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Abstract

Noncausal, or anticipative, a-stable processes generate trajectories featuring locally explosive episodes akin to
speculative bubbles in financial time series data. For (X;) a two-sided infinite a-stable moving average (MA),
conditional moments up to integer order four are shown to exist provided (X;) is anticipative enough. The functional
forms of these moments at any forecast horizon under any admissible parameterisation are obtained by adding to
the literature on arbitrary, not necessarily symmetric bivariate a-stable random vectors the functional forms of the
third and fourth order conditional moments, as well as the second order moment in the case o = 1 with skewed
spectral measure. The dynamics of noncausal processes simplifies during explosive episodes and allows to express
ex ante crash odds at any horizon in terms of the MA coeflicients and of the tail index a.. The results are illustrated

in a synthetic portfolio allocation framework and an application to the Nasdaq and S&P500 series is provided.
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1 Introduction

Dynamic models often admit solution processes for which the current value of the variable is
a function of future values of an independent error process. Such solutions, called anticipa-
tive or moncausal, have attracted increasing attention in the financial and econometric liter-
atures. In particular, noncausal processes have been found convenient for modelling locally
explosive phenomena in financial time series such as speculative bubbles [Bec et al. (2019),
Cavaliere et al. (2017), Fries and Zakoian (2019), Gouriéroux and Zakoian (2017), Hecq and Sun (2019),
Hecq et al. (2016), Hecq et al. (2017a), Hecq et al. (2017b), Hencic and Gouriéroux (2015)] (see
also  Andrews et al. (2009), Chen et al. (2017), Gouriéroux et al. (2016), Lanne et al. (2012b),
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Lanne and Saikkonen (2011), Lanne and Saikkonen (2013)). Noncausal time series models may of-
fer a possibility to forecast the future trajectories of bubbles and to infer the odds of crashes at future
horizons, enabling for instance portfolio managers to build exit strategies, risk managers to accurately
assess large downside risks during prolonged bull markets, and the regulator to adjust requirements and
restrictions in order to ensure resilience of the financial system. However, lack of knowledge about the
predictive distribution of noncausal processes is impeding the ability to forecast them, thus limiting their
use in practical applications. Numerical procedures have been proposed to empirically approximate the
conditional distribution of noncausal processes [Gouriéroux and Jasiak (2016), Lanne et al. (2012a)].
These however become computationally unaffordable beyond the simpler noncausal models and one
or two-step ahead prediction horizons, face accuracy limitations when it comes to capturing the
dynamics during extreme events [Gouriéroux et al. (2019), Voisin and Hecq (2019)], and provide limited
theoretical guarantees regarding the quality of the approximation. Partial results have been obtained
by Gouriéroux and Zakoian (2017) for the noncausal autoregression of order 1 (AR(1)) driven by
independent and identically distributed (i.i.d.) stable errors. This process is defined as the stationary

solution of iid
Xt:PXt—i-l‘i‘Et, & ~ S(a7ﬂ7070)7 (11)

where 0 < [p| < 1, and S(a, 8,0,0) denotes the univariate a-stable distribution with tail parameter
a € (0,2), asymmetry S € [—1,1] and scale 0 > 0. Figure 1 depicts a typical simulated path of a

noncausal stable AR(1) featuring multiple bubbles. Despite being an infinite variance process, condi-
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Figure 1: Sample path of the solution of (1.1) with &, “~" $(1.7,0.8,0.1,0) and p = 0.95.

tional moments of X;., given X; can be shown to exist up to integer order four for any horizon h,
and Gouriéroux and Zakoian (2017) obtained expressions of the conditional expectation and variance in
special cases - symmetric stable errors (8 = 0) and Cauchy errors (o = 1, 5 = 0) respectively. Provided

the expressions of the conditional moments are derived, this suggests that point forecasts of noncausal



processes based on their conditional expectation, variance, skewness and kurtosis could be formulated -as
opposed to other predictors specifically introduced to circumvent the infinite variance of a-stable pro-
cesses, such as minimum L®-dispersion or maximum covariation (Karcher et al. (2013) and the references
therein). This paper extends and exploits the literature on the conditional moments of arbitrary bivari-
ate a-stable random vectors [Cioczek-Georges and Taqqu (1995a), Cioczek-Georges and Taqqu (1995b),
Cioczek-Georges and Taqqu (1998), Hardin et al. (1991), Samorodnitsky and Taqqu (1994) (ST94 here-
after)] to propose a complete characterisation of the first four moments of X; | X}, for (X;) an infinite

two-sided moving average process driven by a-stable errors

X =S e, e "~ S(a, B,0,0), (1.2)

kEZ
where (ay) is a non-random coefficients sequence satisfying mild conditions for (X;) to be well defined.

AR and ARMA models -whether causal, noncausal, invertible or non-invertible- are encompassed as
a special case of our framework. While the causality or noncausality of the process is not presumed
beforehand,1 it is surprisingly found that noncausality is crucial for the existence of conditional moments
higher than order «. The functional forms of the conditional moments are derived, and we furthermore
show that the characterisation non-trivially extends to aggregated stable processes defined as linear
combinations of processes of the form (1.2), which were suggested by Gouriéroux and Zakoian (2017)
to allow for bubbles with a variety of growth rates to appear on a single trajectory. We show that
the conditional distribution of X, given X; = x displays dramatic simplifications when = — oo,
providing illuminating interpretations on the behaviour of noncausal processes during explosive episodes
and allowing to quantify the crash odds of bubble models.

Section 2 starts by recalling characterisations and properties of multivariate stable distributions,
and provides our results on the conditional moments up to order four of arbitrary bivariate a-stable
vectors. Section 3 proposes a sufficient condition on the coefficients (ay) for the existence of conditional
moments, characterises their functional forms when they exist, and derives their asymptotic behaviour
and the collapse odds of explosive episodes. Our results suggest that bubbles of the AR(1) feature a non-
aging, or memory-less, property. We illustrate through an example how our results extend to continuous
time processes. Section 4 provides the extension to aggregated stable processes. Section 5 provides an
illustration of our results in a synthetic portfolio selection framework where investors optimise on the
quantities of a speculative asset as well as on the holding horizon, and proposes an application of the
crash odds evaluation on the Nasdaq and S&P500 series. Proofs and complementary results are collected

in a Supplementary file.

1
A moving average process (1.2) is said to be purely causal if ax = 0 for k > 0 and purely noncausal if ar, = 0 for k < 0.



2 Conditional moments of bivariate a-stable vectors

We begin by recalling some characterisations of multivariate stable distributions and then propose new
functional forms of higher-order conditional moments in the bivariate case. Letting a € (0,2), a random
vector X = (X1,...,Xy) is said to be an a-stable random vector in R? (see Theorem 2.3.1 in ST94) if
there exists a unique pair (T, u%), where I is a finite measure on the Euclidean unit sphere S; and u° a

vector in R?, such that, for any w € R?, the characteristic function of X writes

E{e““’xq = exp{ —/S

where (-, -) is the canonical scalar product, w(a, s) = tg (%2), if & # 1, and w(1,s) = —2Z In s| otherwise,

|(u, s)|* (1 —isign({u, s))w(a, (u, s>))F(ds) + i (u, ,u0>}, (2.1)

d

for s € R. The measure I and the vector u" are respectively called the spectral measure and the shift
vector of X. The pair (T, u°) is said to be the spectral representation of X. In the univariate case, (2.1)
boils down to E[e™X] = exp{ — aa|u\a(1 — i sign(u)w(a,u)) + z'u,u}, for some o > 0, § € [-1,1] and
u € R. Stable distributions are known to have very little moments. However, the distribution of one
component conditionally on the others can have more moments according to the degree of dependence
between them. In the bivariate case, if X = (X7, X2) is an a-stable random vector with spectral measure
I, satisfying
/52 |s1|"T'(ds) < 400, for some v >0, (2.2)
then, E[|X5|?| X1 = z] < 400 for almost every z if 0 < v < min(a + v,2a+ 1) < 5 (see Theorem 5.1.3
in ST94 for details).

We give formulae for the conditional moments up to order four of arbitrary (not necessarily sym-
metric) a-stable bivariate vectors (Xi,X3), that is, up to the maximum admissible integer or-
der under the most favourable dispositions of the above sufficient condition for the existence of
the conditional moments. The conditional moments of bivariate a-stable vectors were studied
in a series of papers in the 90s [Cioczek-Georges and Taqqu (1994), Cioszek-Georges and Taqqu
(1995a,b), Cioczek-Georges and Taqqu (1998), Hardin et al. (1991), Samorodnitsky and Taqqu (1991),
ST94, Wu and Cambanis (1991)] (see also Cambanis and Fotopoulos (1995), Cambanis et al. (1992),
Fotopoulos (1998), Miller (1978)) but only the functional forms of the first and second order mo-
ments received attention in the literature. = The conditional expectation of arbitrary «-stable
bivariate vectors is the most comprehensively understood (see for instance Hardin et al. (1991),
Samorodnitsky and Taqqu (1991)).  The conditional variance was also studied but most exclu-
sively in the Symmetric a-Stable (SaS) case (see Cambanis and Fotopoulos (1995), Fotopoulos (1998),
Wu and Cambanis (1991)). One notable exception is Theorem 3.1 in Cioczek-Georges and Taqqu (1995a)
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which states without proof a functional form of the conditional variance for an arbitrary, skewed bivariate
a-stable vector for a # 1. We therefore provide a proof for the second moment as well and fill the gap for
a = 1. In the rest of this section, we assume without loss of generality that the shift vector u® = (u9, u9)
is zero.” We first state our results in the case a # 1 and include the conditional expectation provided in

Theorem 5.2.2 by Samorodnistky and Taqqu for comprehensiveness.

Theorem 2.1 Let (X1, X2) be an a-stable random vector with spectral representation (I',0).

For a € (0,2) \ {1}, and letting T satisfy (2.2) withv >1—«a if a € (0,1),

a()\l — 51:‘@1) 1-— xH(x)
E( X X1 =2 = _ — . 2.
[ 2’ ! x} mrt + a?/3? [aﬁlx—i— Tfx,(x) (23)
For a € (1/2,2)\ {1} and I satisfying (2.2) with v > 2 — «,
Ao — B1k2) 1—xzH(z)
E XQX — — 2 CLI'( 2 I S 2.4
[ 2‘ 1 x] Kox” + 1+ ()2 aprx + o (2.4)
a20%0‘
For a € (1,2) and T satisfying (2.2) with v > 3 — «,
2(\3 — B1k3) 1 —xH(x)
El X3 x, = 2| = 3 m{ } 25
[ 2‘ ! $] FsT” o+ 1+ (aB1)? apre + Tfx, () (25)
2 2«
_ #ﬁ(@ [1‘%(2, 92;:1:) + aa‘f"H(iS, 03; x)]
1
For a € (3/2,2) and T satisfying (2.2) with v > 4 — a,
3(\g — B1k4) 1—xH(x)
El x4 x, = 2| = 4 W{ } 9
[ 2‘ 1 x] KT + T+ () afix + T (@) (2.6)
2 2« 2 a 2 2«
— m[g%(&@l;x) + ik 7—[(3,95;x) + il 7—[(4, 06;35)}
1
Here, a = tg(wa/2), and for p € {1,2,3,4}, when they exist,
57T (ds
ot = [ 1sl"T(ds), gy = 2l 110,
5 71 (2.7)
o s, (s2/51)P|s11°T'(ds) N [s,(s2/51)Ps7*7T(ds)
p O_la b p O_la )

where y<"> = sign(y)|y|" for any y,r € R. For anyn €N, 0; = (0;1,0:0) € R?, x € R, H is defined by
+m o,
H(n,0;;x) = / e~ ynaml) <9¢1 cos(ux — aprofu®) + O;o sin(ux — aﬂmf‘uo‘))du, (2.8)
0

2This can be done without loss of generality because, assuming the conditional moment of order p exists, E [X 4 |X 1= Jc] =
E[(X2—p3+p)"| X1 —pf =2—pf] =320 C(u3)P VE[X]| X1 = &] where & = —puf, and (X1, X2) = (X1 —puf, Xo —p13)

has the same spectral measure as (X1, X2) and zero shift parameter.



and we denote H(-) := H(0,(0,1); -), and fx,(-) := 17(0,(1,0); ').3 Finally, 01 = (011, 612) in (2.4)
s given by
911 = li% — a2)\% + a2,6’1)\2 — k9, 012 = (1()\2 + ,Blﬁg) - 2a)\1/<c1, (29)

and the remaining 0;’s in (2.5)-(2.6), which depend only on o, 1, and the k,’s and \,’s above, are given
in (D.1)-(D.10) in the Supplementary file. If « < 1 and 1 =1 (resp. 1 = —1), Relations (2.3) and
(2.4) are well defined only for x >0 (resp. x <0).

We now give the formulae for the second conditional moment when o = 1Y As for the conditional
expectation when (X1, Xs) is not S1S, two different results hold according to whether the marginal

distribution of X7 is skewed or symmetric.

Theorem 2.2 Let (X1, Xs) be a-stable, with o = 1 and spectral representation (I',0), where I' satisfies

(2.2) with v > 1. Then, for almost every z,

E[X%‘Xl - x] = of(a’qy — K1) + 20};1/\1 (Uml —ago(r — #1)) + 2?((95 — ) — a%)
- (‘wl(JO()\l = Bik1) + (k1A — Ag)(z — Nl))m
* ()\2 + Piky — 26101 + a?o1B1(A] — /31/\2)W($>)#);(x)7

Zfﬁl ;é 07 and

E[X%’Xl = x} = 0’%(/432 + a2q§ — m%) — 2a011431q0($ — Ml) + 52(1. _ M1)2
Fx,(z)—1/2  aoiA
fxi () mfx, (2

if 1 =0. Here, a = 2/7, o1, 1, the ky’s and the \,’s are as in (2.7), and

+ ao1 (A2 — 2A1K1) ] [2 <a01q0 — ki(x — ,u1)>V(:L') + aal)\lW(x)},

+oo
U(z) = / o1t gin (t(at — p1) + ao1 fitln t) dt,
0
—+o00
Viz) = / e*alt(l +Int) cos (t(a: — p1) + ao1fitln t) dt,
0
400
W(zx) = / e—alt(l +1In t)2 cos (t(x — p1) + aofitln t)dt,
0

1
qo = —/ so1n|s1|T(ds), p1 = —a/ s11n |s1[['(ds).
01 JSs Sa

The previous expressions of the conditional moments simplify when one considers the asymptotics with

respect to the conditioning variable, as X; = x becomes large.

3No‘cice that fx, is the density of X1 ~ S(«, f1,01,0) when o # 1.

4:See Theorem 5.2.3 in ST94 for the functional form of the conditional expectation in the case o = 1.



Proposition 2.1 Let p € {1,2,3,4} and let (X1, X2) be a-stable with « € (0,2), and spectral represen-
tation (I',0) such that the conditional moment of order p exists. If |B1] # 1, then

Kp + Ap

Kp — A
N ’ p — Mp
I G

x_pE[Xg‘Xl :x} x_pE{Xg‘Xl :.ﬁ} —

T——00 1—/81 ’

and if |f1| =1 and frx — +o0, then,
a:_pIE[Xg’Xl = x} — K.

Remark 2.1 When |51] # 1, both the left and right tail of the density of X display power law decay
as O(]z|7@~1). However, when 8; = —1 for instance, the distribution of Xj is said to be totally skewed
to the left: the left tail still decays as O(|z|~®7!), but the right tail decays much faster and another

asymptotics holds (see Theorem 5.2.2 in Zolotarev (1986) for details).

3 Conditional moments of noncausal a-stable processes

Operating the arsenal of properties of multivariate a-stable distributions we provide in the previous
section, we study the existence and functional forms of the conditional moments of noncausal a-stable
infinite moving average processes, before focusing on the dynamics during extreme events and discussing
the implications for the prediction of bubble crash odds. An example at the end of the section illustrates

how the results extend to continuous time.

3.1 Existence and functional forms of conditional moments

Let us consider (X;) a two-sided MA(oco) process as in (1.2) with coefficients (ax) satisfying

Z lax|® < 400, for some s € (0,«) N[0, 1], (3.1)
kezZ
and in addition for « = 1,8 # 0, Z \ak\’ln \ak\‘ < 400. (3.2)
keZ

Conditions (3.1)-(3.2) ensure that Y ,cy aresrr converges absolutely almost surely so that (X) is well
defined. Because the error sequence (¢¢) is a-stable distributed, the bivariate vector (Xy, X;yp), for any
horizon h, is itself a-stable and the results from the previous section apply. This is a consequence of
the following lemma, which provides the spectral representation of more general, discrete time vectors of

linear moving averages driven by a-stable i.i.d. errors.

Lemma 3.1 Let 0 < o < 2. For & i S(a, B,0,1) and real deterministic sequences (ay;)k, © =

1,...,m, m > 2, each satisfying (3.1)-(3.2), let Xy = (X14,..., Xmt), with Xip = 3 pcz Qi i€tk and



denote a, = (ag1,...,a5m) for k € Z. Then, Xy is an a-stable random vector in R™, with spectral

representation (T, u®) given by

1+ sp 0 2
F=0" 3 > —5llarl®d( say - W=2 apn—Tiamny 0B arlnflail, g
s=+1keZ ||ak|| kEZ keZ
where &4y is the Dirac measure at point & € R™, || - || stands for the Euclidean norm, and by convention,
if for some k € Z, a, = 0, i.c. ||ag| =0, then the k™ term vanishes from the sums.

The results on bivariate stable vectors thus immediately apply to X; = (X, X¢1p) with ax = (ak, ag—p).
A sufficient condition for the existence of conditional moments is given in the following proposition as

well as their functional forms.

Proposition 3.1 Let (X;) be an a-stable two-sided MA (o) process, 0 < a < 2, f € [-1,1], 0 > 0,
satisfying (1.2), (3.1)-(3.2) and let h > 1.

