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Abstract

I study a model of electoral competition where two parties that care about both the spoils

of office and policy compete by announcing policy platforms. Parties are characterized by their

valence on the one hand and by their policy platforms on the other. Unlike in the extant

literature, I assume that valence and policy are complements (instead of substitutes) from

the voter’s perspective. I generally characterize electoral equilibrium and show that in such a

framework increasing one or both parties’ valence level(s) leads to policy moderation. To the

contrary, if both candidates have minimal valence policy platforms are maximally polarized.

The model hence uncovers valence as an important determinant of political polarization.
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Motz, and Dana Sisak. I gratefully acknowledge the support from the Ministerio Economia y Competitividad (Spain)
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1 Introduction

One of the core characteristics of democracies is that voters are free to elect the party they favor,

which in turn incentivizes parties to choose policies that are appealing to voters. This logic brings

about the famous median voter theorem (Hotelling, 1929), which implies that competing parties

choose identical platforms at the center of the electoral spectrum. Of course, in real elections parties

usually do not choose identical platforms but differentiate along ideological lines. The literature has

uncovered different reason for this, for example policy motivations of parties, uncertainty about

voters’ preferences, differences in valence, or electoral rules.1 In this paper I describe another

determinant of policy polarization: absolute valence or competence levels.

Starting with the seminal paper by Stokes (1963), political economists and political scientists

have begun to study non-positional—or valence—issues. According to Stokes such valence issues

are issues that ‘‘merely involve the linking of the parties with some condition that is positively or

negatively valued by the electorate.” With very few exceptions, the literature has operationalized

valence by assigning to every party or candidate a valence level that additively changes voters’

evaluation of this party.2 Because valence enters voters’ utility functions in an additively separable

way, policy platforms are determined by valence advantages, whereas absolute valence levels play

no role. In this paper I show that this conclusion is an artifact of the assumption that valence

and policy are additively separable and thus perfect substitutes. Allowing for some degree of

complementarity between policy and valence changes this conclusion and absolute valence levels

begin to matter. In particular, as this paper shows, increasing parties’ valence leads to policy

moderation: parties adopt more centrist policy platforms.

Other authors have discussed the possibility of a utility function where valence and policy

are not separable before. In the appendix of his paper, Groseclose (2001) discusses the case that

valence influences the probability that the party actually fulfills its policy promises. Under this

interpretation, valence and policy are complements from the voter’s perspective. He provides

conditions such that the party with a small valence advantage adopts a more moderate position

than the low valence party. Hollard and Rossignol (2008) study a model with multiplicative va-

lence and show that extreme voters vote based on valence, while moderate voters vote based on

policy. Gouret et al. (2011) estimate how well different specifications of utility functions perform

in explaining voter behavior in France. They show that a model they call the intensity model,

where policy and valence are complements, explains voter behavior best, which suggests that the

implications of complementarities need to be studied in more detail.

So why should valence and policy be considered complements rather than substitutes, at least in

some cases? Groseclose (2001) provided us already with one rationale. When valence is interpreted

as a parties competence, then the probability that a party, once in office, actually manages to

successfully implement its policy platform depends on valence. In particular, greater valence

increases the change that the proposed policy can be implemented. The extra utility of a party

1See for example Calvert (1985), Groseclose (2001), or Matakos et al. (2016).
2See Aragones and Palfrey (2002), Meirowitz (2008), Herrera et al. (2008), Ashworth and Bueno de Mesquita

(2009), Serra (2010), Denter and Sisak (2015), or Aragones and Xefteris (2017).
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adopting a platform closer to a voter’s bliss point is then increasing in valence, and policy and

valence are complements. Similarly, valence can be interpreted as the ability to run a public

administration efficiently. For example, the degree to which taxation is distortionary might depend

on the governing party’s valence, as greater valence implies smaller welfare losses due to taxation.

In a Meltzer and Richard (1981) style model of redistribution we should then expect the tax rate

(policy) and party’s valence to be complements.3

In this paper I develop a model of electoral competition with probabilistic voting in which

parties, that are both policy and office motivated, choose policy platforms in an effort to win

an election. The baseline model is deliberately starkly simplified: valence and policy are perfect

complements for the voter, parties have equal valence, and parties’ preferred policy positions are

equidistant from and on different sides of the voter’s preferred policy. This model is very tractable

and is sufficient to show that a greater common level of valence leads to weakly more moderate

policy choices. As I show in the sequel, this conclusion remains valid as long as policy and valence

are complementary and is also robust to allowing for various kinds of asymmetries between parties.

Hence, the model uncovers a simple but novel determinant of policy polarization.

Related Literature. The paper contributes to different strands of literature. First, it con-

tributes to the extensive literature studying the implications of valence issues for policy making,

for example Aragones and Palfrey (2002), Beniers and Dur (2007), Serra (2010), Xefteris (2014),

or Aragones and Xefteris (2017). Like in the current paper, the focus of this literature is to char-

acterize equilibria of an electoral competition game with a focus on how valence impacts policy

choice. Modelling voter preferences for policy and valence as perfect substitutes, these papers

show that only differences in valence matter, while absolute valence levels are irrelevant for policy

choices. The current paper innovates by studying the implications of complementarities between

valence and policy platforms. The model reveals that greater valence has a moderating effect

on parties’ policy platforms, even if parties have identical valence. This is similar to a finding

by Ansolabehere and Snyder (2000), who study a model of office motivated parties who differ in

valence and who choose a multi-dimensional policy vector. They show that the party with the

valence advantage locates close to the electoral center, while the disadvantaged party’s policy is

not clearly determined and it may choose any policy in the policy space. Hence, the advantaged

party tends to be more moderate. In contrast, in the current paper I study parties with both

office and policy motivation show that in the presence of complementarities both parties tend to

become more moderate as parties’ valence increases. Bernhardt et al. (2011) study a dynamic

model where candidates are distinguished by both their valence levels and policies. Voters observe

the valence only of incumbents, but not of challengers. They show that so far unknown challengers

may choose more moderate policies when their valence increases. However, if the probability of

being reelected is not too small, in the long run a majority of incumbents with greater valence

tends to be more extreme. This is different in the current paper. Greater valence leads uniformly

3More precisely, we should expected them to be q-complements as defined by Hicks (1970): greater valence implies
greater marginal benefits from taxation.
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to policy moderation when valence and policy are complements.

