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Abstract

We introduce a new solution concept called maximin equilibrium
which extends von Neumann’s maximin strategy idea to n-player non-
cooperative games by incorporating common knowledge of ‘rational-
ity’ of the players. Our rationality assumption is, however, stronger
than the one of maximin strategy and weaker than the one of Nash
equilibrium. Maximin equilibrium, just like maximin strategies, is a
method for evaluating the uncertainty that players are facing by play-
ing the game. We show that maximin equilibrium is invariant under
strictly increasing transformations of the payoff functions. Notably,
every finite game possesses a maximin equilibrium in pure strategies.
Considering the games in von Neumann and Morgenstern mixed ex-
tension, we show that maximin equilibrium is a generalization of Nash
equilibrium. In addition, we demonstrate that maximin equilibria and
Nash equilibria coincide in two-player zero-sum games. We propose
a refinement of maximin equilibrium called strong maximin equilib-
rium. Accordingly, we show that for every Nash equilibrium that is
not a strong maximin equilibrium there exists a strong maximin equi-
librium that Pareto dominates it. In addition, no strong maximin
equilibrium is ever Pareto dominated by a Nash equilibrium. Finally,
we discuss maximin equilibrium predictions in several games including
the traveler’s dilemma.
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1 Introduction

In their ground-breaking book, von Neumann and Morgenstern (1944, p.555)
describe the maximin strategy1 solution for two-player games as follows.

“There exists precisely one solution. It consists of all those impu-
tations where each player gets individually at least that amount
which he can secure for himself, while the two get together pre-
cisely the maximum amount which they can secure together. Here
the ‘amount which a player can get for himself’ must be under-
stood to be the amount which he can get for himself, irrespective
of what his opponent does, even assuming that his opponent is
guided by the desire to inflict a loss rather than to achieve again.”

This immediately gives rise to the following question: ‘What happens
when a player acts according to the maximin principle but knowing that
other players do not necessarily act in order to decrease his payoff?’. We are
going to capture this type of behavior by assuming that players are ‘rational’2

and letting it be common knowledge among players. In other words, the
contribution of the current paper can roughly be considered as incorporating
the maximin principle and rationality of the players in one concept calling it
maximin equilibrium.

Note that it is recognized and explicitly stated by von Neumann and
Morgenstern several times that their approach can be questioned by not
capturing the cooperative side of non-zero-sum games. But this did not
seem a big problem at that time and it is stated that the applications of the
theory should be seen in order to reach a conclusion.3 After more than a half-
century of research in this area, maximin strategies are indeed considered to
be too defensive in non-strictly competitive games in the literature. Since
a maximin strategist plays any game as if it is a zero-sum game, this leads

1We would like to note that the famous minimax (or maximin) theorem was proved
by von Neumann (1928). Therefore, it is generally referred as von Neumann’s theory of
games in the literature.

2Throughout the text, we will specify in which context rationality is used to avoid
confusion, e.g. rationality in maximin strategies, rationality in Nash equilibrium and so
on. The word ‘rationality’ alone will be used when we do not attach any mathematical
definition to it (until we formally define).

3For example, see vN-M (1944, p.540).
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to an ignorance of her opponent’s payoffs and hence the preferences of her
opponent. These arguments call for a revision of maximin strategy concept.

Let us consider the following games to support our statement. In the
first game4, Alfa (he) is the row player and Beta (she) is the column player.
There is a unique mixed Nash equilibrium [(3

4
, 1
4
), (1

2
, 1
2
)] at which Alfa re-

ceives an expected payoff of 3 and Beta receives 4. On the other hand, Alfa
has a unique maximin strategy (1

2
, 1
2
) which guarantees him to receive an

expected payoff of 3. Beta also has a unique maximin strategy (1
4
, 3
4
) which

guarantees her 4. Although the point we want to make is different, it is of
importance to note the historical discussion about this type of games where
Nash equilibrium payoffs are equal to the payoffs that can be guaranteed by
playing maximin strategies. Harsanyi (1966) postulates that players should
use their maximin strategies in those games. Aumann and Maschler (1972)
state that they do not know what to recommend but maximin strategies
seem preferable.

a b
a 5, 1 1, 5
b 1, 13 5, 1

In short, in the games similar as above, the arguments supporting max-
imin strategies are so strong that it led some game theory giants to prefer
them over the unique Nash equilibrium of the game. However, these argu-
ments suddenly disappear and the weakness of maximin strategies can be
easily seen if we add a strategy trick to the previous game for both players
as in the following game. Let the payoffs be as given in Figure 1 with some
small ǫ > 0. For every ǫ > 0 there is one completely mixed5 and one pure
Nash equilibrium (trick, trick) whose payoffs to both players are 0. The third
Nash equilibrium [(3

4
, 1
4
, 0), (1

2
, 1
2
, 0)] is the same as the previous game and its

payoff vector is (3, 4).
However, notice that the maximin strategies of the previous game have

disappeared. The new maximin strategy is trick which guarantees 0 while
the other strategies guarantee −ǫ for a player. To elaborate on the reason of
this, let us first see why the old Nash equilibrium survived.

4It is strategically equivalent to the game in Aumann and Maschler (1972,p.55).
5For example, if ǫ = 1 then mixed Nash equilibrium is [( 3

20
, 1

20
, 4

5
), ( 1

8
, 1

8
, 3

4
)] whose

payoff is 0 for both players.
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a b trick
a 5, 1 1, 5 −ǫ, 0
b 1, 13 5, 1 −ǫ, 0

trick 0,−ǫ 0,−ǫ 0, 0

Figure 1: A game with an ǫ > 0.

Suppose that players made an agreement (explicitly or implicitly) to play
the Nash equilibrium [(3

4
, 1
4
, 0), (1

2
, 1
2
, 0)].6 Then, Alfa would make sure that

Beta would not unilaterally deviate to the strategy trick because Beta is
rational (à la Nash). That is, deviating gives 0 to Beta which is strictly less
than what she would receive if she did not deviate. Beta would also make
sure that Alfa would not make a unilateral deviation to trick for the same
reason. Therefore, one observes that Nash equilibrium is immune to this sort
of additions of strategies whose payoffs are strictly less than the ones of the
original game.7 It may create additional Nash equilibria though. We extend
the maximin principle in such a way that it also becomes immune to these
type of ‘tricks’.