) Assume there is v > 0 such that
atv
Z (a% + a%,h) 2 ag| 7Y < oc. (3.4)

Then E[| Xy p]7|Xt] < 00 for 0 < v < min(a + v, 2a + 1).
w) For o # 1, the moments E[Xf+h|Xt], p=1,2,3,4, when they exist, are given by Theorem 2.1 with

> ape” > |agl® (ak_h>p > ape” (ak_h>p
ag kEZ ag
o8 — O apl®, By = B REL o — keZ A, = 8
footd ol > Jagle” > Jarle 7 > Jagle
keZ kEZ kEZ

wt) For a =1, let (X¢, Xipn) := (Xt, Xepn) — u where p® is the shift vector as in Lemma 3.1. Then,
the second order moment of Xt_,_h]f(t is given in Theorem 2.2 with the k,’s, A\p’s, o1, B1 as in w) and

q =P Zakfhln <’ak’> /Z\ak\, U1 = _¥ Zakln <|ak|>

2 2 2 2
keZ U T %-n) ez keZ af + Qj_p,

By convention, in all the points above, if (ag,ar—p) = (0,0), then the k™ term vanishes from the sums.

Note that the left-hand side of (3.4) is an increasing function of v. Thus, if (3.4) holds for some vy > 0,
it then holds for any 0 < v < vy, and if it fails for vy, it then fails for all v > vy. Causal processes, say
of the form > ;o axesx With ag = 1, automatically fail condition (3.4) for all v > 0, as (a,ap) = (0,1)
and the h*" term of the sum is finite only if v = 0. Conversely, (3.4) may hold for some v > 0 for
noncausal processes provided the coefficients (ax) do not decay too fast as k — +oo. In fact, the slower

51n the case of symmetric errors (8 = 0), Theorem 1.1 by Cioczek-Georges and Taqqu (1995b) allows to conclude that

causal processes hence do not have finite conditional moments for orders higher than a.



the decay of (ax) as k — 400, the higher the values of v for which (3.4) will hold. It is easy to show
that (3.4) holds for any v > 0 as soon as (ay) decays geometrically or hyperbolically, guaranteeing the
existence of conditional moments up to order 2ac+ 1 at all prediction horizons for most noncausal ARMA
and fractionally integrated p]rocesses.6

From a computational perspective, the conditional moments of X;,; given X; = x can be inexpen-
sively calculated for various horizons h and conditioning values z. Indeed, the functions H(n,0;z),
n = 2,3, 4, appearing in Theorem 2.1 can be decomposed into apu,(z) + byv,(z), where ap and by, are
constants depending only on h and fixed parameters of the process, while u,(x) = H(n,(0,1);z) and
vp, = H(n, (1,0);x) are simple integrals which need only to be computed once for a given conditioning
value x. Figure 2 shows the match between theoretical and empirical conditional moments of an ARMA
process with causal, noncausal, invertible and noninvertible roots for different horizons as a function
of the conditioning value. The empirical conditional moments were computed using Nadaraya-Watson
estimator across 2000 simulated trajectories of 107 observations each. The 0.05-0.95 interquantile interval
across simulations are also displayed and show that even with 107 observations, the uncertainty around

the estimate can be large.

Example 3.1 (Noncausal a-stable AR(1)) Let (X¢) be the noncausal a-stable AR(1) solution of
(1.1) with a # 1 (for simplicity), 8 € [-1,1] and 0 < |p| < 1. Then E[|X;14|7|X:] < 400 for 0 < v <
2a+ 1 and any h > 1, and the first four conditional moments, when they exist, are given by Proposition

3.1 with

o 1—|p|* - h —
1o lple’ b= Bl — p<a>’ Kp = |P|ahp ", Ap = Bi(p=*7)"p ",

ot

for p € {1,2,3,4}. For p > 0, a clear interpretation of the distribution X;;,|X; = = appears during
explosive/bubble episodes, that is, as = becomes large relative to the central values of process (X}).
Denoting by u(z,h), o%(z,h), y1(x, k) and yo(x, h) the conditional expectation, variance, skewness and

excess kurtosis of X;yp given X; = x respectively, when they exist, we have

—h,\ ah 1—2p"
/.L(l‘,h) ~ (ﬂ x)p ) Vl(xa h) — S,
poh (1 — poh)
B 1 1
o2(z, h) ~ (p~z)2ph (1 — pohy, 122 h) = St T 6

as fix — +oo if |f1| =1, 2 = oo if [f1] # 1, and s =1 (s = —1) if x — 400 (z — —00).

6
It is possible to find noncausal processes for which conditional moments are finite up to order -« strictly within (o, 2a+1),

with v moreover depending on the prediction horizon. See the Supplementary file for an example.
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Figure 2: Conditional expectation, standard deviation, skewness and excess kurtosis (in rows) at horizons h = 1,3,5,10
(in columns) of the ARMA process (1—0.9F)(1—-0.5B)X; = (1+0.2F)(1 —0.3B)e, & i S§(1.9,0.8,0.2,0) for conditional
values = € (—3,5) (x-axis of each plot, the bounds -3 and 5 corresponding respectively to the 0.0003 and 0.9996 quantiles
of the marginal distribution of X;). Red solid lines: theoretical moments ; Blue dotted lines: average of Nadaraya-Watson
estimators (bandwidth=0.1) across 2000 simulated trajectories of 107 observations each ; Grey shaded areas: 0.05-0.95

interquantile interval across simulations. ' and B denote respectively the forward and backward shift operators.

3.2 Extreme events and applications to crash odds for bubbles
3.2.1 Crash odds for bubbles of the noncausal AR(1): a memory-less property

The strikingly simplistic forms of the conditional moments during bubble episodes given above are char-
acteristic of a weighted Bernoulli distribution charging probability p®* to the value p~"z and probability
1 — p** to 0. It is thus natural to interpret p®* as the probability that the bubble survives at least h
more time steps, conditionally on having reached the level X; = :z:.7 This interpretation implies that

7merpretation of p®" as a survival probability of bubbles is also reached using point processes (see the Supplementary

file). The convergence in distribution of X4 /X; during extreme events towards this behaviour can furthermore be formally

proven [Fries (2018)].
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the survival probability does not depend on the current scale of the bubble. Surprisingly, given that the
noncausal AR(1) is a Markov process, it would further imply that the survival probability of bubbles
does not depend at all on the past history. In fact, the bubbles generated by the stable noncausal AR(1)
appear to display a memory-less property characterised by an exponential survival probability exactly
similar, e.g., to that of mdioisotopes.8 It can be fully characterised by its so-called half-life: the duration
hy /2 such that the survival probability at horizon hy/p is 1 /2. For a noncausal AR(1) with parameters p

and «, the half-life of bubbles is given by
In2
alnp’

hij =— (3.5)

This property could be appealing from a financial and economic perspective as it implies that the
crash date cannot be known with certainty by traders, hence ensuring a form of no-arbitrage condition.”
At the same time, it would imply that no sophisticated method could allow a forecaster to say anything
more regarding the future of AR(1) bubbles than «growth or crash» with the probabilities above. In
the case of non-Markov noncausal processes or if the extreme errors driving bubbles are assumed to be
endogenous rather than ii.d. (as in Blasques et al. (2018)), past history would however play a more
central role for prediction. We suggest lower and upper bounds of the quantity (3.5) and of crash odds

for the ongoing growth episodes of the Nasdaq and S&P500 indexes in Section 5.

3.2.2 Dynamics of noncausal stable MA (o) during extreme events

An apparent simplification of the dynamics during extreme events can also be found to hold for more

general MA(o0). The following Corollary is an immediate consequence of Propositions 2.1 and 3.1.

Corollary 3.1 Let (X;) satisfying (1.2), (3.1)-(3.2) with a non-negative coefficients sequence (ay) sat-

isfying (3.4) for some v > 0. For h > 1, let the almost surely finite random variable Ay, such that

o
IP’(Ah = akh) = ] , for all k € Z. Then, for p=1,2,3,4, if the moments exist,
ar, Yiez lail
Xt-i-h p _ D
B|(T22)|x: = o] — B0

as frz — 400 if |B1| =1 and x — +oo if || # 1.

8Beside the fact that the survival probabilities indeed both belong to the exponential family, we use this analogy here to
stress the unpredictable character of the crash occurrence. While it is possible to accurately predict the average decay of
large amount of a certain radioisotope with time, predicting the disintegration of a single nucleus is more of a gamble.

9The scale invariance is a typical property of power-law distributed extreme events, which stems from a-stable errors in
our framework. It is thus possible that a similar memory-less property of bubbles still holds for other distributions with

power-law tails such as the t-student which is commonly invoked for bubble modelling.
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Although only a result about the convergence of moments, Corollary 3.1 seems to suggest that the
conditional distribution of X;,,/X; becomes close to that of A; during extreme events. This intuition

can actually be formalised and results such as the following can be shown to hold:

> lagl®

X B
For all k € Z, § > 0, IP(’ ;h - “’; h’ <6‘Xt >:L~) — EEZJ’CW (3.6)
t k l
leZ

ag—h _ Gk—h

ag ay
current paper and is considered elsewhere [Fries (2018)].

where J; := {E €Z:

<6 } The demonstration of such results is outside the scope of the

3.2.3 Crash odds for bubbles of noncausal stable processes

This has important implications in the context of speculative bubble modelling for the evaluation of
crash odds. Assume for instance that a noncausal process of the form X; = >y~ axérrk, ar > 0 and
a/ags1 > ¢ >0 for all k > O,10 is considered to model a certain type of bubble. If (3.6) holds, the crash
probability at horizon h of X;, observed extreme at date t},l Clan then be expressed by
(|2 < 5l x, > M =
(} X, ' ‘ t a:) =2 SIS Doo,hs (3.7)
k>0

for § > 0 small enough. Similarly to the interpretation of the noncausal AR(1), one can notice that
the crash probability of bubbles does not depend on their current scale. Contrary to the noncausal
AR(1) however, the survival probabilities could in general be different if the past history of the bubble
was accounted for in the comditioning.11 We illustrate here through simulations that the probability on
the left-hand side indeed converges towards the right-hand side limit as the conditioning value z grows
larger. We simulated a trajectory of N = 10® observations of a noncausal AR(3) process and computed

the following estimator of the probability (3.7):

N—h N—h
Poh = (Z 1{|Xt+h/xt<5}m{xt>q}> /D Lixisq) (3.8)

t=1 t=1
for several horizons h and several quantiles ¢ of the marginal distribution of X;. Table 1 gathers the
results of this exercise and one can notice that the empirical probabilities become very close to the claimed
theoretical ones as g reaches the 0.99-quantile of X; and beyond. To evaluate such probability in practice,
only the knowledge of the coefficients (aj) and of the tail parameter « is required, the asymmetry does
10msumption ensures that (ax) does not display wild variations after kK = 0 which could be mistaken with the crash.

11
To investigate this question, one has to characterise the conditional distribution of Xy, given more past information,

e.g., X¢, X¢—1... This problem is also out of the scope of the current paper and is addressed in Fries (2018).
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h 1 2 3 4 5 6 7 8 9 10 15 20

qo.s 229 348 448 523 582 628 664 692 715 732 779 793
qo.9 252 394 513 603 67.3 725 765 79.6 82.0 834 882 894
Pg,h 0.9 23.0 401 564 682 769 832 878 91.0 933 949 982 9838
G0.999 22.0 403 56.9 694 785 850 89.5 927 948 964 993 99.8
Go.9990 | 21.6 40.0 56.8 69.2 783 849 895 927 948 963 99.3 999

Poo,h 21.6 40.0 56.7 69.1 782 84.6 89.2 925 947 96.3 994 999

Table 1: Theoretical and empirical crash probabilities (3.7) and (3.8) (in percentages) at several horizons h of the noncausal
AR(3) (1 — 0.8F)(1 — 0.4F)(1 + 0.3F)X, = &1,e; <" $(1.6,1,0.25,0). The empirical probabilities were computed on a

trajectory of N = 10% observations, with § = 0.01 and for ¢ = ¢, several a-quantiles of the marginal distribution of X;.

not intervene if the coefficients (ay) are non-negative, and the location and scale play no role.

It is worth emphasising that the asymptotics in (3.7) is with respect to the level = of the trajectory
and not to a sample size: in principle, the limiting probability can accurately quantify the crash odds
of an extreme episode even if no data or no previous episode was observed on the trajectory before. In
practice, if one estimates the coefficients ay’s (for which a low-dimensional parametric form could be
assumed), estimation uncertainty depending on the sample size might enter (3.7). However, even if no
extreme episode has been observed before, one could still resort to theoretical considerations and priors
to propose likely dynamics and bubble shapes that may occur in the future to study different scenarii -as

typically done with stress tests in macroprudential analysis [Hanson et al. (2011)].

3.3 Continuous time: an example of power-law bubbles with long memory

With the following example, we illustrate that our results can be extended without difficulty to
continuous time, and that noncausal linear processes can encompass local dynamics which are con-
sidered to be typically nonlinear or even non-stationary. The process chosen here is inspired
from the Johansen-Ledoit-Sornette (JLS) bubble literature (see for instance Johansen et al. (1999),
Sornette (2003), Sornette (2017), Sornette and Johansen (2001)) and is characterised by trajectories
(«pricesy) featuring bubbles with power-law growth close to the peak12 while exhibiting long memory in

the returns at the same time. We define X; for all ¢t € R as

1

X = /t fla = t)M(dx), with  f(z) = mﬂ{wo}, (3.9)

12
The power-law growth here is a property of the shape of the trajectory close to the bubble peak which JLS derive using
a physical approach. It should not be confused with the power-law distribution of the extreme events that we mentioned

earlier, which is a property of the scale of the trajectory due to the a-stable errors. Both coexist in this example.
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where aq, as, di, dy are positive constants, d; < da, and M is an a-stable random measure with constant
skewness intensity equal to § and Lebesgue control measure (see Chapter 3 Definition 3.3.1 in ST94 for
details). Similarly to the baseline path interpretation in Fries and Zakoian (2019), when a realisation of
the random measure M attributes an extreme mass in the vicinity of a certain date t., the trajectory
of X; can be locally approximated up to a multiplicative constant by X; ~ f(t. —t). Close to the
bubble peak, the trajectory is thus dominated by the term with smaller exponent and explodes at the
same speed as x~% /a1, before suddenly collapsing. Further in the tail of the bubble, the trajectory
is dominated by the term with greater exponent and decays as 27%/as, inducing long memory. In
contrast with the JLS framework which focuses on a single financial bubble viewed as non-stationary
phenomenon resulting from a nonlinear physical system, the example process (3.9) is strictly stationary
and can generate multiple bubbles whose dynamics are mimicking that of JLS bubbles close to the peak.13

This process is well-defined and stationary if [ |f(z)|*dx < +oo which is equivalent to

1 1
— —. N
A <a<d1 (3.10)

One can show that (X, X;yp) is bivariate a-stable, obtain its spectral representation, and apply the
properties of Section 2. In particular, the conditional moments E[|X;5|7|X;] are finite at least up to

order v < min(a + v, 2a + 1) for any v > 0 such that g, |f(z — R)|* TV /| f(2) ]V dz < +oo, e,

1
v< oo (3.11)

For o € (3/2,2), the fourth order conditional moment is finite provided 0 < dy < 1/4. Theorem 2.1 then

provides the functional forms of the moments with,

1 —h)\?
of :Alf(x)ladm, =0, kHp= R (f(x))) |f(z)|*dz, A, = By,
+

off fla
for p =1,2,3,4. Similarly to the noncausal processes in discrete time, it can be shown that the conditional

moments simplify by Proposition 2.1 during extreme events:

[ o] e () ]
)

where U is a random variable with density g(u) = for u € R. Again, from this convergence

— Jrlf(s)lvds

of the moments, we may suspect that the conditional distribution X;,,/X; becomes close to that of

f(U —=h)/f(U) during extreme events. If we admit this, then the crash probability can be obtained as

X T—00

X h
IP’(‘ t+h‘ < (5’Xt > x) N / g(u)du, for 0 small enough.
0

13
To be fully consistent with JLS, one should also include a log-periodic oscillating component in f. This poses no difficulty

but makes the presentation cumbersome so we omit it.
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4 Aggregated noncausal a-stable processes

In order to encompass trajectories featuring bubbles of different growth rates,
Gouriéroux and Zakoian (2017) introduced an aggregated process defined as the linear combination of

multiple AR(1):

J
Xe =) mX5, Xjp=pXjeete, 0<l|pl<l, j=1,....m, (4.1)
j=1
where m; € R for j = 1,...,J and (&j)tez i S(a, Bj,04,0) are mutually independent sequences of

iid. errors. Sample trajectories of (X;) feature bubble episodes with various rates of increase 1/p;,
j=1,...,J. Unlike for the latent (Xj)’s, nothing is known about the predictive distribution of Xy,
given its past, even in this simpler case of an aggregation of AR(1) processes. We give results regarding the
conditional distribution of X, given X; in the framework where the (Xj;;)’s involved in the aggregation
are two-sided MA (o0) processes.

Definition 4.1 Let (Xi),...,(X ) be J > 1 stable moving averages, each satisfying (1.2), (3.1)-(3.2),
for some coefficients sequences (a;)r and mutually independent error sequences ¢ ¢ s (e, Bj,04,0),

j=1,...,J. Let also (7;)j=1,..7 be scalars and define (X;) as
J
Xi =) mXj., for t € Z.
j=1

We will call such process (X;) an a-stable aggregated moving average, an aggregated process, or simply, a

stable aggregate, and call (X;;), j =1,...,J the latent moving averages of (X;).

The following proposition is a consequence of the fact that the vector (X, X;yp) = Z}-le 75 (X s Xjttn)
is itself a-stable and its spectral measure I'j, is actually a mixture of the spectral measures I'; , of each

vector (X, Xjqn) as: I'y = 23121 |7;|“T'j 5 (see Lemma H.1 for details).

Proposition 4.1 Let (X;) be an a-stable aggregate with latent moving averages (X14),...,(X ) as in
Definition 4.1 with 0 < a < 2. Let h > 1.

