
Munich Personal RePEc Archive

House Allocation with Existing Tenants:

Two Equivalence Results

Ekici, Özgün

Ozyegin University

2011

Online at https://mpra.ub.uni-muenchen.de/97368/

MPRA Paper No. 97368, posted 11 Dec 2019 14:24 UTC

House Allocation with Existing Tenants: Two Equivalence
Results�

Özgün Ekici
Özye¼gin University, Istanbul, Turkey

ozgun.ekici@ozyegin.edu.tr

April, 2019

Abstract

We study the house allocation problem with existing tenants: n houses (stand for
�indivisible objects�) are to be allocated to n agents; each agent needs exactly one house
and has strict preferences; k houses are initially unowned; k agents initially do not own
houses; the remaining n � k agents (the so-called �existing tenants�) initially own the
remaining n � k houses (each owns one). In this setting, we consider various randomized
allocation rules under which voluntary participation of existing tenants is assured and the
randomization procedure either treats agents equally or discriminates against some (or all)
of the existing tenants. We obtain two equivalence results, which generalize the equivalence
results in Abdulkadiro¼glu and Sönmez (1998) and Sönmez and Ünver (2005).
Key Words: house allocation with existing tenants; house allocation; housing market;

equivalence of mechanisms.
JEL Codes: C78; D71; D78

�The paper bene�ted greatly from various comments by Onur Kesten, Utku Ünver, Tayfun Sönmez, William
Thomson, Isa Hafalir, Micheal Trick, Gabriel Carroll, Rick Green, and an anonymous referee.

1

1 Introduction

We consider the classical problem of allocating n indivisible objects to n agents. We assume that
each agent needs exactly one object, agents� preferences over objects are strict, and monetary
transfers are not allowed. As real-life applications, consider the problems of allocating posts at
hospitals to medical interns, dormitory rooms to college students, or kidneys for transplant to
patients with kidney disease. In the literature it is conventional to refer to objects as �houses�
and in our paper we follow this convention.

This problem has three variants in the literature: In the so-called house allocation problem it
is presumed that houses are initially unowned. In the so-called housing market it is presumed that
each agent initially owns one of the houses.1 The third variant is the hybrid case, introduced by
Abdulkadiro¼glu and Sönmez [2] and formulated in their paper as a house allocation problem with
existing tenants: k houses are initially vacant; k agents are newcomers; and each of the remaining
n�k houses is occupied by one of the remaining n�k agents (referred to as �existing tenants�).
In our paper, we study this hybrid case and follow its formulation in their paper. Throughout, we
assume that if they wish so, existing tenants can keep their occupied houses or even trade them
with one another. Therefore, although doing so is an oxymoron, we will speak of existing tenants
as the �owners� of their occupied houses.

In real-life applications in which there are no existing tenants, the allocation of houses is often
carried out by a mechanism (allocation rule) called random priority : First, a priority order of
agents is chosen uniformly at random. Then the �rst agent in the order receives her top choice,
the next agent receives her top choice among the remaining houses, and so on. The random
priority has some very appealing properties. Most notably, it is simple, strategy-proof (i.e., it is
immune to misrepresentation of preferences) and e¢cient (i.e., it always induces Pareto-e¢cient
allocations). Alas, the presence of existing tenants pose two challenges not addressed under
random priority. First, the allocation it induces is not always �group-rational.� This means that
under this mechanism a subset of existing tenants is not assured that their coalitional allocation
will always be (in the Pareto sense) at least as good as any coalitional allocation that they can
attain by trading their occupied houses. Without this assurance, it is conceivable that these
existing tenants opt out, which may lead to a loss in potential gains from trade. Therefore, to
assure the voluntary participation of existing tenants we take it to be the case that the allocation
rule used always induces a group-rational allocation. Another feature of random priority is that
under its random component (the random choice of a priority order) agents are put on an equal
footing: The agents are ranked high in the priority order with equal probabilities. While this may
be a desirable feature in real-life applications in which there are no existing tenants, when they are
present it is conceivable that the mechanism designer deem it justi�ed to discriminate against all
or a subset of existing tenants. For instance, in kidney exchange practices, there are some patients
(�existing tenants�) who already have compatible donors. The remaining patients however either
have no donors (�newcomers�) or have incompatible donors (also �existing tenants�). For this
latter group of patients �nding a kidney transplant from a compatible donor is a life-and-death
matter. In the eyes of the medical authority, therefore, it may be justi�ed to treat more favorably
this latter group of patients even if it means discrimination against patients with compatible
donors.2

In this paper, to tackle the above-mentioned two challenges we propose four random mech-
anisms. They are de�ned by means of two algorithms: The Y-I algorithm and the augmented

1The house allocation problem was introduced by Hylland and Zeckhauser [6]), and the housing market, by
Shapley and Scarf [17].

2For studies of the kidney exchange problem, see [14, 15, 16, 20].

2

TTC algorithm. The Y-I algorithm allocates houses to agents by means of a priority order of
agents: The �rst agent in the order receives her top choice, the next agent receives her top choice
among the remaining houses, and so on. However, if an agent a requests the occupied house
of an existing tenant e and e has not been assigned a house yet, the remainder of the order is
updated by moving e to the top (right above a) and then we proceed.3 As it turns out, thanks to
this update protocol the Y-I algorithm always induces a group-rational allocation (see Ekici [5]).
The augmented TTC algorithm allocates houses to agents by means of an �augmenting function�
v: For each agent, v either assigns her the ownership of a vacant house or appoints her as the
�inheritor� of an existing tenant. When our original problem is augmented by v, this de�nes a
private-ownership economy in which vacant houses are now also owned. Then the houses are
allocated to agents by identifying (top trading) �cycles�: A cycle is a series a1; a2; � � � ; as = a1 of
agents such that the favorite house of a1 is owned by a2; the favorite house of a2 is owned by a3;
and so on. In each cycle the corresponding trades are performed and then all the agents belonging
to cycles are removed together with their assignments. If an existing tenant owns two houses,
when she is removed one of her houses still remains. This house is then given to the inheritor of
the existing tenant (the inheritor appointed by v). If the inheritor has been removed, too, the
house that remains is given to the inheritor of the inheritor, and so on. Then in the reduced
private-ownership economy we proceed similarly: by identifying new cycles and performing the
corresponding trades and so on.4 As it turns out, the augmented TTC algorithm also always
induces a group-rational allocation.

The �rst two random mechanisms that we propose are for real-life scenarios in which discrim-
ination against existing tenants is deemed unjusti�ed (perhaps, when allocating dormitory rooms
to college students). They are as follows:

(1) The random Y-I mechanism: A priority order f of agents is chosen uniformly at random.
Then the Y-I algorithm is executed using the priority order f .

(2) The random augmented TTC mechanism: An augmenting function v is chosen uniformly
at random. Then the augmented TTC algorithm is executed using the augmenting function
v.

Note that the random components of these two mechanisms put agents on an equal footing:
f and v are chosen uniformly at random.

The next two random mechanisms that we propose are for real-life scenarios in which discrim-
ination against a subset E of existing tenants is justi�ed. They are as follows:

(3) The E-discriminating random Y-I mechanism: A priority order f of agents is chosen as
follows. The existing tenants in E are placed at the bottom in some �xed order. The
remaining agents are ordered at the top uniformly at random. Then the Y-I algorithm is
executed using the priority order f .

(4) The E-discriminating random augmented TTC : An augmenting function v is chosen as
follows. The existing tenants in E are appointed to be the inheritors of one another in some
�xed order. The remainder of v is chosen uniformly at random. Then the augmented TTC
algorithm is executed using the augmenting function v.

3The Y-I algorithm was introduced by Abdulkadiro¼glu and Sönmez [2]. In its execution if a �loop� arises,
where a number of existing tenants request the occupied houses of one another in succession, they are assigned
the houses they request and then we proceed. For other studies related to this algorithm, see [4, 5, 18].

4The augmented TTC algorithm is well-de�ned (see footnote 8 in Section 2). It is a generalization of the
TTC algorithm, attributed to Gale in Shapley and Scarf [17]. For other studies related to TTC see [1, 9, 12, 13].

3

Notice how the random components of these two mechanisms discriminate against the existing
tenants in E (or, equally, notice how they favor the remaining agents): When the priority order f
is chosen, they are placed at the bottom of the order and hence put at a disadvantage. When the
augmenting function v is chosen, they never get a chance to receive vacant houses and hence are
put at a disadvantage in the subsequent trade protocol. As an illustration of this discrimination,
imagine the case where every agent prefers any vacant house to any occupied house. Then, under
these two mechanisms no existing tenant in E ever receives one of these coveted vacant houses.