To see what actually happened to the maximin strategies of the first game
let us look at its profile [(1

2
, 1
2
, 0), (1

4
, 3
4
, 0)] in the second game. Suppose that

players agreed (explicitly or implicitly) to play this profile. Alfa would make
sure that Beta would not unilaterally deviate to the strategy trick if Beta is
‘rational’ because she receives 0 by deviating which is strictly less than what
she would receive, namely 4. Beta would also make sure that Alfa would not
unilaterally deviate to trick if he is ‘rational’. A player might still deviate
to a or b but this is okay for both players since they both guarantee their
respective payoffs in this region.8 That is, Alfa would guarantee to receive 3
given that Beta is ‘rational’ and Beta guarantees to receive 4 given that Alfa
is ‘rational’.

6Note that it is not in general known how players coordinate or agree on playing a
specific Nash equilibrium. We would like to see ‘if’ they agree then what happens. As it is
stated in Aumann (1990), a player does not consider an agreement as a direct signal that
her opponent will follow it. But by making an agreement, she rather understands that the
other player is signalling that he wants her to keep it.

7If, for example, the payoffs to trick were 6 instead of 0, then obviously this would not
be the case.

8Note that these are the maximin strategies of the 2 by 2 game.
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In conclusion, we think that if players prefer playing their maximin strate-
gies in the first game, then they would prefer playing the strategy pro-
file [(1

2
, 1
2
, 0), (1

4
, 3
4
, 0)] in the second game if their ‘rationality’ is commonly

known.
In Section 2, we define the rationality assumption we would like to use

in this paper. In Section 3, we introduce the concept of maximin equilib-
rium. Similar to maximin strategies, maximin equilibrium is a method for
evaluating the uncertainty that players are facing by playing the game. We
show that maximin equilibrium is invariant under strictly increasing trans-
formations of the payoff functions of the players. Moreover, every finite game
possesses a maximin equilibrium in pure strategies.

In Section 4, we consider the games in von Neumann-Morgenstern mixed
extension and discuss the relationship of maximin equilibrium with the other
solution concepts. We show that maximin equilibrium is a coarsening of Nash
equilibrium. Moreover, we demonstrate that maximin equilibrium coincides
with Nash equilibrium in two-player zero-sum games. We also propose a
refinement of maximin equilibrium called strong maximin equilibrium. Ac-
cordingly, we show that for every Nash equilibrium that is not a strong
maximin equilibrium there exists a strong maximin equilibrium that Pareto
dominates it. In addition, no strong maximin equilibrium is ever Pareto
dominated by a Nash equilibrium. Furthermore, we show by examples that
maximin equilibrium is neither a coarsening nor a special case of correlated
equilibrium or rationalizable strategy profiles.

In Section 5, we discuss the maximin equilibrium in extensive form games
and in n-player games. All the results provided in Section 3 and in Section 4
hold in n-player games except the one which requires a two-player zero-sum
setting. Finally, we discuss maximin equilibrium predictions in several games
including the traveler’s dilemma.

2 The framework

In this paper, we use a framework for the analysis of interactive decision
making environments as described by von Neumann and Morgenstern (1944,
p.11).

One would be mistaken to believe that it [the uncertainty] can
be obviated, like the difficulty in the Crusoe case mentioned in
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footnote 2 on p. 10, by a mere recourse to the devices of the the-
ory of probability. Every participant can determine the variables
which describe his own actions but not those of the others. Nev-
ertheless those ‘alien’ variables cannot, from his point of view, be
described by statistical assumptions. This is because the others
are guided, just as he himself, by rational principles –whatever
that may mean– and no modus procedendi can be correct which
does not attempt to understand those principles and the interac-
tions of the conflicting interests of all participants.

For simplicity, we assume that there are two players whose finite set of
pure actions are X1 and X2 respectively. Moreover, players’ preferences over
the outcomes are assumed to be a weak order (i.e. transitive and complete)
so that we can represent those preferences by the (ordinal) utility functions
u1, u2 : X1 × X2 → R which depends on both player’s actions. As usual,
the notation x in X = X1 × X2 represents a strategy profile. In short, a
two-player non-cooperative game can be denoted by ({1, 2}, X1, X2, u1, u2).
Starting from simple strategic decision making situations, we firstly introduce
a deterministic theory of games in this section and in the following one.9

For the analysis of a game we need a notion of ‘rationality’ of the players.
Moreover, we assume that players maximize utility with respect to the worst
case given that the ‘rationality’ of the players is common knowledge. We
assume that everything about the game including the previous sentence is
common knowledge.10

In one-player decision making situations the notion of rationality is usu-
ally referred as maximizing one’s own utility with respect to her preferences.
In multi-player games, however, it is not unambiguous what does it mean
to maximize one’s own utility because it simply depends on the other’s ac-
tions. Von Neumann proposed proposed an approach to do this: Each player
should maximize a minimum utility regardless of the strategy of the other
player. Although, in two-player zero-sum games this works quite well, it is
considered to be too pessimistic in non-zero-sum games since the preferences

9Note that all the definitions we present can be extended in a straight-forward way
to the games in von Neumann-Morgenstern mixed extension and to n-player games. See
Section 4 and in the Section 5 for more discussion. Note also that interpreting utilities as
cardinal which is usual in game theory does not cause any problems.

10See Lewis (1969) for more details and see Aumann (1976) for a formal definition of
common knowledge in a Bayesian setting.

6



of the players are not necessarily opposing. Due to the fact that rationality
of the maximin strategist dictates her to play any game as if it is a zero-sum
game, this leads her to ignore the opponent’s payoffs and hence the prefer-
ences of the opponent. Therefore, one might call maximin strategist being
an individually rational player who does not, in general, take the advantage
of all the information given to her.

2.1 Definition of rationality

To avoid possible misunderstandings from our rationality definition, one may
consider the following scenario in mind which is intended only to facilitate
the definition.

Suppose that Alfa and Beta are sitting at a bargaining table and can
make non-binding agreements. However, they will submit their strategies in
separate rooms simultaneously. By making an agreement on a strategy profile
and going back to their rooms, each player faces a decision problem of either
keeping the agreement or betraying it by a deviation. Accordingly, we discuss
what would players do if they are rational in the sense of maximin strategy,
Nash equilibrium and of the notion we define as maximin equilibrium.

