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Abstract

We consider the problem of sharing the revenues from broadcasting sports leagues

among participating teams. We introduce axioms formalizing alternative ways of allocat-

ing the extra revenue obtained from additional viewers. We show that, combined with
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1 Introduction

In the era of streaming, sports has become the cornerstone to television programming. The

popularity of televised sports events keeps increasing and, for sports organizations, the sale

of broadcasting and media rights is currently their biggest source of revenue. This sale is

often collective, which generates an interesting problem of resource allocation, akin to well-

known problems already analyzed in the game-theory literature. Instances are airport problems

(e.g., Littlechild and Owen, 1973; Hu et al., 2012), bankruptcy problems (e.g., O�Neill, 1982;

Thomson, 2019), telecommunications problems (e.g., van den Nouweland et al., 1996), museum

pass problems (e.g., Ginsburgh and Zang, 2003; Bergantiños and Moreno-Ternero, 2015), cost

sharing in minimum cost spanning tree problems (e.g., Bergantiños and Vidal-Puga, 2007;

Trudeau, 2012), or labelled network games (e.g., Algaba et al., 2019a, 2019b).

In a recent paper (Bergantiños and Moreno-Ternero, 2019a), we introduced a formal model

to analyze the problem of sharing the revenues from broadcasting sports leagues among par-

ticipating teams. Two main rules were highlighted therein. On the one hand, the so-called

equal-split rule which splits the revenue generated from each game equally among the partic-

ipating players (teams). On the other hand, the so-called concede-and-divide, which concedes

each player (team) the revenues generated from its fan base (properly estimated) and divides

equally the residual. Among other things, we showed that both rules are similarly characterized

by just three properties. Two properties are common in both characterizations. One (equal

treatment of equals) states that two teams with the same audiences should receive the same

amount; another (additivity) that revenues should be additive on the audience table. The third

property in each characterization comes from a pair of polar properties modeling the e¤ect of

null or essential teams. The null team property states that if each game played by a team

has no audience, then such team (called null) receives nothing. The essential team property

states that if only the games played by one team have positive audience, then such team (called

essential) receives all its audience. In a follow-up paper (Bergantiños and Moreno-Ternero,

2019b) we show that a third axiom (maximum aspirations) stating that each team receives

at most the revenue generated by its overall audience, together with equal treatment of equals

and additivity, characterizes the family of all rules generated by convex combinations of the

equal-split rule and concede-and-divide.

A natural third rule (outside from the previous family) can also be considered for this model.
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It is the rule that divides the overall revenues generated in the tournament equally among all

participating teams. We refer to it as the uniform rule. This rule is used quite often in practice.

For instance, the football competitions of England, Italy and Spain divide around the 50% of

the revenues generated by TV broadcasting equally among all teams.

In this paper, we further explore the axiomatic approach to this problem and derive new

interesting results that uncover the structure of this stylized model further. To do so, we

consider new axioms that formalize alternative ways of allocating the extra revenue obtained

from additional viewers.

On the one hand, we consider a group of axioms stating di¤erent ways in which a rule

should react when additional viewers of some speci�c team appear. More precisely, assume

that a given tournament has more viewers than another tournament just because the games

involving a speci�c team (i) have more viewers. How should a rule allocate those extra viewers?

Our axioms consider three possible answers. The �rst axiom just ignores the fact that all viewers

come from games involving team i. Then, all teams should equally share the extra bene�ts.

We show that this axiom, together with equal treatment of equals, characterizes the uniform

rule. The second axiom considers that team i and the rest of the teams are in a symmetric

position because the audience of team i has increased the same amount as the audience of the

rest of the teams (combined). Then, the extra bene�ts of team i should be equal to the sum

of the extra bene�ts of the remaining teams. We show that this second axiom together with

equal treatment of equals characterizes the equal-split rule. The third axiom says that team i is

the only one to be credited for such an improvement. Then, team i should receive all the extra

bene�ts. We show that this third axiom, together with equal treatment of equals, characterizes

concede-and-divide.

On the other hand, we consider an axiom referring to the incremental e¤ect of adding

additional viewers to a game. The axiom (equal bene�ts from additional viewers) states that

the involved teams in the game should be a¤ected in the same amount. The same should

happen for the non-involved teams. Our last three results show that the combination of this

axiom with some other basic axioms also characterize the three rules mentioned above. More

precisely, equal bene�ts from additional viewers, together with aggregate monotonicity (more

aggregate revenues cannot hurt any team) and non negativity, characterize the uniform rule.

If, instead, we add to equal bene�ts from additional viewers the null team axiom (mentioned
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above), we characterize the equal-split rule, whereas if we add the essential team axiom (also

mentioned above), we characterize concede-and-divide.

The rest of the paper is organized as follows. We introduce the model, axioms and rules

in Section 2. In Section 3, we provide the characterization results. First, those involving equal

treatment of equals. Then, those involving equal bene�ts from additional viewers. We conclude

in Section 4. Some proofs have been deferred to an appendix.