Above, the four random mechanisms that we propose are de�ned by means of two seemingly
di¤erent algorithms: (1) and (3) are de�ned by means of the Y-I algorithm, and (2) and (4) are
de�ned by means of the augmented TTC algorithm. Even so, the main theoretical results of our
paper show that they are closely related: In Theorem 1, we show that the random Y-I and the
random augmented TTC mechanisms are equivalent. (That is, they induce any given allocation
with exactly the same probability.) In Theorem 2, we show that the E-discriminating random Y-I
and the E-discriminating random augmented TTC mechanisms are also equivalent. Indeed, it is
Theorem 2 which is the main theoretical contribution of our paper. It helps unify and generalize
the following equivalence results:

� Abdulkadiro¼glu and Sönmez [1] study the special case of our problem in which there are no
existing tenants. In this context, they show that the mechanisms random priority5 and �core
from random endowments� are equivalent. The E-discriminating random mechanisms in
our paper reduce to these two mechanisms when there are no existing tenants. Therefore,
their equivalence result follows from Theorem 2.

� Sönmez and Ünver [19] study this problem and they show the equivalence of two random
mechanism. The E-discriminating random mechanisms in our paper reduce to these two
mechanisms when the set E includes every existing tenant. Therefore, their equivalence
result follows from Theorem 2.

� Theorem 1 in this paper indeed also follows from Theorem 2. We present Theorem 1 as a
separate result, however, for expositional reasons and since we prove Theorem 2 using tools
introduced to show Theorem 1.6

A mechanism is said to be deterministic if for each preference pro�le of agents its allocation
choice is certain. The Y-I algorithm de�nes a class of deterministic mechanisms, each speci�ed
by the choice of the priority order f . Similarly, the augmented TTC algorithm de�nes a class of
deterministic mechanisms, each speci�ed by the choice of the augmenting function v. Since our
random mechanisms randomize over these two classes of mechanisms, they inherit their nice the-
oretical properties: They are strategy-proof and e¢cient, and they always induce group-rational
allocations. In showing Theorem 1, we indeed show that there is a one-to-one correspondence
between these two classes of mechanisms: For each priority order f , there exists a distinct aug-
menting function v such that the Y-I mechanism speci�ed by f is the same as the augmented
TTC mechanism speci�ed by v (due to Lemmas 1 and 4). In other words, we show that these
two classes of mechanisms indeed coincide. These two classes of mechanisms are subsets of the
more general class of �hierarchical exchange rules,� introduced by Pápai [10] and which she char-
acterized by a nice set of theoretical properties. We believe that the correspondence between the

5This mechanism is referred to as �random serial dictatorship� in Abdulkadiro¼glu and Sönmez [1].
6Note that Theorem 1 and the result in Sönmez and Ünver [19] both imply the equivalence result in Abdulka-

diro¼glu and Sönmez [1] but otherwise these two results are independent. For two other studies with equivalence
results in this literature, see [3, 11]. In a more recent paper, Lee and Sethuraman [8] develop a new technique
based upon induction to prove equivalence results.

4

classes of Y-I and augmented TTC mechanisms them assigns a focal place in the larger class of
Pápai�s hierarchical exchange rules. Also, to our best knowledge, the E-discriminating random
mechanisms in our paper are the �rst random mechanisms in the literature proposed for problems
where it is deemed socially desirable to discriminate against only a subset of existing tenants in
order to favor the remaining agents. The choice between them turns out to be inconsequential
since we show that they are equivalent.

Much of the terminology that we use is taken from Abdulkadiro¼glu and Sönmez [1]. The proof
strategy that we use to show Theorem 1 also follows the outline of their proof. There are some
additional complications in our context, however, due to the presence of existing tenants. To
deal with them, we introduce the �clone problem� (a di¤erent formulation of the house allocation
problem with existing tenants) as well as some additional tools, which may be of independent
interest. The rest of the paper is organized as follows: Section 2 introduces the problem and
the Y-I and the augmented TTC algorithms. Section 3 introduces the clone problem. Section
4 introduces the Y-I and the augmented TTC algorithms in the context of the clone problem.
Section 5 introduces and explores the �chain order,� a construct that helps us link these two
algorithms. Section 6 presents our results. The proofs of two lemmas are given in the Appendix.

2 Preliminaries

A house allocation problem with existing tenants is a �ve-tuple � : hAN ; HV ; AE; HO;�i s.t.:

� AN : fa1; a2; :::; akg is a �nite set of �newcomers�;

� HV : fh1; h2; : : : ; hkg is a �nite set of �vacant houses�;

� AE : fek+1; ek+2; :::; eng is a �nite set of �existing tenants�;

� HO : fok+1; ok+2; :::; ong is a �nite set of �occupied houses�;

� �: (�a)a2AN[AE is the pro�le of agents� strict preference relations over HV [HO.

Let A and H be the sets of agents and houses (i.e., A = AN [AE and H = HV [HO). We
write h �a h0 to indicate that agent a prefers house h to h0. We denote the set of preference
relations by � (so, �2�n). Let %a be the �at least as good as� relation for agent a (i.e.,
h %a h

0 means h �a h0 or h = h0).

An allocation � : A! H is a one-to-one mapping from the set of agents to the set of houses.
We denote the set of allocations byM. Given �2�n, an allocation � is:

� Pareto-e¢cient if there exists no �0 2 M such that for each a 2 A, �0(a) %a �(a), and
for some a 2 A, �0(a) �a �(a).

� group-rational if there exists no triplet hA0E; H
0
O; �i where A

0
E � AE; H

0
O � HO is the set

of occupied houses of existing tenants in A0E; and � : A
0
E ! H 0

O is a bijection such that for
each a 2 A0E, �(a) %a �(a), and for some a 2 A

0
E, �(a) �a �(a).

A mechanism (or, an allocation rule) is a systematic way to choose an allocation for any given
preference pro�le. In this paper, we study both deterministic and random mechanisms:

5

� A deterministic mechanism ' :�n!M is a mapping from the set of preference pro�les to
the set of allocations.

That is, for any given preference pro�le, the allocation choice is certain.

� A probability distribution � :M! [0; 1] is a mapping such that
P

�2M �(�) = 1.

For each allocation �, � speci�es the probability �(�) with which it is chosen. Let �(M)
be the set of probability distributions over the set of allocations.

� A random mechanism ' :�n! �(M) is a mapping from the set of preference pro�les to
the set of probability distributions over the set of allocations.

That is, given �, the allocation choice is randomly made as speci�ed by the probability
distribution '(�).

� Two (random) mechanisms '1 and '2 are equivalent if for each �2�
n, '1(�) = '2(�).

That is, for each preference pro�le, they induce the same probability distribution over the
set of allocations.

The random mechanisms that we consider derive from two algorithms: The �rst one is the
�You-request-my-house�I-get-your-turn algorithm.� It is due to Abdulkadiro¼glu and Sönmez [2]
and in short, we call it the Y-I algorithm. This algorithm allocates houses by means of a priority
order of agents. Thus, each priority order de�nes a distinct �Y-I mechanism.�

Let f : A ! f1; 2; � � � ; ng be a one-to-one mapping that orders agents�called a priority
order. Let F be the set of priority orders. The Y-I mechanism de�ned by f is denoted by Y-I(f)
and it proceeds as follows:

Y-I(f): The agent ordered �rst in f is assigned her favorite house; the next agent is assigned her
favorite house among the remaining ones; and so on, until an agent a requests an occupied
house os. If at that point es has already been assigned a house, a is assigned os and we
proceed. Otherwise, the remainder of the priority order is updated: es is inserted at the
top, right above a. Then we proceed. If at any point a �loop� forms, in which a subset of
existing tenants request the occupied houses of one another in succession, they are assigned
the houses they request and then we proceed.

The second algorithm that we will need is the �augmented top trading cycle algorithm.� In
short, we call it the augmented TTC algorithm. This algorithm allocates houses by means of
an �augmenting function.� The augmenting function appoints an owner for each vacant house.
Also, for each existing tenant, it appoints an �inheritor.� Thereby, a private-ownership economy
is induced, in which vacant houses are now also owned, and for each agent with multiple houses
there is an appointed inheritor. The assignments are then made using Gale�s TTC protocol and
the inheritance relationships among agents.

