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1 Introduction

Population and economic activities are astoundingly localized in space. For any spatial resolution—

within countries, regions, or cities—disproportional concentrations of population, firms, or shops

are present. For instance, just five cities (MSAs) of the United States, which make up about 5% of

its cultivated land area, produces over 20% of the country’s nominal GDP (as of 2017). The three

major prefectures in Japan account for over 30% of the nominal GDP and 20% of the total population

of the country, while taking up less than 5% of the total inhabitable area in the country (as of 2015).

Over the past four decades, the field of spatial economics has developed numerous theoretical

and quantitative models to account for the uneven distribution of economic activities across cities

and regions. The rich vein of theoretical modeling for endogenous agglomeration ( e.g., Fujita et al.,

1999a; Baldwin et al., 2003; Duranton and Puga, 2004; Fujita and Thisse, 2013) has been an important

source of intuition-building devices in economics. In simplified geographical environments such as

two-region models, the peaks and troughs in the space economy are explained as the endogenous

outcomes of the various trade-offs between positive and negative incentives for spatial concentration.

The accumulated knowledge for the general equilibrium modeling of spatial phenomena, together

with the increased availability of fine spatial economic data, has allowed economists to construct

quantitative models in a progressively detailed manner (see, e.g., Redding and Rossi-Hansberg, 2017

and Proost and Thisse, 2019, Section 5.2, for surveys). The exponential increase in the number of

quantitative studies motivates us to ask the following question: is there any general and systematic

means to classify and interpret the various spatial economic models that are proposed in different

contexts?

This paper thus introduces a general classification that sets the basis for a unified taxonomy of

theoretical or structural spatial economic models, irrespective of their micro-level assumptions. Our

theory considers endogenous agglomeration based on ex-ante uniformity, in the spirit of Krugman

(1991b). We study an important family of economic geography models that encompasses a wide

range of extant models and covers all models—to the best of our knowledge—with a continuum of

homogeneous agents with constant-elasticity-of-substitution preferences and a single type of iceberg

interregional transportation costs (e.g., Krugman, 1991b; Helpman, 1998; Allen and Arkolakis,
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Figure 1: “Many-cities” and “single-megacity” patterns

2014).1 To derive insights independent of the detailed microfoundations of the models, we fix a

stylized geography as testbed. We assume a many-region racetrack economy, as in Krugman (1993),

in which regions with the same local characteristics are symmetrically located over a circle (Figure 4).

This simple geography serves as a dedicated prism through which the endogenous interactions in the

model are decomposed according to their dependence on the underlying proximity structure between

locations. We will show in Sections 5 and 6 that our results offer empirical implications, including

regression approaches and structural modeling.

Our main result (i.e., Proposition 1) characterizes the spatial patterns of endogenous agglom-

eration that can emerge from ex-ante symmetry (i.e., the uniform distribution) in our many-region

circular economy. In essence, it shows that the predictions of a model on the overall spatial pattern

is governed by the spatial scale of the endogenous negative externalities (or dispersion force) in

the model, but not on the model’s microfoundations. The spatial scale of the dispersion force is

local when the force arises from the congestion effects inside each region (e.g., urban costs due to

higher land rent in cities) and it is global when the force depends on the proximity to other regions

due to, for example, competition between locations (e.g., interregional trade induces competition

between firms in different regions that are geographically close).2 If the dispersion force in a model

is global, a “many-cities” pattern emerges from symmetry (Figure 1a). If it is local instead, a

“single-megacity” pattern emerges (Figure 1b).3 If a model includes both dispersion force types,

then both possibilities arise, depending on the transportation cost level.

1See Definition 1 for the family of models we cover.

2See Definition 4 for formal definitions of local and global dispersion forces.

3This contrast in the “number” of cities is intrinsic and robustly generalizes to various geographical assumptions

beyond our stylized circular economy. See Appendix D for a discussion.
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Global

Absent Present

Local
Absent – Class I

Present Class II Class III

Table 1: Spatial scale(s) of dispersion force(s) and model classes

The dichotomy between local and global dispersion forces allows us to infer the basic implications

of the model and propose a simple taxonomy of economic geography models based on three

prototypical classes as follows. A model is in Class I (II) if it has only a global (local) dispersion

force and Class III if it has both (Table 1).4

Our numerical simulations supplement the theoretical predictions based on local stability analysis

in the vicinity of a uniform distribution. The difference between model classes appears in their

responses to interregional transportation costs. For Class I models, many small cities endogenously

emerge when the transportation cost is high (cf. Figure 1a). A decrease in the transportation cost

induces a decrease in the number of cities, an increase in the spacing between them, and an increase

in the size of each city. By contrast, in Class II models, when the transportation cost is high,

there is a single dispersed city (cf. Figure 1b). When the transportation cost decreases, it causes