2 The model

We consider the model introduced by Bergantiños and Moreno-Ternero (2019a). Let N describe

a �nite set of teams. Its cardinality is denoted by n. Without loss of generality, we usually

take N = f1; 2; : : : ; ng. We assume n � 3.

For each pair of teams i; j 2 N , we denote by aij the broadcasting audience (number of

viewers) for the game played by i and j at i�s stadium. We use the notational convention that

aii = 0, for each i 2 N . Let A 2 An�n denote the resulting matrix of broadcasting audiences

generated in the whole tournament involving the teams within N .1

Let �i (A) denote the total audience achieved by team i, i.e.,

�i (A) =
X

j2N

(aij + aji):

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to be

interpreted as the �pay per view� fee). Thus, we sometimes refer to �i (A) as the claim of team

i. When no confusion arises, we write �i instead of �i (A).

For each A 2 An�n, let jjAjj denote the total audience of the tournament. Namely,

jjAjj =
X

i;j2N

aij =
1

2

X

i2N

�i:

A (broadcasting) problem is a matrix A 2 An�n de�ned as above. The family of all the

problems is denoted by P.

1We are therefore assuming a tournament in which each team plays each other team twice: once home,

another away. Our model could be extended to tournaments in which some teams play other teams a di¤erent

number of times. In such a case, aij would denote the broadcasting audience in all games played by i and j at

i�s stadium.
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2.1 Rules

A (sharing) rule R is a mapping that associates with each problem an allocation indicating the

amount each team gets from the total revenue generated by broadcasting games. As we have

normalized the revenue generated from each viewer to 1; R : P ! R
N is such that, for each

A 2 P,
X

i2N

Ri (A) = jjAjj:

We consider three focal rules. First, the one that divides the total audience equally among

the teams. Formally,

Uniform, U : for each A 2 P, and each i 2 N ,

Ui (A) =
jjAjj

n
:

The uniform rule is applied in many practical situations. For instance, the football compe-

titions of England, Italy and Spain divide an important part of the revenues generated by TV

broadcasting (50%, 40% and 50% respectively), following the uniform rule.

Another focal rule for this problem is the so-called equal-split rule, which splits equally the

audience of each game. Formally,

Equal-split, ES: for each A 2 P, and each i 2 N ,

ESi (A) =
�i
2
:

The equal-split rule has game-theoretical foundations as, among other things, it coincides

with the Shapley value of a suitably associated TU-game to broadcasting problems (e.g.,

Bergantiños and Moreno-Ternero, 2019a).

The third focal rule is concede-and-divide, which takes into account the number of fans of

each team. The audience of each game is divided by assigning to each team its number of fans

and the remainder audience is equally divided among both teams. Formally,

Concede-and-divide, CD: for each A 2 P, and each i 2 N ,

CDi (A) = �i � (n� 1)

P

j;k2Nnfig

(ajk + akj)

(n� 2)(n� 1)
=
(n� 1)�i � jjAjj

n� 2
:

This rule can be rationalized by an intuitive statistical approach (e.g., Bergantiños and

Moreno-Ternero, 2019a).
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2.2 Axioms

We now consider several axioms of rules. First, the most basic form of impartiality, which is

formalized by the following axiom. It says that if two teams have the same audiences, then

they should receive the same amount.

Equal treatment of equals: For each A 2 P, and each pair i; j 2 N such that aik = ajk,

and aki = akj, for each k 2 N n fi; jg,

Ri(A) = Rj(A):

The next axiom, which is inspired by the notion of solidarity, refers to the incremental e¤ect

of adding additional viewers to a game. It states that the involved teams should be a¤ected in

the same amount. The same should happen for the non-involved teams. Formally,

Equal bene�ts from additional viewers: For each pair A; A0 2 P such that aij = a
0
ij,

for each pair (i; j) 6= (i0; j0), and ai0;j0 < a
0
i0;j0
, we have

Ri0(A
0)�Ri0(A) = Rj0(A

0)�Rj0(A);

and

Ri(A
0)�Ri(A) = Rj(A

0)�Rj(A);

when fi; jg � Nn fi0; j0g.

We also consider a group of axioms that are closely related, as they state how a rule should

react when additional viewers (of some speci�c team) appear. More precisely, let A; A0 2 P

and i 2 N such that aij � a
0
ij and aji � a

0
ji for each j 2 N n fig and ajk = a

0
jk when i =2 fj; kg.

Note that tournament A0 has more viewers than tournament A just because the games involving

team i have more viewers. How should a rule allocate those extra viewers? Our axioms consider

three possible answers.2

First, we just ignore the fact that all viewers come from games involving team i and assume

that all teams should equally share those additional viewers. Formally,

2Note that the three axioms are mutually exclusive.
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Equal sharing of additional team viewers: For each pair A, A0 2 P, and each i 2 N

such that aij � a
0
ij and aji � a

0
ji for each j 2 N n fig and ajk = a

0
jk when i =2 fj; kg, then for

each j 2 N

Rj (A
0)�Rj (A) =

jjA0jj � jjAjj

n
:

Second, we consider that team i and the rest of the teams are in a symmetric position

because the audience of team i has increased the same amount than the audience of the rest

of the teams (combined). Namely, �i (A
0) � �i (A) = jjA

0jj � jjAjj =
P

j2Nnfig

(�j (A
0)� �j (A)).