Firstly, if the players are rational à la von Neumann, then a player is
expected to betray an agreement by deviating to any strategy (including the
ones which he gets a strictly less payoff than the agreement payoff). The
reason is obvious: Maximin rule imposes no condition on the other player’s
strategies. Secondly, if we assume that players are rational à la Nash, then a
player is expected to betray the agreement unless he is already best replying.

Note that these are two extreme cases that might occur: In the former,
there is no condition on the strategy of the other player while there is unique
condition in the latter one. We define a rationality concept which is stronger
than of maximin strategist but weaker than of Nash strategist. According
to our definition, a rational player will be the one who would not betray the
agreement by making a non-profitable deviation. 11

Let us fix some terminology. As usual, a strategy x′

i ∈ Xi is said to
be a profitable deviation for player i with respect to the profile (xi, xj) if
ui(x

′

i, xj) > ui(xi, xj). We call it non-profitable if it is not profitable.

11Note that one can define a bit stronger or a bit weaker notion of rationality but working
with the current one suffices for our purposes.
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Definition 1. A player is called rational at (the agreement) x if she does

not make a non-profitable deviation from it.

In other words, when Alfa and Beta leave the bargaining table, Alfa
would make sure that Beta would not betray the agreement by deviating
non-profitably if Beta is rational and vice versa.

The reader might ask whether we need to assume that pre-play communi-
cation is allowed. The answer is that we do not need it; an agreement can be
explicit or implicit. The assumptions of rationality and players being max-
imin decision makers are, basically, the ‘rules’ that players take into account
in order to reach an agreement. Since those rules are fixed and common
knowledge, players can make the same reasoning in the lack of communica-
tion as they do in the presence of a communication.

At first sight, it might seem subtle that a player makes a reasoning about
a strategy profile which actually includes her own strategy in the above inter-
pretation. However, careful examination reveals that it is not a problem since
she is reasoning about a possibility that she makes an agreement. Initially,
every strategy profile is a potential agreement.

3 Maximin equilibrium

As it is formulated and explained by von Neumann (1928), playing a game
is basically facing an uncertainty which can not be resolved by statistical
assumptions. This is actually the crucial difference between games and deci-
sion problems. Our aim is to extend von Neumann’s approach on resolving
this uncertainty.

Suppose that Alfa and Beta make a non-binding agreement (x1, x2).
Alfa faces an uncertainty by keeping the agreement since he does not know
whether Beta will keep it. Von Neumann’s method to evaluate this uncer-
tainty is to calculate the minimum payoff of Alfa with respect to all conceiv-
able deviations by Beta.12 That is, Alfa’s evaluation vx1x2 (or the utility)
of keeping the agreement (x1, x2) is vx1x2 = minx′

2∈X2
u1(x1, x

′

2). Note that
for all x′

2, the evaluation of Alfa for the profile (x1, x
′

2) is the same, i.e.
vx1x2 = vx1x

′
2
for all x′

2 ∈ X2. Therefore, it is possible to attach a unique
evaluation vx′

1
for every strategy x′

1 ∈ X1 of Alfa. Next step is to make a

12Because, it is assumed that Beta might have a desire to inflict a loss for Alfa. Note
that von Neumann used mixed strategies but here we would like to keep it simple.

8



comparison between those evaluations of the strategies. For that, von Neu-
mann takes the maximum of all such evaluations vx′

1
with respect to x′

1 which
yields a unique evaluation for the whole game, i.e. the value of the game is
v = maxx′

1∈X1
vx′

1
. In other words, the unique utility that Alfa can guarantee

by facing the uncertainty of playing this game is v. Accordingly, it is rec-
ommended that Alfa should choose the strategy x∗

1 ∈ argmaxx′
1∈X1

vx′
1
which

guarantees the value v.
We would like to extend von Neumann’s method in such a way that Alfa

takes into account the rationality of Beta when making the evaluations and
vice versa. Let us construct the approach we take step by step and state its
implications.

Firstly, one needs to define the rationality. We have chosen a notion of
rationality which allows Beta to keep her agreement or to deviate to a strategy
for which she has strict incentives to do so. By this assumption, Alfa can rule
out non-profitable deviations of Beta from the agreement (x1, x2) which helps
decreasing the level of uncertainty he is facing. Now, Alfa’s evaluation vx1x2

of the uncertainty for keeping the agreement can be defined as the minimum
utility he would get under any rational behavior of Beta. That is,

vx1x2 = min{ min
x′
2∈B2(x1,x2)

u1(x1, x
′

2), u1(x1, x2)}},

where B2(x1, x2) denotes the set of Beta’s (strict) better replies with respect
to (x1, x2). As a consequence, it is not in general true for a strategy x′

2 6= x2

that we have the equality vx1x2 = vx1x
′
2
. Because, the better response set

of Beta with respect to (x1, x2) is not necessarily the same as the better
response set of her with respect to (x1, x

′

2). Therefore, we can not assign a
unique value to every strategy of Alfa anymore. Instead, the evaluation of
the uncertainty can be encoded in the strategy profile. As a result, we can no
longer refer a strategy in the same sprit of a maximin strategy since a strategy
in this setting only makes sense as a part of a strategy profile.13 But note
that there are two evaluations that are attached to the profile (x1, x2), one
from Alfa and one from Beta since she also is doing the similar calculations
as him. Accordingly, we define a value function which maps each strategy
profile to a vector whose components represent the value of the profile to
each player.

13This is similar to Nash equilibrium. A strategy in a Nash equilibrium is meaningful
only if it is considered with the other strategies in the profile.
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The last step is to make comparisons between those evaluations. Our aim
is basically to maximize the value function but since it is vector valued there
is no obvious way to do this. At first sight, it might seem that we have not
done a big improvement so far since we have started with a maximization
of payoff vectors of the players but we are still left with a similar problem.
However, we can now use the maximization (optimization) methods we know
in the literature just as techniques. Two well-known maximization techniques
are Pareto optimality and Nash equilibrium.

One may ask why we do not directly apply those maximization methods
to the set of payoff vectors of the game. The reason is that applying a
maximization method to a game does not necessarily mean evaluating and
comparing the uncertainty that a player faces by playing according to what
it recommends.

For example, let the strategy profile z be Pareto optimal in the whole
domain of a game. Even though the payoff that Alfa receives from the profile
z is high, playing her part of the Pareto optimal profile need not be a good
(utility maximizing) decision ex ante. Because, the uncertainty he faces by
playing his part is not evaluated. For example, it could be the case that
Beta has a chance to deviate from z which causes a substantial decrease in
his payoff. Therefore, it would be better for Alfa if he considers his possible
payoffs after such deviations and compare it with the other possible options.

