs2|Γ(ds)

cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

×

[

∫

S2

s2 ln |ts1 + (r + h)s2| − s2 ln |ts1 + rs2|Γ(ds)

]

dt

:= K21 + K22 + K23.

The integrand of K21 converges to

− e
−
∫

S2
|ts1+rs2|Γ(ds)

cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

×

(∫

S2

s2(ts1 + rs2)<0>Γ(ds)

)(∫

S2

s2(1 + ln |ts1 + rs2|)Γ(ds)

)

.

Using (C.19), the triangle inequality and (C.4), it can be bounded by

σ2eσ2(1+|r|)−σ1|t|
∫

S2

|s2|
∣

∣

∣1 + ln |ts1 + (r + h)s2|
∣

∣

∣Γ(ds). (I.8)

The integrand of the above expression can be bounded using Lemma J.1 for any v > 0 by

1 + v−1
(

2 + |ts1 + (r + h)s2|v + |ts1 + (r + h)s2|−v
)

≤ const1 + const2|t|v + const3

∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
|s1|−v,

hence, (I.8) is bounded by

σ2eσ2(1+|r|)−σ1|t|
(

const1 + const2|t|v + const3

∫

S2

∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
|s1|−vΓ(ds)

)

.

The terms involving const1 and const2 are clearly integrable with respect to t. The last term is more

intricate as it still depends on h. We will show that the generalised Lebesgue dominated convergence

theorem (Theorem 19, p.89 in Royden and Fitzpatrick (2010)) applies. Denoting

T (h) = e−σ1|t|
∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
|s1|−v,
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it can be shown that T (0) is integrable with respect to t on R and Γ on S2 invoking the usual arguments.

Also, choosing some v ∈ (0, 1), with have by Lemma C.7 with η = −v, b = 0 and 0 < p < 1 − v,

∣

∣

∣

∣

∣

∫

T (h) − T (0)

∣

∣

∣

∣

∣

≤

∫

S2

|s1|−v
∫

R

e−σ1|t|

∣

∣

∣

∣

∣

∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
−
∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
∣

∣

∣

∣

∣

dtΓ(ds)

≤ const

∫

S2

|s1|−v
∣

∣

∣

hs2

s1

∣

∣

∣

p
Γ(ds)

≤ const |h|p
∫

S2

|s1|−v−pΓ(ds) −→
h→0

0,

because (2.2) holds with ν > 1 and v + p < v + 1 − v < 1. Since T (0) is integrable and limh→0

∫

T (h) =
∫

T (0), the generalised dominated convergence theorem applies to K21. We turn to K22. Its integrand

converges to

− ae
−
∫

S2
|ts1+rs2|Γ(ds)

sin

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

×

(∫

S2

s2(1 + ln |ts1 + rs2|)Γ(ds)

)2

.

With the usual inequalities and Lemma J.1, it can be bounded for any v > 0 by

a

|h|
eσ2|r|−σ1|t|

∣

∣

∣

∣

∣

∫

S2

(ts1 + (r + h)s2) ln |ts1 + (r + h)s2| − (ts1 + rs2) ln |ts1 + rs2|Γ(ds)

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∫

S2

s2(1 + ln |ts1 + (r + h)s2|)Γ(ds)

∣

∣

∣

∣

∣

≤ aeσ2|r|−σ1|t|
(

Q1 + Q2

)(

σ2 +

∫

S2

∣

∣

∣ ln |ts1 + (r + h)s2|
∣

∣

∣Γ(ds)
)

≤ aeσ2|r|−σ1|t|
(

Q1 + Q2

)(

const1 + const2|t|v + const3

∫

S2

∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
|s1|−vΓ(ds)

)

,

where, similarly to (I.5), the two terms Q1 and Q2 involve integrals over S2 ∩ {s : |ts1 + rs2| ≥ 2|h|} and

S2 ∩ {s : |ts1 + rs2| < 2|h|}. After expansion, the terms with const1 and const2 are readily dealt with by

following the method developed for (I.5). Focus on the remaining term

a

∫

S2

eσ2|r|−σ1|t|(Q1 + Q2)
∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣|s1|−vΓ(ds).