Some authors have studied more general preference relations that go beyond the case of perfect

substitutes before. As mentioned, Groseclose (2001) discusses how small valence advantages affect

policy choices when policy and valence are complements. He studies a model where parties cannot

observe the voter’s bliss point and derives conditions such that the favored party chooses a more

moderate policy, while the disadvantaged party chooses a more extreme policy. In the current

paper, parties know the voters policy preferences but voting is probabilistic. This changes conclu-

sions, because greater valence of one or both parties leads to generally greater policy moderation.

Hollard and Rossignol (2008) study a model of multiplicative valence and show that moderate

voters tend to vote based on valence, while more extreme voters tend to vote based on policy.

Gouret et al. (2011) study how well different utility function specifications, among others mul-

tiplicative valence, perform in explaining electoral data from France. They show that a model

with complementarities between valence and policy outperforms a model of perfect substitutes.

Ahn and Oliveros (2012) study voting equilibria when voters vote on multiple policy issues at the

same time and issues can be both substitutes and complements. Krasa and Polborn (2012) also

study equilibria of a platform determination game when some of the parties’ characteristics are

immutable while others can be flexibly adjusted. They allow for general voter preferences and

assume that parties are office motivated and cannot perfectly observe the distribution of voters’

preferences. The authors derive conditions for convergent electoral equilibria, i.e., situation in

which both parties choose the same policy platforms in equilibrium. In contrast, the current paper

studies office and policy motivated parties and how platform choices are determined by valence.

Finally, the paper relates to a literature studying the origins of policy platform polarization. For

example, Matakos et al. (2015, 2016) or Bol et al. (2019) analyze both theoretically and empirically

how electoral rule disproportionality impact parties’ equilibrium policy platforms. They show that

greater rule disproportionality goes hand in hand with greater platform polarization. The current

paper also studies platform polarization, but suggests that the reason is that voters perceive

valence and policy to some degree as complements. Ashworth and Bueno de Mesquita (2009) and

Balart et al. (2018) study endogenous investments in valence when increasing platform polarization

shifts voters attention from valence to policy issues. In these papers the mechanism is not from

valence to endogenous platform polarization but from platform polarization to endogenous valence.

Increasing platform polarization leads to less investment in valence, which means parties economize

on effort in the endogenous valence game and hence save costs. In the current paper valence is

exogenous, but nevertheless impacts a party’s platform choice. In particular, greater exogenous

valence leads to platform moderation even when both parties have identical valence.

2 The Model

In this section I describe the basic model. There is one voter and two political parties, i = 1, 2.

Each party is described by a fixed immutable characteristic v (valence) and an endogenous policy

platform pi ∈ [0, 1]. The voter prefers higher valence over lower valence and has Downsian policy
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preferences. Her bliss point in the policy dimension is b∗ = 1
2 . The utility she receives if party i is

elected is

u(pi, v) = min

{

1

2
−

∣

∣

∣

∣

1

2
− pi

∣

∣

∣

∣

, v

}

.

Thus, valence and policy are perfect complements to the voter. This is the main difference in

comparison to the extant literature, which usually studies perfect substitutes.

Voting is probabilistic and the voter casts a vote for party 1 if u(p1, v) − u(p2, v) − ǫ > 0,

and votes for party 2 otherwise. ǫ ∈ R is a continuous random variable with the C2 cumulative

distribution function (c.d.f.) G and density g. I assume g(ǫ) is symmetric around zero, strictly

positive on at least [−1, 1], and quasi-concave.4 Moreover, I assume that (i) |g′(ǫ)| < g(ǫ) and (ii)

g(0) ∈ [14 ,
1
2 ]. (i) assures a well behaved optimization problem for the parties, while (ii) is useful to

avoid corner solutions, which simplifies exposition.5 Distributions fulfilling the assumption include

for example the uniform on [−m,m], m ≥ 1, or a truncated normal distribution with support

[−2, 2] and variance σ2 =
√
2.

The political parties care about both the spoils of office, which have value 1, and about the pol-

icy platform that wins. The framework is thus similar to for example Whitman (1983), Groseclose

(2001), or Herrera et al. (2008). Parties’ utility functions are as follows:

πi =

{

1− |bi − pi| if i wins,

−|bi − pj | if j wins.

bi is party i’s bliss point in the policy dimension. I assume that b1 = 1 = 1−b2. Letting ϕ(p1, p2, v)

denote the probability that party 1 wins the election, we can now describe the parties’ expected

utility functions as follows:

Eπ1(p1, p2, v) = ϕ(p1, p2, v) (1− |1− p1|)− (1− ϕ(p1, p2, v)) |1− p2|
Eπ2(p1, p2, v) = (1− ϕ(p1, p2, v)) (1− |0− p2|)− ϕ(p1, p2, v) |0− p1|

(1)

Parties choose platforms to maximize their expected utility. The solution concept is Nash equilib-

rium.

The model is quite stylized and many of the assumptions imposed appear quite strict. I chose

this simple framework because it allows me to show the important intuitions in a straightforward

and intuitive way. Nevertheless, before moving to the equilibrium analysis, at this point it is

worthwhile to pause shortly and to discuss the model’s main assumptions.

In the model both parties have equal valence. This is of course not very realistic, but I chose

this assumption to highlight an important consequence of complementarities between valence and

policy: absolute valence level matter for policy choices. In the extant literature, where valence and

4Absent the randomness caused by ǫ an electoral equilibrium might not exist or multiple equilibria might ex-
ist, similar to Ansolabehere and Snyder (2000). ǫ assures that the electoral competition game has a unique Nash
equilibrium.