To give another example, let now w be a Nash equilibrium. Again, the
fact that w is a Nash equilibrium does not make playing his part of w a
good decision for Alfa. Alfa needs to evaluate the uncertainty he is facing
by playing his part and compare it with the other options. Actually, it is
better to call it a certainty rather than an uncertainty because of the fact
that neither Beta nor Alfa has a profitable deviation from it. However, it is
still an unevaluated and uncompared certainty in the game.

Loosely speaking, choosing the Nash equilibrium in the presence of many
other strategy profiles is like choosing the sure gamble in the presence of many
other uncertain gambles. Even if the outcomes of the uncertain gamble is
very high in every state of the world and the outcome of the sure gamble is
very low.

Nash’s method only compares the outcomes that might occur as a conse-
quence of a player choosing one strategy with the outcomes that might occur
as a consequence of an opponent choosing another strategy.14 Therefore, a

14If they are in mutual best response, then it is called a Nash equilibrium.
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Nash equilibrium completely ignores the outcomes that might occur under
any other strategy choices of the players no matter how high their utilities
are. If, by any chance, there is only one Nash equilibrium, then this ignorance
might lead to a disastrous outcome for both players. One can see this clearly
in the traveler’s dilemma game which was introduced by Basu (1994).15 If
players play the unique Nash equilibrium, then they ignore a large part of
the game which is actually profitable for both of them. At the end of the
day, what a utility maximizing player cares is the payoff she receives not the
nice property of being sure that her opponent would not deviate had they
agreed to play a profile.

Another question one might ask is why we use both Pareto optimality
and Nash equilibrium methods for maximization of the value function. The
answer is that we simply want to minimize potential disadvantages of using
only one of the two. It is well-known that Pareto optimality sometimes
yields quite unfair outcomes and that a Nash equilibrium outcome can be
quite unsatisfactory. Let us now define the value function formally.

Definition 2. Let Γ = (X1, X2, u1, u2) be a two-player game. A function
v : X → R× R is called the value function of Γ if for every i 6= j and for all
x = (xi, xj) ∈ X, i’th component of v = (vi, vj) satisfies

vi(x) = min{ min
x′
j∈Bj(x)

ui(xi, x
′

j), ui(x)}},

where the better response correspondence of player j with respect to x is
defined as

Bj(x) = {x′

j ∈ Xj|uj(xi, x
′

j) > uj(x)}.

Remark 3. Note that for all x and all i, we have ui(x) ≥ vi(x). Because, one
cannot increase a payoff but can only (weakly) decrease it, by definition of
the value function.

As it is discussed above, the value of a strategy profile to a player repre-
sents the minimum payoff that a player could receive under rational behavior
of her opponent. To illustrate what a value function of a game looks like, let
us consider the game in Figure 2 which is played by Alfa and Beta.

15The traveler’s dilemma is a symmetric game in which players can pick a number from
2 to 100 and the one who picks the lower number receives the Dollar amount equals to
her choice plus 2$ reward and the other receives 2$ punishment from the lower number.
If both choose the same number they get what they choose. For the game matrix and for
more discussion see p.15.
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Γ =

A B C D
A 2, 2 0, 0 1, 1 0, 0
B 0, 0 90, 80 3, 3 90, 90
C 1, 100 100, 80 −1,−1 −4,−2
D 3, 1 75, 0 0, 0 230, 0

v(Γ) =

A B C D
A 2, 1 0, 0 1, 1 0, 0
B 0, 0 90, 80 3, 3 90, 0
C 1, 1 1, 80 −1,−1 −4,−2
D 3, 1 3, 0 0, 0 3, 0

Figure 2: A game Γ and its value function v(Γ).

Observe that Γ has a unique Nash equilibrium (D,A) whose payoff vector
is (3, 1). Suppose that pre-game communication is allowed and that Beta
is trying to convince Alfa at the bargaining table to make an agreement on
playing, for example, the profile (C,B) which Pareto dominates the Nash
equilibrium. Alfa would fear that Beta may not keep his agreement and may
unilaterally deviate to A leaving her a payoff of 1. Accordingly, the value of
the profile (C,B) to Alfa is 1 as shown in the bottom table in Figure 2. Since
agreements are not binding, Alfa would not accept this agreement. Now,
suppose Alfa offers to make an agreement on (B,B). Beta would not fear a
unilateral profitable deviation C of Alfa since his payoff does not decrease in
that case. Alfa’s payoff does not decrease too in case of a unilateral profitable
deviation of Beta to D. In other words, the value of the profile (B,B) is (90, 80)
which is equal to its payoff vector in Γ.

Now, we are ready to define the maximin equilibrium.

Definition 4. A strategy profile x = (xi, xj) where i 6= j in a two player
game Γ is called maximin equilibrium if it satisfies at least one of the following
conditions for the value function v = (vi, vj):

1. For every player i and all x′ ∈ X, vi(x
′) > vi(x) implies vj(x

′) < vj(x).

2. For every i, xi ∈ argmaxx′
i∈Xi

vi(x
′

i, xj).

In addition, x is called a strong maximin equilibrium if it satisfies only
the first condition above.

12



Remark 5. We can interpret the value function v of a game Γ as a game in its
own right, that is, Γv = (X1, X2, v1, v2) where v(Γ) = (v1, v2). Then, the set
of maximin equilibria in Γ is the union of the set of Pareto optimal strategy
profiles and the set of Nash equilibria of the game Γv.

Going back to our example, observe that the profile (B,B) is the Pareto
dominant profile of the value function of the game Γ shown in Figure 2, so
it is a maximin equilibrium. In addition, observe that the Nash equilibrium
is also a maximin equilibrium. Moreover, the maximin equilibrium (B,B)
has another property which deserves attention. Suppose that players agree
on playing it. Alfa has a chance to make a unilateral profitable deviation
to C but he can not rule out a potential profitable deviation of Beta to the
strategy D. If this happens, Alfa would receive −4 which is less than what
he would receive if he did not deviate. But Beta is also in the exactly same
situation. As a result, nobody would actually deviate from the agreement
(B,B).

An ordinal utility function is unique up to strictly increasing transforma-
tions. Therefore, it is crucial for a solution concept (which is defined with
respect to ordinal utilities) to be invariant under those operations. The fol-
lowing proposition shows that maximin equilibrium possesses this property.