“suburbanization” by reducing the peak population density of the city. Class III, which is the most

general, is a synthesis of Classes I and II. That is, when the transportation cost is high, a Class III

model behaves as a Class I model and many small cities emerge. When the transportation cost is

low, a single dispersed city exists, similar to a Class II model. At moderate levels of transportation

cost, multiple dispersed city are generated (see Figure 13b). A decrease in transportation costs

simultaneously causes a decrease in the number of cities (as in Class I models) and the flattening of

each city (as in Class II models).

Notably, this behavior of Class III models provides a consistent interpretation of the evolution

of the population distribution in Japan during 1970–2015. This period witnessed an almost from-

scratch improvement in interregional accessibility in Japan, since the development of highways and

high-speed railway networks was triggered by the Tokyo Olympics of 1964. Numerically, the total

highway (high-speed railway) length increased from 879 km (515 km) to 14,146 km (5,350 km),

4Definition 5 formally defines the Class I, II, and III models.
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which is more than a 16 (10) times increase. Suppose that a “city” is defined by the set of contiguous

1 km × 1 km cells with a population density of at least 1,000/km2 and a total population of at least

10,000.5 As such, 302 cities survived throughout the 45-year period, experiencing an average 21%

increase in population size (controlling for national population growth). That is, there was a selective

concentration towards a subset of cities, analogous to the implications of Class I and III models.

The process was also associated with a flattening at the local scale: there was a 94% increase in

area size and a 22% decrease in population density for an average individual city, analogous to the

predictions of Class II and III models.

We also offer an additional result (Proposition 2) that reveals the effects of exogenous regional

advantages (e.g., differences in amenities or productivity), which play a key role in counterfactual

analyses based on calibrated quantitative economic geography models (see Redding and Rossi-

Hansberg, 2017). Naturally, for a given transportation cost level, an exogenously advantageous

region attracts more population than the average. We show that, when interregional access improves

from the transportation cost level, the role of exogenous regional advantages is strengthened and

weakened in Class I and II models, respectively. If exogenous heterogeneity causes one region

to attract more population, then such asymmetry will be magnified and reduced in Class I and II

models, respectively. This again indicates that the spatial scale of the dispersion force in a given

model crucially governs the comparative static results of the model over other details.

In sum, our theoretical results reduce numerous economic geography models to a few model

classes, according to the spatial scale of their dispersion forces. Therefore, our approach is philo-

sophically related to those of Arkolakis et al. (2012) or Allen et al. (2019), who formulate general

model classes that encompass a wide range of trade models in the literature as special cases, focus-

ing on their macro-level restrictions rather than on their micro-level assumptions. Our approach is

complementary to theirs, in that we focus on economic geography models that feature the multi-

plicity of equilibria and endogenous agglomeration. Recent evidence suggests that the multiplicity

of equilibria and path dependence matter in the space economy in the long run (Bleakley and Lin,

2012; Michaels and Rauch, 2018). Consequently, the models that feature endogenous regional

asymmetry can be useful for long-term counterfactual analyses. However, a well-known drawback

5See Appendix B for details.
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of such models is that they may exhibit complex behaviors and cause technical and computational

difficulties. In this regard, additional knowledge on the relationship between the spatial scale of

dispersion forces and the resulting spatial patterns may be useful. For instance, our classification can

be employed for choosing models to quantify the presence of the possible multiplicity of equilibria.

Class III is the most general and may thus replicate the reality best among the three classes, as in the

context of Japan discussed above. Class I would suffice if we are interested in the global patterns

of economic agglomeration such as the number and population size of cities. If a major city region

with a monopolar structure is the scope of the analysis, then Class II may be a reasonable choice.

The remainder of this paper is organized as follows. Section 2 introduces a general class of

economic geography models, which we call canonical models. The simplest geographical setup, a

two-region economy, is explored as a primer for our approach. The formal definitions of spatial scale

of dispersion forces are also introduced in this section. Section 3 presents the main result, that is,

Proposition 1. Section 4 illustrates the key implications of the main result with a minimal example.