In order to indicate the �inheritor� of an existing tenant, we introduce the mathematical
construct called an �inheritance right�: For each existing tenant es, let is be the associated
�inheritance right�. Let I : fisg

n

s=k+1 be the set of inheritance rights. Let v : A! HV [I be a
one-to-one mapping from the set of agents to the set vacant houses and inheritance rights�called
an augmenting function: For agent a, if v(a) 2 HV , it means v assigns a the ownership of vacant
house v(a). Otherwise, v(a) is an inheritance right, say is, which means v appoints a as the
�inheritor� of existing tenant es. The augmented TTC mechanism de�ned by v is denoted by
TTC(v) and it proceeds as follows:

6

TTC(v): Consider the private-ownership economy induced when the problem is augmented by v.
Let each agent point to her favorite house and each house point to its owner. There exists
one or more (top trading) cycles: A �cycle� is a series a1; a2; � � � ; as = a1 of agents such
that a1 points to a house owned by a2 which points to a2; a2 points to a house owned by
a3 which points to a3; and so on. In each cycle perform the corresponding trades and then
remove all the agents belonging to cycles together with their assignments. For an existing
tenant who owns two houses, when she is removed, one of her houses still remains. The
ownership of this house is then given to her inheritor (the inheritor appointed by v). If the
inheritor has been removed, too, then the house is given to the inheritor of inheritor, and
so on.7 Then in the reduced private-ownership economy the allocation process continues
similarly by identifying new cycles and performing the corresponding trades and so on.

3 The Clone Problem

We introduce next our �clone problem,� derived from � and denoted by Cl f�g. The clone
problem Cl f�g is just a di¤erent formulation of the problem �. In Section 4, we introduce the
Y-I and the augmented TTC mechanisms in the context of the clone problem. This becomes
extremely useful in simplifying our exposition and showing our results. In the clone problem,
associated with each existing tenant es, we introduce a �clone,� cs. It is presumed that the clone
cs has the same preferences as es and she owns os (i.e., the occupied houses are presumed to
be the properties of the clones, not the existing tenants). Also, the �inheritance rights� that we
de�ned in Section 2 are now embedded in the clone problem de�nition.

A clone problem is a seven-tuple Cl f�g : hAN ; HV ; AE; HO;�; C; Ii s.t.:

� AN ; HV ; AE; HO;� are as de�ned in �;

� C : fck+1; ck+2; :::; cng is a �nite set of �clones�;

� I : fik+1; ik+2; :::; ing is a �nite set of �inheritance rights.�

As in the preceding section, A and H denote the sets of agents and houses.8 As need arises,
we will introduce some additional terms associated with the clone problem. To ease reference we
present them in bullet points. The �rst group of these terms are introduced below.

� ec-pair, items, hi-items.

For ease of reference, we refer to:

� an existing tenant es and her clone cs jointly as an ec-pair ;

� houses and inheritance rights jointly as items;

7It turns out that there is always an �inheritor� among the remaining agents and hence the augmented TTC
algorithm is well-de�ned. To see this, let e be an existing tenant who owns two houses, h and h0. Let e be
removed and h be the house that still remains. Let agent a be the inheritor of e. If a is a newcomer, a is among
the remaining agents because she had no houses to trade with earlier. If a is an existing tenant, she assumes the
ownership of h if she is among the remaining agents. Otherwise, we turn to the inheritor of agent a, say a0. But
then the previous arguments can be repeated for agent a0 and so on, until among the remaining agents we identify
an �inheritor� who assumes the ownership of h when e leaves.

8 i.e., A = AN [AE and H = HV [HO. Note that we do not refer to clones as �agents.� Thus, in the
context of the clone problem whenever we speak of agents, it is understood that we mean by it the newcomers
and existing tenants.

7

� vacant houses and inheritance rights jointly as hi-items (since they are denoted by
h1; h2; i8; i9 and so on).

We introduce next a �clone allocation,� de�ned in the context of the clone problem but which
can easily be converted into an (ordinary) allocation.

� clone allocation.

A clone allocation � : A [C ! H [I is a one-to-one mapping from the set of agents
and clones to the set of items such that for each ec-pair es and cs, one item in the set
f�(cs); �(es)g is a house and the other is is.

That is, at a clone allocation �, for an ec-pair, only one of them is assigned a house. Thus,
the (ordinary) allocation corresponding to a clone allocation is obtained in a straightforward
manner via the following mapping �:

For �, the corresponding (ordinary) allocation �(�) 2 M is such that for a newcomer a,
�(�)(a) = �(a), and for an existing tenant es, �(�)(es) is the house in the set f�(cs); �(es)g.

In the rest of the paper, for illustrative purposes, we refer to the clone problem presented in
Example 1.

Example 1 (a clone problem) Consider the clone problem such that n = 12, k = 8, and
agents� preference rankings of houses (not fully speci�ed) are as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8; c8 e9; c9 e10; c10 e11; c11 e12; c12
h3 h1 h3 h6 h4 o11 o8 o9 h2 h1 o10 h5
...

... o10
...

... o8 h1
...

... o11
...

...

o12
... o10

...
... h7

...
�

4 The Clone Speci�cations of the Mechanisms

In this section we introduce the clone speci�cations of the Y-I and the augmented TTC mecha-
nisms. The clone speci�cations of these mechanisms operate in the clone problem Cl f�g and
induce clone allocations. It turns out that they are equivalent to the ordinary speci�cations in
the following sense: For a Y-I or an augmented TTC mechanism, if its clone speci�cation induces
in problem Cl f�g the clone allocation �, its ordinary speci�cation induces in problem � the
allocation �(�).

In the clone speci�cations, in the context of a diagram we will speak of each agent and clone
pointing to an item and each item pointing to an agent or a clone. This will give rise to what we
call �blocks,� �chains,� and �cycles�. We elaborate on these notions below but to ease reading
for now note that a cycle will consist of blocks pointing to one another or of chains pointing to
one another but the notions of a block and a chain are not the same.

Below we elaborate on the notions of a block and a cycle and we also introduce some related
concepts.

8

� block, source agent, sink hi-item.

A block is an ordered list a ! x or a ! o1 ! c1 ! � � � oq ! cq ! x (pointers added)
such that:

� a is an agent and x is an hi-item;

� for each s, os is an occupied house and cs is the clone who owns it;

� the members of the list point to one another in succession (as indicated).

We refer to a and x as the source agent and the sink hi-item of the block. When a block
is �executed,� it means each agent and clone in the block is assigned the item to which
she points and then the agents and clones in the block are removed together with their
assignments.

� cycle

A cycle is an ordered list x1 ! a1 ! � � � ! xq ! aq ! x1 (pointers added) such that:

� fasgqs=1 � A [C and fx
sgqs=1 � H [I;

� for each s, if xs is an occupied house, then as is the clone who owns it;

� the members of the list point to one another in succession (as indicated).9

When a cycle is �executed,� it means each agent and clone in the cycle is assigned the item
to which she points and then the agents and clones in the cycle are removed together with
their assigned items.

As an illustration, the following diagram indicates three cycles in dashed boxes.

Cycle Examples

a7 i12 e9 i9

c8 o8 a6 i11 e 11 h6 a4 h4 c10 o11

i8 e 10 i10 a3 o12 c12 h5 a5 o10 c11

h7 e 12

In a cycle there may not be any agent. In the above diagram, for instance, the cycle on
the right involves only clones and occupied houses. If there are one or more agents in a cycle,
however, this cycle consists of blocks: The sink hi-items of the blocks point to the source agents
of the blocks in succession and hence the cycle forms. In the above diagram, for instance, the
small cycle on the left consists of the block e9 ! i9 (i9 points to e9 and hence the cycle forms)
and the large cycle consists of the blocks: a5 ! h4, a4 ! h6 ! e11 ! i11, a6 ! o8 ! c8 ! i8,

9Note that the last agent or clone in the list, aq, points to the �rst item in the list, x1. Also, notice that
while the �cycles� mentioned in the description of the TTC(v) mechanism in Section 2 involved existing tenants
and occupied houses, here a cycle involves agents, clones and items (i.e., there are now also newcomers, clones,
vacant houses and inheritance rights).

9

e10 ! i10, a3 ! o12 ! c12 ! h5 (h4 points to a4, i11 points to a6, and so on, and hence the
cycle forms).10

In our clone speci�cations, in the context of a diagram we will speak of agents pointing to
their �favorite remaining items,� which we de�ne next.

� favorite remaining item.

The favorite remaining item of a newcomer is her favorite house among those remaining
(i.e., among the houses that are still in the diagram).

The favorite remaining item of an existing tenant es (of a clone cs) is:

� is, if cs (if es) has been assigned a house earlier;

� her favorite house among those remaining, if otherwise.

We are now ready to introduce the clone speci�cations. The clone speci�cation of Y-I(f)
proceeds as follows:

Y-I (f): Consider a diagram consisting of agents, clones and items.

Let a be the agent ordered �rst in f . Let a point to her favorite remaining item, say x. If
x is an hi-item, this results in a block: a ! x. Otherwise, x is an occupied house owned
by a clone, say c. In that case, let x point to c and c point to her favorite remaining item,
say x0. If x0 is an hi-item, this results in a block: a ! x ! c ! x0. Otherwise, x0 is an
occupied house owned by a clone, say c0. In that case, let x0 point to c0 and c0 point to her
favorite remaining item, say x00. Proceed similarly until either a block forms with source
agent a, or a cycle forms consisting of a number of clones and occupied houses. Execute
this block or cycle. Then reiterate the process starting with the agent ordered at the top
of the remainder of f .11

The algorithm terminates when every agent and clone has been assigned an item (or, equiva-
lently, when the remainder of the priority order is empty).