Proposition 6. Maximin equilibrium is invariant under strictly increasing

transformations of the payoff function of the players.

Proof. Let Γ = (Xi, Xj, ui, uj) and Γ̂ = (Xi, Xj, ûi, ûj) be two games such
that ûi and ûj are strictly increasing transformations of ui and uj respec-
tively. Firstly, we show that the components v̂i and v̂j of the value function
v̂ are strictly increasing transformations of the components vi and vj of v,
respectively. Notice that,

Bj(x) = {x′

j ∈ Xj|uj(xi, x
′

j) > uj(x)}

= B̂j(x) = {x′

j ∈ Xj|ûj(xi, x
′

j) > ûj(x)}.

It implies that argminx′
j∈Bj(x) ui(xi, x

′

j) = argminx′
j∈B̂j(x)

ûi(xi, x
′

j). It in turn

implies that vi(x) = min{ui(xi, x̄j), ui(x)} and v̂i(x) = min{ûi(xi, x̄j), ûi(x)}
for some x̄j ∈ argminx′

j∈Bj(x) ui(xi, x
′

j).

Since ûi is a strictly increasing transformation of ui, we have either vi(x) =
ui(xi, x̄j) if and only if v̂i(x) = ûi(xi, x̄j) or vi(x) = ui(x) if and only if
v̂i(x) = ûi(x) for all xi, xj and all x̄j.

13



L R
L 0, 0 2,−2
R 3,−3 1,−1

L R
L 11, 11 13, 6
R 16, 5 12, 10

Figure 3: Two ordinally equivalent games.

It follows that showing vi(x) ≥ vi(x
′) if and only if v̂i(x) ≥ v̂i(x

′) is
equivalent to showing ui(x) ≥ ui(x

′) if and only if ûi(x) ≥ ûi(x
′) for all x, x′

in X which is correct by our supposition.
Secondly, a profile y is a Pareto optimal profile with respect to v if and

only if it is Pareto optimal with respect to v̂ because each vi is a strictly
increasing transformation of v̂i. By the same argument, a profile y is a pure
Nash equilibrium in the game Γv if and only if it is a pure Nash equilibrium
in Γv̂. As a result, the set of maximin equilibria of Γ and Γ̂ are the same.

The following proposition shows the existence of strong maximin equi-
librium hence the existence of maximin equilibrium with respect to pure
strategies. It is especially of importance in games where players can not or
are not able to use a randomization device. It might be also the case that a
commitment of a player to a randomization device is implausible. In those
games, we can make sure that there exists at least one maximin equilibrium.

Theorem 7. Every finite game has a strong maximin equilibrium.

Proof. Since the Pareto dominance relation is transitive a Pareto optimal
strategy profile with respect to the value function of a finite game always
exists.

One might wonder the prediction of pure maximin equilibrium in zero-
sum games which possesses no pure Nash equilibrium where mixed strategy
extension of the game is not possible. The zero-sum game in Figure 3 is taken
from Aumann and Maschler (1972) and the value of the game for player 1
is 1.5 in mixed extension. This game was subject to discussion because of
the problem of commitment to the maximin strategies. Before the coin toss,
the maximin strategy (1

2
, 1
2
) of Alfa guarantees the highest expected payoff,
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100 99 · · · 3 2
100 100, 100 97, 101 · · · 1, 5 0, 4
99 101, 97 99, 99 · · · 1, 5 0, 4
...

...
...

. . .
...

...
3 5, 1 5, 1 · · · 3, 3 0, 4
2 4, 0 4, 0 · · · 4, 0 2, 2

Figure 4: Traveler’s dilemma

however, after the coin toss player 1 still needs to make a decision whether
playing according to the outcome of the toss or not. Actually, playing the
strategy R guarantees more than playing L after the toss. Confirming the
intuitions about the game in Figure 3, the pure maximin equilibrium of this
game is (R,R). However, note that if the utility functions of a zero-sum game
are ordinal, then the usual intuition of zero-sum games may not hold. For
example, the game on the bottom in Figure 3, is ordinally equivalent to the
zero-sum game on the top.

Let us now look at the traveler’s dilemma game in Figure 4. The payoff
function of a player i if she plays xi and her opponent plays xj is defined
as ui(xi, xj) = min(xi, xj) + 2sgn(xj − xi) for all xi, xj in {2, 3, ..., 100}. In
this game, the unique strict Nash equilibrium is (2, 2) which is also the only
rationalizable strategy profile. To find the maximin equilibria we first need
to compute the value of the traveler’s dilemma game. With appropriate
calculations, one can observe that profiles (100, 100) and (2, 2) are maximin
equilibria. The profile (100, 100) is the strong maximin equilibrium whose
value is (97, 97).16

It is shown by many experiments that the players do not on average choose
the Nash equilibrium strategy but choose 100 or something close to 100. Note
that changing the reward/punishment level (which is 2 in the example) effects
the behavior observed in experiments. Goeree and Holt (2001) found that
when reward is high 80% of the subjects choose the Nash equilibrium strategy
but when reward is small about 80% of the subjects choose the highest. This
finding is a confirmation of Capra et al. (1999), that is, when reward was
high the play converged towards the Nash equilibrium over time but when

16Note that changing the reward/punishment level (which is 2 in the example) does not
effect the set of maximin equilibria. However, the strong maximin equilibrium can change
depending on the magnitude of the reward.
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reward level was small the play converged towards the other extreme. On
the other hand, Rubinstein (2007) found (in a web-based experiment without
payments) that 55% of 2985 subjects choose the highest amount and only
13% choose the Nash equilibrium where the reward was small.

These results are actually not unexpected. The irony is that if both
players choose almost17 any ‘irrational’ strategy but their Nash equilibrium
strategy then they both get strictly more payoff than they would get by
playing the Nash equilibrium. Actually, the Nash equilibrium is the only
profile which has this property. Therefore, it is difficult to imagine that a
player whose aim is to maximize her own payoff would ever play or expect
her opponent to play the strategy 2 in this game unless she is a ‘victim’ of
game theory.