5For all g(0) ≥ 1

2
in the symmetric and unconstrained equilibrium described below in Proposition 1, both parties

will choose a policy p1 = p2 = 1

2
. Similarly, for all g(0) ≤ 1

4
both will choose an extreme policy equal to the

respective individual bliss point. Assuming g(0) ∈ [ 1
4
, 1

2
] still allows for these equilibria but simplifies the notation.
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policy are usually perfect substitutes, this is different, because the additive separability of utility

from v and utility from pi implies that both parties valences cancel each other out. In Section 4.1 I

derive equilibrium when parties have valence differences and show that the main result pertaining

to policy polarization is robust to this extension.

Another strict assumption that I have imposed is that preferences are perfect complements.

This assumption helps to develop the important intuitions in a concise way. In Section 4.2 I

show that the assumption is innocuous and that the results carry over to the case of imperfect

complements.

Another simplifying assumption is that parties are homogeneous in their ideological distance

from the voter. While this assumption may seem strict, as the voter might be ideologically closer to

one of the two parties, in Section 4.3 I show that this assumption does not matter for conclusions:

policy polarization decreases in valence.

Finally, I have assumed that the value of office is fixed and equal to 1. This implies that

the spoils of office have greater weight in parties’ utility function than policy differences. This

assumption is useful to avoid having to deal with corner equilibria. In Section 4.4 I show that

relaxing this assumption does not impact the model’s main results.

3 Equilibrium

Before starting with the equilibrium analysis, I establish three useful lemmas:

Lemma 1. Any policy p1 ∈ [0,max{1
2 , 1 − v}) is strictly dominated for party 1. Any policy

p2 ∈ (min{1
2 , v}, 1] is strictly dominated for party 2.

Lemma 2. Each party i’s expected utility is strictly concave in the own policy pi whenever v ≥
1
2 −

∣

∣

1
2 − pi

∣

∣.

Lemma 3. A pure strategy Nash equilibrium exists.

Lemma 1 helps us to narrow down the relevant policy space for the each party. It tells us in

particular that as long as a party is judged based on its valence, that is when 1
2 −

∣

∣

1
2 − pi

∣

∣ > v,

then this party has an incentive to deviate from pi and to choose a policy closer to bi. Lemma 2

shows that when 1
2 −

∣

∣

1
2 − pi

∣

∣ ≤ v, i.e., when party i is evaluated by his policy choice, i’s utility is

strictly concave in pi. This is important to prove Lemma 3.

Let us now begin with the equilibrium analysis. If both parties have high valence, v ≥ 1
2 , there

will be intense policy competition between both, as both parties will be judged based on their

policies. The probability that party 1 wins the election is then G(|12−p2|−|12−p1|) = G(1−p1−p2).

To the contrary, if valence is low, v ≤ 0, the lack of valence makes both parties seem unattractive,

independent of their policy choices, and that destroys competition. In that case, independent of

the chosen policy platforms, each party wins with probability G(0) = 1
2 . Finally, if 1

2 > v > 0,

competition is intermediate and the winning probabilities depend on both v and the respective

policy choices.
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Figure 1: p∗
1
and p∗

2
as a function of v when g(0) = 1

2
(left panel) and when g(0) = 0.35 (right panel).

Platform polarization clearly decreases as valence increases.

With low valence, the unique electoral equilibrium follows directly from Lemma 1: both parties

choose their respective bliss points. Hence, low valence induces great policy divergence, p∗1 = 1 =

1−p∗2. To the contrary, with high valence parties may move closer to the center. The reason is that

in this case the voter reacts entirely to parties’ policy platforms. When g(0) is large and thus large

electoral shocks are unlikely, both parties move to the electoral center. Finally, with intermediate

valence, v ∈ (0, 12 ), there is competition between parties and whether the voter judges them by

their policy or valence is determined endogenously. Choosing an extreme policy will appal the

voter, but moving all the way to the center is to no avail as the low valence prevents the voter to

esteem the parties higher. Proposition 1 formalizes these intuitions:

Proposition 1. When parties have equal valence v, the electoral competition game has a unique

Nash equilibrium in which parties locate symmetrically around the voter’s bliss point, p∗1 = 1− p∗2,

where

p∗1 = max

{

1− v,
1

4g(0)

}

.

Since no party has an electoral advantage through higher valence, the result that parties locates

symmetrically around the voters’s bliss point is intuitive. Moreover, when valence v is large, it has

no impact on policy platforms, as the voter focusses on the respective policy platforms. However,

as valence decreases this changes at some point, and parties choose more radical platforms. The

reason is that the benefit of choosing a more moderate platform is dampened by the low valence,

while the costs of a moderate platform remain unchanged. Figure 1 shows how policies change

with v for different values of g(0).

A direct implication of Proposition 1 is that policy platforms tend to become more polarized

as the common valence level v decreases. Define equilibrium platform polarization as follows:

∆(v) := |p∗1 − p∗2| .

Then the following proposition is a direct corollary of Proposition 1:

Proposition 2. Platform polarization ∆(v) weakly decreases in the common valence level v. ∆(v)

is maximized and equal to 1 when v ≤ 0.
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When valence is low platforms become strictly more moderate, but when valence is large it has

no impact on the electoral equilibrium anymore. Hence, greater valence weakly decreases platform

polarization. The proposition provides us with a new determinant for the degree of platform

polarization. When valence and policy are complements, a greater valence level leads to platform

moderation. This is so even when parties’ valence levels are identical. In the extant literature equal

valence levels imply that policies are independent of valence, because both are perfect substitutes

from the voter’s perspective. In Section 4.2 I will shed light on whether Proposition 2 is an

artifact of the simplifying assumption of perfect complements or whether the standard result in

the literature is an artifact of the equally simplifying assumption of perfect substitutes.

4 Discussion

In this section I extend the model along several dimensions and show that the main conclusion

drawn from the simple model, i.e., that greater valence leads to policy moderation, is valid more

generally.