L) Assume there is v > 0 such that

a+v
forallj=1,...,J, Z (aik + aik_h) 2 ajr| ™" < oo. (4.2)
keZ

Then B[| Xip|7|X¢] < 00 for 0 < < min(a + v, 2a0 + 1).

w) For a # 1, the first four conditional moments of X¢ypn| Xy, when they exist, are given by Theorem 2.1

with J
oy = Z ’Wj‘aa?,ja B =E(B), Kp = E(Kp)a Ap = E(Lp)7 for pe{l,2,3,4},
j=1



where B, K, and Ly, are discrete random wvariables such that P((B, Ky, Lp) = (81,5, kpj> Apj)) = Wj,
w; = |7Tj]°‘0‘1"’j/251:1 |mi|%of; for j =1,...,J, and where o1, B1j, kpj and Ay denote the quantities
defined in Proposition 3.1 where (ay)i, o and B are replaced by (aji)k, 0 and jB;.

we) For oo =1, let (Xy, Xoqn) = (Xp, Xeon) — p° where p® = (1, 19) where u® is as in Lemma H.1.
Then, the second order moment of Xt+h|Xt is given by Theorem 2.2 with the k,’s, \p’s, o1 and p1 as
above and J
90 = E(Qo), p= ) i,

j=1

where Qo is a discrete random wvariable such that, for p € {1,2}, P((B,Kp, Ly, Qo) =
(B1j» Epjr Apj»rQ05)) = wj, for j =1,...,J, and qoj, p1,; denote the quantities defined in Proposition

3.1 with (ay)k, o and 8 replaced by (a;ji)x, 0; and B;.

The above proposition straightforwardly applies to the aggregated noncausal stable AR(1) defined in
(4.1). Notice that for the non-aggregated noncausal AR(1), p > 0 is sufficient to guarantee the linearity
of the conditional expectation, but merely assuming p; > 0 for j = 1,...,J for the aggregated process
(X¢) does not guarantee linearity in general. Linearity of the conditional expectation (2.3) is achieved if
and only if \; — S1x1 = 0, which is equivalent to Cov(B,K;) = 01if p; > 0 for j = 1,...,J. Based on
this, it is easy to construct examples for which z — E[X j,t—l—h‘X .t = x| are all linear in x for any j and
h, and yet such that y — E[X;45|X; = y] is a non-linear function of y.

From a statistical perspective, a strategy to estimate agnostically the coefficients sequences (a; )i, j =
1,...,J could exploit 1) the fact that exceedances above high thresholds of a stable MA process behave
as a marked point process [Rootzen (1978)], the marks being normalised sample paths of, say, (Xj;),
and are asymptotically of the same shape as (...,aj_1,a;50,a;51,...). Practical procedures to identify
these marks and provide estimates of (at least some) a; ;s could leverage declustering schemes such as in
Ferro and Segers (2003). An estimation strategy could also exploit 2) the fact that the spectral measure
of, say, (X¢, ..., Xi4n) is a mixture of the spectral measures of the latent (X, ..., Xj4n). The extremal
dependence of sample paths of (X;) could thus be analysed by adapting Boldi and Davison (2007) to the

case of mixtures of spectral measures of sum-stable vectors.

5 Applications

This section presents two applications of our results. The first one uses the conditional moments up to
order four in a synthetic portfolio allocation framework. The second one illustrates how one can evaluate

crash odds of real series by fitting noncausal models.
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5.1 Portfolio selection

It has been recently found that the incorporation of higher order moments for portfo-
lio optimisation can lead to substantial improvements of the assets allocation strategies
[Harvey et al. (2010), Holly et al. (2011), Jondeau and Rockinger (2006), Lai (1991), Lai et al. (2006)],
and efforts are deployed to efficiently capture time-varying higher moments into the al-
location program [Bernardi and Catania (2018), Boudt et al. (2015), Gonzalez-Pedraz et al. (2015),
Harvey and Siddique(1999), Jondeau and Rockinger (2012)]. Two approaches to account for higher or-
der moments in the choice of the optimal portfolio are polynomial goal programming (PGP) and the
maximisation of the Taylor expansion of a utility function, a common one being the constant relative risk
aversion (CRRA) utility. For speculative assets typically, asymmetry and heavy-tails in returns can be
expected to be of crucial importance for the (non-)investment decision. We illustrate in the framework
of noncausal stable processes how the functional forms of the conditional moments in Theorem 2.1 can
be used to perform portfolio selection. We consider a simple framework where an investor endowed with
an initial wealth W; at present date ¢ has the choice between a speculative asset X; and a safer asset
Si. The investor has an investment horizon H: at date t, she will decide of the share w (resp. 1 — w)
to invest in the speculative asset (resp. safer asset), and of the intermediate horizon h < H at which
she commits to liquidate its holding of speculative asset and to invest the proceedings in the safer as-
set until t + H. This leads to an optimisation problem of the terminal wealth Wi, (or overall return
Riyg = (Wyeg — Wy)/Wy)) in both the allocation w and the intermediate horizon h. We will consider
time to be continuous and that X; follows a continuous time noncausal stable AR(1) as in (1.1) with
a non-zero location pf:uralfneter,14 and that the safer asset follows a geometric Brownian motion (GBM)
dynamics with drift » and volatility o. The processes (X;) and (S;) will be assumed independent. For a

given strategy (w, h), the terminal wealth can be expressed as

Stom ( Xitn St+h>
W, = W, 1—w)——— ).
t+H tSt—f—h w X, +(1-w) S,

The CRRA utility maximisation program of the terminal wealth and its fourth order Taylor approxima-
tion around the expected terminal wealth read [Jondeau and Rockinger (2006)]
4 _
U&) (W _
{nf%))( E[U(Wt+H)’Xt, St] ~ Z (k:'tJrI_I)E |:(Wt+H — Wt+H)k’Xt, Sti|7 (51)
w, =0 !

14
IL.e., a noncausal stable Ornstein-Uhlenbeck (OU) process. There is a one-to-one correspondence between a given stable

AR(1) and its OU analogue and one can show that it is valid to use the results of Example 3.1 as if h was real instead of

integer. We therefore define (X3) as in (1.1) to avoid introducing additional notations.
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where U(c) = c¢!=7/(1 — ), for a risk aversion parameter v > 0, and Wy, g = E[W;15|X;, S]. A PGP
program can be specified as (inspired from Aksarayl and Pala (2018), Lai (1991), Lai et al. (2006))

s 8t e Y
%ni}?) <1+|d1 —R*\) g (1+yd2—v*y) g (1+\d3—5*|) " (1+yd4—K*y) 4,
“ (5.2)
st. Ryp+di=R", Vyp—do=V", Syn+ds=5", K,p—ds=K" d;j>0,

where R, n, Vion, Swn, Kuop denote respectively the conditional expectation, variance, skewness and
excess kurtosis of the returns R,y for a given strategy (w,h) ; R*, V*, S* K* denote the optima of
the subprograms max,, 4y Ruw,p, min(, p) Vi n, Mmax g, p) Sw,p, ming, p) Ko p 5 and the ;’s are non-negative
parameters weighting the preference of the investor to pursue optimality of one moment over the others.
In both approaches, it is just a matter of algebra using the independence between (X;) and (S;) to express
the objective functions in terms the moments of X;,,|X; and the parameters.

As an experiment, we numerically solve the above programs for the following parameterisations. For
the process X;, we set p = 0.7, with errors &; i S§(1.7,1,2,3). One unit of time can be thought as
a year and we take H = 2 ; the bubbles of X; hence grow roughly at an annual rate of 1/p ~ 43%,
and have a half-life of —In2/alnp ~ 13.7 months. For the safer asset, we set both the annual return
r and volatility o to 2%. We consider a CRRA investor with v = 5 and a more risk averse one with
~v = 10, as well as two PGP investors with equal weighting (y1,72,73,74) = (1,1,1,1) and more kurtosis
sensitive weighting (1,1,1,4). While the starting value of S; does not matter, the starting value of X;
deeply modifies the investment landscape. We thus set several starting values for X; = x corresponding
to quantiles of the marginal distribution of X, from central to extreme. We assume unit initial wealth
and search for optima (w*, h*) in the set [—1,1] x [0, 2], thus allowing short strategies. Table 2 reports
the results. Given that the programs are likely non-convex, there is in general no unique optimum. All
attained solutions achieving comparable (global) optimality are reported. We rounded w* to the closest
percentage point, h* to the closest month, and by convention, if w* = 0, we report h* = 0 as well.

One can notice that for initial values of the speculative asset close to the stationary baseline, the optimal
strategies are rather passive. The price X; is more likely to follow a noisy trajectory around its central
level, while the safer asset offers a higher and surer reward. Higher initial values of the speculative asset
give evidence that the coming months or years will be dominated by the explosive regime: there is a
possibility of gaining immense returns compared to the safer asset, but with great risk of loosing the bet.
The optimal strategies are much more active in this case, both in quantities and in holding horizons. The
CRRA investors almost exclusively bet on a crash occurring at some point before the terminal horizon,
and will opt to short the speculative asset. The more risk averse will halve its bet in terms of quantities

compared to the less risk averse one. The PGP investors may choose between two types of equally
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Xt =T qdo.5 qo.6 qo.7 qo.8 qo0.9 q0.95 qd0.99 40.999 40.9999

CRRA | (7,1)  (41) (-12,24) (-18,24) (-23,24) (-23,24) (-15,24) (-10,24) (-10,24)
=5 | (2,10) (-5,24)

(1,20)

(7,1) (5,1) (3,1) (1,1) (-11,24)  (-11,24) (-7,24) (-5,24) (-5,24)
v=10 (2,6) (-2,24) (-6,24) (-9,24)

(1,15)

PGP | (0,0) (0,00 (821) (22,18) (30,18)  (33,18)  (30,19)  (24,19)  (23,19)

(1,1,1,1) (0,0)  (-59,10) (-82,10) (-89,10)  (-71,10) (-53,10) (-48,10)
(-27,9)

(0,0) (-1,7)  (-2,12)  (28,15)  (44,15)  (50,15)  (47,15)  (38,15)  (36,15)

(-62,11)  (-98,11)  (-100,11)  (-95,11) (-69,11) (-62,11)

(1’17]"4)

Table 2: Optimal investment strategies (w*,h*), where w* is reported in percent of the portfolio and h* in months, of

programs (5.1) and (5.2). The speculative asset X is assumed noncausal AR(1) asin (1.1) with p = 0.7, & i S(1.7,1,2,3),

while the safer follows a GBM with drift » = 0.02 and volatility ¢ = 0.02. Initial price of the speculative asset is set to
T = ¢a, for several a-quantiles of the marginal distribution. Reading example: for a PGP investor with weights (1,1,1,4),
and for an initial value of the speculative asset x = qo.s, two distinct strategies achieve comparable global optimality: 1)
a strategy long by 28% of the speculative asset with holding horizon of 15 months, and 2) a strategy short by -62% with

holding horizon of 11 months.

optimal -according to their criterion- strategies: long or short. The long strategies are characterised by
lower (absolute) quantities but longer holding horizons compared to the short strategies. If the more
kurtosis-sensitive investor chooses the long strategy, she will bet significantly higher quantities compared
to the less kurtosis-sensitive investor, but with holding horizons down by several months. If she opts
for the short strategy, she will bet more aggressively on the collapse of the bubble both in quantities
and horizons. Unlike the CRRA investors, the PGP investors will not short these aggressive quantities
beyond a year. The risk would be to reach the terminal horizon with the bubble still ongoing and hence

endure heavy losses.

5.2 [Evaluating the odds of crashes of real series

In this section, we consider two series commonly studied in the speculative bubble literature: the Nasdaq
and S&P500 indexes (see e.g. Phillips et al. (2015), Phillips et al. (2011)). We will focus on the almost
uninterrupted growth episodes since the aftermath of the 2008 crisis up to 2019 and suggest an ex
ante analysis. At the cost of assuming that these explosive episodes in the data can be modelled as

ongoing realisations of AR(1) bubbles climbing towards exogenous power-law-scaled peaks, we will be
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Figure 3: Monthly Nasdaq and S&P500 indexes, non-adjusted for inflation (upper and lower left respectively), from
02/1971 to 09/2019. The arrows and vertical dotted lines indicate the period of analysis, from 12/2008 to 09/2019. Right

panels: regressions of log prices against time (data in points, fit in red solid lines).

in the position to propose an evaluation of the crash odds based on the half-lives hgs given in (3.5).
This requires to provide values for the AR coefficient p and the tail parameter ov. Under the AR(1)
assumption, bubbles should have an exponential shape ¢ — p~! up to a multiplicative constant, and the
parameter p could thus be estimated locally by fitting an exponential trend on the explosive episode
- or conveniently, by fitting a linear regression on the logarithm of the data. Fitting the regression
In(X;) = at + b on the monthly Nasdaq and S&P500 series from December 2008 to September 2019, we
obtain estimates @ of a, from which we deduce p = exp(—a). Turning to the literature regarding the
tail parameter «, studies mostly report values ranging from slightly below one to four for financial series
(Ibragimov and Prokhorov (2016) and the references therein).15 The widest range of plausible values
compatible with our framework would thus be a € [0.5, 2] (we include 2 as the limit for an a-stable index

arbitrarily close to 2). Assuming a uniform prior for o on [0.5,2] and neglecting the (small) estimation
2In2

A

In2
uncertainty around a, this suggests the range 2% < hgs < for the half-lives of corresponding AR(1)
a
bubbles. Furthermore, from a half-life hg 5, one can compute the likelihood of collapse at any desired
horizon h as 1—(1/2)"/h05. We provide the corresponding ranges for the odds of a crash occurring within
15We further note that reported values above two are not necessarily evidence against the infinite variance a-stable

hypothesis [McCulloch (1997)].
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Growth rate  Annualised Plausible Half-life range =~ Odds of crash
a AR coef. p range for « in years within one year
Nominal | 1.2-1072 0.86 (0.5 — 2] (2.4 - 9.5] [7.0% — 25%]
Nasdaq
Infl. adj. | 1.1-1072 0.88 (0.5 2] 2.7 - 11] 6.2% — 23%]
Nominal | 9.3-107% 0.89 (0.5 — 2] 3.0 - 13] 5.3% — 21%]
S&P500
Infl. adj. | 8.0-1073 0.91 (0.5 2] 3.5 - 15] [4.5% — 18%]

Table 3: Estimated growth rates @ of exponential trends fitted on the nominal and real Nasdaq and S&P500 indexes
(monthly data from 12/2008 to 09/2019) ; Corresponding annualised AR(1) coefficients p = exp(—12a) ; Ranges of the
half-lives ho5 = In2/12aa (in years) with uniform prior on o € [0.5,2] ; Corresponding ranges for crash odds within one

year 1 — (1/2)1/%-5.

the next year. Figure 3 displays the series and the fits, and Table 3 gathers the estimates. To remain
agnostic as to whether we should consider nominal or real prices, depending on what is more relevant with
respect to the behaviours and motives of economic agents sustaining the growth, we include estimates
for the inflation-adjusted indexes.'® This analysis suggests relatively important crash odds within one
year ranging from 4.5 to 25%. Tighter ranges could be obtained by estimating the tail parameter «.
Recent approaches robust to unavailable extreme values such as developed in Zou et al. (2017) could be

promising in that respect, as one could typically consider the crash date to be missing from the dataset.

6 Concluding remarks

We provided functional forms for the conditional moments up to order four of arbitrary bivariate a-
stable random vectors (X7, X2) as well as their asymptotic behaviours when the conditioning variable
takes extreme values. Embedding two-sided MA (oo) processes into this framework, we could describe
in detail the conditional dependence of X;,; on X;. We have shown that noncausality plays a crucial
role in the finiteness of conditional moments, and provided functional forms for the latter up to the
fourth order, when they exist. We furthermore obtained unique insights into the extremal dependence of
(X, X¢4p), which is a topic of interest on its own [Ledford and Tawn (2003), Wadsworth et al. (2017)],
but especially in the context of bubble modelling: during the extreme «bubble» episodes that such
processes generate, we have shown that the dynamics simplifies and can be easily interpreted, revealing
for instance a memory-less or non-aging property of AR(1) bubbles. We demonstrated how crash odds

can be evaluated ex ante in the framework of these models, even on local bubble events of real data. We

1
6We use a seasonally adjusted Consumer Price Index provided by the Federal Bank of Saint Louis.

fred.stlouisfed.org/series/ CPIAUCSL
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illustrated through examples the ability of noncausal processes to encompass local dynamics which are
considered typically non-linear or even non-stationary, and how they can be applied in practice for horizon
selection in portfolio problems with speculative assets. Statistical methods for agnostically estimating
the coefficients (ay) of the MA representation, e.g. under low dimensionial restrictions, and for robustly
estimating the tail index « in locally non-stationary events could enable more refined evaluation of the
crash odds. We also have shown how the main results extend to aggregated processes, including the
existence and the form of the conditional moments. Thorough investigation of their a priori much richer

dynamics and of the statistical aspects is left for further research.
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A Complementary results

A.1 Existence of moments and superexponential decay of (a;): a boundary case

As pointed after Proposition 3.1, noncausal ARMA and fractionally integrated processes whose MA
coefficients decay at geometric and hyperbolic speed satisfy condition (3.4) for all v > O.17 Such processes
hence admit finite conditional moments at least up to order 2a 4+ 1. Theorem 5.1.3 by Samorodnitsky
and Taqqu, Theorems 1.1, 1.2 in Cioczek-Georges and Tagqu (1995b) however point to the fact that
intermediate cases may arise where moments are finite at most up to order o+ v for some value of v such
that & < a+v < 2a+1. We propose here a noncausal MA (co) process with super-exponentially decaying
MA coefficients which can reach any intermediate value of the boundary. Consider the noncausal process
defined for all t € Z by X; = E,‘:ﬁ% apeirr with a, = exp{1 — e} a > 0, for all k > 0, and let (g;) be
an i.i.d. symmetrically distributed a-stable error sequence. Letting v > 0, the general term of the series

in (3.4) reads for all k > h

atv _ oty
(ap + aj_p) 2 lapl™ = (14 (ah—n/ax)?) * |ax|®
a—+v

= (1 + exp{2e® (1 — e*ah)}) * exp{—a(l — %)}

~  exp {eak[(l —e ™) (a+v)—a] + a},

k—+o0

which is the term of an absolutely convergent series if and only if (1 —e~%")(a 4+ v) — a < 0, hence if and

only if

u<a<1_1€ah1). (A1)

Because we assume (¢¢) to be symmetrically distributed, Theorems 1.1 and 1.2 in

Cioczek-Georges and Taqqu (1995b) allow to consider (3.4) and (A.1) as sufficient and necessary

17Provided there are no index k such that ax_p # 0 and ax = 0.



conditions for the finiteness of E[|X; |7 X¢], 0 < v < min(a + v,2a + 1), in most configurations of
a and v (see within Cioczek-Georges and Taqqu (1995b) for details). In particular, one can see that
for a fixed prediction horizon h > 1, the upper bound (A.1) on v can lie anywhere between 0 and +oco
according to the parameter a. The smaller a > 0, i.e., the slower the decay, the higher the bound on
v, and conversely, the greater a (faster decay), the smaller the upper bound on v for the existence of
conditional moments.