4 Maximin equilibrium in mixed strategies

4.1 Definition

The mixed extension of a two-player non-cooperative game is denoted by
(∆X1,∆X2, u1, u2) where ∆Xi is the set of all simple probability distribu-
tions (lotteries) over the set Xi. It is assumed that the preferences of the
players over the lotteries satisfy weak order, continuity and the independence
axioms.18 As a result, those preferences can be represented by von Neumann-
Morgenstern (expected) utility functions u1, u2 : ∆X1 × ∆X2 → R. Let
p ∈ ∆X denote a strategy profile where ∆X = ∆X1 ×∆X2.

We do not need another definition for maximin equilibrium with respect
to mixed strategies; one can just interpret the strategies in the Definition
4 as being mixed. But we need to modify the value function as follows to
have it well defined. The value function of player i is defined as vi(p) =
min{infp′j∈Bj(p) ui(pi, p

′

j), ui(p)}} for all p ∈ ∆X.19

Harsanyi and Selten (1988, p.70) argue that invariance with respect to
positive linear transformations of the payoffs is a fundamental requirement for
a solution concept. The reason is obvious: The von Neumann-Morgenstern
utility function of a player is unique up to positive linear transformations.

17If one modifies the payoffs of the game such that ui(xi, 3) = 2.1 for all i and all
xi ∈ {4, 5, ..., 100}. Then, one can remove ‘almost’ from the sentence.

18For more information see, for example, Fishburn (1970).
19The value function is well defined since utility functions are bounded.
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The following remark states that maximin equilibrium has this property. We
do not provide a proof since it follows essentially the same steps as the proof
of Proposition 6.

Remark 8. The maximin equilibria of a game in mixed extension is unique
up to positive linear transformations of the payoffs.

The following lemma illustrates a useful property of the value function of
a player.

Lemma 9. The value function of a player is upper semi-continuous.

Proof. In several steps, we show that the value function vi of player i in a
game Γ = (∆X1,∆X2, u1, u2) is upper semi-continuous.

Firstly, we show that the better reply correspondence Bj : ∆Xi×∆Xj ։

∆Xj is lower hemi-continuous. For this, it is enough to show the graph of
Bj defined as follows is open.

Gr(Bj) = {(pj, q) ∈ ∆Xj ×∆X|pj ∈ Bj(q)}.

Gr(Bj) is open in ∆Xj × ∆X if and only if its complement is closed.
Let [(pj, qi, qj)

k]∞k=1 be a sequence in [Gr(Bj)]
c = (∆Xj × ∆X) \ Gr(Bj)

converging to (pj, qi, qj) where pkj /∈ Bj(q
k) for all k. It follows that we have

uj(p
k
j , q

k
i ) ≤ uj(q

k) for all k. Continuity of uj implies that uj(pj, qi) ≤ uj(q)
which means pj /∈ Bj(q). Hence [Gr(Bj)]

c is closed which implies Bj is lower
hemi-continuous.

Next, we define ûi : ∆Xj ×∆Xi ×∆Xj → R by ûi(pj, qi, qj) := ui(pj, qi)
for all (pj, qi, qj) ∈ ∆Xj × ∆Xi × ∆Xj. Since ui is continuous, ûi is also
continuous. In addition, we define ūi : Gr(Bj) → R as the restriction of ûi

to Gr(Bj), i.e. ūi = ûi|Gr(Bj)
. The continuity of ûi implies the continuity of

its restriction ūi which in turn implies ūi is upper semi-continuous.
By the theorem of Berge (1963, p.115)20 lower hemi-continuity of Bj

and lower semi-continuity of −ūi : Gr(Bj) → R implies that the function
−v̄i : ∆Xi × ∆Xj → R defined by −v̄i(q) := suppj∈Bj(q)

−ūi(pj, q) is lower

semi-continuous.21 It implies that the function v̄i(q) = infpj∈Bj(q) ūi(pj, q) is
upper semi-continuous.

20We follow a version of the theorem as presented in Aliprantis and Border (1994, p.569).
21We use the fact that a function is lower semi-continuous if and only if the negative

of the function is upper semi-continuous. Moreover, note that a function is continuous if
and only if it is both lower semi-continuous and upper semi-continuous.
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The value function of player i defined by vi(q) := min{v̄i(q), ui(q)} is
upper semi-continuous because the minimum of two upper semi-continuous
functions is also upper semi-continuous.

The following theorem shows that strong maximin equilibrium and hence
maximin equilibrium exists in mixed strategies.

Theorem 10. Strong maximin equilibrium exists in mixed strategies.

Proof. Let us define vmax
i := argmaxq∈∆X vi(q) which is a non-empty com-

pact set because ∆X is compact and vi is upper semi-continuous by Lemma
9. Since vmax

i is compact and vj is also upper semi-continuous the set
vmax
ij := argmaxq∈vmax

i
vj(q) is non-empty and compact. Clearly, the pro-

files in vmax
ij are Pareto optimal with respect to the value function which

means vmax
ij is a non-empty compact subset of the set of strong maximin

equilibria in the game Γ. Similarly, one may show that the set vmax
ji is also a

non-empty compact subset of the set of strong maximin equilibria.

Now, let us assume that players can use mixed strategies in the game Γ in
Figure 2. An interesting phenomenon occurs if we change, ceteris paribus, the
payoff of u1(C,D) from−3 to−4. Let us call the new game Γ̂. It has the same
pure Nash equilibrium (D,A) as Γ plus two mixed one. The Pareto dominant
Nash equilibrium is [(0, 41

46
, 5
46
, 0), (0, 47

52
, 0, 5

52
)] whose expected payoff vector is

(90, 80).22 The question arises: What is the ceteris paribus effect of increasing
the payoff of u1(C,D) from −4 to −3 on the nature of this strategic decision
making situation that it decreases the payoffs of the players dramatically in
Nash equilibria? Note that by passing from Γ̂ to Γ we just slightly increase
Alfa’s relative preference of the worst outcome (C,D) with respect to the other
outcomes. On the other hand, there is a maximin equilibrium [B, (0, 28

31
, 0, 3

31
)]

in Γ whose value is approximately 80.9 for both players. Moreover, it remains
to be a maximin equilibrium with the same value in Γ̂.23

22The other Nash equilibrium is approximately [(0, 0.01, 0.001, 0.98), (0.20, 0.88, 0, 0.09)]
whose expected payoff vector is approximately (88.11, 1.14). The Nash equilibria are
calculated via Gambit.