4.1 Valence Differences

We now turn to analyze a situation in which parties differ in their valences. Without loss of

generality, let v1 > v2. With unequal valence equilibrium depends, as before, on the absolute

valence levels. If v2 is still large, both parties will strictly be evaluated by their policies. We may

say that in this case parties are not constrained by their valence levels. Then the equilibrium

described in Proposition 1 remains valid and parties choose platforms equidistant around 1
2 , even

though they differ in their valences:

Proposition 3. Let v1 > v2 ≥ 0. If v2 ≥ 1 − 1
4g(0) , the electoral competition game has a unique

Nash equilibrium, in which parties locate symmetrically around the voter’s bliss point, p∗1 = 1− p∗2,

where p∗1 =
1

4g(0) .

The proposition shows that valence differences need not imply different policy platforms. If both

parties have valence high enough such that the voter strictly focuses on policy, then having greater

valence does not translate into an electoral advantage. Consequently, the electoral equilibrium is

symmetric. Note that this result, i.e., the symmetry of equilibrium with valence differences, is

indeed an artifact of the assumption of perfect complements, as the voter completely disregards

parties’ valences when they are just high enough. If voter preferences are imperfect complements

this will change.

When the condition in Proposition 3 is violated, party 2 is constrained in its policy choice by

its low valence. It will then choose p2 = v2, while party 1 reacts optimally. The optimal reaction

will generally lead to a policy p1 that is more moderate than p2, i.e., it is closer to the voter’s

bliss point than v2. Hence, having a valence advantage has a moderating effect. If v1 is large, this

optimal reaction will be somewhere in [12 , 1 − v2). Otherwise, when party 1 has low valence, it

might also be constrained in equilibrium and the optimal policy then is in [1− v1, 1− v2):

7



Proposition 4. Let v1 > v2 ≥ 0. If v2 < 1 − 1
4g(0) , the electoral competition game has a unique

Nash equilibrium, in which party 2 chooses policy platform p∗2 = v2. Moreover, if G(v1−v2)
g(v1−v2)

> 2−v1−
v2, party 1 chooses a policy p∗1(v2) ∈ (1− v1, 1− v2) that decreases in v2. If G(v1−v2)

g(v1−v2)
≤ 2− v1− v2,

party 1 chooses policy p∗1 = 1− v1.

While equilibrium is strictly symmetric if no party is constrained by its valence, constrained

electoral equilibria are generally asymmetric. When only the low valence party is constrained in

its policy choice, it chooses a more extreme policy platform than party 1. This resembles earlier

findings in the literature, see for example Ansolabehere and Snyder (2000) or Groseclose (2001).

However, the intuition is a different one. In Ansolabehere and Snyder (2000) the disadvantaged

party is unconstrained in its policy choice because it will lose the election anyway, and thus any

policy, also an extreme one, could be an equilibrium outcome. In Groseclose (2001) this is the case

because parties do not know the exact position of the voter’s bliss point, and the disadvantaged

party strategically chooses an extreme position in an effort to “gamble for resurrection.” In the

current paper the intuition follows from a standard microeconomic reasoning: With complemen-

tarities between valence and policy, the marginal benefit of moving closer to the center is increasing

in the own valence.6

We saw that with equal valence, raising v uniformly weakly decreased policy polarization.

Proposition 3 shows that when valence is unequal but high, this remains true. Further, Proposition

4 shows that this remains true also when valence is low and therefore one or both parties are

constrained in their policy choices. Define equilibrium platform polarization analogous to before

as ∆(v1, v2) := |p∗1 − p∗2|. Then we can conclude the following:

Proposition 5. Let v1 = v+ δ and v2 = v for some δ ≥ 0. Increasing v weakly decreases platform

polarization ∆(v1, v2).

The proposition shows that the result established with equal valence carries over to the case

where parties have valence differences. Increasing the common valence level v leads to policy

moderation. The left panel of Figure 2 shows this relation between valence and polarization for

different levels of δ ∈
{

0, 1
10 ,

2
10 ,

3
10

}

.

4.2 Imperfect Complements

So far the results were derived under the simplifying assumption that valence and policy are perfect

complements. It hence stands to reason to ask whether the moderating effect of greater valence

is an artifact of this somewhat extreme utility function, or whether this is a robust result. To

this end, assume that the voter has utility function u(vi, di), which strictly increases in both vi

and di = −|12 − pi|. If the cross-derivative ∂2u
∂vi∂di

is positive, valence and policy are (imperfect)

complements for the voter. If the cross-derivative is zero, ∂2u
∂vi∂di

= 0, which is the standard

6Note that in models where uncertainty is not regarding the voter’s bliss point, but regarding the size and direction
of the valence advantage, the predictions in all standard models, for example Whitman (1983), go in the opposite
direction: the advantaged party takes the more radical policy position.
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}

for the case of perfect complements (left panel)

and a Cobb-Douglas utility function with u(vi, pi) =
√

vi
(

1

2
−
∣

∣

1

2
− pi

∣

∣

)

(right panel). Policy polarization

decreases in both v and δ.

formulation in the literature, valence and policy are perfect substitutes and additively separable.

Our above analysis suggests that whenever there is (some form) of complementarity, greater valence

should have a moderating effect on policy platforms. The next proposition shows that this is indeed

the case:

Proposition 6. Assume ∂2u
∂vi∂di

> 0. In any interior symmetric Nash equilibrium (i) both parties

move closer to the center as the common level of valence v increases and consequently (ii) platform

polarization ∆(v) decreases in v. If ∂2u
∂vi∂di

= 0, the common valence level v has no impact on either

policy choices or policy polarization.

The proposition shows that the results derived with perfect complement carry over to the more

general case of imperfect complements, at least when a symmetric interior equilibrium exists.7The

absolute value of the common valence level v importantly impacts parties’ strategic policy choices

and greater v leads to greater policy moderation. This is in stark contrast to the existing literature,

where v generally has no impact on policy outcomes. Proposition 6 reveals that the reason for

this is that policy and valence are perfect substitutes from the voter’s perspective. The right panel

of Figure 2 shows the relation between valence and platform polarization for different levels of

δ ∈
{

0, 1
10 ,

2
10 ,

3
10

}

and when the voter has a Cobb-Douglas utility function.