Furthermore, contrary to the case where (a;) decays at geometric or hyperbolic speeds, the finiteness
of E[|X¢41|7|X¢] also depends on the prediction horizon h. Most notably, for any fixed decay speed a,
on can see that the bound (A.1) tends to 0 as h — 4o00. For a decay parameter a small enough, the
moments E[|X;47|7|X¢] may thus be finite up to order 2« + 1 for short-term prediction horizons while

being finite only up to order « for longer-term prediction horizons.

A.2 Interpreting p®" using point processes

The quantity p®" appearing in Example 3.1 and subsequent comments has the intuitive interpretation of
a survival probability at horizon h of a bubble generated by (1.1). This conclusion can also be reached
using point processes under the less restrictive assumption that the errors of (1.1) belong to the domain
of attraction of an a-stable distribution. Consider n observations X7, ..., X, of (1.1) where now (&) is

an i.i.d. sequence of random variables such that:

B . P(Eo > 33)
J— a ™= | - .\
B(leol > 2) =2™"L(z),  and  lim g =

— c € [0,1],

with L a slowly varying function at infinity. Let a,, = inf{u : P(|gg| > u) < n~!}. Then, adapting Section
3.D in Davis and (1985), we can study the time indexes k € {1,...,n} for which a,!X} falls outside
the interval (—z,x), for z > 0, that is, the time indexes for which (X;) undergoes extreme events. The

corresponding point process converges as the number of observations n grows to infinity:
n d “+o0o
Z 5(k/n,a;1Xk) ( - N Bw) — Z £k5Tka
k=1 k=1

where § is the Dirac measure, B, = (0,+00) X ((—oo,—w) U (x,—l—oo)), {YT,k > 1} are the points of
a homogeneous Poisson Random Measure (PRM) on (0, +00) with rate x_a,lg and & = Card{i € Z :

Jilpt| > 1} where {Ji, k > 1} are i.i.d. on (1,+c0), independent of {Y;}, with common density:

f(z) = ozz_a_lll(lj_koo) (2). (A.2)

1
8See Daley and Vere-Jones (2007): {Yx,k > 1} are the points of a homogeneous PRM on (0,+00) with rate z=¢ if

and only if, for any ¢ > 1, nonnegative integers ai,...,ar and b1,...,b; such that a; < b; < a;41, 9 = 1,...,4, and any



The sequences {Y} and {{} are interpreted (see Leadbetter and Nandagopalan (1989)) as describing
respectively the occurrence dates of clusters of extreme events and the size of these clusters (i.e. the
number of co-occurring extreme events, which here corresponds to the duration of bubble episodes).
Since & = Card{i € Z : Ji|p'| > 1} = arg max;>{J, > |p| ™'}, we can obtain explicitly the distribution
of the bubble duration using (A.2). For any h > 1,

P(g = h) =P(J; > |o|™") = |pl",

which as announced, is precisely the probability parameter of the Bernoulli variable intervening in the

suggested interpretation in Example 3.1.

B Preliminary elements for the proof of the main results

B.1 Notations for the proofs of Theorem 2.1 and Proposition 2.1

The proof of Theorem 2.1 is quite involved and relies on techniques wused in
[Cioczek-Georges and Taqqu (1994), Cioczek-Georges and Taqqu (1998)]. It consists in differenti-
ating the conditional characteristic function of X2|X; up to the fourth derivation order and evaluating
the derivatives at 0 to obtain the conditional moments. Formal computation of the derivatives yields
divergent terms for the third and fourth order derivatives, as well as for the second order derivative
when 1/2 < o < 1 and special manipulations are needed (in particular the «appropriate integration by
partsy» in Cioczek-Georges and Taqqu (1994) (p.106) as well as an additional manipulation to obtain the
fourth derivative). We first introduce some notations to make the presentation of the proof as compact
as possible, then provide the derivatives in Lemma B.1 and finally show Theorem 2.1 by obtaining the
functional forms of the conditional moments.

Let X = (X1, X2) be an a-stable vector, with 0 < a < 2, a # 1, and spectral representation (I, 0).

Its characteristic function will be denoted ¢x (¢,r) for any (¢,7) € R?, and reads

ex(t,r) =exp {— /52 g1(ts1 + T'SQ)F(dS)} , (B.1)

where ¢1(z) = |z|* — iaz<* for z € R, and a = tg(ra/2). As we assume o1 > 0 so that X is not
degenerate, the conditional characteristic function of Xy given X; = =z, denoted ¢x,|,(r) for r € R,
nonnegative integers ni,...,ng:
4 .
T¥(b; — ag)]™

P(N(ai,bi} =n;,i= 1,...,E) = H%exp{—x_&(bi —ai)},

i=1

where N(a;, b;] denotes the number of terms of { Y,k > 1} falling in the half-open interval (a;,b;], i =1,...,~.



equals
1 .
=l [ e t,r) — ox(t,0))dt. B.2
bxalr) =14 g [ (ox(tr) — ox(4,0) (B.2)
where fx, denotes the density of X; ~ S(a, 81,01,0). The following notation of the H family function
will be more handy than that in (2.8): for any y > —1 and 8 = (61,62) € R?, define the function

H(y,0; -) for x € R as

+Oo o,
H(y,0;x) = / e T Y (91 cos(ux — afrofu®) + Oy sin(ux — aﬁlaf‘uo‘))du, (B.3)
0
For z € R, denote also,

g2(2) = 2~071> —da|z|*7 (B.4)

g3(2) = |2|*7% —iaz<"%, (B.5)

Often, we shall invoke functions of the form

" /R e~ o (8, 1) [ (t, 1) . FPm (2, ) (B.6)

where m < 3 and the f;’s will be functions of the type fi(t,7) = [5, g;; (ts1 —1—7“32)3]1“"35"1“(6[3), for j; = 2,3,
ki, ¢; € Z for which f; is well defined and positive integer exponents p;’s. As a shorthand when no

ambiguity is possible, we shall denote functions like (B.6) by

e o \P e o\ P2
A(/ gj1311321> (/ gj2512322>
SQ 52
up to the m'™ term.

B.2 Lemma B.1 for the proof of Theorem 2.1

Lemma B.1 Let (X1, X2) be an a-stable vector, 0 < a < 2,a # 1, with conditional characteristic
function ¢x,, as given in (B.2). Letr € R. If1 <a <2, orif0 <a <1 and (2.2) holds withv > 1—a,

the first derivative of ¢x,|, is given by

¢§i|z(7") = 277]5(?(36)/&(/52 9282>- (B.7)

If1/2 < a < 2 and (2.2) holds with v > 2 — «, the second derivative is given by

¢g§;|x(7’) = ﬁ?(az) [z’xA(/Sz 928381_1) + a{A(/S2 928%51_1) (/52 9281> - A(/S2 9283)2}17 (B.8)

If 1 < a <2 and (2.2) holds with v > 3 — «, the third derivative is given by

o () = ﬁ‘j‘@) (ix((a ~ DI - aby) + (I — ) + ala — 1) (I + I - 217)), (B.9)



with

I = A(/ 9353511), Is = A</ 925%511) </ 935251>,
SQ SQ 52
I, = A(/ g282> (/ 928381_1>7 Is = A(/ 9281) (/ 938381_1>7
SQ SQ Sz SQ
3

I3 = A(/ 9282> , I; = A(/ 9252> (/ 938%)7

So So Sa
I, = A(/ 9281> (/ 9282) ( 928581_1)-

S S S5

If3/2 < a < 2 and (2.2) holds with v > 4 — «, the fourth derivative is given by

(4) - _ _ _ 27 a2
qﬁxﬂx(r) = S fx(2) [ iox (a(3J1 2J2) + (« 1)<2J3 3J4 + J5)) + ax®Js — (. — 1)a*J;
—l—a?(a— 1) <J8+J9—|—J10 —3(2J11 + Jio —J13)> (B.10)
+ Oé(Oé — 1)2<4J14 — 3J15 — J16> + Oé3 <3J17 — Jlg — Jlg)] s
with

C Proof of Lemma B.1

For each of the derivatives, the proof involves two main steps: 1) justifying inversion of integral and

derivation signs 2) computation of the derivative.



C.1 Justifying inversion of integral and derivation signs

C.1.1 Justifying inversion: First derivative

Case a € (0,1)

Assume a € (0,1). We begin with the first derivative of the imaginary part of ¢x,|,.

% (Im¢X2\m (T))

= [, s (sl Ts) ( _ / <a> )
27er1 h—>0h/ [ fr—a Sz(t51+(r+h)52) Fids)

e fsz [ts1+rs2|*T(ds) sin <tZL‘ - a/ (ts1 + T82)<a>r(d5)> ]dt
Sa

— sin (tx — a/52 (ts1 + r32)<">I‘(ds)> ]

X exp{ - /S |ts1 + T‘SQ’QF(dS)}dt
2

- 27rf)1cl(ar) Ay R [GXP{ - /32 lts1 + (r + h)szlo‘I‘(ds)}
— exp{ - /s |ts1 + TSQ‘QF(dS)}]

X sin <t93 - a/ (ts1+ (r+ h)52)<0‘>F(dS)> dt
Sa
=11 + Is. (Cl)

The integrand of I; converges to

—Qa COS (m — a/
S

Using the mean value theorem, the triangle inequality and the inequality —|z 4 y|* < —|z|* + |y|* when

(ts1 + 7“82)<a>r(d8)> X / |ts1 + 50| LsoT(ds) x exp{ - / |ts1 + 7“52|°T(ds)}
S Sa

2 2

0 < a < 1, the integrand of I; can be bounded for any h, |h| < |r|, by

eost| (|71 /.

§2]a|e‘r|a"§e"7?|t‘a/ Its1 + 82| 1T (ds), (C.2)
So

(ts1 + (r + h)sg)<*” — (ts1 + 7"32)<a>‘I‘(ds)) exp {/S —|ts1|* + \TSQ\OT(ds)}
2

1/a
where 09 = (fsz \32|0‘F(ds)) , ¥y € R, and we used the bound

’(tsl + (r+ h)s9)<*” — (tsy +1rs2)<*”

- < 2|tsy —i—rsQ]O‘_l\sQ], (C.3)




for ts1 +rse # 0, which is a consequence of ||1+ z|<*” —1| < 2|z|, for z € R (see Lemma C.3 (1) below).
Bound (C.2) does not depend on h and is integrable with respect to ¢. Indeed, invoking Lemma C.5 with

n=a—-1,b=p=0,and (2.2) withv >2—a>1—-«

/ oot
R Sa

a—1 4|
t+ 022 1] (ds)dt — / / e~ 1|2 51|77 1T (ds)dt
S1 R JSy

alsle a—1
s/ |51]°‘_1/ e ¢4 52" ot e (as)
So R S1
< const / 11|21 |50V T(ds)
Sa
< const/ |s1|7¥T'(ds)
Sa
< 400, (C4)

and the integrability with respect to t follows from the fact that [p et 1% |¢t|*=1dt < +00. Hence the
Lebesgue dominated convergence theorem applies to I3 and we can invert integration and derivation.

Focusing on I, its integrand tends to

—a/ (ts1 + 1rs9) 1> 5oT(ds) exp {—/ lts1 + TSQ’QP(dS)} sin (ta; - a/ lts1 + 7’82\<°‘>I‘(ds)> .
Sa Sa Sa

Using the inequality

‘ (ts1 + (r+ h)s2)®* — (ts1 + 7s2)”

) ‘ < Itsr + rso|® s,

for tsy +rsy # 0, which is a consequence of ||1 4 z|* — 1| < |z|, for z € R (Lemma C.3 (¢) below) and the

inequality |e=% — e Y| < e Yel*Yl|z — y|, for 2,5 € R, we can bound the integrand of I for any || < ||

}

1
m |ts1 + (r + h)so|* — |ts1 + rs2|°T'(ds)
Sa

by

exp {—/S lts1 + rsﬂ“f‘(ds)} exp{’/g [ts1 + (r + h)so|* — |ts1 + rsa2|*T(ds)
2 2

X

< 2l —of It

a—1
t 7“8—2‘ 51|11 (ds).
So S1

The integrability with respect to ¢ is deduced as for (C.4) using Lemma C.5 withn =a —1,b=p = 0.
Thus, the Lebesgue-dominated convergence theorem applies to I; and we can invert integration and
derivation. The real part of ¢x,|,(r) can be treated in a similar way, allowing us to derivate under the

integral.



Case a € (1,2)

Assume a € (1,2). Just as for the case a € (0, 1), the imaginary part of ¢x,, is given by (C.1)

d

(oo (r) = I + Do,

The integrands of I; and I still converges to the same limits, however a different argument is needed to
bound them. For |h| < |r|, the mean value theorem, the triangle inequality and the inequality of Lemma

C.4, yield the following bound for the integrand of Iy

(711,

where y € R. By the triangle inequality and the mean value theorem, we have for some u € ( min (tsl +

(ts1 + (r + h)sg) <" — (ts1 + rsz)<a>’I‘(ds)> elrl®og g=21 "ol (C.5)

(r+ h)sg,ts1 + 7"32) , Max (tsl + (r+h)sg, ts1 + rsz)>

/ (ts1 + (1 + h)s3)<Y — (ts1 + rs2)<*"T'(ds)| = ‘ / ahsy|u|* 71T (ds)
SQ 52

< a]h]’/ 11 + 2/r|2~1T (ds)
Sa
< alh[D(So) ([t~ + 2[r|*7) (C.6)
Thus, (C.5) can be bounded by
ala|D(Sp)elr" 78 72 M ([¢je= 4 g2,

which is certainly integrable with respect to ¢ on R for « > 1. Let us now turn to I5. We have again by

the mean value theorem,

|ts1 + (r + h)so|® — |ts1 + rsa|®
h

<a 2,
if |h| < |r|, and thus
o f52 |ts1+(r+h)s2|*T(ds) o f52 ts14rsa|*T(ds)

h

< max <e f52 |t51+(7’+h)s2‘°‘1"(ds)7 e f52 |t51+T82aF(ds)>

y / [ts1 + (7 + h)sa|* — |ts1 + rsa| I (ds)
Sy h
< T(S)el2r" =2~ o421 4 2fr|o), )

by Lemma C.1 (C.18) and Lemma C.4. The latter bound is again integrable with respect to ¢t on R.
d

Hence the dominated convergence theorem applies to I, I» and therefore to . (Imqﬁ X2‘m(7“)) and we can

invert the integration and derivation signs. Similar arguments show the dominated convergence theorem

applies to the real part of the conditional characteristic function as well.



C.1.2 Justifying inversion: Second derivative

Case a € (1/2,1)

In an expanded fashion, <z5 X, |$(r) can be written,

—Q

m {Jl —aJy — i(J3 + aJ4)}, (08>

1
q&i\x(?") =
with,

— ts1+rsa|*I'(ds
"= /e Jo, ltsi+rsojerids)
R

A

tx — a/ ts1 + rso)<*T'(ds)
Sa

— ts1+rse|*I'(ds) .
r)= / e Js, | T iy
R

/N

tx — a/ (ts1 + rse)<*7T'(ds)
Sa

— ts1+rso|*I'(ds) .
r) = / e Js, | ) iy
R

/N

r) = / e Js, tsrtraa|® U)o 4a — a/ (tsy + rs2)<*"T(ds) / |tsy + 752|* LsoT(ds)dt.
R Sa So

tx — CL/S2 tsy + rs2 <°‘>F(ds)>

A

To obtain d)g?g'x(r), we will show that the dominated convergence theorem applies to Ji. Let us consider,

Ji(r) = hm 1o / [exp - /52 lts1 + (r + h)82|°‘f‘(ds)} cos (tx - a/sz(tsl + (r+ h)52)<a>r(ds)>
x /S (ts1+ (r + R)s2)<*~ 1> 5T (ds)
- exp{ - /S2 lts1 + r52|°T(ds)} Ccos (ta: - a/s2 (ts1 + TS2)<°‘>I‘(ds))

X / (ts1 + r52)<0‘_1>321“(ds)] dt
Sa

_ limlll/R [exp{—/& ]tsl—i-(r—i-h)sQ\oT(ds)}—exp{—/SQ |t31+r32\af(ds)}]

h—0
X COS (tm — a/
Sa

1
+lim - [ exp{ - / ts1 + (r + h)s2] “T(ds) ) (C.9)
h R Sa2

(151 + rs) <> T(ds)) / (ts1 + 159) < 1> soT(ds)dt
So

h—0

X [cos (tw - a/SQ (ts1+ (r+ h)52)<a>1“(ds)>
— cos (tm — a/52 (ts1 + T52)<O‘>F(ds)>]
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X / (tsy + 189) <" 1> 55T (ds)dt
Sa

+ }}L% flL/Rexp{ - /52 |ts1 + (r + h)82|OT(ds)} cos (tw — a/ (ts1+ (r+ h)52)<o‘>F(d8))

Sa
X [/ (tsy + (r 4 h)so) <" 1> s (ds) — / (ts1+ 1“52)<0‘1>52F(d5)] dt
SQ 52

= K1+ Koy + Kj. (ClO)

It can be shown that the dominated convergence theorem applies to Kj following the proof in

Cioczek-Georges and Taqqu (1994) (p.105) for I;. Consider K5. The integrand converges to

aa( / Itsy + r82|0‘152F(ds)> ( / (ts1 + r52)<°‘1>32f(ds)>
SQ SQ

X sin (ta: — a/ (ts1+ 7"32)<a>I‘(ds)) exp{ — / |ts1 + TSQ‘ar(dS)}.
S Sa

2
Using the mean value theorem, (C.3) and the triangle inequality, we can bound the integrand for any

|h| <|r| by
1
‘h/s (ts1 + (r + h)s2) <" — (ts1 + rsy)<*"T'(ds)
2
% ‘Sin(y)|62|rl%?e*|t\“0i‘/
Sa