In view of the bounds (I.6) and (I.7), the integrand can be bounded (up to a multiplicative constant) by

U(h) = e−σ1|t|
∣

∣

∣t +
rs2

s1

∣

∣

∣

−v∣
∣

∣t +
(r + h)s′

2

s′
1

∣

∣

∣

−v
|s1|−v|s′

1|−v.

Choosing some v ∈ (0, 1/2), we can invoke Lemma (C.6) with η = −v, p = 0 and the fact that
∫

R
e−σ1|t||t|−2vdt < +∞ to show that U(0) is integrable on the one hand. On the other hand we can

again invoke Lemma (C.6), this time with η = −v, 0 < p < 1 − 2v, and the fact that (2.2) holds with
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ν > 1 > v + 1 − 2v > v + p to show that
∫

U(h) →
∫

U(0). The generalised dominated convergence

theorem applies to K12.

We turn to K23 for which «appropriate integration by parts» is required. After obvious manipulations,

K23 = lim
h→0

1

h

∫

R

∫

S2

s′
2 ln |ts′

1 + rs′
2|

[

e
−
∫

S2

∣

∣

∣

(

t−
hs′

2

s′

1

)

s1+rs2

∣

∣

∣Γ(ds)
− e

−
∫

S2
|ts1+rs2|Γ(ds)

]

× cos

(

(

t −
hs′

2

s′
1

)

x + a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)

ln

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣

∣

Γ(ds)

)

Γ(ds′)

+ lim
h→0

1

h

∫

R

∫

S2

s′
2 ln |ts′

1 + rs′
2|e

−
∫

S2
|ts1+rs2|Γ(ds)

×

[

cos

(

(

t −
hs′

2

s′
1

)

x + a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)

ln

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣

∣

Γ(ds)

)

− cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)]

Γ(ds′)

:= L1 + L2.

Starting with L1, its integrand converges to

e
−
∫

S2
|ts1+rs2|Γ(ds)

cos

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)

×

(∫

S2

s1(ts1 + rs2)<0>Γ(ds)

)(∫

S2

ln |ts1 + rs2|s2
2s1

−1Γ(ds)

)

It can be bounded using (C.18) and Lemma C.3 (ι) by

∣

∣

∣

∣

s′
2 ln |ts′

1 + rs′
2|

h

∣

∣

∣

∣

exp

{

− min

(∫

S2

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣Γ(ds),

∫

S2

|ts1 + rs2|Γ(ds)

)

}

×

∣

∣

∣

∣

∣

∫

S2

∣

∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣

∣

− |ts1 + rs2|Γ(ds)

∣

∣

∣

∣

∣

≤ eσ2|r| exp

{

− σ1 min

(

∣

∣

∣t −
hs′

2

s′
1

∣

∣

∣, |t|

)

}

∣

∣

∣s′
2 ln |ts′

1 + rs′
2|
∣

∣

∣

1

|h|

∫

S2

∣

∣

∣

hs′
2

s′
1

s1

∣

∣

∣Γ(ds)

≤ σ1eσ2|r| exp

{

− σ1 min

(

∣

∣

∣t −
hs′

2

s′
1

∣

∣

∣, |t|

)

}

∣

∣

∣ ln |ts′
1 + rs′

2|
∣

∣

∣|s′
2|2|s′

1|−1

:= V (h).

We follow a similar procedure as the one used in Cioczek-Georges and Taqqu (1998) (p.51) to deal with

the min inside the exponential. Focus on the case
hs2

s1
> 0 (the converse case is similar). We have

min

(

∣

∣

∣t −
hs′

2

s′
1

∣

∣

∣, |t|

)

=















∣

∣

∣t −
hs′

2

s′
1

∣

∣

∣, if t ≥ hs′
2/2s′

1,

|t|, if t < hs′
2/2s′

1.
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Thus, up to a multiplicative constant,