Thus, team i should increase as much as the rest of the teams combined. Formally,

Half sharing of additional team viewers: For each pair A, A0 2 P, and each i 2 N

such that aij � a
0
ij and aji � a

0
ji for each j 2 N n fig and ajk = a

0
jk when i =2 fj; kg, then

Ri (A
0)�Ri (A) =

X

j2Nnfig

(Rj (A
0)�Rj (A)) =

jjA0jj � jjAjj

2
:

Third, we assume that team i is the only one to be credited for such an improvement and,

thus, should not share the bene�ts with the rest of the teams. Formally,

No sharing of additional team viewers: For each pair A, A0 2 P, and each i 2 N such

that aij � a
0
ij and aji � a

0
ji for each j 2 N n fig and ajk = a

0
jk when i =2 fj; kg, then

Ri (A
0)�Ri (A) = jjA

0jj � jjAjj :

Finally, we also introduce four additional axioms.3

The �rst one says that if a team has a null audience, then such a team gets no revenue.

Formally,

Null team: For each A 2 P, and each i 2 N , such that for each j 2 N , aij = 0 = aji,

Ri(A) = 0:

The second one is sort of dual to the �rst one as it says that if only the games played by one

team have positive audience, then such an essential team should receive all its claim. Formally,

Essential team: For each A 2 P, and each i 2 N such that ajk = 0 for each pair

fj; kg 2 Nn fig,

Ri(A) = �i:

3The �rst two were introduced in Bergantiños and Moreno-Ternero (2019a).
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The next axiom says that if the overall audience in a tournament is higher than in another,

then no team can lose from it. Formally,

Aggregate Monotonicity: for each A; A0 2 P such that jjAjj � jjA0jj, we have that for

each i 2 N

Ri (A) � Ri (A
0) :

The last axiom simply states that no team can receive a negative amount.

Non negativity. For each (N;A) 2 P and each i 2 N ,

Ri (A) � 0:

3 Characterizations

We divide this section in two parts. In the �rst part, we show that the combination of equal

treatment of equals with each of the three axioms modeling the allocation of the extra revenues

generated from a speci�c team, leads to a characterization of each of the three focal rules

de�ned above. In the second part, we consider equal bene�ts from additional viewers, instead of

equal treatment of equals, and show that we also characterize the same three rules with di¤erent

combinations of the axioms presented above.

3.1 With equal treatment of equals

We �rst show that the axioms of equal treatment of equals and equal sharing of additional team

viewers characterize the uniform rule.

Theorem 1 A rule satis�es equal treatment of equals and equal sharing of additional team

viewers if and only if it is the uniform rule.

Proof. It is straightforward to show that the uniform rule satis�es the two axioms in the

statement. Conversely, let R be a rule satisfying equal treatment of equals and equal sharing

of additional team viewers. Let A 2 P. For each i = 0; 1; :::; n � 1 we de�ne the matrix Ai

obtained from A by considering only the audiences of the teams f1; :::; ig. Namely,

Aijk =

8
<

:
ajk if min fj; kg � i

0 otherwise.
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Notice that A0 is the matrix where all entries are 0 and An�1 = A: As R satis�es equal

treatment of equals, Rj (A
0) = 0 for each j 2 N:

Let i 2 Nn fng : As Ai�1 and Ai are under the hypothesis of equal sharing of additional

team viewers, we deduce that, for each j 2 N ,

Rj
�
N;Ai

�
�Rj

�
N;Ai�1

�
=
jjAijj � jjAi�1jj

n
:

Thus, for each j 2 N ,

Rj (N;A) =
n�1X

i=0

�
Rj
�
N;Ai

�
�Rj

�
N;Ai�1

��

=

n�1X

i=0

jjAijj � jjAi�1jj

n

=
jjAn�1jj

n
=
jjAjj

n
= Uj (N;A) :

The next result characterizes the equal-split rule as a result of replacing equal sharing of

additional team viewers by half sharing of additional team viewers in Theorem 1.

Theorem 2 A rule satis�es equal treatment of equals and half sharing of additional team view-

ers if and only if it is the equal-split rule.

Proof. It is straightforward to show that the equal-split rule satis�es equal treatment of equals.