4.3 Asymmetric Bliss Points

So far both parties’ bliss points were located symmetrically around the voter’s bliss point, b1 =

1 = 1 − b2 ⇔ b1 + b2 = 1. This of course promotes symmetric equilibria like the ones we

have discovered so far. If we assume asymmetrically located party bliss points, this may beget

asymmetric equilibria, and as parties’ bliss points move closer to the electoral center polarization

will decrease. Nevertheless, increasing valence still leads to policy moderation if valence and policy

are complements:

7It is straightforward to show that for example when G is a uniform distribution on [−1, 1] and if the voter’s utility

function is of the CES type, u(v, pi) =
(

αvγ + (1− α)
(

1

2
−

∣

∣

1

2
− pi

∣

∣

)γ) 1

γ , then parties’ expected utility functions are
strictly concave in the own strategy and a symmetric pure strategy equilibrium exists.
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Proposition 7. Assume b1 ∈ (12 , 1) and b2 = 0 as before. Then ∆(v) weakly decreases in v.

Therefore, the conclusion that uniformly greater valence leads to policy moderation is robust

to allowing for asymmetric bliss points.

4.4 Value of Spoils of Office

Up to this point the spoils of office had value 1 and where hence weakly more important to

the parties than policy platforms. Assume now instead that the value of the spoils of office is

W ∈ [0, 1]. When W = 0, parties are purely policy motivated as in Section 2 of Calvert (1985) or

in Duggan and Fey (2005), while they are purely office motivated when W → ∞. Increasing W

increases the payoff of winning the election, independent of the policies chosen. This changes how

both parties’ trade off a marginal increase in the probability of winning and the payoff conditional

on winning, with greater emphasis on the latter. This implies that parties tend to move to the

electoral center as W increases and hence become more moderate. This changes the conditions for

a constrained equilibrium, but has no bearing on the general effect of increasing valence.

Proposition 8. Let the spoils of office be W ∈ [0, 1]. Then ∆(v) weakly decreases in v.

Therefore, our main result that greater common valence levels lead to policy moderation re-

mains valid also when W ∈ [0, 1]. When W > 1 the assumptions made are not sufficient to

guarantee that expected utility is quasi-concave in the own policy platform.8 In the limit, when

W → ∞, parties seem to be purely office motivated, which given the simple structure of the game

seems to imply that both parties choose the voter’s preferred policy, p1 = p2 = 1
2 . However, this

is not entirely true given the complementarities between policy and valence. The reason is that

when valence is low, v < 1
2 , it does not help parties to move all the way to the electoral center:

Proposition 9. Consider W → ∞. Then ∆(v) = max{1 − 2v, 0} and thus policy polarization

∆(v) weakly decreases in v.

Hence, even when parties value the spoils of office significantly more than policies, low valence

may lead them to adopt relatively extreme platforms.

5 Conclusion

This paper presents a simple model of electoral competition when valence and policy are comple-

ments from the voter’s perspective. The model shows that these complementarities induce parties

to choose policy positions that are closer to the electoral center when one party’s or both parties’

valence increases. In particular, the model shows that valence is an important predictor of electoral

polarization even if no party has a valence advantage.

8For general distributions G I cannot determine equilibrium, as it is unclear whether expected utility is
quasi-concave. However, if G = U [−1, 1] results are easy to come by. In this case p∗2 = 1 − p∗1 and p∗1 =
min

{

max
{

1

2
, 1− v, 2−W

2

}

, 1
}

, implying policy polarization still decreases in valence.
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A Mathematical Appendix

A.1 Proof of Lemmas 1-3

In this section I prove the lemmas from the main text. I will prove them for the case when valence

levels are potentially different, v1 ≥ v2, as this will be useful for the proofs of later propositions.

Proof of Lemma 1.

Proof. I prove the result for party 1. The proof for party 2 is analogous.

Assume party 1 choose some policy p′1 ∈ [0, 12). Then the voter is indifferent between p′1 and

p′′1 = 1−p′1, and hence both yield identical and strictly positive winning probabilities. At the same

time, party 1 strictly prefers p′′1 over p′1. Therefore, p′′1 strictly dominates p′1. This implies that

party 1 never chooses any policy p1 ∈ [0, 12). Next assume party 1 chooses a policy p′1 ∈ (12 , 1−v1).

This is only possible if v1 < 1
2 . Then min

{

v1,
1
2 −

∣

∣

1
2 − p1

∣

∣

}

= v1. Hence, increasing p1 on

(12 , 1− v1) does not alter how the voter evaluates party 1, but it increases party 1’s utility in case

of winning the election, which happens with strictly positive probability, as the support of ǫ is at

least [−1, 1] due to the assumption that g(0) ≤ 1
2 . Hence, the party has always an incentive to

choose p′′1 = 1 − v1 > p′1 instead. Therefore, if v1 < 1
2 , any p1 ∈ (12 , 1 − v1) is strictly dominated.

These two parts together prove the lemma.

Proof of Lemma 2.

Proof. I prove the result for party 1, the proof for party 2 is analogous.

For any profile of platforms (p1, p2) ∈ [max{1
2 , 1 − v1}, 1] × [0,min{v2, 12}], party 1’s expected

utility is

Eu1(p1, p2, v) = G (1− p1 − κ) (1− |1− p1|)− (1−G (1− p1 − κ)) |1− p2|
= G (1− p1 − κ) p1 − (1−G (1− p1 − κ)) (1− p2)

= G (1− p1 − κ) (1 + p1 − p2)− (1− p2)

where κ = min{v2, 12 −
∣

∣

1
2 − p2

∣

∣}. Taking the necessary derivatives with respect to p1 reveals that

∂Eu1(p1, p2, v)

∂p1
= −g (1− p1 − κ) (1 + p1 − p2) +G (1− p1 − κ) (A.1)

and
∂2Eu1(p1, p2, v)

∂(p1)2
= g′ (1− p1 − κ) (1 + p1 − p2)− 2g (1− p1 − κ) . (A.2)

g (1− p1 − κ) is strictly positive, whereas g′ (1− p1 − κ) is positive when 1− p1 − κ < 0, negative

when 1 − p1 − κ > 0, and zero when 1 − p1 − κ = 0. Note that 1 + p1 − p2 ≤ 2, because the

greatest distance in policies possible is 1. The second derivative is most likely to be positive when

11



1 + p1 − p2 is large. Thus, if it is negative for 1 + p1 − p2 = 2, then it is generally negative:

2g′ (1− p1 − κ)− 2g (1− p1 − κ) < 0 ⇔ g′ (1− p1 − κ) < g (1− p1 − κ) .