∫

R

V (h)dt =

∫ +∞

hs2
2s1

e
−σ1|t−

hs2
s1

|
∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣|s2|2|s1|−1dt +

∫ −
hs2
2s1

−∞
e−σ1|t|

∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣|s2|2|s1|−1dt

=

∫ +∞

−
hs2
2s1

e−σ1|t|

∣

∣

∣

∣

ln
∣

∣

∣ts1 + rs2 +
hs2

s1

∣

∣

∣

∣

∣

∣

∣

|s2|2|s1|−1dt +

∫ −
hs2
2s1

−∞
e−σ1|t|

∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣|s2|2|s1|−1dt

=

∫

R

e−σ1|t|
[

∣

∣

∣ ln |ts1 + (r + h)s2|
∣

∣

∣1{t≥−hs2/2s1} +
∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣1{t≤−hs2/2s1}

]

|s2|2|s1|−1dt.

Thus, using Lemma J.1, we can bound the integrand for any v > 0 and |h| < |r| by

e−σ1|t|
[

∣

∣

∣ ln |ts1 + (r + h)s2|
∣

∣

∣+
∣

∣

∣ ln |ts1 + rs2|
∣

∣

∣

]

|s2|2|s1|−1

≤ v−1e−σ1|t|
[

const1 + const2|t|v

+ const3

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|−v + const4

∣

∣

∣t +
(r + h)s2

s1

∣

∣

∣

−v
|s1|−v

]

|s2|2|s1|−1.

Clearly, the terms involving const1 and const2 are integrable with respect to t and Γ. Denoting the last

term as V4(h) := e−σ1|t|
∣

∣

∣t+
(r + h)s2

s1

∣

∣

∣

−v
|s2|2|s1|−1−v, we show that the generalised dominated convergence

theorem applies. As (2.2) holds for some ν > 1, choose v =
ν − 1

2
> 0 if ν < 2, and some v ∈ (0, 1) if

ν ≥ 2. The integrability of V4(0) (and at the same time, of the term involving const3) is obtained from

Lemma C.5 with η = −v, b = 0, p = 0 and the fact that
∫

R
e−σ1|t||t|−vdt < +∞. Doing so indeed yields

∣

∣

∣

∣

∣

∫

S2

|s2|2|s1|−1−v
∫

R

e−σ1|t|
∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
− |t|−v|s2|2|s1|−1−vdt

∣

∣

∣

∣

∣

Γ(ds)

≤

∫

S2

∫

R

e−σ1|t|

∣

∣

∣

∣

∣

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
− |t|−v

∣

∣

∣

∣

∣

dtΓ(ds)

≤ const

∫

S2

|s1|−ν |s1|ν−1−vΓ(ds)

≤ const

∫

S2

|s1|−νΓ(ds)

< +∞,

since ν − 1 − v =
ν − 1

2
> 0 if ν ∈ (1, 2) and ν − 1 − v > ν − 2 > 0 if ν ≥ 2. The convergence

∫

V4(h) →
∫

V4(0) can be obtained from Lemma C.7 with η = −v, b = 0 and 0 < p < v. The generalised

dominated convergence hence applies to L1.

We turn to L2. Its integrand converges to

e
−
∫

S2
|ts1+rs2|Γ(ds)

sin

(

tx + a

∫

S2

(ts1 + rs2) ln |ts1 + rs2|Γ(ds)

)
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×

(

x + a

∫

S2

s1(1 + ln |ts1 + rs2|)Γ(ds)

)

ln |ts′
1 + rs′

2|s′
2

2
s′

1
−1

.

Applying the mean value theorem to the cosine function and the usual bounds, we can bound it by

eσ2|r|−σ1|t|
∣

∣

∣s′2
2 s′−1

1 ln |ts′
1 + rs′

2|
∣

∣

∣

1
∣

∣

∣

hs′

2

s′

1

∣

∣

∣

∣

∣

∣

∣

∣

−
hs′

2

s′
1

x + a

∫

S2

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)

ln
∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣− (ts1 + rs2) ln |ts1 + rs2|Γ(ds)

∣

∣

∣

∣

∣

≤ eσ2|r|−σ1|t|
∣

∣

∣s′2
2 s′−1

1 ln |ts′
1 + rs′

2|
∣

∣

∣

(

|x| +
a

∣

∣

∣

hs′

2

s′

1

∣

∣

∣

∫

S2

∣

∣

∣

∣

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)

ln
∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣− (ts1 + rs2) ln |ts1 + rs2|

∣

∣

∣

∣

Γ(ds)

)

.