We now prove that it also satis�es half sharing of additional team viewers. Let A; A0 and i as

in the de�nition of the axiom. Then,

X

j2Nnfig

(ESj (A
0)� ESj (A)) =

1

2

X

j2Nnfig

(�j (A
0)� �j (A))

=
1

2

X

j2Nnfig

�
a0ij + a

0
ji � (aij + aji)

�

=
1

2
[�i (A

0)� �i (A)]

= ESi (A
0)� ESi (A) :

As
P

j2N

(ESj (A
0)� ESj (A)) = jjA

0jj � jjAjj we have that

ESi (A
0)� ESi (A) =

X

j2Nnfig

(ESj (A
0)� ESj (A)) =

jjA0jj � jjAjj

2
:
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Conversely, let R be a rule satisfying equal treatment of equals and half sharing of additional

team viewers. We proceed by induction on the number of pairs of teams with positive audience.

Formally, let

s = jf(i; j) 2 N �N such that aij > 0gj :

If s = 0 then A = 0 and, by equal treatment of equals, Ri (0) = 0 for each i 2 N:

Assume now that s � 1. Let i 2 N be such that there exists i0 2 N such that aii0 + ai0i > 0:

We consider the problem Aii
0

de�ned as follows:

aii
0

jk =

8
<

:
ajk if fj; kg 6= fi; i0g

0 otherwise.

By half sharing of additional team viewers,

Ri (A)�Ri

�
Aii

0

�
=
jjAjj �

����Aii0
����

2
=
aii0 + ai0i

2
:

Equivalently,

Ri (A) = Ri

�
Aii

0

�
+
aii0 + ai0i

2
.

By the induction hypothesis, Ri
�
Aii

0
�
= ESi

�
Aii

0
�
: Then,

Ri (A) = ESi

�
Aii

0

�
+
aii0 + ai0i

2
= ESi (A) :

We now consider the partition of N between null teams and non-null teams. Formally, let

M = fi 2 N : aii0 + ai0i > 0 for some i
0 2 Ng , and

M c = fi 2 N : aii0 = ai0i = 0 for each i
0 2 Ng :

If M c = ? then the above proves that R (A) = ES (A). Suppose now that M c 6= ?: Let

i 2M .4 Then, all agents in M c have the same audiences (actually, 0) in A and Aii
0

. Then, by

equal treatment of equals, Rj (A) = Rk (A) and Rj
�
Aii

0
�
= Rk

�
Aii

0
�
, for each j; k 2M c. Thus,

we can de�ne x = Rj (A)�Rj
�
Aii

0
�
for each j 2M c.

Now,

aii0 + ai0i = jjAjj �
���
���Aii

0

���
��� =

X

j2N

Rj (A)�
X

j2N

Rj

�
Aii

0

�

=
X

j2M

�
Rj (A)�Rj

�
Aii

0

��
+
X

j2Mc

�
Rj (A)�Rj

�
Aii

0

��

=
X

j2M

�
Rj (A)�Rj

�
Aii

0

��
+ jM cjx: (1)

4Since s � 1 we have that M 6= ?.
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We have proved above that, for each j 2M , Rj (A) = ESj (A) : By the induction hypothesis,

Rj
�
Aii

0
�
= ESj

�
Aii

0
�
, for each j 2 M: As ESj (A) = ESj

�
Aii

0
�
for each j 2 Nn fi; i0g and

fi; i0g �M we have that

X

j2M

�
Rj (A)�Rj

�
Aii

0

��
=

X

j2fi;i0g

�
Rj (A)�Rj

�
Aii

0

��

= aii0 + ai0i:

Then, 0 = jM cjx; which implies that x = 0. Thus, for each j 2M c; Rj (A) = Rj
�
Aii

0
�
:

As, by induction, Rj
�
Aii

0
�
= ESj

�
Aii

0
�
for each j 2M c and ESj

�
Aii

0
�
= ESj (A) for each

j 2M c, we deduce that Rj (A) = ESj (A) for each j 2M
c:

The next corollary shows that we can replace equal treatment of equals by null team in the

statement of Theorem 2.

Corollary 1 A rule satis�es null team and half sharing of additional team viewers if and only

if it is the equal-split rule.

Proof. It is straightforward to show that the equal-split rule satis�es null team. Conversely,

one just has to notice that, in the proof of Theorem 2, equal treatment of equals is used twice.

First, two obtain that Ri (0) = 0 for each i 2 N . The same conclusion could be obtained with

null team. Second, to prove that Rj (A) = ES (A) for each j 2 M c: With null team such a

proof is obvious because each j 2 M c is a null team in A and hence Rj (A) = 0 = ES (A) for

each j 2M c:

Finally, the next theorem gives a characterization of concede-and-divide resorting to no

sharing of additional team viewers.

Theorem 3 A rule satis�es equal treatment of equals and no sharing of additional team viewers

if and only if it is concede and divide.

Proof. It is straightforward to show that concede-and-divide satis�es equal treatment of equals.