23We have calculated the values via Mathematica 8.0 software. Note that we have given
one example of maximin equilibrium whose value is equal for both players, but there can
be other maximin equilibria as well.
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4.2 The relation of maximin equilibrium with the other

concepts

Perhaps, Nash equilibrium is one of the most well-known solution concept in
game theory. Nash’s path-breaking theorem says that every finite game in
mixed extension possesses at least one Nash equilibrium.

Remark 11. The value of a Nash equilibrium is the same as its payoff vector
because no player can unilaterally deviate from a Nash equilibrium.

The following proposition shows that maximin equilibrium is a general-
ization of Nash equilibrium.

Proposition 12. Every Nash equilibrium is a maximin equilibrium.

Proof. Let (pi, pj) be a Nash equilibrium. By Remark 11, the value of it is the
same as its payoff vector. Accordingly, we have pi ∈ argmaxp′i∈∆Xi

vi(p
′

i, pj)
for all player i because the values of the other profiles can not increase by
Remark 3. Hence, the profile (pi, pj) is also a maximin equilibrium.

The following two propositions show the Pareto dominance relation be-
tween Nash equilibrium and strong maximin equilibrium.

Proposition 13. For every Nash equilibrium that is not a strong maximin

equilibrium there exists a strong maximin equilibrium that Pareto dominates

it.

Proof. If a Nash equilibrium q in a game Γ is not a strong maximin equi-
librium, then there exists a strong maximin equilibrium p whose value v(p)
Pareto dominates v(q). It implies that p Pareto dominates q in the game Γ
since the payoff vector of the Nash equilibrium q is the same as its value by
Remark 11.

Proposition 14. No strong maximin equilibrium is ever Pareto dominated

by a Nash equilibrium.

Proof. By contradiction, suppose that a Nash equilibrium q Pareto dominates
a strong maximin equilibrium p. It implies that the value of q also Pareto
dominates the value of p by Remark 11. But this is a contradiction to our
supposition that p is a strong maximin equilibrium.
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The two propositions above are closely linked but one does not follow from
the other. Because, Proposition 13 does not exclude the existence of a Nash
equilibrium that is both Pareto dominated by a strong maximin equilibrium
and Pareto dominates another strong maximin equilibrium. Proposition 14
shows that this is not the case.

The next proposition illustrates that in zero-sum games a possibly mixed
strategy is a Nash equilibrium if and only if it is a maximin equilibrium.

Proposition 15. In a two-player zero-sum game, a profile is a maximin

equilibrium if and only if it is a Nash equilibrium.

Proof. ‘⇒’ By contraposition, suppose that the strategy profile (p1, p2) is
not a Nash equilibrium, we show that it can not be a maximin equilibrium.
Firstly, we show that the value of (p1, p2) is always Pareto dominated. Let
(p̄1, p̄2) be a Nash equilibrium whose payoff vector is (w,−w). Suppose,
without loss of generality, that u1(p1, p2) < w and u2(p1, p2) > −w. Next,
player 1 can profitably deviate to her maximin strategy p̄1 from which she will
receive at least w. It implies that the value of the profile (p1, p2) for player 2
is at most −w. By Remark 3, we have v1(p1, p2) ≤ u1(p1, p2). It implies that
the value of the profile (p1, p2) is Pareto dominated by the value of the Nash
equilibrium (p̄1, p̄2). Secondly, the value of the profile (p̄1, p2) for player 1 is
strictly more than the value of (p1, p2), that is v1(p̄1, p2) > v1(p1, p2) because
v1(p̄1, p2) = w. Since the profile (p1, p2) also violates the second condition in
the definition of maximin equilibrium, it can not be a maximin equilibrium.

‘⇐’ By Proposition 15, every Nash equilibrium is a maximin equilibrium.

Rationalizable strategy profiles and correlated equilibrium are two differ-
ent generalizations of the Nash equilibrium.24 One might wonder the rela-
tionship of maximin equilibrium with those concepts. First of all, neither
rationalizable strategy profiles nor correlated equilibrium is a coarsening of
maximin equilibrium. The reason is that, a strictly dominated strategy can
be a part of a maximin equilibrium. For example, the profiles (A,C) and
(B,D) are pure maximin equilibria in the game in Figure 5. But notice
that the strategy A of player 1 is strictly dominated. Moreover, maximin
equilibrium is not a generalization of ratonalizable strategy profiles. Con-
sider the game in Figure 6 which is taken from Bernheim (1984) and observe

24See Bernheim (1984) and Pearce (1984) for rationalizability and see Aumann (1974)
for correlated equilibrium.
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C D
A 6, 8 0, 0
B 8, 6 1, 7

Figure 5: Example of a maximin equilibrium which include a strictly domi-
nated strategy.

A B C D
A 0, 7 2, 5 7, 0 0, 1
B 5, 2 3, 3 5, 2 0, 1
C 7, 0 2, 5 0, 7 0, 1
D 0, 0 0,−2 0, 0 10,−1

Figure 6: A rationalizable strategy profile which is not a maximin equilib-
rium.

that (A,A) is a rationalizable strategy profile, however, it is not a maximin
equilibrium. Correlated equilibrium is also not a special case of maximin
equilibrium either because a correlated distribution can not be a maximin
equilibrium.

One might wonder whether there is a relationship between the maximin
(minimax) decision rule25 in decision theory and the maximin equilibrium.
Imagine a one-person game in which the decision maker is to make a choice
between several gambles. In that case, maximin equilibrium boils down to
expected utility maximization just like maximin strategies and Nash equi-
librium. In other words, the decision maker has to choose the gamble with
the highest expected utility. However, according to maximin decision rule, a
player has to choose the gamble which maximizes the utility with respect to
the worst state of the world (whose outcome is the minimum) even though
the probability assigned to it is very small.

25See Wald (1950) for maximin decision rule and see Gilboa and Schmeidler (1989) for
the axiomatic foundations of it.
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Accept Reject
Accept 16, 16 16, 16
Reject 16, 16 Γ′

Γ′ =

Stay silent Deny Confess
Stay silent 100, 100 110, 105 0, 15

Deny 105, 110 95, 95 5, 380
Confess 15, 0 380, 5 10, 10

Figure 7: Modified prisoner’s dilemma Γ in extensive form.