< 2etog |
Sa

where y € R. The bound (C.11) does not depend on h and is integrable with respect to ¢: invoking (2.9)

a—1
2 fss 17T (ds)
81
L 2
a— o
t+7“5—2‘ \sllalf(ds)> et (C.11)
S1

Lemma 2.2 in Cioczek-Georges and Taqqu (1994),

-1
e ) 57127 51|20 (ds)T (ds')dt (C.12)
2 2
_ / / / =T 11" |4 202 4T (ds)T(ds)
R JSy JSo
= / / |s'1|°‘_1|s1|0‘_1/ of it ‘t+r52 o 1‘t+r ‘t+rs2 - l‘t‘(kl
S JSo R 81 S1

32a 1
N P ‘t
S1

! o—
§/ / |s/1|a—1|81|a—1/ e—al‘)‘|t|u “t_'_rslz a—1 B ’t’a—l
So J Sy R 51

a—1
e I
S1

=

— |t|2a—2] dtT'(ds)T(ds")

a—1

s
’t—{—rj‘
51

|t|a_1] dtT'(ds)T'(ds")

11



2
< const(/ \31|°‘_1F(ds)>
So

< 400, (C.13)

where const is a constant depending only on a and ¢f'. The integrability of (C.11) follows from (C.13), the
fact that [p e=7T 1% (¢|2972dt < 400 and (2.2) with v > 2 —a > 1 — a. Hence the dominated convergence

theorem applies to Ks. Let us now turn to K3: «this is [a] case when appropriate "integration by parts'
/

h
is needed» (Cioczek-Georges and Taqqu (1994)). With the change of variable t' =t + 2,
51

h—0 5

K5 = lim ;L l/Rexp{ - /S2 lts1 + (r + h)52|°‘F(ds)} cos (tw - a/s (ts1+ (r+ h)82)<°‘>F(d8))

h32 3,2 <a—1> 1 1 <a— 1> /
g (t+ o + 7 —=) 8987 ['(ds")dt
2 1 1

- /Rexp{ - /S lts1 + (r + h)52|ar(ds)} cos (ta — a/ (151 + (r + h)s2)<*>T(ds))

Sa

/
x/S (t+T82)<a BT ¥ (ds’)dt]
2 1

(t- }Z)sl + (r+h)sy

“pmi L L el L
X COS ((t — i;i):): — a/s2 ((t — }:S,é)sl + (r + h)32) <a>F(ds))

1 1

(ds)}

—exp{ - /S b5y + (r + h)sel*T(ds) }cos (ta - a/

(ts1 + (r + h)52)<0‘>f‘(ds))]
Sa

g <a—1> 1
X (t + r?) shs) ST (ds)dt
hst hst sz
e ) )
h%h// hSQ [cos( t 5 )x a 5 ((t 5 )31 + (r+ h)sg (ds)
— cos (t:p - a/ (ts1+ (r+ h)52)<a>I’(d8))]
Sa
s <a—1> 9
X exp{ - / lts1 + (r + h)SQ’aF(dS)} (t + 7‘?) sh7|sh|* 72T (ds")dt
Sa 51
b L]
hlg%) h Jr Js, LS/,Q exp
51
hsh hs’ <oz
><cos((7f—Sl):c—a/S2 ((t—s,>81+(r+h)sg> F(ds)>

1

/ (e

(t- }:9,12)31 + (r + h)sg

F(ds)} —exp{ - /S b1+ (r + h)SQIOT(ds)}]

s <a—1> 9
y (t—i—r;) 52| (420 (ds')dt
1

12



- K31 + K32.

The case of K3y is similar to that of Is in Cioczek-Georges and Taqqu (1994) (p.106-108), the dominated

convergence theorem applies. We focus on K3;. Its integrand converges to

sin (tx - a/ (ts1 + r52)<°‘>F(d5)) exp{ - / |ts1 + r52|OT(ds)}
52 52

X (93 - oza/s |tsq +T82|a_151F(d8)> </S (ts) + rsh)<o—1> ’22 ‘. (ds ))
2 2

Using the mean value theorem and Lemma C.3 (t2), we can bound the integrand of K3y for any |h| < |r|
by

a—1
s[4

’Sin(y)|€2lrl‘”0§‘e*|t\“0?/
Sa

1

/
s
t—i—r—?
51

_hsa, /. (- "o+ (o + h>82)<a> (514 (1 + h)s2) 7 T(ds) ) ‘F(ds’)

1
a—1 5
a o |4 o _
< @risetitot | 9215417 (Jal + 20
52 52
a o _ |f|a e
< ‘.’L’|62|T‘ % e [t] 0‘1/

a—1
Sa

sh’|s1 2720 (ds')
+ 2ae21 73 e_|t|a”1/ /
Sa

The integrability with respect to ¢ of the first (resp. second) term is obtained in the same way as for

/
s
t—{—r—?
51

(rem) ]a1|sl|r(ds)> r(ds')

/

S
t—i—r—?
51

a—1

L5
7
51

a—1
b+ (r+ h)%] |s1]55%|} > 2T (ds)T(ds').

(C.4) (resp. (C.13)) and concluding using (2.2) with v > 2 — a. Thus, the dominated convergence
theorem applies to K31, which finally shows that the dominated convergence theorem applies to J{. The

other J’s can be treated in a similar fashion.
Case a € (1,2)

After derivation, ¢X |z( r) is given by (C.8) with functions J’s of the form

_ ap(d
/ e fSQ [ts1-+raaf*T( S)trig <tz — a/ |ts1 + r52]<°‘>F(ds)> / (ts) + rsg) < 1> or a1l (ds)dt,
R Sa Sa
which are similar to deal with. Consider for instance J;(r). It’s derivative can be written as in (C.10)

J{(T) =K+ Ko+ Ks.

13



For the integrand of Kj, we can use (C.7) and the triangle inequality to bound it by
F(52)6\2r|ag§1e—zl—ag‘f|t|aa(|t|a—1 + 2|T‘a_1) / ]tsl + T82|a_1‘82|r(d5).
2

Since 0 < o — 1 < 1, we can further bound it by
F(52)6|2r\aa‘23‘6—21*0‘0?|t\°‘a(’t’a—l + 2’7,|o¢—1>2’

which is integrable with respect to ¢t. The same bound can be obtained for the integrand of K5 using
the mean value theorem, (C.6) and Lemma C.4. As for K3, there is no need to perform "appropriate

integration by parts" since 0 < a — 1 < 1. Its integrand converges to

(a—1) exp{ - /S |ts1 + rSQ\aF(ds)} oS (tw — a/s (ts1 + 7“32)<°‘>I‘(d5)) /S |tsy + 752|* 2537 (ds).
2 2 2

Using Lemmas C.4 and C.3 (ut), it can be bounded for any |h| < |r| by

2 « « — «@ «
PGS o5 =2 ot /S Its1 + rs2|2 2| hsa|T(ds),
2

< T(Sy)el2r108 =2 ot il /
So

2 2
t+ 2277 s |21 (ds).

S92 ’0‘_
S1

We can show that this bound is integrable with respect to ¢t using Lemma C.5 with n = o — 2, b = 0 and
p = 0, the fact that [ e=2 7T 4924t < 400 for o € (1,2) and (2.2) with v > 2 —a. The dominated
convergence theorem thus applies and we get

—Q

@
%1 ") = 5 )

[_ O‘/Re_m(pX(t’r)(/Sz g2(ts1 + TSQ)SQF(dS))th

+(a—1) /R e_imSOX(t’T)(/SQ g3(ts1 + TSQ)S%F(dS))dt‘| , (C.14)

with g3(2) = |2|*72 —iaz<*"2> for z € R. Integrating by parts the terms |ts1 +7s2|<“~2> °* =2 involved
in the expression [p e " px(t,7) ( s, 93(ts1+ rsz)sgf(ds))dt yields the expression (B.8) obtained in the
case a € (1/2,1). Hence, the same functional form for the second order conditional moment (2.4) in

Theorem 2.1 holds when o > 1.

C.1.3 Justifying inversion: Third derivative

Let a € (1,2) and let (2.2) hold with v > 3 — a. Starting from the second derivative of gbg?;u(r) given at
(B.8), with obvious notations

O (r) [i211(r) + a(Ls(r) = Io(r)]

. —Q
B 27TfX1 (.Z‘)

14



On the one hand, it can be shown that the dominated convergence theorem applies to I using the
usual arguments the fact that (2.2) holds with ¥ > 3 — @. On the other hand, after some elementary

manipulations, we get that

itz t <a>p(ds) — [. |t oT(d
Is— I = / e % r-‘rmeQ( s1+752) ( S)e f52 [ts14rs2|*T (ds)
R
X / / {(tsl + 189) <O (5] 4 755) ST — aPts) + rso| T ts] 4 rsh| 2T
Sy /S,

— ia(]tsl + 79| @ (ts] + 1sh) ST (tsy 4 7s0) T |ts) + rs’z\a_1> }
X [sgsflsll — SQSIQ}F(dS)F(dS,)dt

The previous expression can be decomposed into terms of the form

/R/SQ /52 trig( —tr a/s2 (ts1+ T52)<a>r(d8)>

% e f52 [ts1+rs2|*T(ds)

X |t81 + 7“32’<O‘_1> or a—1 X |t8/1 + ?”8/2|<a_1> or a—1
X [3%31_133 - sté}F(ds)F(ds’)dt,

where «trig» is to be replaced by a sine or cosine function. Each of these terms can be treated in a similar

way to show that the dominated convergence theorem applies. We will consider
J(T) — / / / cos (tm _ a/ (tsl 4 T‘Sg)<a>r(d8)>€_ f52 [ts1+rs2|*T'(ds)
R SQ SQ SQ
X |tsy + rso|* T (ts] + rsh) <> [s%sflsll - szs/z]F(ds)F(ds/)dt.

We have

J(r) = %ig})}ll/R/SQ /52 lcos (tx - a/s2 (ts1 + (r+ h)32)<a>F(ds))

— cos (tm — a/s2 (ts1 + r32)<“>1“(ds)>1

o f52 [tsi+(r+h)s2|*T(ds

X )|t31 + (r+ h)32’a71(t811 +(r+ h)s’2)<“*1>

X [s%sfls’l - SQS%}F(dS)F(dSI)dt

1
+ lim —/ / / cos (tx - a/ (ts1 +rsz)<a>f‘(ds)>
h—0 h Jr Js, Js, S

y le S, lsrtr+hysaloTias) [ t51+r32|“F(ds)]
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X [ts1 + (1 + B)so| 7Lt + (r+ h)sh) 1> 351 s} — sash| D (ds)T(ds')dt

1 — s1+rsa|® S
g [ s <m_a/ (f81+r82)<a>F(ds))e Js, lstrsal ()
h—0 h R JSy JS, S5

X ||tsy + (r + h)sg|* ! — |tsy + 7“32“‘1]

x (tsh + (r + h)sh)<*"1> [s%s{ls/l - SQSQ]F(ds)F(ds’)dt

1 - s1+rs2| s
i 7/ / / o8 <tx a a/ (ts1 + Ts2)<a>F(d8))6 sz [ts1trsa| T (ds)
h=0h Jr Js, Js, Sa

X | (ts) + (r+ h)sh) <> — (ts) + rs'z)@‘_lﬂ

X [ts1 + rsg|* [S%sflsll - 828/2:|F(d8)r(d8,)dt
=K1+ Ko + K3+ Ky.

We will show that we can apply the dominated convergence theorem to the K;’s. Let us begin with Kj.

Its integrand converges to

- “I'(d
aa/ sin <tx — a/ (t81 + 7“52)<°‘>F(ds)>e f52 [ts1+7rs2|*T(ds)
SQXSQXSQ 5'2

X [ty + |2 (b + ) <Ot 4 7L sy Lsh — sash|D(ds)D(ds')D(ds”).

For any h, |h| < |r|, the integrand of K; can be bounded using the mean value theorem on the cosine

and Lemma C.4 by

lal

1]

(205 =21 2ot il

/ (ts1 + (r + h)$2)<0> — (ts1 + rs2)<*>T(ds)
Sa

X . (C.15)

/S /S 51+ (r + )2 054+ (7 + B)s) <> [B3s7 8] — sosh| D(ds)T(ds’)
2 2

Hence, by inequality (C.6) and given that 0 < a — 1 < 1, the quantity (C.15) can be bounded by

a’a‘P(S2)62“\r\"‘ag‘ef?*“aﬁt\"‘ (‘t’afl + 2‘7,’0471)

X

/S /S ts1 + (r 4 h)sa|* L (tsh + (r + h)sh)<*"1> [s%sflsll — st’Q}F(ds)F(ds’)
2 2

< alalT(Sy)e "8 2 "I (4ot 2fr )3 (TS + [ [T (ds))
Sa
< const 6_217(1"104‘“0{(|1t|o‘_1 + 2|2 13,

where const is a finite nonnegative constant because of (2.2) with v > 3 —« > 1 and the fact that I' is a

finite measure. This last bound, independent of h, is integrable with respect to ¢t on R. The dominated
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convergence theorem applies to K. Consider now K». Its integrand converges to
_ ap(d
a/ cos (tx _ CL/ (t31 +T82)<a>r(d8))€ f52 |ts1+rs2| F( S) (C.lﬁ)
SQXSQXSQ S2
X |tsy + rsg|® T (ts) 4+ rsh)<OTI> (ts] +rshy) <17 sh [s%sfls'l - SQSIQ}F(dS)F(dSI)F(dS”)
By (C.7), the integrand of K can be bounded by

F(52)6|2r\aa§‘6—21*0‘0?|t\°‘a(’t’a—l + 2’7,|o¢—1>

Lo s o Byl (5 + (4 )< [0 — sasy] (s ()
2 2

Which can be further bounded by an integrable function of ¢ in a similar way as for the integrand of Kj.

The dominated convergence theorem applies to Ko. Consider now K3. Its integrand converges to

(Oz _ 1)/ / coS (tx _ a/ (tsl 4 T82)<a>f‘(d8))6_ fSQ [ts1+7s2|*T'(ds)
SQ S2 S2
X (tsy + 1s9) <2727 (ts] + (r + h)sh) <17 sy [3%31_15/1 - SQS/Q}F(CZS)F(C[S/)

Using Lemmas C.4, C.3 () and the triangle inequality, the integrand of K3 can be bounded by

]. [a'9P s — QO «
el 2R [ gy a2t 4 (4 B) | [sBsy ) — sash P (ds)T(ds)
Sa J.So

|hl
S e|'r‘o‘gg‘r(s2) /

i 6—21—ag?|t|a|t51 +T52|a—2(|t|a—1 +2’T|a—1)’1 + |81|_1‘F(d8)

2

To show the integrability with respect to t of the last bound we make use of Lemma C.5 with n =
a—2,b=0,aa—1and p =0 and the fact that with 1 < a < 2, [ e‘217a"‘11|t|a|t|a_2dt < +oo and
Jr e 2 o ¢ 203t < 400

—a ol S =2
1+]51|_1’/Re_21 ot It |51|0‘_2‘t+rﬁ‘ (|t]*~ + 2|r|*~1)dtT (ds)

e‘r|"‘o"2"1—w(5’2) /
Sa

o o a—2
< elrl ”2F(SQ)/ t+rz—2 — |t 4 |22 [t e
S 1

1+ |51‘71’|51’a72 [/Rezl_a”?“'a

2

oot [ ez
R

/ o2 ot

R

L el
R

+ / 8—21*“0? s |t|2a—3dt
R

a—2
o I e
51

dt} I'(ds)

< e\r\aasp(&)/ ¢t
S

Lot [sa] 7 [s1 |27

a—2
e I e
51

2

a—2
= I VTl

S1

+ 2|r[t / e‘2la”?t|a\t“_2dt]1“(ds)
R
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1+ [s1] 7! |1 * T (ds)

< const /
Sa

< const (/S 51|72 (ds) —I—/S |31|0‘_3F(ds)),
2 2

which is finite because of (2.2) with v > 3 —a. Hence, the dominated convergence theorem applies to Ks.

The case of K is similar, using Lemma C.3 (12) instead of (+) to bound the term |(ts} + (r+h)sh)<*"2> —

(ts] + rsh)<®=2>|. The dominated convergence theorem applies to all the K;’s and we can invert the

integration and derivation signs in J'.

C.1.4 A special manipulation to obtain the fourth derivative

Before derivating qﬁ%‘x, we follow the advice stated in Cioczek-Georges and Taqqu (1998) (p.48) and
integrate by parts the terms containing [g, g3(ts1 + rs2)s3s7 'T'(ds) and Js, 93(ts1 +7s2)s5T (ds), namely
11, Is and I7. This is done in order to guarantee the validity of the representation of the fourth derivative
when (2.2) holds for any v > 4 — «. If we did not do this step first, the obtained fourth derivative would
be valid only when (2.2) holds with v > 5 — a. We obtain

(3) —a : 2
o I — Io+ Igo — 2179 ) — 2“1
Dy (1) = 2 s (@) [lal'( 1 — I2+ Is2 72) D)

o? (13 — Iy —2I71 + 161) + Oé(Oé — 1) (15 — Ig3 + 2[73)‘| , (017)
where, in addition to I, I3, I4 and I5 defined in the Lemma,

I11=A< gas3sy ) 9251> Iy =A < 9252512

Is1 = A( 925587 ) < 9281> , I = ( 925357 1) ( 9281> (/S 9282>7
2
Igo = (/ gosasy )< 9281> I79 = (/ 925357 1)( 9282),
Iog = A(/ 9283512) </ 935%>, I3 =A</ gzsgsll) (/ 938281).

Sa Sa S2 SQ

Both justification and computation of the fourth derivative are obtained by starting from the above
representation of the third derivative.
C.1.5 Justifying inversion: Fourth derivative

Showing that the dominated convergence theorem holds when differentiating (C.17) is the most delicate
for the terms: I, I3 and I73 -the terms involving the function g3, that is, |ts; + rsa| to the power a — 2.

Arguments and bounds that have already been encountered can be used for the other ones.
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Let us show the dominated convergence theorem applies to I5. The cases of Ig3 and I73 are similar.

We decompose [5 into terms of the form

/ / / trig( —tx + a/ (tSl + rs2)<oc>1—a(ds)>€ fSQ |ts14+rs2|*T(ds)
R JS2 JS> S

X |ts1 + 7“32]0‘_1 or <O‘_1>]t8’1 + rs'2|°‘_2 or <O‘_2>s%sl_1sés'lF(ds)F(ds’)dt.