Notice that the key distinction in the above clone speci�cation of a Y-I mechanism is the
following: For an ec-pair es and cs, each �attempts� to be assigned the best house that she can
until one succeeds. Then in succeeding steps the remaining one simply points to is. Since no one
else ever points to is, she receives it eventually. That is why the clone speci�cation always induces
a clone allocation as we de�ned it. The clone and the ordinary speci�cations of a Y-I mechanism
turn out to be equivalent: i.e., when the former induces a clone allocation �, the latter induces
the (ordinary) allocation �(�). To see this, consider the following illustrative cases that may arise
while running the clone speci�cation:

� A block forms involving no clones and whose sink hi-item is a vacant house; e.g., a1 ! h3.
Then a1 is assigned h3. For the ordinary speci�cation this means the following: When it is
her turn, a1 requests h3 and she is assigned h3.

10For a cycle that involves one or more agents, note that executing this cycle is the same as executing the
blocks in the cycle: Either way, the same assignments are made, and hence, the same agents, clones and items are
removed. This property turns out to be useful in our arguments later on (in showing Claim 1 in the Appendix).

11Note that if a is not assigned a house, the agent ordered at the top is still a; otherwise, the agent ordered at
the top is the one that comes after a in f .

10

� A block forms involving no clones and whose sink hi-item is an inheritance right; e.g.,
e11 ! i11. Then e11 is assigned i11. For the ordinary speci�cation this means that e11 has
already been assigned a house (so she is not in the remainder of the priority order).

� A block forms that involves clones and whose sink hi-item is a vacant house; e.g., a3 !
o12 ! c12 ! h5. Then a3 is assigned o12 and c12 is assigned h5. For the ordinary
speci�cation this means the following: When it is her turn, a3 requests o12. Thus e12 moves
to the top of the remainder of the priority order. Then e12 requests h5 and she is assigned
h5. Then a3 again moves to the top of the remainder of the priority order. Then a3 again
requests o12 but this time she receives it.

� A block forms that involves clones and whose sink hi-item is an inheritance right; e.g.,
a6 ! o8 ! c8 ! i8. Then a6 is assigned o8 and c8 is assigned i8. For the ordinary
speci�cation this means the following: When it is her turn, a6 requests o8 and she is
assigned o8 (because it turns out that e8 has been assigned a house earlier).

� A cycle forms consisting of clones and occupied houses; e.g., c10 ! o11 ! c11 ! o10 ! c10.
Then c10 is assigned o11 and c11 is assigned o10. For the ordinary speci�cation this means the
following: When it is the turn of e10 (or e11), a loop forms in which e10 and e11 successively
request the occupied houses of one another. Then e10 is assigned o11 and e11 is assigned
o10.

The following example illustrates the workings of the clone speci�cation of a Y-I mechanism.

Example 2 (workings of a Y-I mechanism) Consider the clone problem presented in Example
1. Let priority order f be such that agents are ordered as follows: a1; a2; e8; e11; a4; a5; e10;
e9; a3; a6; e12; a7. The following series of �gures illustrate the workings of the mechanism Y-I(f):
Agents successively move to the top of the remainder of the priority order, blocks and cycles form,
and then agents are assigned items by executing these blocks and cycles. The table at the very
end presents the clone allocation induced.

h1 h2 h4 h5 h6 h7 i8 i9 i10 i11 i12

o8 o9 o10 o11 o12

h3 c8 c9 c10 c11 c12

remainder of f : a1 a2 e8 e11 a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3

made c8 c9 c10 c11 c12

11

h2 h4 h5 h6 h7 i8 i9 i10 i11 i12

o8 o9 o10 o11 o12

h1 c8 c9 c10 c11 c12

remainder of f : a2 e8 e11 a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1

made c8 c9 c10 c11 c12

h4 h5 h6 h7 i8 i9 i10 i11 i12

o8 o10 o11 o12

o9 c9 h2 c8 c10 c11 c12

remainder of f : e8 e11 a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o9

made c8 c9 c10 c11 c12

h2

h4 h5 h6 h7 i8 i9 i10 i11 i12

c11 o11 o8 o12

c8 c12

o10 c10

remainder of f : e11 a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o9

made c8 c9 c10 c11 c12

h2 o11 o10

12

h4 h5 h6 h7 i8 i9 i10 i12

o8 o12

i11 c8 c12

remainder of f : e11 a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o9 i11

made c8 c9 c10 c11 c12

h2 o11 o10

h4 h5 h7 i8 i9 i10 i12

o8 o12

h6 c8 c12

remainder of f : a4 a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 h6 o9 i11

made c8 c9 c10 c11 c12

h2 o11 o10

h5 h7 i8 i9 i10 i12

o8 o12

h4 c8 c12

remainder of f : a5 e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 h6 h4 o9 i11

made c8 c9 c10 c11 c12

h2 o11 o10

13

h5 h7 i8 i9 i12

o8 o12

i10 c8 c12

remainder of f : e10 e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 h6 h4 o9 i10 i11

made c8 c9 c10 c11 c12

h2 o11 o10

h5 h7 i8 i12

o8 o12

i9 c8 c12

remainder of f : e9 a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 h6 h4 o9 i9 i10 i11

made c8 c9 c10 c11 c12

h2 o11 o10

h7 i8 i12

h5 c12 o12 o8

c8

remainder of f : a3 a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o12 h6 h4 o9 i9 i10 i11

made c8 c9 c10 c11 c12

h2 o11 o10 h5

14

h7 i12

i8 c8 o8

remainder of f : a6 e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o12 h6 h4 o8 o9 i9 i10 i11

made c8 c9 c10 c11 c12

i8 h2 o11 o10 h5

h7

i12

remainder of f : e12 a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o12 h6 h4 o8 o9 i9 i10 i11 i12

made c8 c9 c10 c11 c12

i8 h2 o11 o10 h5

h7

remainder of f : a7

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o12 h6 h4 o8 h7 o9 i9 i10 i11 i12

made c8 c9 c10 c11 c12

i8 h2 o11 o10 h5

�

The clone speci�cation of TTC(v) proceeds as follows:

TTC (v): Consider a diagram consisting of agents, clones and items.

Step t (t � 1, t odd): Let each clone point to its favorite remaining item and let each occupied
house point to its owner (a clone). If there are no cycles, proceed to Step t+1. If there are
cycles, execute them and repeat Step t until no cycle arises. Then proceed to Step t+ 1.

Step t (t � 2, t even): Let each agent and clone point to its favorite remaining item and let
each occupied house point to its owner (a clone). Also, let each hi-item point to the agent
who owns it under v. Execute the resulting cycles and then proceed to Step t+ 1.

15

The algorithm terminates when every agent and clone is assigned an item. It turns out that
this happens at an even step.12

Notice that the key distinction in the clone speci�cation of an augmented TTC mechanism
is the following: For an ec-pair es and cs, each �attempts� to be assigned the best house that
she can until one succeeds. Then in succeeding steps the remaining one simply points to is.
Since no one else ever points to is she receives it eventually. That is why the clone speci�cation
always induces a clone allocation as we de�ned it. The clone and the ordinary speci�cations of
an augmented TTC mechanism turn out to be equivalent: i.e., when the former induces a clone
allocation �, the latter induces the (ordinary) allocation �(�). To see this, consider the following
illustrative cases that may arise while running the clone speci�cation:

� As part of a cycle, a block forms involving no clones and whose sink hi-item is a vacant house;
e.g., a1 ! h3. Then a1 is assigned h3. In the ordinary speci�cation, in the corresponding
cycle a1 points to h3. Then a1 is assigned h3.

� As part of a cycle, a block forms involving no clones and whose sink hi-item is an inheritance
right; e.g., e11 ! i11. Then e11 is assigned i11. In the ordinary speci�cation, this corresponds
to e11 having been assigned a house earlier.

� As part of a cycle, a block forms that involves clones and whose sink hi-item is a vacant
house; e.g., a3 ! o12 ! c12 ! h5. Then a3 is assigned o12 and c12 is assigned h5. In the
ordinary speci�cation, in the corresponding cycle a3 points to o12, o12 points to e12, and e12
points to h5. Then a3 is assigned o12 and e12 is assigned h5.

� As part of a cycle, a block forms that involves clones and whose sink hi-item is an inheritance
right; e.g., a6 ! o8 ! c8 ! i8. Then a6 is assigned o8 and c8 is assigned i8. In the ordinary
speci�cation, in the corresponding cycle a6 points to o8 and o8 points to an inheritor of e8
(i.e., the inheritor of e8 or the inheritor of inheritor of e8 and so on). (Because it turns that
e8 has been assigned a house earlier and hence o8 is now owned by an inheritor.) Then a6
is assigned o8.