5 Maximin equilibrium in extensive form and

in n-player games

5.1 Extensive form games

It is possible to apply the logic of maximin equilibrium in extensive form
games but we have to be careful with the definition of a profitable deviation.
Because, if a player plays a strategy out of an agreement, then the other
player could be informed about this before waiting the end of the game.
Accordingly, the non-deviator has a chance to deviate too. Thus, defining
profitable deviations via its normal form would cause a loss of information.
Without getting into the heavy notation of extensive form games, we would
like to present a simple example to illustrate the maximin equilibria solutions.

In this example, we modify the famous prisoner’s dilemma game as fol-
lows. Each player has three options to choose, namely ‘stay silent’ (S), ‘deny’
(D) or ‘confess’ (C). In addition, we add another feature: Before playing the
actual game, each player is offered to choose ‘Accept’ (A) or ‘Reject’ (R).
If one of them accepts, then they will both stay 12 years in prison and the
actual game will not be played. If both of them reject, then they will play
the game. All this information is common knowledge to both players. This
situation can be represented by a two-player symmetric game in extensive
form which is shown in Figure 7.26

Firstly, observe that the game Γ′ has a unique Nash equilibrium (C,C)

26We assume that players’ utility is decreasing in the number of years that will be
spent in prison. Notice that if the strategy ‘stay silent’ is removed from the game Γ′ for
both players then we would obtain the prisoner’s dilemma. Note also that the maximin
equilibrium of the prisoner’s dilemma is the same as its Nash equilibrium.
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with a payoff vector of (10, 10). Accordingly, the unique subgame perfect
Nash equilibrium of Γ is (AC,AC) whose payoff vector is (16, 16). For sim-
plicity, let us consider the game in pure strategies. There are four maximin
equilibria (C,C), (D,S), (S,D) and (S,S) in the game Γ′. The maximin equi-
libria of Γ are (AC,AC), (RD,RS), (RS,RD) and (RS,RS) whose values are
(16, 16), (5, 110), (110, 5) and (100, 100) respectively.

Suppose that both prisoners are in the same cell and they can freely
discuss what to choose before their decision is asked about accepting or re-
jecting the offer. However, they will make their choices in separate cells, that
is, non-binding pre-game communication is allowed. We would expect that
players would try to convince each other to play a strategy profile that Pareto
dominates (AC,AC) because each of them can simply guarantee receiving
16 no matter what.

A potential agreement in this game seems to be the maximin equilibrium
(RS,RS). It simply guarantees a payoff of 100 for a player given that his
opponent is rational. First of all, a rational player would not unilaterally
deviate from this agreement by playing ‘Accept’ in the beginning because it
is not a profitable deviation. Moreover, if a player wants to play (A), it does
not make sense for him to make an agreement since any choice of the opponent
does not change the outcome. In the second stage game Γ′, a rational player
would not unilaterally deviate to C from the agreement (S,S) since it is a
non-profitable deviation. He may rationally deviate to D but this is not a
problem (even preferable) for the non-deviator as he gets strictly more than
the value of 100. Actually, the fact that they have already rejected receiving
16 is a signal for not playing according to the Nash equilibrium.

5.2 N-player games

In this subsection, we discuss the extensions of the definitions and of the
results we have presented so far to n-player games.

Regarding the definition of the value function, one only needs to replace
the way vi is written in Definition 4 to,

vi(p) = min{ inf
p′−i∈B−i(p)

ui(pi, p
′

−i), ui(p)}},

where B−i(p) is the set of (n − 1)-tuple strategy profiles which can occur
under unilateral profitable deviations of all players but i with respect to p,
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that is

B−i(p) = {p̂−i ∈ ∆X−i|p̂k ∈ Bk(p) for at least one k ∈ {−i}}.27

The definition of the maximin equilibrium does not change. In other
words, the set of maximin equilibria in a game Γ is the union of the set of
Pareto optimal strategy profiles and the set of Nash equilibria of the game
defined by the value function of Γ. Moreover, every result in Section 3 and
in Section 4 except the Proposition 15 (which requires a two-player zero-
sum setting) is valid in n-player games. That is, maximin equilibrium exists
in pure strategies, it is invariant under strictly increasing transformations
of the payoff functions of the players and it is a generalization of the Nash
equilibrium in mixed strategies. Moreover, for every Nash equilibrium that is
not a strong maximin equilibrium there exists a strong maximin equilibrium
that Pareto dominates it. Besides, no strong maximin equilibrium is ever
Pareto dominated by a Nash equilibrium. The proofs are essentially the
same as the ones given in Section 3 and in Section 4.

6 Conclusion

In this paper, we have introduced a new solution concept called maximin
equilibrium which extends von Neumann’s maximin strategy idea to n-player
games by incorporating common knowledge of rationality of the players. The
rationality assumption we use is stronger than the one of maximin strate-
gist and weaker than the one of Nash strategist. Maximin equilibrium is
a method for evaluating the uncertainty that players are facing by playing
the game. In other words, maximin equilibrium is a strategy profile whose
value (which is a vector) is maximized with respect to the methods of Pareto
optimality and of Nash equilibrium. We showed that maximin equilibrium
is invariant under strictly increasing transformations of the payoff functions
of the players. Moreover, every finite game possesses a maximin equilibrium
in pure strategies.

27Actually, one may define a weaker notion of better response by allowing only one
player to unilaterally deviate at a time. In this case, the value function and the maximin
equilibrium would still be well defined and all the results would still hold in n-player
games. For the time being, we prefer the current definition. In the end, n-player games
have more important conceptual problems such as the possibility of forming coalitions
which we investigate in our following project.
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Considering the games in mixed extension, we showed that maximin equi-
librium is a coarsening of Nash equilibrium. Moreover, we demonstrated that
the set of Nash equilibria coincides with the set of maximin equilibria in two-
player zero-sum games. In addition, we proposed a refinement of maximin
equilibrium called strong maximin equilibrium. Accordingly, we showed that
for every Nash equilibrium that is not a strong maximin equilibrium there
exists a strong maximin equilibrium that Pareto dominates it. Besides, no
strong maximin equilibrium is ever Pareto dominated by a Nash equilibrium.
We also discussed maximin equilibria predictions in several games including
the traveler’s dilemma.

The concept introduced in this paper opens up several research directions.
In this paper, we have defined the value function in n-player games with
respect to unilateral deviations only. Therefore, it is not necessarily immune
to coalitional deviations. In our following project, we extend the definition
of the value function which takes into account coalitional deviations and we
define the maximin equilibrium accordingly. In addition, a detailed analysis
of maximin equilibrium in extensive form and in repeated games is the topic
of our following project.
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