When g′ ≤ 0 ⇔ 1− p1 − κ ≥ 0, this is obviously true. When g′ > 0 ⇔ 1− p1 − κ < 0, this is true

by Assumption 1. Hence, over this policy range party 1’s expected utility is strictly concave in p1,

which proves the lemma.

Proof of Lemma 3.

Proof. I prove the result for party 1, the proof for party 2 is analogous.

To prove the lemma we only need to show that the party’s expected utility is continuous and

quasi-concave in its own policy platform p1. Continuity follows from the fact that min{vi, 12 −
∣

∣

1
2 − pi

∣

∣} is continuous in pi, i = 1, 2. When valence is large, expected utility is strictly quasi-

concave as the voter evaluates the party strictly by its policy platform, and Lemma 2 showed us

than in this case expected utility is strictly concave. When valence is low, party 1 will be evaluated

by its valence when policy is close to 1
2 and (potentially) by its policy when p1 is close enough to

1. For low valence the party’s utility increases linearly until p1 = 1 or until p1 = 1− v1. For larger

p1 utility is strictly concave by Lemma 2. Since expected utility is continuous at p1 = 1 − v1, it

must be generally quasi-concave. Thus, a pure strategy Nash equilibrium exists (see for example

Theorem 1.2 in Fudenberg and Tirole, 1991), which proves the lemma.

A.2 Proof of Proposition 1

Proof. First, we show that any equilibrium of the game must be symmetric. Note that both fight

for the same “prize,” that is the utility difference between winning and losing is 1 + p1 − p2 for

both. Assuming party 2 is judged by its policy, the first derivative of its utility function is

∂Eu2(p1, p2, v)

∂p2
= −g (1− p1 − p2) (1 + p1 − p2) + 1−G (1− p1 − p2) . (A.3)

Hence, if both parties’ optimal policies are decided by their respective first-order condition (FOC),

it is easy to show that it must be the case that

G(1 − p1 − p2) = 1−G(1 − p1 − p2) ⇔ G(1− p1 − p2) =
1

2
⇔ 1− p1 − p2 = 0 ⇔ p1 = 1− p2,

implying parties locate symmetrically around 1
2 .

Next we show that a situation, in which one party chooses policy based on the FOC while the

other is in a corner solution is impossible. To do so note that

∂Eu1(p1, p2, v)

∂p1
+

∂Eu2(p1, p2, v)

∂p2
= 2G(1 − p1 − p2)− 1. (A.4)

12



Thus,

Sign [2G(1 − p1 − p2)− 1] = Sign [1− p1 − p2] .

Now assume party 1 choose a policy p′1 ∈ {1
2 , 1 − v}, while party 2 chooses p′2 < 1 − p′1. For this

to be an equilibrium it must be that party 1’s marginal expected utility is negative, whereas the

marginal expected utility of party 2 is zero. Thus, the sum is negative. We just saw that if this

sum is negative, it must be the case that 1 − p1 − p2 < 0 ⇔ p1 > 1 − p2. But this contradicts

that p′2 < 1 − p′1, and thus p′1 and p′2 cannot constitute a Nash equilibrium. In a similar way we

can show that p′1 = 1 and p′2 > 0 cannot be an equilibrium. In that case the sum of the first

derivatives is positive, implying 1 − p1 − p2 > 0 ⇔ 1 > p1 + p2, which contradicts p′1 + p′0 > 1.

Thus, asymmetric equilibria are not possible, and any equilibrium must have both parties locate

symmetrically around 1
2 , p

∗

1 = 1− p∗2.

Uniqueness follows from the monotonicity of the FOC when p∗1 = 1 − p∗2. Again, I show this

for party 1 only. The FOC when p2 = 1− p1 is

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p2=1−p1

= −2p1g (0) +
1

2
.

This strictly and linearly decreases in p1, and hence there exists a unique policy p1 such that
∂Eu1(p1,p2,v)

∂p1
|p2=1−p1 = 0. The solution to this equation is p∗1 = 1

4g(0) ∈ [12 , 1]. However, note that

when 1
4g(0) < 1− v this policy is strictly dominated. In that case p∗1 = 1− v.

A.3 Proof of Proposition 2

Proof. This follows immediately from the discussion.

A.4 Proof of Proposition 3

Proof. This follows immediately from the discussion.

A.5 Proof of Proposition 4

Proof. When v2 < 1 − 1
4g(0) it is clear that the symmetric equilibrium determined by the system

of FOCs cannot exist, because the implied policy is strictly dominated for party 2. A situation in

which some party’s policy is determined by its valence I call a constrained equilibrium.

I start by showing how party 1 optimally reacts to a policy p2 = v2. The high valence party

reacts optimally by choosing the more moderate platform. To see this first consider again the FOC

in the symmetric unconstrained Nash equilibrium. There,

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p1=1−p∗
2

= 2p∗2g(0) − 2g(0) +
1

2
= 0. (A.5)
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Now contrast this with the first derivative of party 1’s expected utility function when p2 = v2:

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p2=v2

= −(1 + p1 − v2)g(1 − p1 − v2) +G(1− p1 − v2). (A.6)

Evaluating this at p1 = 1− p2 = 1− v2 yields

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p1=1−v2∧p2=v2

= 2v2g(0) − 2g(0) +
1

2
. (A.7)

We know that (A.5) holds with equality, as it is the equilibrium condition in the unconstrained

case. (A.7) differs only because we replace p∗2 by v2. Moreover, (A.7) increases in v2. In the

constrained equilibrium, we know that p2 = v2 < p∗2. But then (A.7) must be negative, implying

party 1 would like to choose a policy p1(v2) < 1− v2. Thus, if party 2 is constrained and chooses

p2 = v2, party 1 reacts and chooses a policy p1(v2) < 1− v2, if it is itself unconstrained, that is if

p1(v2) > 1 − v1. To check whether this is the case we resort once again to the derivative of party

1’s expected utility. Evaluated at p1 = 1− v1 and p2 = v2, we find

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p1=1−v1∧p2=v2

= G(v1 − v2) + (−2 + v1 + v2)g(v1 − v2). (A.8)

If this is positive, the concavity of the expected utility function implies that the optimal reaction

of party 1 to party 2’s platform of p2 = v2 is some p1(v2) > 1− v1, determined by the FOC above.