� A cycle forms consisting of clones and occupied houses; e.g., c10 ! o11 ! c11 ! o10 ! c10.
Then c10 is assigned o11 and c11 is assigned o10. In the ordinary speci�cation, in the
corresponding cycle e10 and e11 point to one another�s occupied houses. Then e10 is assigned
o11 and e11 is assigned o10.

The following example illustrates the workings of the clone speci�cation of an augmented TTC
mechanism.

Example 3 (workings of an augmented TTC mechanism) Consider the clone problem
presented in Example 1. Let augmenting function v be such that: v(a1) = h1; v(a2) = h2;
v(a3) = i10; v(a4) = h4; v(a5) = h5; v(a6) = i11; v(a7) = i12; v(e8) = h3; v(e9) = i9;
v(e10) = i8; v(e11) = h6; v(e12) = h7. The following series of �gures illustrate the workings of
the mechanism TTC(v) and the assignments made at successive steps. (For simplicity, at odd
steps we present only the cycles formed, if any.)

12The assignments cannot be �nalized at an odd step for the following reason: At odd steps, the clones are are
assigned occupied houses. Thus, if cs is assigned an occupied house at Step t, it must be that es is assigned is
at a subsequent even step.

16

Step 1: No cycles; no assignments made.

Step 2: i10 a3 c8 o8 a7 i12

i8

a1 h3 e8 o9

e 10

c10 h1 a2 h2 c9 e9 i9

o10 c11 o11 a6 i11

e 11 h6 a4 h4

o12 c12 h5 a5

h7 e 12

each agent in the cycle is assigned the

item she points to

a1 a2 a3 a4 a5 a6 a7 e8 e 9 e 10 e11 e 12

Assignments h3 h1 o9

made c8 c9 c10 c11 c12

h2

Step 3: c10 o11

o10 c11

each agent in the cycle is assigned the

item she points to

a1 a2 a3 a4 a5 a6 a7 e8 e 9 e 10 e11 e 12

Assignments h3 h1 o9

made c8 c9 c10 c11 c12

h2 o11 o10

17

Step 4:

a7 i12 e9 i9

c8 o8 a6 i11 e 11 h6 a4 h4

i8 e 10 i10 a3 o12 c12 h5 a5

h7 e 12

each agent in a cycle is assigned the

item she points to

a1 a2 a3 a4 a5 a6 a7 e8 e 9 e 10 e11 e 12

Assignments h3 h1 o12 h6 h4 o8 o9 i9 i10 i11

made c8 c9 c10 c11 c12

i8 h2 o11 o10 h5

Step 5: No cycles; no assignments made.

Step 6:

a7 i12

h7 e 12

each agent in the cycle is assigned the

item she points to

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

Assignments h3 h1 o12 h6 h4 o8 h7 o9 i9 i10 i11 i12

made c8 c9 c10 c11 c12

i8 h2 o11 o10 h5

�

5 The Chain Order

In the remainder of the paper we study only the clone problem. Therefore, when we speak of the
Y-I and the augmented TTC mechanisms, it is understood that we mean their clone speci�cations.
In this section, on the basis of the workings of an augmented TTC mechanism, we de�ne what
we call a �chain order.� We denote the chain order corresponding to the mechanism TTC(v) by
ch(v). A chain order is simply a priority order (i.e., ch(v) 2 F). It helps us link the mechanisms
TTC(v) and Y-I(ch(v)): As it turns out, they are equivalent (Lemma 1).

On the basis of the workings of TTC(v): Let At(v); Ct(v); H t(v); I t(v) be, respectively, the
sets of agents, clones, houses, and inheritance rights that are assigned at Step t. For t odd, note
that H t(v) � HO and At(v) = I t(v) = ;.

Under TTC(v), for t � 2 and t even, consider Steps t and t+2. The cycles that arise at Step
t+ 2 consist of the members of the set At+2(v) [Ct+2(v) [H t+2(v) [I t+2(v). As it turns out,

18

at Step t the members of this set form what we call �chains�. Below we elaborate on the notion
of a chain and we also introduce some related concepts.

� chain, the tail and the head of a chain, the agent-head and the agent-tail of a
chain

A chain at Step t is an ordered list x1 ! a1 ! � � � ! xq ! aq (pointers added) such that:

� fasgqs=1 � A
t+2(v) [Ct+2(v) and fxsgqs=1 � H

t+2(v) [I t+2(v);

� for each s, if xs is an occupied house then as is the clone who owns it;

� for each s, if xs is an hi-item then as is the agent who owns it under v;

� the members of the list point to one another in succession (as indicated);

� there does not exist a 2 At+2(v) [Ct+2(v) such that a points to x1 at Step t;

� and at Step t, aq points to a house in H t(v) [H t+1(v).

We refer to x1 as the tail and aq as the head of the chain. Note that the reason the
members of this chain are assigned at Step t + 2, and not at Step t, is the following: At
Step t, aq points to a house which is assigned to someone else at Step t or t + 1.13 Note
that except for the head of the chain, every other agent and clone in the chain is assigned
at Step t+ 2 the item to which it points at Step t.

Although �blocks� and �chains� are indicated using a similar representation (as an ordered
list of agents, clones and items with pointers), note that they are di¤erent mathematical
constructs: In a block there is exactly one agent. In a chain there may be one or more
agents, or even none. If a chain involves one or more agents, we refer to the �rst agent in
the ordered list above as the agent-tail of the chain and last the one as the agent-head of
the chain. Note that if in a chain there is exactly one agent then the agent-tail and the
agent-head of the chain are the same. Also, above if aq is an agent (not a clone), then aq is
both the head and the agent-head of the chain. The agent-tail and the agent-head notions
become useful below when we de�ne the �chain order.�

The chains that arise at Step t are disjoint by de�nition. At Step t+ 2, the heads of these
chains point to the tails of one another and thereby form the cycles. As an illustration, the
�gures below show how the chains that arise at Step 2 in Example 3, shown in solid boxes,

13Note that at Step t, aq cannot be pointing to an inheritance right is 2 It(v): If it were so, it would mean
that is is assigned to someone else at Step t. But under TTC (v), no agent or clone ever points to is except the
one who is eventually assigned it (which is es or cs).

19

form the cycles at Step 4.

Chains at Step 2

i10 a3 c8 o8 a7 i12

i8

a1 h3 e8 o9

e10

c10 h1 a2 h2 c9 e9 i9

o10 c11 o11 a6 i11

e11 h6 a4 h4

o12 c12 h5 a5

h7 e12

How chains at Step 2 form cycles at Step 4

a7 i12 e9 i9

c8 o8 a6 i11 e11 h6 a4 h4

i8 e10 i10 a3 o12 c12 h5 a5

h7 e12

We are now ready to introduce our �chain order.�

� Chain order ch(v)

For v 2 V, on the basis of the execution of the mechanism TTC(v), we construct the chain
order ch(v) 2 F according to the following three rules:

� chain order rule 1: Order agents in At(v) before agents in At+2(v) for all t � 2, t
even.

� chain order rule 2: Order agents in A2(v) in order of the indices of the hi-items that
they own under v.

� chain order rule 3: Order agents in At+2(v) (t � 2, t even) by looking at the chains
that are arise at Step t: Agents in a chain are ordered from its agent-head to its
agent-tail, successively. Agents in di¤erent chains are ordered looking at the indices of
the hi-items pointing to the agent-tails of the chains: The agents in the chain where
this index takes the smallest value are ordered �rst; the agents in the chain where this
index takes the second smallest value are ordered next, and so on.

The following example illustrates the construction of the chain order.

Example 4 (construction of the chain order) Consider the execution of TTC(v) presented
in Example 3. We �nd that: A2(v) = fa1; a2; e8g, A4(v) = fa3; a4; a5; a6; e9; e10; e11g, and
A6(v) = fa7; e12g:

20

By chain order rule 1, we order the agents in A2(v) before those in A4(v) and the agents in
A4(v) before those in A6(v).

By chain order rule 2, the agents in A2(v) are ordered as a1; a2; e8. (Note that v(a1) = h1,
v(a2) = h2, v(e8) = h3; and hence the indices of the hi-items under v of a1, a2, e8 are 1, 2, 3.)

Consider now the agents in A4(v). In the above two �gures we have shown how the chains
that arise at Step 2 (shown in solid boxes) form the cycles at Step 4. As it can be seen there, the
following chains arise at Step 2:14

� o12 ! c12 ! h5 ! a5 ! h4 ! a4 ! h6 ! e11

� i11 ! a6

� i8 ! e10

� i10 ! a3

� i9 ! e9

In the chains listed above, in order: The agent-tails are a5; a6; e10; a3; e9; the hi-items that
point to them are h5; i11; i8; i10; i9; the indices of these hi-items are 5, 11, 8, 10, 9. Looking at the
indices, by chain order rule 3 we order the agents in the above chains as: e11; a4; a5; e10; e9; a3; a6.15

Consider now the agents in A6(v). The following �gures show how the chains that arise at
Step 4 (shown in solid boxes) form the only cycle at Step 6.