We now prove that it also satis�es no sharing of additional team viewers. Let A; A0 and i as in
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the de�nition of the axiom. Then,

CDi (A
0)� CDi (A) = �i (A

0)�

P

j;k2Nnfig

�
a0jk + a

0
kj

�

n� 2
� �i (A) +

P

j;k2Nnfig

(ajk + akj)

n� 2

= �i (A
0)� �i (A)

=
X

j2Nnfig

�
a0ij + a

0
ji � (aij + aji)

�

= jjA0jj � jjAjj :

Conversely, let R be a rule satisfying the two axioms. We proceed by induction on the

number of pairs of teams with positive audience. Formally, let

s = jf(i; j) 2 N �N such that aij > 0gj :

If s = 0 then A = 0 and, by equal treatment of equals, Ri (0) = 0 = CDi (0) for each i 2 N:

Assume now that s � 1. Let i 2 N be such that there exists i0 2 N such that aii0 + ai0i > 0:

We consider the problem Aii
0

de�ned as in the proof of Theorem 2.

By no sharing of additional team viewers,

Ri (A)�Ri

�
Aii

0

�
= jjAjj �

���
���Aii

0

���
��� = aii0 + ai0i:

Equivalently,

Ri (A) = Ri

�
Aii

0

�
+ aii0 + ai0i.

By the induction hypothesis, Ri
�
Aii

0
�
= CDi

�
Aii

0
�
: Then,

Ri (A) = CDi

�
Aii

0

�
+ aii0 + ai0i = CDi (A) :

We consider the partition fM;M cg of N as in the proof of Theorem 2.

If M c = ? then the above proves that R (A) = CD (A) : Suppose now that M c 6= ?: Let

x be de�ned as in the proof of Theorem 2. We can prove that equation (1) also holds in this

case.

We have proved above that, for each j 2M; Rj (A) = CDj (A) : By the induction hypothesis,

Rj
�
Aii

0
�
= CDj

�
Aii

0
�
, for each j 2M:

We now consider two cases:
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1. j 2 fi; i0g : Then,

Rj (A)�Rj

�
Aii

0

�
=

(n� 1)�j (A)� jjAjj

n� 2
�
(n� 1)�j

�
Aii

0
�
�
����Aii0

����

n� 2

=
(n� 1)

�
�j (A)� �j

�
Aii

0
��

n� 2
�
jjAjj �

����Aii0
����

n� 2

=
(n� 1) (aii0 + ai0i)

n� 2
�
aii0 + ai0i
n� 2

= aii0 + ai0i:

2. j 2Mn fi; i0g : Then,

Rj (A)�Rj

�
Aii

0

�
=

(n� 1)
�
�j (A)� �j

�
Aii

0
��

n� 2
�
jjAjj �

����Aii0
����

n� 2

= �
aii0 + ai0i
n� 2

:

Then,

aii0 + ai0i = 2 (aii0 + ai0i)� jMn fi; i
0gj
aii0 + ai0i
n� 2

+ jM cjx:

As jM cj = n� 2� jMn fi; i0gj we have that

x = �
aii0 + ai0i
n� 2

:

Let j 2M c: Then,

Rj (A) = Rj

�
Aii

0

�
�
aii0 + ai0i
n� 2

:

By induction, Rj
�
Aii

0
�
= CDj

�
Aii

0
�
: Then,

Rj (A) = CDj

�
Aii

0

�
�
aii0 + ai0i
n� 2

= CDj (A) :

3.2 With equal bene�ts from additional viewers

We now provide a second set of characterization results, replacing equal treatment of equals by

equal bene�ts from additional viewers in the results from the previous section, and resorting to

some other axioms.

The �rst result in this set characterizes the uniform rule.
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Theorem 4 A rule satis�es equal bene�ts from additional viewers, aggregate monotonicity and

non negativity if and only if it is the uniform rule.

Proof. It is straightforward to show that the uniform rule satis�es equal bene�ts from additional

viewers, aggregate monotonicity and non negativity. Conversely, let R be a rule satisfying the

three axioms. We proceed by induction on the number of pairs of teams with positive audience.

Formally, let

s = jf(i; j) 2 N �N such that aij > 0gj :

If s = 0 then A = 0 and, by non negativity, Ri (0) = 0 = Ui (0) for each i 2 N:

Let s � 1. Let (i1; i2) such that ai1i2 > 0. And let i
3 be such that i3 =2 fi1; i2g :We consider

the problems A�; A1; and A2 de�ned as follows.

a�kk0 =

8
<

:
jjAjj � ai1i2 if (k; k0) = (i1; i3)

0 otherwise.

a1kk0 =

8
>>><

>>>:

ai1i2 if (k; k0) = (i1; i2)

jjAjj � ai1i2 if (k; k0) = (i1; i3)

0 otherwise.

a2kk0 =

8
>>><

>>>:

ai1i2 if (k; k0) = (i2; i3)

jjAjj � ai1i2 if (k; k0) = (i1; i3)

0 otherwise.