Otherwise, if (A.8) is negative, the optimal reaction is p1(v2) = 1− v1.

Note that the optimal reaction always must be a policy that is weakly larger than 1
2 , which

follows from Lemma 1. To show that this is indeed the case consider the following:

∂Eu1(p1, p2, v)

∂p1

∣

∣

∣

∣

p1=
1

2

= −
(

3

2
− p2

)

g

(

1

2
− p2

)

+G

(

1

2
− p2

)

.

This decreases in p2, as

∂2Eu1(p1, p2, v)

∂p1∂p2

∣

∣

∣

∣

p1=
1

2

=

(

3

2
− p2

)

g′
(

1

2
− p2

)

≤ 0.

Next note that when p2 = 1
2 ,

∂Eu1(p1,p2,v)
∂p1

∣

∣

∣

p1=p2=
1

2

≥ 0. This implies that as we decreases p2

from 1
2 the derivative cannot become negative. Thus, the FOC uniquely identifies the optimal

unconstrained policy response by party 1.

Next I show that given party 1’s optimal reaction to p2 = v2, party 2 has no incentive to change

its policy position. In order to do this consider first the FOC of party 1 when p2 = v2, i.e., set

(A.6) equal to zero, and solve for g(1 − p1 − v2):

g(1 − p∗1 − v2) =
G(1 − p∗1 − v2)

(p∗1 − v2)
(A.9)
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We know that party 2 will never choose a policy greater than v2. Moreover, a policy p2 = v2 is at

the boundary of the interval of relevant strategies [0, v2] and thus we can check the first derivative

of party 2’s expected utility to check for deviation incentives. Evaluated at p2 = v2, this derivative

needs to be weakly positive, as otherwise party 2 would like to deviate to a policy p′2 < v2. Thus,

we need that

∂Eu2(p1, p2, v)

∂p2

∣

∣

∣

∣

p2=v2∧p1=p1(v2))

= −1+(1+p1(v2)− v2)g(1−p1(v2)− v2)+G(1−p1(v2)− v2) ≥ 0.

Using (A.9), this simplifies to

G(1− p1(v2)− v2) ≥
1

2
.

Note that we have established above that p1(v2) < 1− v2 ⇔ 1− p1(v2)− v2 > 0. This implies that

G(1− p1(v2)− v2) >
1
2 , and thus party 2 has no deviation incentive. Accordingly, (p1(v2), v2) is a

Nash equilibrium of the semi-constrained game. If also party 1 is constrained in its policy choice,

that is when the optimal reaction to p2 = v2 is p1 = 1− v1, we need to check whether

∂Eu2(p1, p2, v)

∂p2

∣

∣

∣

∣

p2=v2∧p1=1−v1

= −1 +G(v1 − v2) + (2− v1 − v2)g(v1 − v2) ≤ 0

is possible. However, this cannot happen if (A.8) is negative. The reason is, as we have seen in

(A.4), that the sum of the first derivatives when p1 = 1− v1 and p2 = v2 is 2G(v1 − v2)− 1 > 0,

which follows from v1 > v2. But then it is impossible that for both parties the first derivative is

negative. Thus, party 2 has no incentive to deviate from p2 = v2.

To prove the comparative statics result I use the implicit function theorem:

∂p1(v2)

∂v2
= −

∂2Eu1(p1,p2,v)
∂p1∂v2

∂2Eu1(p1,p2,v)
∂(p1)2

= − (p1(v2)− v2)g
′(1− p1(v2)− v2)

(p1(v2)− v2)g′(1− p1(v2)− v2)− 2g(1 − p1(v2)− v2)

Note that we know that p1(v2) < 1 − v2, implying g′(1 − p1(v2) − v2) ≤ 0. Moreover, we know

that p1(v2) >
1
2 > v2. Thus, ∂p1(v2)

∂v2
≤ 0. Therefore, in any semi-constrained equilibrium, party 1

chooses more and more extreme positions as party 2’s valence decreases.

A.6 Proof of Proposition 5

Proof. Taking into account that policies are continuous in both v and δ, the proof follows from

the discussion.
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A.7 Proof of Proposition 6

Proof. With the general utility function proposed in the proposition, the probability that party 1

wins the election is ϕ(p1, p2, v) = G(u(v, p1)− u(v, p2)). Then:

Eu1(p1, p2, v) = G(u(v, p1)− u(v, p2))p1

− (1−G(u(v, p1)− u(v, p2))) (1− p2)

= G(u(v, p1)− u(v, p2)) (1 + p1 − p2)− (1− p2)

Eu2(p1, p2, v) = −G(u(v, p1)− u(v, p2))p1

+ (1−G(u(v, p1)− u(v, p2))) (1− p2)

= −G(u(v, p1)− u(v, p2)) (1 + p1 − p2) + (1− p2)

The respective FOCs for an interior optimum are

∂Eu1(p1,p2,v)
∂p1

= g(u(v, p1)− u(v, p2)) (1 + p1 − p2)
∂u(v,p1)

∂p1
+G(u(v, p1)− u(v, p2)) = 0

∂Eu2(p1,p2,v)
∂p2

= g(u(v, p1)− u(v, p2)) (1 + p1 − p2)
∂u(v,p2)

∂p2
+G(u(v, p1)− u(v, p2))− 1 = 0

In a symmetric equilibrium, p∗2 = 1− p∗1. Using this the FOCs simplify to

∂Eu1(p1,p2,v)
∂p1

∣

∣

∣

p2=1−p1
= g(0)2p1

∂u(v,p1)
∂p1

+ 1
2 = 0

∂Eu2(p1,p2,v)
∂p2

∣

∣

∣

p2=1−p1
= g(0)2p1

∂u(v,p2)
∂p2

− 1
2 = 0

= −g(0)2p1
∂u(v,p1)

∂p1
− 1

2 = 0.