Consider for instance

J(r) = / / / COS( —tx —+ CL/ (tSl + T82)<a>r(d8))€ fSZ |t51+7’32|ar(ds)
R JSy JSy So

X |tsy 4 rso| @ |ts) + rsh|* 25557 Lshsi T'(ds)T(ds')dt.
We have

1
J(r) = }111;% . /R/S /S {]ts’l + (r 4 h)sh|*72 — |tsh + rsgyaﬂ |ts1 + (7 + h)sy|* !
2 2

X cOS ( —tx + a/ (tsi + (r + h)32)<°‘>F(ds)>
Sa
Xe Jss Itsl+(r+h)82|aF(ds)s%sl_lsésllr(ds)P(ds/)dt
.1 a— a— a—
+ ilzli%h/u@/sz /52 |ts) 4 rsh|*2 {\tsl + (1 + h)sg|* ! — |tsy + 752 1}
X coS ( —tx + a/ (tsi + (r + h)32)<°‘>F(ds)>
Sa
Xe Js, |t51+(r+h)82|aF(ds)sgsl_lslzsllf(ds)I’(ds')dt
. 1 / ! joe—2 a—1
+}1L1£6h/R/52 /52 |ts] 4 18| “|ts1 + rsa|
X lcos ( —tx + a/ (ts1 + (r + h)82)<a>F(ds)> — cos ( —tx + a/ (ts1 + r32)<a>F(ds)>]
SQ 52
Xe Js, |t81+(r+h)82|aF(ds)s%sl_lslzsllf(ds)I’(ds’)dt

1
+lim—// / |t + rsh|*2|ts) + rsg|®
=0 h Jr J5y Jss

X COS ( —tr+ a/ (ts1 + 7“52)<O‘>F(ds))
Sa

x [e‘ Js, orttrsalri@s) _ = o, 'tmmlar(dﬂ s3sy s\ D(ds)L(ds)dt
=K1+ Ko+ K3+ Ky

The integrand of Ky can be bounded using inequality (C.16), (C.7) and invoking Lemma C.5 and (2.2)

with ¥ > 4 — . The integrand of K3 can be bounded using (C.6) Lemma C.4, and concluding with
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Lemma C.5 and (2.2) with v > 4 — a.. Focus now on Ks. Using Lemmas C.4 and C.3 (¢), its integrand
can be bounded by

e|2r|a «a TSQ a—2 TSQ

l—a,a
o5 672 of

s s

’t+
1

The later bound does not depend on h and can be shown to be integrable with respect to t using (2.2)
with v > 4 —«a, Lemma C.6 with n = a —2, 2o = 24 = 0, p = 0 and the fact that [ e~ clt*|t2(e=2) « 100
for a € (3/2,2). Let us now turn to the term K; which is more intricate. Appropriate «integration by

parts» is required. With the change of variable t = ¢ + hsz

- Js,
womtmy [
X COS <(t - }ff)x - a/52 ((t - }ZS,/Q>81 + (r+ h)82)<a>r(ds)>

1
a—1

|ts] + rsh|“ 25357 LshsydiT (ds)T(ds’)

tf—)51+(7“+h) F(ds)

s |t51+(r+h)52af(ds)]

/

x |(t- hi)sl + (r+h)sy

4 lim & /// fs |ts1+(r4h)s2|*T(ds)
h—=0 h Jsy J s,

X COS ((t — ?)x - a/52 ((t h, )81 + (T+h)82><a>F(ds)>

1 51
a1‘|

h / a—1
x U(t— %)51 +(r+h)sa| = |ts1+ (r+ h)ss

1

X [tsh + 1sh| @ 2s3s7 shs) ditT (ds)T(ds')

4 lim & /// fs |ts1+(r+h)sa|*T(ds)
h—0h Js, Js,

x [ ((t - Z‘?)x - a/s2 ((t - ?)31 + (r+h)82)<a>F(ds)>

1

— cos (tx - a/s2 <t31 +(r+ h)82) <a>r(d3)>]

X |ts1 + (r+ h)sﬂail\tsll + rsh| 25357 Lshs|diT (ds)T(ds’)
= K11 + K2 + Kis.
It can be shown that the generalised Lebesgue convergence theorem applies to the terms Ki; and Kio

following the proof in Cioczek-Georges and Taqqu (1998) (p.50-52). Regarding the integrand of Kjs,

using the mean value theorem on the cosine, Lemma C.4 and (C.6), we get for |h| < |r|

1 - _

— el?r17o8 =2 T N 1g) 4 (1 + R)so| |t + rh| 25351 ] sh)?
2

e
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<a>

h / h / <a>
et a/ ((t -2 4t h)sz) - <t51 F 4 h)sz) T'(ds)
51 Sa 51

X

1

’
hs?,

!
51

<

el2rl®og =21 ot [ts1 4+ (r + h)82|a_1|t8,1 + 7“5/2|°‘_253|51\_1|8'2|2

hs, hsf,

X ‘—, x‘ + ‘a—/
s s

1 1

/S Is1([ts1 + (r + h)szlo‘lf(ds)]
2

I a—2
|2r|®0y —2l-aga|te TSy 20 =102 ja—2
<e™ e 7 salsil T s s

x ([t + 27

| + |a|T(S2) ([t* " + !27“!‘“_1)] :

The last bound can be shown to be integrable with respect to t using Lemma C.7 with n = a — 2,
b=0,aa—1,2(a—1),p=0 and (2.2) with v > 4 — a. We established that we can invert the derivation
and integration signs in all the K;’s, hence in J'.

C.1.6 Lemmas for justifying the inversions in the proof of Lemma B.1

The following elementary lemmas, stated without proof, are used to establish Lemma B.1.

Lemma C.1 For x,y € R,

|€*I _ 6*y| S e~ min(x,y)‘x — y‘) (018)

le™® — Y| < e Vel Ul |z —y. (C.19)

Lemma C.2 Fora>1 and z,y € R,
max (217w — [y, 217y — |o]*) < o +y)* < 207 (Jol + JyI).

Lemma C.3 Forz€ R and 0 < b <1,

(0 |- <,

() | =] <202,
Lemma C.4 (Lemma 3.3, Cioszek-Georges and Taqqu (1998)) Fora > 1 and t,r € R,

exp { - /S ts1 4 2| T(ds) } < exp{ir|®o5 } exp{~2"~of|1|"}.

Lemma C.5 (Lemma 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds

forc>0,0<a<?2, -1<n<0and -1 —n<b:

/ exp(—clt]®)| £ + 2[" — |#7]|t]°d < const. |2
R
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with
0<p<b+n+1 for —1-n<b<0,

and

0<p<n+1l or b<p<b+n+n+1Lp<1 for 00

const. depends only on c, o, n, b and p.

Lemma C.6 (Corollary 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds
fore>0,0<a<2,-1/2<n<0and0<p<2n+1:

/ exp(—c\t\o‘)‘\t + 21|t + 23| — |t + 22|t + zﬂ”‘dt < const. (|z1 — 22" + |23 — 24|P),
R
where const depends only on ¢, a,  and p.

Lemma C.7 (Lemma 3.12, Cioszek-Georges and Taqqu (1998)) The following inequality holds
fore>0,0<a<2, -1<n<0,b>20and0<p<n+1:

/ exp(—c|t|0‘)‘]t +21|T— |t + Z2|”‘|t|bdt < const. |z — 2P,
R

where const depends only on ¢, a, n, b and p.

C.2 Computation of the derivatives

We detail the computation of the second order derivative highlighting where appropriate integration by
parts intervenes. The computations are similar for the third and fourth order derivatives.
Note that if f(z) = |z|°, for z,b € R, b # 0, then for x # 0, f'(x) = bx<0~"'> and if f : 2 — 2<0>,

then f’(z) = blz|*~!. This can be shown by distinguishing the cases > 0 and z < 0.

2 0
Dne() = 5O (1)

=——— lim — // e Cox(t,r + h)ga(tsy + (1 + h)sz)soT(ds)dt
7. (7) ;Hoh[ 2 s, ox( )g2(ts1 + ( )s2)s2T'(ds)
- / / eit’”gpx(t,r)gg(tsl+r32)82f(ds)dt]
R JSy
—« 1

m }ILILI?([) 5 /R/S e i {cpx (t,r+ h) — x(t, r)} g2(ts1 + (r + h)sg)soI'(ds)dt

—Q

1 .
+7lim—// e e t,r [ ts1+ (r+ h)ss) — go(tsy +rs }sfds dt
e @ Ay L ex(t,r)|g2(ts1 + (r+ h)s2) — ga(ts1 + rs2)|s2I'(ds)
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= Ay + As.

The first limit can be straightforwardly obtained:

o? . 9
A - —itx ¢ (/ " r d ) dt
LT 2mfx () /Re #x(hr) Sy g2(ts1 +1s2)s20'(ds)
a? 2
“sem (o)
2rfx, (@) \Js, 7
h
The second one requires appropriate integration by parts. With the change of variable ' = ¢ + ?7
1
A r
2T 27TfX1 h—>0 h [/52/ x (t,7)g2(ts1 + (7 + h)s2)s2dtl'(ds)
/ / x(t,7)ga(ts1 + TSQ)SthF(dS)]
Sa
hSQ
_l :17 h82
27rfx1 h—>0 h [/52/ (t 51 77“)92(2551 + 7r89)s9dtI’(ds)
/ / t r 92(t81 + TSQ)SthF(dS)]
Sa
hSz
e 2.1 . 1 (tf . ) hs
= e Jo Jo B ttss o0 [ ox(t =)

S1

— e oy (t, r)} dtT'(ds)

= %/ / s357 Lga(tsy + 1sa) [ —ize ox(t,r) + eZtISDX(taT)]th(dS)
7TfX1 S2 JR ot

__ —iax —itx / 2.1 )
= e t,r 858 tsy + rs2)l'(ds) |dt
27TfX1(ﬂU)/R px( )( 5, 251 g2(ts1 +rs2)l'(ds)

2

_ %EZ(M/H@eitxwX(t’r)</~?z s192(ts1 + r@)l“(ds)) (/52 8351—192(“1 " TSQ)F(d.s)>dt

—lox a?
Ay = A(/ 525_1> - A(/ 828_1) (/ s )
2 27er1(x) Sa 92525 27TfX1($) So 92525 So 921

Combining the expressions obtained for A; and As yields the second derivative.

D Proof of Theorem 2.1

We here finally evaluate the derivatives of Lemma B.1 at » = 0 to obtain the functional forms of the
conditinal moments. These proofs yield in particular the expressions of the constants 0;, ¢ = 1,...,6
which intervene in Theorem 2.1. Lemmas at the end of this section are used to regroup terms and simplify

as much as possible the functional forms.
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D.1 Proof of second order conditional moment (2.4) in Theorem 2.1

The second order derivative of the characteristic function of Xs|X; = z is given by (B.8) in Lemma B.1.

Evaluating it at r = 0 yields

E[X3|X; = 2]
= —0%0.(0)
= fe€ A e
X [ixaf‘(@fab —idad|t|* ) — ao (Kt —da|t[eT)?
+ a0t (kot =71 —jadg|t|* ) (1= 71> — ia61|t|°‘1)1 dt
_ aof —itztiac§ fr1t<> —o®|t|*
- 21 fx, () /Re ¢
X [a:a)\2|t\a1 + acf|t)?eD (HQ —a’Bihg — KT+ QQA%)
+ kot <07 4 iaoft<HamD> <2a/\m —alXy + 51@)] dt
aof
= e () [ax)\gC’l () + koxS1(x)

—aoy (/‘5% —a®M\ 4 a’Pira — /€2> Co(x) — a0t (a()\g + Pik2) — 2(1)\1&1)52(3:)] ,

where the k;’s and \;’s are given in (2.7). Invoking Lemma D.1 (wte) yields

E[Xg‘Xl = l‘] = H—(:BW [(GQM& + k)T + a(Ag — HZﬁl)W]
- mH(Z(a ~1),01;2)
sty 0 g LB 0o (a0 - 1001,
where H is given in (B.3) with
011 = K2 — a’M\} + a?Br g — ko, 612 = a(\y + Bika) — 2a\1K1.
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D.2 Proof of third order conditional moment (2.5) in Theorem 2.1

The third order derivative of the characteristic function of X2|X; = z is given by (B.9) in Lemma B.1.

It can be shown that the I's evaluated at » = 0 write

(e
——~
Il

I :20'?7'[(0&—2,0{;23), /@3,—@)\3),

12:20'

l\D
v
D
N~
Il

L, —aK),
aA1<3ﬁ§__a2A§>,ﬂ§__3a2ﬁ1A§>,

aK+6w}L—¥mK)

-~
&
|
[\}
Q
S
/_\ / /a /_\
Cb
N
\_/
[ea)
W~
Il

[\)
Q
CQ
e

Cj‘

\_/

)

S
Il

ils =il; = 201 aK, L),

~.
=
I
)
q
w
Q
|
H
¢D
"3
\_/
o)
o~
Il
e N N N N N

ilg = 20%0‘?-[ <2a -3, Oé; :L‘), Oé a(A3 + B1K3), kg — a251)\3),

with K = k1d2 + Mke and L = k1k2 — a® A \o. Hence,

E[X3[x: = 2] = —isQ),(0) = Wf):(m) [— (o= 1K1 — aky) + a?Ks + afa - 1)}(4],
with
Klza?H(a—Q,O{(;x>, with 6K = 6!,
K> = o1*H(2(a — 1), 05 2), with 05 =6},
K3 = 01" H(3(a — 1),05; ), with 0K =L — 0!
K, = a%aﬂ(za —3,0K, :n) with 6K =% — 6l

Invoking Lemma D.1 (ut) for n = 1,2 and regrouping the terms, we get

2 o

E[X3| X, = 2] = =L (9 K )

X3 = a] = s (P @) — o1 @)
o ow;al K K

2 —
+ 7'er1 (CC) CZ < 911 + aﬂ19 ) + 021 942)
O‘xgl Sz ( (085 — aproft) +29§g+eﬁ)
OéQO'i)’a (

Cs(z)( 208 + 04 + aﬁ1942>

afoy

Sa( )(2952 + 0% — aﬁlﬁfj)] .
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Using Lemma D.1 (we) yields the conclusion with 62 =

with K = Iil)\z + HQ)\l, L

Oo1 = 3(L + a261/\3 — /ig),

22 = 3a(A3 + i3 — K),

(921a 022)5 05 = (931, 932) such that

051 = a(Ns(1 = a®B]) + 281k + 2 (3k7 — a®A}) = (K + BiL)),

O30 = Ii3(1 — CLQﬁ%) — 2(12,81)\3 + 2(/%

= K1k — a2\ \a.

?—3a%k1\) + 3(a’/ K — L),

D.3 Proof of fourth order conditional moment (2.6) in Theorem 2.1

The conditional moments are obtained by evaluating the derivatives of the conditional characteristic

function at r = 0. We provide here the proof for the fourth order, which yields the expressions of the

vectors 04, 05 and B¢ appearing in Equation (2.6) of Theorem 2.1. The fourth order derivative of the

characteristic function of X3|X; = z is given by (B.10) in Lemma B.1. It can be shown that the J’s

evaluated at » = 0 write

Jr = 2091 (a

Js = Jy = J1a = 20{°H (30 — 4,0; ),

where 0‘]

Jio = 201%(3@ 4,00; :c)
(021, 02), fOI" Z == 1, ey 19,

=aqa )\2 —|— 2/61/%2)\1)

26

.]11 = J13 = QJ%Q’H 3a—4 011, )

200 — 14730),

H(20 — 4,075z >

167 )

)
)

(
o
o
Ji6 = 203 (Qa
(4
(4
(4

91‘]2 = 52(/{% - a2)\%) - 2a2/£1)\1>\2,
03, = L — a*B1 K,

J 2
932 = K4 — a” B,

Hé]Q = —GK,

H(4(« 017, x),

4 0187 )a

4 0197 )7



J J
071 - K/4, 072 — _(I)\4,

0, = L — a®B\K, 0, = —a(K T ﬁlL),

01 = ra(l — a®B7) — 2a*B1 A4, 0702 = —a()\4(1 —a’B}) + 25%4),
91111 = 91127 9112 = 911)

0l =L, 0],y = —akK,

91‘]51 = k3 —a’\} 0‘1]52 = —2aka2,

061 = K4 — a”Bi)a, 0752 = —a()\4 + 51“4)’

011 = 07, — apr6), 0775 = —0, + abis,

0fs; = K1 — 6a%K3IN3 + a’ )], 0fso = —dari M (K3 — a®\),

Blor = L(1 — a®82) — 2a°1 K, Or9o = —a(K (1 - a?B}) + 2B, L),

and K = k13 + Aiks, L = k1k3 — a®’A1A3. Hence,

E[X3x1 = o] = 6§}, 0

= % [am(afﬁ + (o — 1)K2) tar?Ke — (o — D22 Ky + a2(a — 1) K3 + ala — 12K, + a3K5],

T fx, (x
where

= 011 (3(a —1),0f 2), with 0% =367 — 26,

= oP*H (20 - 3 ) with 6K =2(0] —0)),
K3 = of*H (30 - 4,0%; x) with 0% = 07, — 307, — 0],
Ky = ot (20 - 4,0f ), with 0% =467, — 307, — 07,
Ks=o (4a—1 0L x), with 0K =307, — 0J, — 07,
K¢ = (2 1),05: 2 ) with 0K = 6],
K7:a?H(a—2,07;a:), with 65 = 7.