By equal bene�ts from additional viewers,

Rk
�
A1
�
�Rk (A

�) =

8
<

:
x1 k 2 fi1; i2g

y1 otherwise
and

Rk
�
A2
�
�Rk (A

�) =

8
<

:
x2 k 2 fi2; i3g

y2 otherwise

As we can apply the induction hypothesis to A�,

Ri1
�
A1
�
= Ri1 (A

�) +Ri1
�
A1
�
�Ri1 (A

�) = Ui1 (A
�) + x1; and

Ri1
�
A2
�
= Ri1 (A

�) +Ri1
�
A2
�
�Ri1 (A

�) = Ui1 (A
�) + y2

By aggregate monotonicity, R (A1) = R (A2) : Thus, x1 = y2: If we proceed with i3 instead

of i1 we can obtain that x2 = y1: If we proceed with i2 instead of i1 we can obtain that x1 = x2:

Then x1 = x2 = y1 = y2:
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Now,

ai1i2 =
X

k2N

�
Rk
�
A1
�
�Rk (A

�)
�
= 2x1 + (n� 2) y1 = nx1;

which implies that

x1 =
ai1i2

n
:

Let i 2 N: By aggregate monotonicity, Ri (A) = Ri (A
1) : Then,

Ri (A) = Ri
�
A1
�
= Ri (A

�) +Ri
�
A1
�
�Ri (A

�) = Ui (A
�) +

ai1i2

n
= Ui (A) :

The next result characterizes the equal-split rule.

Theorem 5 A rule satis�es equal bene�ts from additional viewers and null team if and only if

it is the equal-split rule.

Proof. It is straightforward to show that the equal-split rule satis�es equal bene�ts from

additional viewers, and null team. Conversely, let R be a rule satisfying the two axioms. We

proceed by induction on the number of pairs of teams with positive audience. Formally, let

s = jf(i; j) 2 N �N such that aij > 0gj :

If s = 0 then A = 0 and, by null team, Ri (0) = 0 = ESi (0) for each i 2 N:

If s = 1, there exists (i1; j1) such that ai1j1 > 0 and aij = 0 otherwise. By null team

Ri (A) = 0 for each i 2 Nn fi
1; j1g :

By equal bene�ts from additional viewers,

Ri1 (A)�Ri1 (0) = Rj1 (A)�Rj1 (0) :

As Ri1 (0) = Rj1 (0) = 0 we have that Ri1 (A) = Rj1 (A) : Thus, Ri1 (A) = Rj1 (A) =
a
i1j1

2

and hence R (A) = ES (A) :

Let s � 2: Let (i1; j1) and (i2; j2) such that ai1j1 > 0 and ai2j2 > 0: Two cases are possible.

First, (i1; j1) = (j2; i2) : Let A0 be obtained from A by making ai2j2 = 0: By the induction

hypothesis R (A0) = ES (A0) : Using similar arguments as in the case s = 1 (with A0 instead of

0) we can deduce that R (A) = ES (A) :
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Second, (i1; j1) 6= (j2; i2) : Then, there exist i; j 2 N such that i 2 fi1; j1g n fi2; j2g ; j 2

fi2; j2g n fi1; j1g and i 6= j: We consider the problems A�1; A�2; and A�12 de�ned as follows:

a�1kk0 =

8
<

:
0 (k; k0) = (i1; j1)

akk0 otherwise

a�2kk0 =

8
<

:
0 (k; k0) = (i2; j2)

akk0 otherwise

a�12kk0 =

8
<

:
0 (k; k0) 2 f(i1; j1) ; (i2; j2)g

akk0 otherwise

By equal bene�ts from additional viewers,

Rk (A)�Rk
�
A�1

�
=

8
<

:
x1 k 2 fi1; j1g

y1 otherwise
and

Rk (A)�Rk
�
A�2

�
=

8
<

:
x2 k 2 fi2; j2g

y2 otherwise

By equal bene�ts from additional viewers, and the induction hypothesis

Ri (A)�Ri
�
A�12

�
= Ri (A)�Ri

�
A�1

�
+Ri

�
A�1

�
�Ri

�
A�12

�
= x1

Ri (A)�Ri
�
A�12

�
= Ri (A)�Ri

�
A�2

�
+Ri

�
A�2

�
�Ri

�
A�12

�
= y2 +

ai1j1

2

Rj (A)�Rj
�
A�12

�
= Rj (A)�Rj

�
A�1

�
+Rj

�
A�1

�
�Rj

�
A�12

�
= y1 +

ai2j2

2

Rj (A)�Rj
�
A�12

�
= Rj (A)�Rj

�
A�2

�
+Rj

�
A�2

�
�Rj

�
A�12

�
= x2

Thus, we have the following equations:

x1 � y2 =
ai1j1

2
; (2)

x2 � y1 =
ai2j2

2
: (3)

As

X

k2N

�
Rk (A)�Rk

�
A�1

��
= ai1j1 ; and

X

k2N

�
Rk (A)�Rk

�
A�2

��
= ai2j2 ;

we have the following equations too:

2x1 + (n� 2) y1 = ai1j1 ; (4)
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2x2 + (n� 2) y2 = ai2j2 : (5)

Straightforward algebraic computations allow us to show that the system of the four equa-

tions listed above has an unique solution, which is given by

x1 =
ai1j1

2
; x2 =

ai2j2

2
; and y1 = y2 = 0:

By the induction hypothesis, R (A�1) = ES (A�1). Given k 2 fi1; j1g ;

Rk (A) = Rk
�
A�1

�
+
�
Rk (A)�Rk

�
A�1

��

= ES
�
A�1

�
+
ai1j1

2

= ESk (A) :

Similarly, we can prove that, given k 2 Nn fi1; j1g ; Rk (A) = ESk (A) :

Our �nal result is a counterpart characterization for concede-and-divide.