(I.9)

The term involving |x| can be treated using the usual arguments. The one with the integral is of course

the most delicate. Let us split this integral into two parts as:

∫

S2

1
∣

∣

∣

hs′

2

s′

1

∣

∣

∣

∣

∣

∣

∣

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)

ln
∣

∣

∣

(

t −
hs′

2

s′
1

)

s1 + rs2

∣

∣

∣− (ts1 + rs2) ln |ts1 + rs2|

∣

∣

∣

∣

Γ(ds)

:= Q1 + Q2,

where Q1 and Q2 involve integrals over S2∩{s : |ts1+rs2| ≥ 2|hs′
2/s′

1|} and S2∩{s : |ts1+rs2| < 2|hs′
2/s′

1|}

respectively. We will first majorise Q1 and Q2, and then use these bounds in inequality (I.9). Consider

Q2 and define the function g such that for any z > 0

g(z) =











f(z) = z| ln z|, if 0 < z < e−1,

z(2 + ln z), if z ≥ e−1.

It is easily checked that g is continuous, strictly increasing and such that for any z > 0, 0 ≤ f(z) ≤ g(z).

The integrand of Q2 can be bounded as

1
∣

∣

∣

hs′

2

s′

1

∣

∣

∣

(

∣

∣

∣

∣

f

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)∣

∣

∣

∣

+
∣

∣

∣f
(

ts1 + rs2

)∣

∣

∣

)

≤
1

∣

∣

∣

hs′

2

s′

1

∣

∣

∣

(

∣

∣

∣

∣

g

(

(

t −
hs′

2

s′
1

)

s1 + rs2

)∣

∣

∣

∣

+
∣

∣

∣g
(

ts1 + rs2

)∣

∣

∣

)

≤
1

∣

∣

∣

hs′

2

s′

1

∣

∣

∣

(

∣

∣

∣

∣

g

(

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

)∣

∣

∣

∣

+

∣

∣

∣

∣

g

(

∣

∣

∣

2hs′
2

s1

∣

∣

∣

)∣

∣

∣

∣

)

≤
2

∣

∣

∣

hs′

2

s′

1

∣

∣

∣

g
(3hs′

2

s′
1

)

.

By Lemma (J.1), with bound further the right-hand side for any v > 0 by

2
∣

∣

∣

hs′

2

s′

1

∣

∣

∣

g
(3hs′

2

s′
1

)

≤ const1 + const2

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

v
+ const3

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

−v
.
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On the one hand if
∣

∣

∣

3hs′
2

s′
1

∣

∣

∣ < e−1, given that (3|ts1 + rs2|/2)−v > (3hs′
2/s′

1)−v,

const1 + const2

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

v
+ const3

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

−v
≤ const1 + const2

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|−v.

On the other hand if
∣

∣

∣

3hs′
2

s′
1

∣

∣

∣ ≥ e−1, then for |h| < |r|,

const1 + const2

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

v
+ const3

∣

∣

∣

3hs′
2

s′
1

∣

∣

∣

−v
≤ const1 + const2|s′

1|−v. (I.10)

Focusing now on Q1, we can use the mean value theorem to bound its integrand by

|s1|
∣

∣

∣1 + ln |u|
∣

∣

∣,

for some u ∈
[

ts1 + rs2 − hs′
2s1/s′

1 ∧ ts1 + rs2, ts1 + rs2 − hs′
2s1/s′

1 ∨ ts1 + rs2

]

. Given that |ts1 + rs2| ≥

2|hs′
2/s′

1|, we have |u| ∈
[

|ts1+rs2|
2 , 2|ts1 + rs2|

]

and thus, we further bound the above inequality using

Lemma J.1 for any v > 0 by

|s1|
(

const1 + const2|ts1 + rs2|v + const3|ts1 + rs2|−v
)