Invoking Lemmas D.1 () for n = 1,2,3 and D.2, we get

4 S 3 _afpK K
E[X2‘X1 = 95] = @) [x oy (97201(33) 97151(53))
041'20'2(1 a—1
+ ST Co) (- ol + 268 — 2(08 + aB05) - 50k )
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arlo? a—1
+ S )<9§1 + 2085 — 2(05 — aBr0k) - 2@_39@)]
a?ro}e
+ 6 03( ) 60 + 3(921 + a61922) 2932 + 5 (aﬁ1941 942)
2 3a
0430'%& 2 K
+ 3 Cy(z)( 035 + apr65; + (‘941( a’B7) + 26151942 + 3051
Oé30'ila K 2
+—3 Si(x)( 055 — aB10f + —— %0 (942(1 —a?p}) - 2Cl51941 + 305,

Using Lemma D.1 (u¢) yields the conclusion. The coefficients 6’s in the expression (2.6) are deduced

from the %’s and 0”’s as follows:

a—1
O = —035 + 208 — 2(075 + api055) — 5 —0fi, (D.5)
_ pK K K Ky o—-1 g
O12 = 031 + 2053 2(972 a51971) 39427 (D.6)
051 = 6015 +3(04 + aB1053) — 2085 + 5 (a51941 0%5), (D.7)
05 = 6015 + 3(055 — aB1057) + 208 + 5 (941 +ap10fy), (D.8)
a—1
O = 035 +api0fs + 5 — (o550 - a2,61) + 2051015 ) + 305, (D.9)
a—1
Oz = 05 — aB0K + m(@ﬁg(l — a®B}) — 2051057 + 305 (D.10)

D.4 Lemmas for the proof of Theorem 2.1
The following elementary Lemmas, stated without proof, are used to establish Theorem 2.1.
Lemma D.1 Let a € (1,2), b> 0, ¢ € R. Define forn>1 and x € R
—+o00 o +oo «
Ch(x) = / e~ @) cos(ta — et®)dt, F.(z) = / eV e cog(tr — ct®)dt,
0 0
—+o00 “ +oo «
Sp(x) = / e O gin(tr — ct®)dt, Gn(x) = / e~ e D=l gin (tr — ct®)dt.
0 0
t) Then the following hold for anyn > 1 and x € R

a(an+1(m) — cSn+1(m)> + 25, (x)
n(a—1) ’

F,(x) = Gn(x) =

n(a—1)

w) For anyn >1, 01,05 € R and z € R:

a(cC’nH(x) + bSn+1(a:)> — 2Cp(x)

a[Cry1 () (001 + 02) + Sy (@) (b0 = c01) | + 2| = 0200 (2) + 015, (=)

01F,(2) 4+ 02Gyp(x) = n(a—1)
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we) We have for x € R, b= of and ¢ = afi0y:

afirmfx,(x) +1—zH(x)
aof(1+ (apr)?) ’

xmfx, () —afi(l1 —xH(x))

Cile) = ot (L + (aB1)?)

Si(z) =

Lemma D.2 Let a € (3/2,2), b> 0, c € R. Define for x € R
+o0 o +o0 o
he(z) = / e 24 cos(ta — ct®)dL, hs(z) = / e b2 gin(te — ct®)dt.
0 0

Then for any 01,02 € R and x € R,

Oé2

thc(:lt) + 92hs(33) = 3(20z _ 3)(a _ 1)

[04(:c) (60162 = ) + 2bcts ) + Su() (626 = ) — 2bc01)]

+ 5Za _5??)1(‘a 5 [C’g(ﬂ:) <091 - b92) + S3(x) (591 + 092)}

.%'2

220 -3)(a—1)

[9102(36) + 9252(95)] .

E Proof of Proposition 2.1 in the case a # 1

First assume that |51] # 1. We will focus on the case z — +o00. The case x — —oo can be obtained by
considering the vector (X1, X2), whose parameter are 5 = —f31, kK = —k;1 and A} = A; and noticing that
E[Xg‘Xl = aj} = E[Xg‘ -X; = —a:] For p = 1, the result is already known (see Hardin et al. (1991)).
For p = 2,3, 4, we have from the proofs of (2.4)-(2.6), that

]E{Xg‘Xl = :1:] = 77]?;:1:3:) [:L‘p_lH(a — 1, (aA,, mp);x> + gbi,pxp_i?‘-{(i(a — 1),V¢;$)],

for some coefficients b’s. From the proof of Corollary 3.2 in Hardin et al. (1991), we deduce the following

limit:

*“H (a — 1, (ap, kp); :c) — (/ip + )\p) sin (%)F(a).

r— 400
We also have

e () o ot fsin ()T + ), (B.1)

Hence,
_jaofaPl
T P———Hla—1,(aN,, Kp);z) —
Wle(fL’) ( ( P p) )

Kp+ Ap
1+8°

S biprP T H (z’(a —1),v;; :1;)
as x — +o00. It remains to be shown that — 0. By Theorem 127 in

mpfl’H(oz — 1, (ah,, I{p);SL’) Treo
Titchmarsh (1948), for i = 2,3, 4,

’H(i(a—l),l/i;x) = O(:v_i(a_l)_l).

T—+00
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Hence,

P~ ZH( (v —1), vi;x)

O(wa(lﬂl)) — 0.

r—r—+00

wp_l’:'-[(a — 1, (ap, Kp); ac)

Now assume that |8;| = 1. For instance if $; = 1, the distribution of X} is totally skewed to the right. On
the one hand, we have A\, = 1k,. On the other hand, the right tail of fx, still decays as (E.1), yielding

the conclusion.

F Proof of Lemma 3.1

The characteristic function of Xy reads, for any w = (uy,...,uy,) € R™:

- ) -1 () ]

We obtain for o # 1,

vx,(u) —exp{ Za |Zujak3] (1—zﬁs1gn(2ujak7j> )—i—zZuJZakju} (F.1)

keZ j=1 7j=1 j=1 keZ

And for o =1,

ox,(u) :exp{—Za|Zu]ak]| (1—|—zﬁ mgn(Zujakj)ln‘Zujakj‘) +iZujZak7j,u}.

kez  j=1 j=1 kEZ
(F.2)

Replacing (3.3) in (2.1), we retrieve the two above formulae.

G Proof of the asymptotic moments in Example 3.1

The results in Example 3.1 follow from Proposition 3.1 applied to Xy = ;5 pk]l{kzo}st+k. Regarding
the asymptotic behaviours of moments, we give the proof for the excess kurtosis. The other limits and
equivalents are obtained in a similar manner. Letting o € (3/2,2) ensures the existence of the fourth
order moment. Since we assume p > 0, it follows that A\, = Bi1x, for p =1,2,3,4. Using Proposition 2.1,

one can show that as z tends to infinity

’}/g(x, h) . R4 — 4/4;1/{3 + 6/43%/{2 — 3/111L _3

9 2
(KJQ — /il)

Substituting the x,’s by p™@=P) and rearranging terms yields the conclusion.
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H Proof of Proposition 4.1

We start by showing that when (X}) is an a-stable aggregate as in Definition 4.1, the bivariate vector
(X, Xiyp) is also a-stable and that its spectral measure is a linear combination of the spectral measures

of the (Xj¢, Xj+r). We will then be in a position to apply Theorem 2.1.

Lemma H.1 Let (X;) be an a-stable aggregate, 0 < a < 2, with latent moving averages (X14),...,(X )
as in Definition 4.1. By Lemma 3.1, (X, Xjin), J = 1,...,J are all bivariate a-stable. Denote
(T n, N?) with ,ug-) = (N?,ﬁ ,ugyj) their respective spectral representations.

Then, for any h > 1, (X¢, X¢1n) is a bivariate a-stable vector and its spectral representation, denoted
(Th, 1°) with p° = (uf, p3), s given by

J

Fh = Z |7Tj|arj7h,
j=1
and,

J J
2 2
ui = > ;i (M%j - ]l{a:l};al,jﬁld In ’Wj!)7 ph = > (Mg,j - 1{a=1};017j)‘1’j In ’Wj’)'
i=1 i=1

Proof.

Using the independence between the X;;’s and denoting X; = (Xj¢, Xj14n),

J J
E e"“Xt””XHh} = ]E[exp {iuZWij,t +in7Tij,t+h}] HEleXp{ ifum, X >]

j=1 j=1
J
— jl—[lexp { - /52 |(umj, s)|* (1 — isign((umj, s))w(a, (un;, s>))Fj,h(ds) + i (um;j, “0>}7

When «a # 1, then w(a, -) = tg(ra/2) and

J
E[eiuXtJrivXHh} _ exp{ =3 |yl /52 |(u, s>\a<1 —isign({u, s))w(a, (u, S)))Fj,h(ds)}

j=1
_ exp{ _ /S (s, 8)|° (1 _ isign((u, s))w(a, (u, s>))f‘h(ds)}.
When o = 1, with a = 2/,

J
B eiuXtJrithLh} - H exp{ - / |(umj, s)| +ia{ur;, s) In [(ucny, 8)|T'j p(ds) + i (ur;, u?>)}
el S

:exp{ / |, 8)| + ial, 8) In |(u, s \Z\ﬂ]]th(ds)

7=1

J
Z(uw —am | [ () Jh<ds>)}
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and

J J
22(11,%]“] aﬂjln\ﬂﬂ/ (u,s)I'; ds)-z U,Zﬂ]( —aln\ﬂj|/ sl ds)))

J=1 J=1
4 B
17
’U,,Zﬂ'](  — a0 jIn || ! )>
7j=1 AL]‘

Let us now prove Proposition 4.1.

t) By Lemma H.1, we know that the spectral measure of (X, X;1p) writes T'y, = Z‘jjzl |70;|*Tj p,, for
0 < a < 2, where the T';,’s are the spectral measures of (X, Xj1n). Hence, [g [s1|7"Tx(ds) < +oo if
and only if for all j =1,...,J, [g, [s1]7"T'j n(ds) < 400, which proves point ¢).

) and we) The forms of the conditional moments follow from Theorems 2.1 and 2.2. The parameters

are obtained using Lemma H.1 by first noticing that,

J

o = [, Il Thds) = Dl [ o1l Tonds) = 3 sl
2

j=1 2 j=1

<

And thus, for instance,

J

J
7/ (s2/51)7|51|°T (ds) TZW / (s2/51)P|s1|°T; n(ds) = Z
o1 3 =1 Sa

= z 1 ’Trl‘ao—lz

i | %o§
oty

I Proof of Theorem 2.2

Let X = (X7, X2) be an a-stable vector with @ = 1 and spectral representation (I", 0). Its characteristic

function, denoted @ x (t,7) for any (t,r) € R?, reads

ex(t,r) =exp {—/ |ts1 + rso| + ia(tsy + rs2)In|ts; + rsz\F(ds)} , (I.1)
Sa

with @ = 2/7. The conditional characteristic function of X given X; = z, denoted ¢y, |,(r) for r € R,

is still given by (B.2).

Lemma I.1 Let (X3, X2) be an a-stable random vector with o = 1 and spectral representation (I',0). If
(2.2) holds with v > 0, the first derivative of ¢x,|, is given by

-1

(1) _
¢X2\$(T) C 27 fx, ()

<A1 + iaAg),

with
Ay :/eiimcpx(t, r)(/ so(tsy +r32)<0>f‘(d.s)>dt, (I.2)
R S2
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Ag = / e M ox(t, 7")(/ s2(1 4+ In |ts; —1—7'32])F(ds)>dt (1.3)
R Sa
If (2.2) holds with v > 1, the second derivative of ¢x,|, is given by

(1) — B +ixBy + By), (L4)

-1
" 2y, (2) (

where,
' 2

B = / emgox(t,r)(/ so(tsy +752) % +iasy(1 +In|ts) + r82|F(ds)> dt,

R S2
By = / eimgpx(t,r)(/ ((tsl +759) % +ia(1 4 In|ts; + 7'32])3%31_1F(ds))dt,

R S2
B = / e_mgpx(t,r)(/ s1(tsy + r52)<0 +iasy (1 4+ In|ts; + 1"52|I‘(ds)>

R S2

X (/ ((tsl + 759)<% +ia(1 4 In|ts; + rsﬂ)s%sff(ds))dt.
Sa

1.1 Justifying inversion of integral and derivative signs

First derivative

The terms depending on r in the right-hand side of (I.1) are of the form (omitting the factor
1/27 fx, (x))

- r'(d
/ e Js, sl s)trig( —tx — a/ (tsy + rs2)ln|ts) + TSQ’F(dS))dt.
R Sa
Consider for instance the term obtained by replacing trig by the cosine function, denoted I;.

7/(r) = lim 1 [6 Js, ltsr+r+msalrds) _ = [, |ts1+r52|F(ds)]
h—0 h Jr

X COS (ta: + a/ (tsi+ (r+h)s2)In|tsy + (r + h)sﬂI‘(ds))dt
Sa

1 — S T8
+ lim —/ ¢ Js, tortreallids) [cos (tw + a/ (ts1+ (r+h)s2)In|tsy + (r + h)SQ\F(d8)>
h—0 h JR Sy

— cos (t:v + a/ (ts1 +rs2)In|ts; + rsﬂl“(ds))} dt
Sa
=T+ T2
The integrand of I1; converges to

. f52 jts1-+rsal(ds) (tm + a/ (tsy + rs2)ln|ts; + r52|F(ds)> / so(ts) + 1s2)<0>T(ds).
Sa S

2
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Using (C.19) we can bound the integrand of I1; by

1 - —_
‘h|| / lts1 + (r + h)sa| — |ts1 + rs2|T'(ds)le fs2 \t51+rs2\F(dS)e| f52 ts14(r+h)s2| |ts1+r32|1"(ds)|.
Sa

By Lemma C.3 (¢) and the triangle inequality, we can further bound it for |h| < |r| by

e (1l =oult]

which does not depend on h and is integrable with respect to t on R. The dominated convergence theorem

applies to I11. Turning to Iyo, its integrand converges to

— I'(d
—ae f52 |ts1+rs2|T(ds) sin <t$ + a/

Sa

(ts1 + rs2) In |fs1 + TSQF(ds)> / so(1+In|ts, + rsa|)T(ds).
Sa

Using the mean value theorem on the cosine, its integrand can be bounded by

ie— f52 [ts1+rs2|T(ds)

/S (ts1 4 (r+ h)s2)In|tsy + (r + h)sa| — (ts1 + rs2) In|ts; + rsa|T'(ds)
2

Id
1
< ae"ﬂﬂ*allﬂm (ts1+ (r+ h)s2)In|tsy + (r + h)s2| — (ts1 + rs2) In|ts; + rsa||T'(ds)
Sa
= eI Q)+ @), (1.5)

where the two terms @ and Q2 involve integrals over SoN{s : |[ts1+rsa| > 2|h|} and SoN{s : |ts1+7s2| <
2|h|}. Focus on Q2. Introduce the function f : Ry — R4 defined for any z > 0 by f(z) = z|In z|. It is such
that f(0) = 0 and for z small enough (0 < z < e™1), f is monotone increasing. Since |ts; + rsa| < 2|h],
we also have [ts; + (7 + h)sa| < 3|h|. Thus, for 0 < |h| < (3¢)~!, the integrand of Q2 can be bounded by

B! (\f<r3h>\ - \f<r2h\>\) < 2|n| | £(3h])| < 6[in|3]]
Using Lemma J.1, we can bound the later quantity for any v > 0 by
6v=" (24 [3h]" + 3R] 7).
—v
From |ts1 + 7s2]/2 < |h| < (3e)™!, we deduce that [3h]|7Y < (3|t51 + 7‘52]/2) and
1 1 v
6v— (2 + |3h|” + ]3h|_”) < 6v~ (2 +e "+ (3|t81 + rSQ\/Q) ) < consty + consta|tsy + rsa| Y,

for some nonnegative constants const; and consts. Hence, the term involving ()2 in 1.5 can be further

bounded for any v > 0 by

—v
aec2lrl=oultl (constl + constg/ t+ =2 ’81‘71T(d3))- (1.6)
S1

Sa
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The term with const; is clearly integrable with respect to t on R. Letting (2.2) hold with v > 0, choose
some v € (0, min(rv,1)). We show that the second term is bounded by an integrable function of ¢ as we
did in Equation (C.4) using Lemma C.5 with = v, b = 0, p = 0, the fact that [ e~7/|t|7dt < +o0
and (2.2) with v > v > 0. There remains to be bounded the part involving @1 in (I.5). For this term,

we apply the mean value theorem to the function z — zIn|z| and get that

|h| 7Y (ts1 + (r 4 h)sa) In[tsy + (r + h)sa| — (ts1 + rs2) In|tsy + rso]

< B~ a1+ In fu|

<1+ |Inul

i

for some u € [ts; + (r 4+ h)s2 A tsy + rsao,ts; + (r + h)sa V ts1 + rsa]. Since @ is an integral over
SaN{s:|tsy + rsa| > 2|h|}, we have |u| € {”SLQTSZ", 2|ts1 + 7"32|}, and because of the quasi-convexity of

the function z — ‘ In|z|

, we can bound the above term by

ts1 + 7rso
2

1+ |In + | In|2(ts1 + rs2)]

< const + 2' In |ts; + rsﬂ’.
Using Lemma J.1, we can bound this term for any v > 0 by
-1 v —v v rsy 7Y —v
const + 2v (2 + [ts1 + 7rsa|” + |ts1 + rsa| ) < consty + consta|t|” + constglt + —‘ |s1]
S1
Hence, the term in (I.5) involving 1 can be bounded for any v > 0 by

rso|—

v
ae2lrl=a1lt (constl + consto|t| + constg/ t+ — |51|_”F(ds)). (I.7)
So S1

which can be shown to be integrable with respect to ¢t on R as we did above for the term with QQ2. The
dominated convergence theorem applies to 12 and thus to I;. We can derivate ¢, |, under the integral
sign.