Theorem 6 A rule satis�es equal bene�ts from additional viewers and essential team if and

only if it is concede-and-divide.

Proof. It is straightforward to show that concede-and-divide satis�es equal bene�ts from addi-

tional viewers and essential team. Conversely, let R be a rule satisfying the two axioms. We

proceed by induction on the number of pairs of teams with positive audience. Formally, let

s = jf(i; j) 2 N �N such that aij > 0gj :

If s = 0 then A = 0 and, by essential team, Ri (0) = 0 = ESi (0) for each i 2 N:

If s = 1, there exists (i1; j1) such that ai1j1 > 0 and aij = 0 otherwise. By essential team,

Ri (A) = ai1j1 for each i 2 fi
1; j1g :

By equal bene�ts from additional viewers, for each i; j 2 Nn fi1; j1g

Ri (A)�Ri (0) = Rj (A)�Rj (0) :

As Ri (0) = Rj (0) = 0 we have that Ri (A) = Rj (A) : As
P

i2N

Ri (A) = ai1j1 we deduce that

Ri (A) = �
a
i1j1

n�2
for each i 2 Nn fi1; j1g. Hence, R (A) = CD (A) :

Let s � 2: Let (i1; j1) and (i2; j2) such that ai1j1 > 0 and ai2j2 > 0: We consider two cases:

First, (i1; j1) = (j2; i2) : Let A0 be obtained from A by making ai2j2 = 0: By the induction

hypothesis, R (A0) = CD (A0) : By essential team, Ri (A) = ai1j1 + ai2j2 = CDi (A) for each
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i 2 fi1; j1g. Using similar arguments as in the case s = 1 (with A0 instead of 0) we can deduce

that Ri (A) = CDi (A) for each i 2 Nn fi
1; j1g.

Second, (i1; j1) 6= (j2; i2) : Then, there exists i; j 2 N such that i 2 fi1; j1g n fi2; j2g ;

j 2 fi2; j2g n fi1; j1g and i 6= j: We consider the problems A�1; A�2; and A�12; x1; y1; x2 and

y2 de�ned as in the proof of Theorem 5. Similarly to such a proof we can obtain the following

system of equations 8
>>>>>><

>>>>>>:

x1 � y2 = ai1j1 �
a
i2j2

n�2
,

x2 � y1 = ai2j2 �
a
i1j1

n�2
,

2x1 + (n� 2) y1 = ai1j1,

2x2 + (n� 2) y2 = ai2j2.

The unique solution to this system is

x1 = ai1j1 ; x
2 = ai2j2 ; y

1 = �
ai1j1

n� 2
, and y2 = �

ai2j2

n� 2
:

By the induction hypothesis R (A�1) = CD (A�1). Given k 2 fi1; j1g ;

Rk (A) = Rk
�
A�1

�
+
�
Rk (A)�Rk

�
A�1

��

= CD
�
A�1

�
+ ai1j1

= CDk (A) :

Similarly, we can prove that, given k 2 Nn fi1; j1g ; Rk (A) = CDk (A) :

3.3 Summary

All the results described above are tight (the proofs are gathered in the Appendix). Namely,

all the axioms considered in them are independent. The next table summarizes our �ndings.
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Axioms / Rules U ES CD

Equal treatment of equals YESTh1 YESTh2 YESTh3

Equal sharing of additional team viewers YESTh1 NO NO

Half sharing of additional team viewers NO YESTh2;Cor1 NO

No sharing of additional team viewers NO NO YESTh3

Equal bene�ts from additional viewers YESTh4 YESTh5 YESTh6

Null team NO YESTh5;Cor1 NO

Essential team NO NO YESTh6

Aggregate monotonicity YESTh4 NO NO

Non negativity YESTh4 YES NO

Most of the statements of the table have been proven in the text. The remaining are

straightforward.

4 Discussion

We have explored in this paper new axioms (mostly referring to the allocation of extra resources)

for the problem of sharing the revenues from broadcasting sports leagues. These axioms provide

normative support for three focal rules in this setting. Two of these rules had been characterized

already in Bergantiños and Moreno-Ternero (2019a). The main novelty of the results presented

here, with respect to those, is to dismiss additivity, an axiom with long tradition in axiomatic

work (e.g., Shapley, 1953), but also with strong implications. More precisely, the additivity

requirement in our setting precludes the allocation of revenue aij to depend on any other

information contained in the matrix A. Our results here demonstrate that this feature is also

a by-product of the combination of more fundamental axioms.