Chains at Step 4

a7 i12 e9 i9

c8 o8 a6 i11 e11 h6 a4 h4

i8 e10 i10 a3 o12 c12 h5 a5

h7 e12

How chains at Step 4 form cycles at Step 6

a7 i12

h7 e 12

�

As can be seen, the following chains arise at Step 4: i12 ! a7 and h7 ! e12. In order: The
agent-tails are a7 and e12; the hi-items that point to them are i12 and h7; the indices of these

14The chain o8 ! c8 arises, too, but it involves no agent and hence is not needed in the construction of the
chain order.

15Note that the agents in the chain o12 ! c12 ! h5 ! a5 ! h4 ! a4 ! h6 ! e11 are ordered as e11; a4; a5,
because by chain order rule 3 the agents in a chain are ordered from its agent-head to its agent-tail.

21

hi-items are 12 and 7. Looking at the indices, by chain order rule 3 we order the agents in these
chains as: e12; a7.

Therefore, we obtain that the chain order ch(v) is as follows:

ch(v) : a1; a2; e8
| {z }

e11; a4; a5; e10; e9; a3; a6
| {z }

e12; a7
| {z }

A2(v) A4(v) A6(v)

Notice that the same clone allocation is induced by the Y-I mechanism in Example 2 and the
augmented TTC mechanism in Example 3. This is no coincidence. The chain order induced by
the execution of the augmented TTC mechanism in Example 3 (as described in Example 4) is
precisely the same as the priority order of the Y-I mechanism in Example 2. And as it turns out,
for any augmenting function v, the mechanisms TTC(v) and Y-I(ch(v)) induce the same clone
allocation (i.e., the two mechanisms are equivalent). This is because by construction of the chain
order ch(v):

� The cycles that arise at odd steps when TTC(v) is executed also arise when Y-I(ch(v)) is
executed.16

� The cycles that arise at even steps when TTC(v) is executed consist of the blocks that arise
when Y-I(f) is executed.

We present this observation as a formal lemma.

Lemma 1 The mechanisms TTC(v) and Y-I(ch(v)) are equivalent.

We conclude this section by presenting three more lemmas: Lemma 2 helps us show Lemma 3,
and Lemma 3 helps us show Lemma 4. The proofs of Lemmas 2 and 3 are given in the Appendix
for the interested reader. The theorems presented in Section 6 are proved using Lemmas 1 and 4.

Lemma 2 For two augmenting functions v and v0 such that ch(v) = ch(v0), At(v) = At(v0) for
all t � 2, t even.

Lemma 3 Given a chain order ch(v), we can uniquely identify v.

Lemma 4 The chain order mapping ch : V ! F is a bijection.

Proof. By Lemma 3, the mapping ch is injective. Since jVj = jFj = n!, the mapping ch must
also be surjective. Therefore, the mapping ch is a bijection.

16Note that these cycles involve only clones and occupied houses. There is, however, the following di¤erence
regarding the timing of when these cycles are executed: Under TTC(v), given the assignments made earlier, at an
odd step all cycles that involve exclusively clones and occupied houses are preemptively identi�ed and executed.
Under Y-I(ch(v)) these cycles are executed on an �as they arise� basis, however. This di¤erence is nonetheless
inconsequential.

22

6 Results

In this section we study four random mechanisms. They are derived from the classes of the Y-I
and the augmented TTC mechanisms. We present the main results of our paper which show how
these random mechanisms are related.

First, we consider two random mechanisms whose random components treat existing tenants
and newcomers alike.

random Y-I. Draw a priority order f 2 F uniformly at random. Then execute Y-I(f):

random augmented TTC. Draw an augmenting function v 2 V uniformly at random. Then
execute TTC(v).

The random components in the above two mechanisms are the choices of the priority order f
and the augmenting function v. Since f and v are chosen uniformly at random, the newcomers
and existing tenants are treated alike under the random components of these two mechanisms.
As it turns out, these two random mechanisms are equivalent.

Theorem 1 The mechanisms random Y-I and random augmented TTC are equivalent.

Proof. This immediately follows from Lemma 1 and Lemma 4.

In their paper, Abdulkadiro¼glu and Sönmez [1] study the �house allocation problem,� which is
the special case of our problem in which there are no existing tenants. In this context, they show
that the mechanisms �random priority�5 and �core from random endowments� are equivalent.
The random Y-I and the random augmented TTC mechanisms reduce to these two mechanisms
when there are no existing tenants. Therefore, their equivalence result follows as a corollary of
our Theorem 1.

Corollary 1 (Abdulkadiro¼glu and Sönmez [1]) In a house allocation problem, the mech-
anisms �random priority� and �core from random endowments� are equivalent.

We consider next two random mechanisms whose random components discriminate against a
subset E � AE of existing tenants. Note that this is the same as favoring the set of agents in
ArE. Without loss of generality, let E = feq; eq+1; � � � ; eng. (To achieve this con�guration we
can relabel the existing tenants as necessary.)

Let FE � F be the subset of priority orders such that eq; eq+1; � � � ; en are ordered at the
bottom in a given �xed order. Let VE � V be the subset of augmenting functions under which
eq; eq+1; � � � ; en are assigned the inheritance rights iq; iq+1; � � � ; in in a given �xed order. The
random components of the following two random mechanisms discriminate against the existing
tenants in E.17

E�discriminating random Y-I. Draw a priority order f 2 FE uniformly at random. Then
execute Y-I(f).

17Note that the sets FE and VE are not fully speci�ed: For FE , the �xed order in which eq; eq+1; � � � ; en
are placed at the bottom is not given. And for VE , the �xed order in which eq; eq+1; � � � ; en are assigned
iq; iq+1; � � � ; in is not given. These �xed orders turn out to be inconsequential, however. To save space we leave
the veri�cation of this to the interested reader.

23

E�discriminating random augmented TTC. Draw an augmenting function v 2 VE uni-
formly at random. Then execute TTC(v).

The discrimination against the existing tenants in E in the above two random mechanisms
is clear: Under E�discriminating random Y-I, when the priority order f is chosen they are al-
ways placed at the bottom and hence put at a disadvantage. Under E�discriminating random
augmented TTC, when the augmenting function v is chosen they never get a chance to receive
vacant houses and hence put at a disadvantage in the subsequent trade protocol. As an illustra-
tion, imagine the case where every agent prefers any vacant house to any occupied house. Then,
under these two random mechanisms, the coveted vacant houses are never assigned to the existing
tenants in E. As it turns out, these two random mechanisms are also equivalent.

Theorem 2 The mechanisms E�discriminating random Y-I and E�discriminating random aug-
mented TTC are equivalent.

In a study related to ours, Sönmez and Ünver [19] study our problem and show the equivalence
of two random mechanisms. The random mechanisms that they study turn out to be the special
cases of our E�discriminating random mechanisms where the discrimination is against all existing
tenants (i.e., E = AE). Therefore, their equivalence result follows as a corollary of our Theorem
2.

Corollary 2 (Sönmez and Ünver [19]) The mechanisms E�discriminating random Y-I and
E�discriminating random augmented TTC are equivalent when E = AE.

Indeed, our Theorem 1 (and hence Corollary 1) also follows from Theorem 2 (when we set
E = ;). Thus, the main theoretical contribution of our paper is an equivalence result (Theorem
2) that subsumes and generalizes the above equivalence results. The remainder of this section
presents the proof of Theorem 2.

Proof of Theorem 2.

We prove the theorem using a �trick� and then by applying Lemma 1. The trick is adding to
our problem an existing tenant whose occupied house is everyone�s last choice. We denote our
�extended problem� by �+ :

AN ; HV ; A

+

E; H
+

O ;�
+
�
, where:

� AN and HV are as in �.

� A+E = AE [fen+1g and H
+

O = HO [fon+1g.

� For each a 2 AN[AE, �+a is such that on+1 is the least preferable house and the preferences
over the houses in HV [HO are the same as in �a.

� For en+1, a house with a smaller index is more preferable (i.e., h1 is the most and on+1 is
the least preferable house).

We will study the clone problems Cl f�g and Cl f�+g. Recall that in the clone problem
Cl f�g, we use A;C;H; I to denote the sets of agents, clones, houses and inheritance rights. In
the clone problem Cl f�+g we will use A+; C+; H+; I+ to denote the corresponding sets (i.e.,
A+ = A [fen+1g, C+ = A [fcn+1g, H+ = H [fon+1g, and I+ = I [fin+1g).