Second derivative

Let us start with Ay, which is the most delicate. It is composed of terms of the form

/ o f52 t51+rszll“(d8)trig< oty — a/ (ts1 +7s2)In|tsy + T‘SQ’F(ds))
R Sz

« (/ s2(1 + In [ts1 +r32])F(ds)>dt,
Sa

where «trig» stands for sine or cosine. Denoting the one with cosine as Ko, we have

1
K2 = lim —

[6 fSQ [ts1+4(r+h)sz2|T'(ds) e fSQ t31+r32F(ds)]
h—0 h Jr
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X COS (tx + a/sz(tSl + (r+h)s2)Intsy + (r + h)SQ’F(dS))
y (/S so(1 +In [ts1 + (r + h)32|)F(ds)>dt

]. — T S
+ lim 7/ e Js, tsrtrsallids) [cos (tx + a/ (ts1+ (r+h)sz) Infts + (r + h)Sz\F(d8)>
h—0 h JR S2

— cos (t:c + a/ (ts1 +rs2)In|ts; + rsﬂﬂds))]
Sa

« (/S s2(1 + In [£s1 + (r+h)52|)F(ds)>dt

1 .
+ lim —/ e Js, tsrtrsaltids) Ccos (tx + a/ (ts1 +rs2)Infts; + 7“32!F(d8))
h—0 h Jr S2

X [/S soln|ts; + (r + h)sa| — s2In|ts; + T‘Sg’r(ds)‘| dt
2
= Ko1 + Ko + Kos.
The integrand of K91 converges to
—e f52 [ts1-+rsz|D(ds) cos (tw + a/S (ts1 +rse)ln|tsy + 7"32F(ds)>
2
« (/S saltsy +r52)<0>F(ds)> (/S so(1 + In [ts1 +r52|)F(ds)>.
2 2

Using (C.19), the triangle inequality and (C.4), it can be bounded by
opec2(1FIr) =1t / \32”1 +1In|ts; + (r + h)52|‘I‘(ds). (I.8)
Sa
The integrand of the above expression can be bounded using Lemma J.1 for any v > 0 by

Lt o™t (24 [ts1 + (7 + R)sal” + [tsy + (7 + B)sa| ™)

h —v
< consty + consta|t|” + constg’t + M‘ ls1]7,
51
hence, (1.8) is bounded by
h —v
et ol (constl + constalt]” + COHStg/ t+ w‘ |31]’”F(ds)).
So S1

The terms involving const; and consto are clearly integrable with respect to t. The last term is more
intricate as it still depends on h. We will show that the generalised Lebesgue dominated convergence

theorem (Theorem 19, p.89 in Royden and Fitzpatrick (2010)) applies. Denoting

T(h) = e_gl‘ﬂ‘t + w

_—
’ 517",
s1
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it can be shown that 7°(0) is integrable with respect to ¢t on R and I" on Sy invoking the usual arguments.

Also, choosing some v € (0,1), with have by Lemma C.7 with n = —-v,b=0and 0 <p <1 — v,

‘/T(h)— 0) g/ yslrv/e*‘ﬂltl
So R
h
Sconst/ ls1|™ 52
Sa

< const ||? / 517" PT'(ds) —s 0,
9o h—0

—v

(r+ h)so
51

‘t + rso | ™

‘t + 552170 g (ds)

‘ I(d

because (2.2) holds with v > 1 and v +p < v+ 1 —v < 1. Since T(0) is integrable and limy, o [ T'(h) =
JT(0), the generalised dominated convergence theorem applies to Ka1. We turn to Kyy. Its integrand

converges to

aef fSQ |t31+T82|F(dS) Sin (tl‘ + a/ (t81 + TSQ) ln ’tsl + T82|F(d8))
Sa

Y (/S so(1 + In [ts1 +r82|)F(ds)>2.

With the usual inequalities and Lemma J.1, it can be bounded for any v > 0 by

a _
= o2lrl—alt]

Id

/S (ts1+ (r+ h)s2)In|tsy + (r + h)sa| — (ts1 + rs2) In|ts; + rso|T'(ds)
2

X

/ so(1+1n|tsy + (r + h)sa|)T(ds)

Sa

< ae2Iri=el (Q1 + QQ) (02 + /S ’ In|ts; + (r + h)82|‘r(d8))

t+

51/ 7T (ds))

r+ h)sg|—v
< geo2lrl=onltl (Ql + Qz) (const1 + consto|t|” + consts / @‘
S S1

2
where, similarly to (I.5), the two terms ()1 and Q2 involve integrals over Sy N {s : |ts1 + rsa| > 2|h|} and
SoN{s:|ts1 4+ rsa| < 2|h|}. After expansion, the terms with const; and consty are readily dealt with by

following the method developed for (I.5). Focus on the remaining term

(r+ h)so

a/ 602|T|_‘71‘t|(Q1+Q2)‘t+ “3 |~°T'(ds).
Sa

In view of the bounds (I1.6) and (I.7), the integrand can be bounded (up to a multiplicative constant) by

h)sh|—v
U0) = e it T2y IR g g
S1
Choosing some v € (0,1/2), we can invoke Lemma (C.6) with n = —v, p = 0 and the fact that

Je e H|¢t|72vdt < 400 to show that U(0) is integrable on the one hand. On the other hand we can
again invoke Lemma (C.6), this time with n = —v, 0 < p < 1 — 2v, and the fact that (2.2) holds with
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v>1>v+1—-2v > v+ p toshow that [U(h) — [U(0). The generalised dominated convergence
theorem applies to Kio.

We turn to Ks3 for which «appropriate integration by parts» is required. After obvious manipulations,

hs/2
l——*= )s1+rs2
%1

1 —
K3 = lim —/ / s In |ts] + rsh| le s,
h R JSo

h—0
X COS ((t — ?)az+a/g2 <(t — }5/2)81 +r52> In

v -, |t51+r32|F(ds)]

(t — }:9’1/2)51 + 7S9

1 1

1 _
+ lim 7/ / 5/2 In |t8/1 + 1"8/2|€ f32 [ts1+rs2|T(ds)
h—0 h Jr Js,
hsf, hs,
X lcos <(t — S—,1>m + a/SQ ((t - 8—,1>S1 —i—rsz) In

— cos (tm + a/ (ts1 + rs2)In|tsy + rsﬂI‘(ds))] I'(ds’)
Sa

I‘(ds)) I'(ds")

/

(t — ]?)Sl + 789

F(ds))

= L1+ Lo.

Starting with L, its integrand converges to

e Js, ltsrtralT(@s) cos (tm + a/ (ts1+7rs2)In|ts; + r32|F(ds)>
Sa

X </ s1(tsy +r82)<0>F(ds)> (/ In |tsq +1“82|52251_1F(ds))
52 SQ

It can be bounded using (C.18) and Lemma C.3 (1) by

exp{_mm( A

shln|ts) + rsh

/
(t - Lf?)sl + mQ\r(ds),/S Itsy + r52|F(ds)>}
2

h 51
h /
X / (t - 2)51 + rsa| — |tsy + rsa|T'(ds)
Sa 51
hs! 1 hs’
< e”?"lexp{ — o1 min (‘t — 2 ,|t|> soln |ts] + sy —/ ?sllf(ds)
51 |h| Sy ! 51
o2|r| . h5/2 ! / 1121 .0 1—1
< o01e”?"lexp ¢ — 01 min ‘t* —= |, It| lln\tﬁ + rso||[sa|7[s1]
51

=V(h).

We follow a similar procedure as the one used in Cioczek-Georges and Taqqu (1998) (p.51) to deal with

hs
the min inside the exponential. Focus on the case 250 (the converse case is similar). We have
S1

/ ; hs’
b o bk
min (’t — 2 ,|t|> = s

1 1], if t< hsh/2s).

, if t> hsh/2s),
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Thus, up to a multiplicative constant,

/ V(h)dt = ﬁ eI
92

“+oo

[ts1 + r5a|[s2[s1 | 1dt+/ =t "’1|t|‘ln|t31+r52|’]52\2]51\’1dt

e—o1lt]

In ‘tsl + 789 —|— ’

[sa|*[s1]~ 1dt—|—/ *"lm‘ln!ta+7“32\)’S2\2’$1\71dt

hsg
2sq

= /Re_01|t| |:’ In \tsl + (7“ + h)82"1{t2—h82/281} + ‘ In \tsl + T’Sg"ﬂ{t<_h52/251}:| ’32‘2’31‘—1dt.
Thus, using Lemma J.1, we can bound the integrand for any v > 0 and |h| < |r| by

ol D In [ty + (r + h)sal| + [ In [ts1 + ml” [saf*[s1]

<y el [constl + consta|t|”

S|~V v
—i—constg‘t—i— —‘ |s1] +const4‘t+
S1

r+h)sy|—v, _ _
(31)2‘ ’81‘ U:||82’2|81’ 1.

Clearly, the terms involving const; and consts are integrable with respect to ¢ and I'. Denoting the last

(r+ h)so ’—v
S1

term as Vi (h) := e~ ‘H— |52|%|s1] 71 7Y, we show that the generalised dominated convergence

-1
theorem applies. As (2.2) holds for some v > 1, choose v = % > 0 if v < 2, and some v € (0,1) if
v > 2. The integrability of V4(0) (and at the same time, of the term involving consts) is obtained from

Lemma C.5 with n = —v, b= 0, p = 0 and the fact that [ e=7!1*l[t|7dt < +00. Doing so indeed yields

—v
/ \32|2\31|+v/e*gl‘tl\H@) Lo s v de| T (ds)
So R S1

S
o S JR

< Const/ |s1| ™" |s1|" "1V (ds)
Sa

T (ds)

—v
[+ 2 =
S1

< Const/ [si|"T'(ds)
Sa

< +o00,

. v—1
since v—1—v =

>0ifve (,2)andv—-1—v >v—2>0if v > 2. The convergence
J Va(h) — [V4(0) can be obtained from Lemma C.7 with n = —v, b =0 and 0 < p < v. The generalised
dominated convergence hence applies to L.

We turn to Lo. Its integrand converges to

.~ fs2 [ts1+rs2|T(ds) sin (tm + a/ (ts1 +7s2)In |tsy + 7‘82|F(d8)>
Sa
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X (x + a/ s1(1+In|ts; + TSQ’)F(CZS)) In |ts| + 7’5’2]3'228’1_1
Sa

Applying the mean value theorem to the cosine function and the usual bounds, we can bound it by

eo2lrl=onlt 8/228/1_1 In |ts)

1 hsl hsb hsh
=T~ t——= Ini{t——= —(t In |t I'id
% 5 r+a . (( s )s1+r32> n’( 5 )sl—i-rsz’ (ts1 +rs2)In|tsy + rso|T(ds)

< eo2lrl=onltl

The term involving |z| can be treated using the usual arguments. The one with the integral is of course

sZs7  n|ts)

hst hst
( 2 31 + rsz) In ’ (t — S—IZ)SI + 7“82‘ — (ts1 4 rs2) In[ts; + s
1

F(ds)).

(1.9)

the most delicate. Let us split this integral into two parts as:

/ 1
Sy | Ml

51

<(t }:912)81 + 7"52) In ’ (t fff)Sl + 7"82’ (ts1 + 7so) In [tsy + 7s2[|I'(ds)

= Q1+ Qo,

where Q1 and Q2 involve integrals over SoN{s : [ts1+7rsa| > 2|hsh/s]|} and SaN{s : [ts1+rse| < 2|hsh/s) |}
respectively. We will first majorise @)1 and @2, and then use these bounds in inequality (I1.9). Consider
(2 and define the function g such that for any z > 0
f(z)=zlng|, if 0<z<ed,
z(2+1Inz), if z>e!
It is easily checked that g is continuous, strictly increasing and such that for any z > 0, 0 < f(2) < g(2).

The integrand of Q2 can be bounded as

}i;,z<‘f<(t—]?)51+r82>‘+’f(t51+T82)‘> < hié (

81 + m)‘ n ’g(tsl + T‘SQ) D
\ <\”:’21>!)

o((

$1

<

9

(&
<‘ 3h32

< h2 9(338 )

By Lemma (J.1), with bound further the right-hand side for any v > 0 by

2 (3h8’2) < b+ " ’3hs/ v+ ; ‘3hs’2 —v
——=) < cons cons cons

hsy g sy /T ! 2 sh K sh

s

40



3hs
On the one hand if ’ - 2‘ < el given that (3|ts; +rsa|/2)™Y > (3hsh/s}) 7Y,
51
3hsh v 3hsh|—v TS2|TU, .
const; + constg‘ ; + COHStg‘ ; < consty + constz‘t + —’ B

3hst
On the other hand if ‘ﬁ‘ > e~L, then for |h| < |r|,
51

—v

< consty + consta|s]| . (I.10)

3hsh v 3hsh
consty + constg‘ 7 + CODStg‘ —
51 51

Focusing now on )1, we can use the mean value theorem to bound its integrand by

s |1+ Inful

I

for some u € {tsl +rsg — hshsi/s) Ats1+rse,tsy +rse — hshsy/s) Vis) + 7"52]. Given that |tsy + rsa| >
2|hsh/s}|, we have |u| € [MQWA, 2|ts1 + 7“52” and thus, we further bound the above inequality using

Lemma J.1 for any v > 0 by

|s1] (const1 + consta|tsy + rsa|” + consts|ts) + 7“32]_”)

—v
< consty + consta|t|” + constg‘t + @‘ EE (I.11)
51

)

Hence, using (I.10) and (I.11) in (I1.9), and making use again of Lemma (J.1) to bound ‘ln [t} + rsh]

—v
Jishit

—v
X <|x| + consty + consts|t|” + constg|s] |V + const7’t + @‘ |51|1”>
51

we can bound integrand of Lo for any v > 0 by

/
_ rs
el (const1 + constalt]” + constg‘t + —,2
S
1

It can be shown that all the terms obtained after expansion can be bounded by functions integrable
with respect to t and I' using the usual combinations of either Lemma C.5 or Lemma C.6 with n = —v,
b=0,p =0, the fact that [ e " H[¢|~" < 400, [z e [t|~2" < +o00 for appropriately chosen values
v > 0, and (2.2) with v > 1. The detail we have to pay attention to is precisely to chose an appropriate
exponent v > 0 so that it satisfies the constraint (2.2) and ensures the finiteness of the two integrals in
t. The later imposes us to have v € (0,1/2). Regarding the former, we identify that the most negative
power of which |s;| appears in the above bound after expansion is —1 — 2v. We need v — 1 — 2v > 0.
Choosing v = (v —1)/4if 1 <v < 3 and any v € (0,1/2) if v > 3 enables to satisfy both constraints,
validating the use of the dominated convergence theorem for Lo, and finally, for By in (I1.3).

The proof is essentially similar, somewhat easier, for B; in (I.2) for which the only difficulty is
to perform the «appropriate integration by parts» when it comes to differentiating the term involving

(tSl + 7’82)<0>.
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1.2  Evaluating at » =0

Since E[X%‘Xl = x] = —<Z>g?3|m(()), we evaluate (I1.4) at » = 0 and get

ox (t,0) = exp{—o1|t| — iac1 Bt In |t| + itp },
A/2 = O’%((H% —a’q?)H.(0) + 2a/€1qus(0))
+2aM03( — agoH(1) + k1 Hy(1)) — a®MotH(2),
i42/2 = o1 = ak1 Ho(0) + 52 Hy(0)) = adooy Ho(1),
A3/2 = o1 (012 + apakr) He(0) + (o1aky — o) Hy(0))
+ aoy (()\zm —ao1PB1k1)He(1) + o1(X2 + ﬁlHQ)Hs(l)) — a?0iBi1XaH.(2),

where k; = o7} [s,(s2/51)%s11n]s1|T'(ds), and the H.’s and H,’s are defined at Lemma J.2. Using the
result of the same Lemma under 51 # 0 and 81 = 0, and regrouping the terms allows to retrieve the two

formulae of Theorem 2.2.

J Proof of Proposition 2.1 in the case a =1

Case B1 # 0 The conditional second order moment when «« = 1 has a particular form. We only
consider the case || # 1 and z — +o00. Since |z| — +00, we have x — 1 ~ = and we may assume that

p1 = 0. From Hardin et al. (1991), we know that U(z) ~ z~!. Notice that
“+oo
W(z) = / e (14 1In t)2 cos(aoyfitInt) cos(tx)dt
0
+oo
— / e 71 (1 + Int)?sin(ao f1t Int) sin(tz)dt.
0

Because the factors of cos(tx) and sin(tx) are integrable, we have by the Riemann-Lebesgue Lemma that

W(z) — 0. Having also

T—r—+00
o1(14+p61) _
fx,(z) ~ 1(7T1)$ 2
we deduce the following limits
oU(x) 2(k1A1 — A2)
2 AL — 2(k1A1 — A -— _-
(2aorann = frm) + 20mds = dale) gop T oo S

o1 > . A2 + Bika — 2K1 M\
71'le (ZC) T—>—+00 (1 + 61)51

(>\2 + Bikz — 2101 + alo1B1(A] — 51>\2)W($))

Hence,

_ A 2(,% A1 — A ) A + ﬁllig — 2/431)\1 K2 )\2
2E XQ X 2 1M1 2 2 +
r [ 2’ 1 J}} T—>+00 131 (1+131)131 (1+131)131 1—|-131
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Case 81 = 0 From Hardin et al. (1991),

V(z) — —%,
hence,
2a01 )\ (aalqo — ki(x — u1)> W};(i)x)x” — am\ K.
Moreover,

Fx,(x)—1/2 _, 1
L A A — —am(Ay — 2Kk1)\1).
ao e @) x 2@71'( 9 K1A1)

It can be shown that W (xz) — 0. Therefore,

1
xiZE[XQQ‘Xl = :C] — Ko + §a7r()\2 — 2/11)\1) + amkiAl = K2 + Ao

T—r—+00

Lemma J.1 Foranyxz >0 andv >0
1 v —v
|Inz| < 7(2—1—35 + )
v
We provide here two Lemmas which are used in the proof of Theorem 2.2.

Lemma J.2 Let for any n > 0,

+oo
H.(n) = /0 e 7'"(1 +1nt)" cos (t(x — 1) +ao1fitln t)dt,

400
Hg(n) = /0 e 7"(1 +1Int)"sin (t(az — p1) +ao1fitln t)dt.

Ho(1) = (0 (0) = (0= i) HA(0)). Ha(1) = — (1= o1 .(0) = (o = i) H.(0)).

43



Proof. The equalities of Lemmas D.1-J.2 can be obtained by integrating by parts. We provide details

for the last equality of Lemma J.2 when $; = 0. Integrating the exponential by parts, we obtain

H,(1) = Lo e 1 Lsin (t(a: - ))dt +
s - o1 Jo M1

T — 1
01

H(1)

Denote A(z) = [;F> e~711t ! sin (t(a:—ul))dt for z € R (A is well defined since e =71/t~ sin (t(x—ul)) —
x — p1 as t — 0). It can be shown that we can derivate A under the integral sign and get
+o0
Al(z) = / e 7 cos (t(x - ,ul))dt =7fx, (x),
0
Since X7 is Cauchy distributed when o = 1 and §; = 0,

— M1
01

A(x) = mFx, (2) + const = Arctg(~—FL) + 7 + const,

and evaluating the integral form of A at p1, we deduce that const = —7/2. Thus, A(x) =7 (FX1 (m)—1/2).

|
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