≤ const1 + const2|t|v + const3

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|1−v. (I.11)

Hence, using (I.10) and (I.11) in (I.9), and making use again of Lemma (J.1) to bound
∣

∣

∣ ln |ts′
1 + rs′

2|
∣

∣

∣,

we can bound integrand of L2 for any v > 0 by

e−σ1|t|
(

const1 + const2|t|v + const3

∣

∣

∣t +
rs′

2

s′
1

∣

∣

∣

−v
)

|s′
1|−1−v

×

(

|x| + const4 + const5|t|v + const6|s′
1|−v + const7

∣

∣

∣t +
rs2

s1

∣

∣

∣

−v
|s1|1−v

)

It can be shown that all the terms obtained after expansion can be bounded by functions integrable

with respect to t and Γ using the usual combinations of either Lemma C.5 or Lemma C.6 with η = −v,

b = 0, p = 0, the fact that
∫

R
e−σ1|t||t|−v < +∞,

∫

R
e−σ1|t||t|−2v < +∞ for appropriately chosen values

v > 0, and (2.2) with ν > 1. The detail we have to pay attention to is precisely to chose an appropriate

exponent v > 0 so that it satisfies the constraint (2.2) and ensures the finiteness of the two integrals in

t. The later imposes us to have v ∈ (0, 1/2). Regarding the former, we identify that the most negative

power of which |s1| appears in the above bound after expansion is −1 − 2v. We need ν − 1 − 2v > 0.

Choosing v = (ν − 1)/4 if 1 < ν < 3 and any v ∈ (0, 1/2) if ν ≥ 3 enables to satisfy both constraints,

validating the use of the dominated convergence theorem for L2, and finally, for B2 in (I.3).

The proof is essentially similar, somewhat easier, for B1 in (I.2) for which the only difficulty is

to perform the «appropriate integration by parts» when it comes to differentiating the term involving

(ts1 + rs2)<0>.
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I.2 Evaluating at r = 0

Since E

[

X2
2

∣

∣

∣X1 = x
]

= −φ
(2)
X2|x(0), we evaluate (I.4) at r = 0 and get

ϕX(t, 0) = exp{−σ1|t| − iaσ1β1t ln |t| + itµ1},

A1/2 = σ2
1

(

(κ2
1 − a2q2

0)Hc(0) + 2aκ1q0Hs(0)
)

+ 2aλ1σ2
1

(

− aq0Hc(1) + κ1Hs(1)
)

− a2λ2
1σ2

1Hc(2),

iA2/2 = σ1

(

− ak1Hc(0) + κ2Hs(0)
)

− aλ2σ1Hc(1),

A3/2 = σ1

(

(σ1κ2 + aµ1k1)Hc(0) + (σ1ak1 − µ1κ2)Hs(0)
)

+ aσ1

(

(λ2µ1 − aσ1β1k1)Hc(1) + σ1(λ2 + β1κ2)Hs(1)
)

− a2σ2
1β1λ2Hc(2),

where k1 = σ−1
1

∫

S2
(s2/s1)2s1 ln |s1|Γ(ds), and the Hc’s and Hs’s are defined at Lemma J.2. Using the

result of the same Lemma under β1 6= 0 and β1 = 0, and regrouping the terms allows to retrieve the two

formulae of Theorem 2.2.

J Proof of Proposition 2.1 in the case α = 1

Case β1 6= 0 The conditional second order moment when α = 1 has a particular form. We only

consider the case |β1| 6= 1 and x −→ +∞. Since |x| → +∞, we have x − µ1 ∼ x and we may assume that

µ1 = 0. From Hardin et al. (1991), we know that U(x) ∼ x−1. Notice that

W (x) =

∫ +∞

0
e−σ1t(1 + ln t)2 cos(aσ1β1t ln t) cos(tx)dt

−

∫ +∞

0
e−σ1t(1 + ln t)2 sin(aσ1β1t ln t) sin(tx)dt.