Let ' and '+ be two random mechanisms, de�ned in the contexts of the clone problems
Cl f�g and Cl f�+g, respectively. With some abuse of language, we say that the mechanisms '
and '+ are equivalent if under ' and '+ the probabilistic assignments of the agents and clones
in A [C are the same. Our proof follows the following outline:

24

� In the context of the clone problem Cl f�+g we introduce two random mechanisms, '+1
and '+2 .

� In the sense de�ned above, we show that '+1 is equivalent to the E�discriminating random
Y-I mechanism and '+2 is equivalent to the E�discriminating random augmented TTC
mechanism.

� In the context of the clone problem Cl f�+g we show that the mechanisms '+1 and '
+

2 are
equivalent.

This will prove that our two E�discriminating random mechanisms are equivalent.

For each f 2 FE, we de�ne the priority order f+ : A+ ! f1; 2; � � � ; n+ 1g as follows:

� f+(a) = f(a) for a 2 A n E.

� f+(en+1) = q.

� f+(es) = f(es) + 1 for es 2 E.

That is, f+ is obtained by inserting en+1 in f right above eq; eq+1; � � � ; en, however they
are ordered in f .

When we execute Y-I(f+) in the clone problem Cl f�+g, by the time en+1 moves to the top of
the remainder of the priority order all newcomers and vacant houses are assigned (not necessarily
to one another). The only houses remaining are certain occupied houses owned by clones. Since
on+1 is everyone�s last choice, under Y-I(f+) the clone cn+1 is assigned on+1, and hence en+1
is assigned in+1. Since f and f+ are otherwise the same, the addition of en+1 and on+1 to the
problem changes nothing regarding the execution of the Y-I algorithm: The assignments of agents
and clones in A [C are the same under the mechanisms Y-I(f) and Y-I(f+). In other words,
in the sense de�ned above the mechanisms Y-I(f) and Y-I(f+) are equivalent. Therefore, in the
sense de�ned above the E�discriminating random Y-I mechanism is equivalent to the following
random mechanism:

Let FE+ : ff+jf 2 FEg.

'+1 : Draw f
+ 2 FE+ uniformly at random. Then execute Y-I(f+) in the clone problem Cl f�+g.

For v 2 VE, we de�ne the augmenting function v+ : A+ ! H+ [I+ as follows:

� v+(a) = v(a) for a 2 A n E.

� v+(en+1) = iq.

� v+(es) = is+1 for es 2 E.

When we execute TTC(v+) in the clone problem Cl f�+g, since on+1 is everyone�s last
choice, cn+1 is assigned on+1, and hence, en+1 is assigned in+1. Also, under both TTC(v) and
TTC(v+), by construction, the existing tenants eq; eq+1 � � � ; en are assigned the inheritance rights
iq; iq+1 � � � ; in, in order. Since v and v+ are otherwise the same, the assignments of agents and
clones in A n E are also the same. That is, under TTC(v+), cn+1 is assigned on+1, en+1 is
assigned in+1, and the assignments of the agents and clones in A [C are exactly the same as
under TTC(v). In other words, in the sense de�ned above the mechanisms TTC(v) and TTC(v+)
are equivalent. Therefore, in the sense de�ned above the E�discriminating random augmented
TTC mechanism is equivalent to the following random mechanism:

Let VE+ : fv+jv 2 VEg.

25

'+2 : Draw v+ 2 VE+ uniformly at random. Then execute TTC(v+) in the clone problem
Cl f�+g.

We complete the proof by showing that in the context of the clone problem Cl f�+g the
random mechanisms '+1 and '

+

2 are equivalent.

Consider the execution of TTC(v+) in the clone problem Cl f�+g. Since the inheritance
rights iq+1; � � � ; in+1; iq point to the existing tenants eq; � � � ; en+1 (in order), at some even step
they form the following cycle, to be called Cycle(iq; in+1):

en+1 iq eq … en­3 in­2

in+1 en in en­1 in­1 en­2

Since cn+1 owns on+1 and on+1 is everyone�s last choice, cn+1 is assigned on+1 after all other
houses are assigned. This happens then at the �nal odd step, say at Step T (T odd). The
algorithm then terminates at Step T + 1 (an even step), and at Step T + 1 the cycles formed
involve only existing tenants and inheritance rights.

Since en+1 does not point to in+1 until cn+1 is assigned on+1, one of the cycles that arise at
Step T + 1 is Cycle(iq; in+1). Consider the chains that arise at Step T � 1 and which form the
cycles at Step T + 1. Some of these chains form Cycle(iq; in+1) at Step T + 1. Since the items
that point to the agents in Cycle(iq; in+1) (all existing tenants) have the greatest indices, the
chains that form Cycle(iq; in+1) must be ordered at the very end of the associated chain order
ch(v+) (by chain order rule 3). Also, note that irrespective of how Cycle(iq; in+1) is broken into
chains, these agents are ordered in ch(v+) at the end as en+1; eq; eq+1; � � � ; en.

Therefore, we obtain that for each v+ 2 V+E, ch(v+) 2 F+E. Note that
�
�V+E

�
� =

�
�F+E

�
� =

(q � 1)!. Therefore, the chain order mapping induces a bijection from V+E to F+E. Then we
apply by Lemma 1 and obtain that the random mechanisms '+1 and '

+

2 are equivalent.

Therefore, the mechanisms E�discriminating random Y-I and E�discriminating random aug-
mented TTC are also equivalent.

References

[1] A. Abdulkadiro¼glu, Atila and T. Sönmez (1998), �Random Serial Dictatorship and the Core
from Random Endowments in House Allocation Problems,� Econometrica 66:3 689-701.

[2] A. Abdulkadiro¼glu, Atila and T. Sönmez (1999), �House Allocation with Existing Tenants,�
Journal of Economic Theory 88:2 233-260.

[3] G. Carroll (2014), �A General Equivalence Theorem for Allocation of Indivisible Objects,�
Journal of Mathematical Economics 51 163-177.

[4] Y. Chen and T. Sönmez (2002), �Improving e¢ciency of on-campus housing: An experimen-
tal study,� American Economic Review 92:5 1669-1686.

26

[5] Ö. Ekici (2013), �Reclaim-proof Allocation of Indivisible Objects,� Games and Economic
Behavior 81 1-10.

[6] A. Hylland and R. Zeckhauser (1979), �The e¢cient allocations of individuals to positions,�
Journal of Political Economy 87:2 293-314.

[7] D. E. Knuth (1996), �An Exact Analysis of Stable Allocation,� Journal of Algorithms 20:2
431-442.

[8] T. Lee and J. Sethuraman (2011), �Equivalence Results in the Allocation of Indivisible
Objects: A Uni�ed View,� working paper, Columbia University.

[9] Ma J. (1994) �Strategy-proofness and strict core in a market with indivisibilities,� Interna-
tional Journal of Game Theory 23:1 75-83.

[10] Pápai S. (2000) �Strategyproof assignment by hierarchical exchange,� Econometrica 68:6
1403-1433.

[11] P. A. Pathak and J. Sethuraman (2011), �Loteries in Student Assignment,� Theoretical
Economics 6:1 1-17.

[12] A. E. Roth (1982), �Incentive Compatibility in a market with indivisible goods,� Economics
Letters 9:2 127-132.

[13] A. E. Roth and A. Postlewaite (1977), �Weak versus strong domination in a market with
indivisible goods,� Journal of Mathematical Economics 4:2 131-137.

[14] A. E. Roth, T. Sönmez, and M.U. Ünver (2004), �Kidney Exchange,� Quarterly Journal of
Economics 119:2 457-488.

[15] A. E. Roth, T. Sönmez, and M.U. Ünver (2005), �Pairwise Kidney Exchange,� Journal of
Economic Theory 125:2 151-188.

[16] A. E. Roth, T. Sönmez, and M.U. Ünver (2007), �E¢cient Kidney Exchange: Coincidence of
Wants in Markets with Compatibility-Based Preferences,� American Economic Review 97:3
828-851.

[17] L. Shapley and H. Scarf (1974), �On cores and indivisibility,� Journal of Mathematical Eco-
nomics 1:1 23-28.

[18] T. Sönmez and M. U. Ünver (2010), �House allocation with existing tenants: A characteri-
zation,� Games and Economic Behavior.69:2 425-445.

[19] T. Sönmez and M. U. Ünver (2005), �House allocation with existing tenants: An equiva-
lence,� Games and Economic Behavior 52:1 153-185.

[20] M. U. Ünver (2010), �Dynamic Kidney Exchange,� Review of Economic Studies 77:1 371-
414.

27

Appendix

In the proofs of Lemmas 2 and 3 we use two observations regarding the execution of an augmented
TTC mechanism. We present them below as Claims 1 and 2 and then we proceed with the proofs
of Lemmas 2 and 3.