It is left for further research to explore the logical implications of other axioms related to

the principle of solidarity, with a strong tradition in the theory of justice (e.g., Moreno-Ternero

and Roemer, 2006). We have used in this paper one of the axioms within this group, aggregate

monotonicity, which is a special form of the standard axiom of resource monotonicity in fair

allocation (e.g., Moreno-Ternero and Roemer, 2012). Other monotonicity notions, re�ecting,
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for instance, the e¤ect on each team when the audiences of a given team increases, would be

interesting to analyze as they might provide normative foundations for new rules.

Finally, one could also be interested into approaching our problems with a (cooperative)

game-theoretical approach. This is a typical course of action in some of the related problems

listed at the Introduction. In Bergantiños and Moreno-Ternero (2019a), we associate to our

problems a natural optimistic cooperative TU game in which, for each subset of teams we de�ne

its worth as the total audience of the games played by the teams in that subset. The Shapley

value (e.g., Shapley, 1953) of such a game yields the same solutions as the equal-split rule for

the original problem.5 It is straightforward to show that the equal-division value (e.g., van

den Brink, 2007) of that game yields the same solutions as the uniform rule considered (and

characterized) here. It would be interesting to explore whether concede-and-divide could also

be associated to another value. On the other hand, it would also be interesting to explore a

natural (dual) pesimistic TU game and the connections between our rules and the well-known

values for such a game. Alternatively, one could consider a similar approach associating a pure

bargaining problem, instead of a TU game, to our broadcasting problem. The challenge would

then be to explore the connections between classical bargaining solutions (e.g., Nash, 1950;

Kalai and Smorodinski, 1975) and rules for our problem.

5Due to the properties of this game, the Shapley value also coincides with two other well-known values: the

Nucleolus (e.g., Schmeidler, 1969) and the � -value (e.g., Tijs, 1987). It is also guaranteed to be a selection of

the core.
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To save space, we have included in this appendix, which is not for publication, the proofs

that all our results are tight.

Appendix

Remark 1 The axioms of Theorem 1 are independent.

Let � � f�igi2N be such that
P

i2N �i = 0 and �i > 0 for some i 2 N: For each A and i 2 N;

we de�ne the rule RU;� as follows:

RU;�i (A) = �i + Ui (A) :

Then RU;� satis�es equal sharing of additional team viewers but violates equal treatment of

equals.

The equal-split rule satis�es equal treatment of equals but violates equal sharing of additional

team viewers.

Remark 2 The axioms of Theorem 2 are independent.

Let � � f�igi2N be such that
P

i2N �i = 0 and �i > 0 for some i 2 N: For each A and i 2 N;

we de�ne the rule RES;� as follows.

RES;�i (A) = �i + ESi (A) :

Then RES;� satis�es half sharing of additional team viewers but violates equal treatment of

equals.

The uniform rule satis�es equal treatment of equals but violates half sharing of additional

team viewers.

Remark 3 The axioms of Corollary 1 are independent.

RES;� satis�es half sharing of additional team viewers but violates null team.

Consider the rule that divides jjAjj equally among the non-null teams. Such a rule satis�es

null team but violates half sharing of additional team viewers.

Remark 4 The axioms of Theorem 3 are independent.

Let � = f�igi2N be such that
P

i2N �i = 0 and �i > 0 for some i 2 N: For each A and i 2 N;

we de�ne the rule RCD;� as follows.

RCD;�i (A) = �i + CDi (A) :
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Then RCD;� satis�es no sharing of additional team viewers but violates equal treatment of

equals.

The uniform rule satis�es equal treatment of equals but violates no sharing of additional

team viewers.

Remark 5 The axioms of Theorem 4 are independent.

RU;� satis�es equal bene�ts from additional viewers and aggregate monotonicity but violates

non negativity.

The equal-split rule satis�es equal bene�ts from additional viewers and non negativity but

violates aggregate monotonicity.

Let � 2 �n
��

1

n
; :::; 1

n

�	
where � is the unit simplex. Then, the weighted version of the uni-

form rule according to �, (U�i (A) = �i jjAjj) satis�es aggregate monotonicity and non negativity

but violates equal bene�ts from additional viewers.

Remark 6 The axioms of Theorem 5 are independent.

The uniform rule satis�es equal sharing of additional team viewers but not null-team.

Let Rlowest be the rule in which, for each game (i; j) 2 N �N the revenue goes to the team

with the lowest number of the two. Namely, for each problem A 2 P, and each i 2 N;

Rlowesti (A) =
X

j2N :j>i

(aij + aji):

Rlowest satis�es null-team but violates equal sharing of additional team viewers.

Remark 7 The axioms of Theorem 6 are independent.

The uniform rule satis�es equal sharing of additional team viewers but not essential team.

We consider the rule de�ned as CD (A) when the problem A has essential teams and ES (A)

when there is not essential teams in A: This rule satis�es essential team but not equal sharing

of additional team viewers.
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