Because the factors of cos(tx) and sin(tx) are integrable, we have by the Riemann-Lebesgue Lemma that

W (x) −→
x→+∞

0. Having also

fX1
(x) ∼

σ1(1 + β1)

π
x−2,

we deduce the following limits

(

2aσ1q0(λ1 − β1κ1) + 2(κ1λ1 − λ2)x
) σ1U(x)

β1πfX1
(x)

x−2 −→
x→+∞

2(κ1λ1 − λ2)

(1 + β1)β1
,

(

λ2 + β1κ2 − 2κ1λ1 + a2σ1β1(λ2
1 − β1λ2)W (x)

) σ1x−2

πfX1
(x)

−→
x−→+∞

λ2 + β1κ2 − 2κ1λ1

(1 + β1)β1
.

Hence,

x−2
E

[

X2
2

∣

∣

∣X1 = x
]

−→
x→+∞

λ2

β1
+

2(κ1λ1 − λ2)

(1 + β1)β1
+

λ2 + β1κ2 − 2κ1λ1

(1 + β1)β1
=

κ2 + λ2

1 + β1
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Case β1 = 0 From Hardin et al. (1991),

V (x) −→ −
π

2x
,

hence,

2aσ1λ1

(

aσ1q0 − κ1(x − µ1)
) V (x)

πfX1
(x)

x−2 −→ aπλ1κ1.

Moreover,

aσ1
FX1

(x) − 1/2

fX1
(x)

x−2 −→
1

2
aπ(λ2 − 2κ1λ1).

It can be shown that W (x) −→ 0. Therefore,

x−2
E

[

X2
2

∣

∣

∣X1 = x
]

−→
x→+∞

κ2 +
1

2
aπ(λ2 − 2κ1λ1) + aπκ1λ1 = κ2 + λ2

✷

Lemma J.1 For any x > 0 and v > 0

| ln x| ≤
1

v

(

2 + xv + x−v
)

.

We provide here two Lemmas which are used in the proof of Theorem 2.2.

Lemma J.2 Let for any n ≥ 0,

Hc(n) =

∫ +∞

0
e−σ1t(1 + ln t)n cos

(

t(x − µ1) + aσ1β1t ln t
)

dt,

Hs(n) =

∫ +∞

0
e−σ1t(1 + ln t)n sin

(

t(x − µ1) + aσ1β1t ln t
)

dt.

Then, if β1 6= 0,

Hc(1) =
1

aσ1β1

(

σ1Hs(0) − (x − µ1)Hc(0)
)

, Hs(1) =
1

aσ1β1

(

1 − σ1Hc(0) − (x − µ1)Hs(0)
)

.

If β1 = 0,

Hc(0) = πfX1
(x),

Hs(0) =
x − µ1

σ1
πfX1

(x),

Hs(1) −
x − µ1

σ1
Hc(1) =

πFX1
(x)

σ1
.
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Proof. The equalities of Lemmas D.1-J.2 can be obtained by integrating by parts. We provide details

for the last equality of Lemma J.2 when β1 = 0. Integrating the exponential by parts, we obtain

Hs(1) =
1

σ1

∫ +∞

0
e−σ1tt−1 sin

(

t(x − µ1)
)

dt +
x − µ1

σ1
Hc(1)

Denote A(x) =
∫+∞

0 e−σ1tt−1 sin
(

t(x−µ1)
)

dt for x ∈ R (A is well defined since e−σ1tt−1 sin
(

t(x−µ1)
)

→

x − µ1 as t → 0). It can be shown that we can derivate A under the integral sign and get

A′(x) =

∫ +∞

0
e−σ1t cos

(

t(x − µ1)
)

dt = πfX1
(x),

Since X1 is Cauchy distributed when α = 1 and β1 = 0,

A(x) = πFX1
(x) + const = Arctg

(x − µ1

σ1

)

+
π

2
+ const,

and evaluating the integral form of A at µ1, we deduce that const = −π/2. Thus, A(x) = π
(

FX1
(x)−1/2

)

.

✷
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