Claim 1 Under TTC(v) (v 2 V), suppose that we know A2(v); A4(v); � � � ; At(v) (t even) but
not v. Then we can identify the assignments made up to Step t+ 1 (inclusive).

Proof.

Consider Step 1 under TTC(v): Note that Step 1 is independent of v. Thus we can identify
all the assignments made at Step 1. Proceed to Step 2.

Consider Step 2 under TTC(v): Note that we cannot identify the cycles that arise at Step
2 because we do not know the owners of the hi-items (because v is unknown). But we can
still identify the blocks that form these cycles: Let each agent and clone point to her favorite
remaining item. Let each occupied house point to its owner (a clone). This gives rise to blocks.
The blocks that form the cycles at Step 2 are those whose source agents are the agents in A2(v).
(The cycles at Step 2 form when the sink hi-items of these blocks point to the source agents of
the blocks.) Since executing the cycles at Step 2 is the same as executing the blocks forming
these cycles (either way the same assignments are made), we can identify the assignments made
at Step 2. Proceed to Step 3.

Consider Step 3 under TTC(v): Note that the proceedings of TTC(v) at Step 3 depends upon
only the assignments made at Steps 1 and 2 (i.e., the knowledge of v is not necessary). Thus we
can identify all the assignments made at Step 3. Proceed to Step 4.

By iterating the above arguments we can identify all the assignments made up to Step t+ 1.

Claim 2 Under TTC(v) (v 2 V), consider a chain x1 ! a1 ! � � � ! xq ! aq at Step t (t � 2,
t even) in which there are one or more agents. Let as be the agent-head of this chain so that the
chain ends with the component as ! xs+1 ! � � � ! aq (or simply aq if as = aq). Then the two
blocks that arise at Steps t and t + 2 and in which as is the source agent both begin with this
component. (i.e., they are both of the form as ! xs+1 ! � � � ! aq ! � � � if as 6= aq and of the
form aq ! � � � if as = aq.)18

Proof. In the chain x1 ! a1 ! � � � ! xq ! aq since as is the agent-head, as+1; as+2; � � � ; aq

are clones. (If as = aq then there are no clones that come after as.) Thus the block that arises
at Step t and whose source agent is as begins with the component as ! xs+1 ! � � � ! aq

(or, it begins with aq if as = aq). Also, note that by de�nition of a chain, with the exception
of aq each member of this chain points to the very same thing at Steps t and t + 2. Thus, the
block that arises at Step t + 2 and whose source agent is as also begins with the component
as ! xs+1 ! � � � ! aq (or, it begins with aq if as = aq).

We are now ready to proceed with the proofs of Lemmas 2 and 3.

18Note that the claim does not say that these two blocks are the same because the parts that come after aq

may be di¤erent. (And indeed, the parts that come after aq are di¤erent.)

28

Proof of Lemma 2.

In ch(v) (= ch(v0)) let agents be ordered as follows: a1; a2; � � � ; an. The proof is by induction.
The arguments used to show the base case and the inductive step are similar. Thus, to avoid
repetition we present below only the inductive step.19

Inductive step: Given that As(v) = As(v0) for s = 2; 4; � � � ; t, show that At+2(v) = At+2(v0).

By way of contradiction, suppose thatAt+2(v) 6= At+2(v0). W.l.o.g., letAt+2(v) = fap; ap+1; � � � ; arg
and At+2(v0) = fap; ap+1; � � � ; alg where r < l. Thus, ar+1 =2 At+2(v), ar+1 2 At+2(v0).

By Claim 1, the assignments made up to Step t + 1 (inclusive) are the same under TTC(v)
and TTC(v0). Thus, the agents, clones and items remaining are the same at Step t + 2 under
these two mechanisms. Thus, the same blocks arise at Step t + 2 under these two mechanisms.
Let ar+1 ! � � � ! x be the block that arises at Step t+ 2 and whose source agent is ar+1.

Consider TTC(v0): Since ar+1 2 At+2(v0), at Step t+2 this block becomes part of a cycle and
hence is executed. Hence, every agent and clone in this block is assigned her favorite remaining
item at Step t+ 2 (i.e., the item that she points to in the block ar+1 ! � � � ! x).

Consider TTC(v): Since ar+1 =2 At+2(v) and ar+1 is ordered in ch(v) right after the agents
in At+2(v), ar+1 2 At+4(v) and ar+1 is the agent-head of a chain at Step t+2. (See chain order
rules 1 and 3.) Let y be the head of this chain. By Claim 2, at Step t + 2, y is in the block
ar+1 ! � � � ! x. Since y is the head of a chain at Step t + 2, she is not assigned her favorite
remaining item at Step t+ 2.

But then TTC(v) and TTC(v0) do not induce the same clone allocation: y (an agent or a
clone) is not assigned the same item under these two mechanisms. But this contradicts Lemma
1 according to which TTC(v) and TTC(v0) are equivalent (because both are equivalent to Y-
I(ch(v))). Therefore, we must have At+2(v) = At+2(v0).

Proof of Lemma 3.

Let agents be ordered in ch(v) as a1; a2; � � � ; an. By Lemma 2 we know that the chain order
ch(v) uniquely identi�es the sets At(v) for all t � 2, t even. Also, as argued in the Proof of Claim
1, for all t � 2, t even, we can identify the blocks that arise at Step t and whose source agents
are those in At(v). Using these blocks and applying the chain order rules, we explain below how
we can uniquely identify v.

By chain order rule 1, in ch(v): the agents in A2(v) are ordered before those in A4(v); the
agents in A4(v) are ordered before those in A6(v); and so on.

Consider now Step 2 under TTC(v). Let the agents in A2(v) be a1; a2; � � � ; as. Let the blocks
that form the cycles at Step 2 be as follows:

� a1 ! � � � ! x1

� a2 ! � � � ! x2

...
19The base case is A2(v) = A2(v0). The proof of the base case is obtained if we substitute t with 0 in the

proof of the inductive step.

29

� as ! � � � ! xs

Above, x1; � � � ; xs are the hi-items that are assigned to agents and clones at Step 2. By
chain order rule 2, we can uniquely identify v(as) for s = 1; 2; � � � ; s as follows: In the set
fx1; x2; � � � ; xsg, v(a1) is the hi-item whose index is smallest; v(a2) is the hi-item whose index is
the second smallest, and so on.

Consider now Step t + 2 (t � 2, t even) under TTC(v). Let the agents in At+2(v) be
at0+1; at0+2; � � � ; at1 ; at1+1; at1+2; � � � ; at2 ; � � � ; ats�1+1; ats�1+2; � � � ; ats . (The choice of t1; � � � ; ts
is explained below.)

At Step t+ 2 let the blocks whose source agents are those in At+2(v) be as follows:

� at0+1 ! � � � ! xt0+1, at0+2 ! � � � ! xt0+2, � � � , at1 ! � � � ! xt1;

� at1+1 ! � � � ! xt1+1, at1+2 ! � � � ! xt1+2, � � � , at2 ! � � � ! xt2;

...

� ats�1+1 ! � � � ! xts�1+1, ats�1+2 ! � � � ! xts�1+2, � � � , ats ! � � � ! xts .

Note that some of the agents and clones in these blocks are heads of chains at Step t. Note
that we can identify them: If an agent or a clone does not point to the same item at Steps t and
t + 2 then she is the head of a chain at Step t. Thanks to Claim 2 we can also identify which
agents in At+2(v) are agent-heads of chains at Step t: An agent in At+2(v) is the agent-head of
a chain at Step t if in the pertaining block above there exists an agent or a clone who is the head
of a chain at Step t. Without loss of generality, let at0+1; at1+1; � � � ; ats�1+1 be the agent-heads.
(And hence is our choice of the superscripts t1; � � � ; ts. Note that at0+1 is an agent-head because
she is the agent in At+2(v) who is ordered in ch(v) before others.) Then, by chain order rule 3,
at Step t:

� at1 ; at2 ; � � � ; ats are agent-tails;

� at0+1; at0+2; � � � ; at1 are in the same chain and these agents are ordered in ch(v) before
others;

� at1+1; at1+2; � � � ; at2 are in the same chain and these agents are ordered in ch(v) next;

� and so on.

Then, by chain order rule 3 we can uniquely identify which hi-items are assigned to these
agents under v:

� for as 2 At+2(v)r fat1 ; at2 ; � � � ; atsg, v(as) = xs+1;

� for agent-tails at1 ; at2 ; � � � ; ats , in the set fxt0+1; xt1+1; � � � ; xts�1+1g, v(at1) is the hi-item
whose index is smallest, v(at2) is the hi-item whose index is second smallest, and so on.

Therefore, using chain order ch(v) we can uniquely identify v 2 V.

30