To derive the comparative statics with respect to v we use the implicit function theorem and,

without loss of generality, the first derivative of party 1’s expected utility function. Then

∂p∗1(v)

∂v
= −

∂2Eu1(p1,p2,v)
∂p1∂v

∂2Eu1(p1,p2,v)
∂p2

1

.

Note that ∂2Eu1(p1,p2,v)
∂p2

1

< 0, as otherwise the second order condition for a maximum is violated.

Hence,
∂p∗

1
(v)

∂v
< 0 ⇔ ∂2Eu1(p1,p2,v)

∂p1∂v
< 0. This derivative equals

∂2Eu1(p1, p2, v)

∂p1∂v

∣

∣

∣

∣

p2=1−p1

= g(0)p1
∂2u(v, p1)

∂p1∂v
.

When policy and valence are complements, ∂2u(v,p1)
∂p1∂v

< 0 , because the voter’s utility is decreasing

in p1. Thus, greater valence v indeed leads to more moderate policy platforms in any symmetric

interior equilibrium. However, when policy and valence are perfect substitutes, as in most of the

literature, ∂2u(v,p1)
∂p1∂v

= 0, and hence greater valence has no influence at all on policy choices.
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A.8 Proof of Proposition 7

Proof. I prove the proposition without explicitly characterizing equilibrium. Party 2’s expected

payoff function has not changed. Party 1’s expected payoff function now is

Eu1(p1, p2, v) = ϕ (p1, p2, v) (1 + p1 − b1)− (1− ϕ (p1, p2, v)) (b1 − p2)

= ϕ (p1, p2, v) (1 + p1 − p2)− (b1 − p2) .

b1 enters as a constant, and hence has no impact on equilibrium policy choices in interior equilib-

rium. However, the set of dominated policies clearly depends on it, as no policy p1 /∈ [12 , b1] will

ever be chosen by party 1. Any policy p1 > b1 is strictly dominated by policy p1 = b1, whereas

any policy p1 < 1
2 is strictly dominated by p1 = 1

2 . Moreover, any policy p1 < 1− v is dominated

if 1 − v < b1, so that the relevant set of policies for party 1 is [max{1 − v, 12}, b1] if b1 > 1 − v

and b1 else. Valence affects party 2’s policy only when p∗2 = v and it affects party 1’s policy

only when p∗1 = 1 − v. It is possible that only party 2 chooses this policy while party 1 chooses

p∗1 = b1, because—relative to the electoral center—party 1’s ideology b1 is less extreme than party

2’s ideology b2 = 0. Nevertheless, whenever valence affects policy, increasing valence must decrease

policy polarization ∆(v). This proves the proposition.

A.9 Proof of Proposition 8

Proof. In steps identical to those before one can show that parties expected utilities are concave

in the own policy. The respective FOCs are

∂Eπ1(p1,p2,v)
∂p1

= G(1− p1 − p2)− (p1 − p2 +W )g(1− p1 − p2) = 0,
∂Eπ2(p1,p2,v)

∂p2
= G(1− p1 − p2)− 1 + (p1 − p2 +W )g(1− p1 − p2) = 0.

(A.10)

This system of equations has a unique solution, where p∗2 = 1− p∗1 and

p∗1 =
1

4

(

2− 2W +
1

g(0)

)

. (A.11)

Recall that any p1 ∈ [0, 12) is strictly dominated, and the same is true for any p1 > 1. Thus, if
1
4

(

2− 2W + 1
g(0)

)

∈ [max{1
2 , 1− v}, 1], equation (A.11) describes the unique equilibrium. Recall

that both parties’ expected utility functions are quasi-concave and that ∂Eπ2(p1,p2,v)
∂p2

∣

∣

∣

p1=1−p2
=

−1
2 + (2p1 +W − 1)g(0) = − ∂Eπ1(p1,p2,v)

∂p1

∣

∣

∣

p1=1−p2
. It then follows that if 1

4

(

2− 2W + 1
g(0)

)

> 1,

equilibrium policies are p∗1 = 1 and p∗2 = 0. Moreover, if v ≥ 1
2 and 1

4

(

2− 2W + 1
g(0)

)

≤ 1
2 , the

equilibrium is both parties choosing the voter’s bliss point, p∗1 = p∗2 = 1
2 . Finally, if v ≥ 1

2 and
1
4

(

2− 2W + 1
g(0)

)

≤ 1 − v, equilibrium is constrained by parties’ low valence and the platforms

are p∗1 = 1 − v and p∗2 = v. Consequently, the greater is W , the closer platforms tend to be to

the electoral center, which implies they are more likely to be determined by valence. Comparative

statics with respect to v do not change, though, and ∆(v) keeps decreasing in v.
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A.10 Proof of Proposition 9

Proof. When W → ∞, the marginal expected utility when the voter focuses on policy is strictly

negative for party 1 and strictly positive for party 2 (this follows from (A.10)). Thus both will

choose p∗1 = p∗2 = 1
2 if v ≥ 1

2 , that is when parties have high valence. However, when v < 1
2 , this

perfectly moderate policy is strictly dominated, as min
{

v, 12 −
∣

∣

1
2 − pi

∣

∣

}

= min
{

v, 12 −
∣

∣

1
2 − 1

2

∣

∣

}

=

v. Therefore, parties choose more extreme positions, p∗1 = 1 − p∗2 = 1 − v. Consequently, policy

polarization ∆(v) weakly decreases in v when W → ∞, as ∆(v) = max{1− 2v, 0}.
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