Section 5 provides a more extensive numerical examples and discusses the relationship with the

empirical literature. Section 6 considers the effects of asymmetries in regional characteristics,

leading to the additional result (Proposition 2). Section 7 concludes the paper.

2 Basic framework

We introduce a generic format for the many-region economic geography models and explore three

specific models in the literature in a classical two-region setup. Definition 1 introduces the canonical

models, the fundamental model class we focus on. Definition 4 introduces the spatial scale of a

dispersion force, which is the main concept used in this paper.

2.1 A general format

We adhere to the simplest form of economic geography models, that is, static models with a single

type of mobile agents. Consider an economy comprised of N regions, where a region is the discrete

spatial unit. Let N ≡ {1, 2, . . . , N} be the set of regions. There exists a unit-mass continuum

of mobile agents. Each agent chooses a region to locate in. Let xi ≥ 0 be the mass of agents in
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region i, whereby x ≡ (xi)i∈N is the spatial distribution of agents. The set of all possible spatial

distributions is X ≡ {x ≥ 0 | ∑i∈N xi = 1}. For each x ∈ X , a payoff function vi(x) gives the

payoff for the agents in region i. We assume that v(x) ≡ (vi(x))i∈N is one-time differentiable if

xi > 0 for all i ∈ N .

Agents can freely relocate across N regions to improve their payoffs. Then, x ∈ X is a spatial

equilibrium if the following Nash equilibrium condition is met:

{

v∗ = vi(x) for all regions i ∈ N with xi > 0,

v∗ ≥ vi(x) for any region i ∈ N with xi = 0,
(1)

where v∗ is the associated equilibrium payoff level.

An indispensable feature of an economic geography model is the presence of spatial frictions,

or distance-decay effects, for the shipment of goods or for communication among agents. That is,

v depends on a proximity matrix D = [φij] that summarizes the interregional transportation costs.

Each entry φij ∈ (0, 1] is the freeness of interactions between regions i and j. Such a structure of v

is ubiquitous when we assume “iceberg” spatial frictions.

Payoff function v can include positive and negative externalities of spatial concentration, which

may depend on interregional transportation costs. Owing to the positive externalities, economic

geography models often face multiple spatial equilibria. As such, it is customary to introduce

equilibrium refinement based on local stability under myopic dynamics. We follow this strategy.

All the formal claims on the stability of equilibria in this paper hold true for the various standard

dynamics employed in the literature. Remark C.4 in Appendix C provides concrete examples of the

dynamics we cover.

Formal results in the remainder of this section are the corollaries of Proposition 1 to be provided

in Section 3. See the proof of Proposition 1 in Appendix A.

2.2 A first view of endogenous agglomeration

The stability of a spatial equilibrium is parameter dependent. Particularly, changes in transportation

costs can trigger a spontaneous emergence of regional asymmetry due to the instability of spatial

uniformity (Papageorgiou and Smith, 1983).
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For illustration purposes, we start with a classical two-region setup (N = 2). There are two

regions that have identical characteristics, that is, there are no exogenous advantages. The proximity

matrix for this setup is expressed as:

D =

[

1 φ

φ 1

]

, (2)

where φ ∈ (0, 1) is the freeness of the interaction between the two regions. The interpretation of φ

depends on context.

The uniform distribution of agents, x̄ ≡ (x̄, x̄) with x̄ = 1
2 , is always a spatial equilibrium. How

such a symmetric spatial distribution becomes unstable and an endogenous regional asymmetry of

the form x = (x′, x′′) with x′ > x′′ is generated?

There is a general model-independent characterization: x̄ is stable (unstable) if the payoff gain

of an agent relocating from one region to the other is negative (positive). The gain for a deviant can

be evaluated by the following elasticity of the payoff difference:

ω =
x̄

v̄

∂(v1(x̄)− v2(x̄))

∂x1
=

x̄

v̄

(
∂v1(x̄)

∂x1
− ∂v2(x̄)

∂x1

)

, (3)

where v̄ is the uniform payoff level at x̄, so that v(x̄) = (v̄, v̄).

If ω < 0, then x̄ is stable because there are no incentives for agents to migrate; ω < 0 indicates

that a marginal increase in the mass of agents in a region induces a relative decrease in the payoff

therein. The instability of x̄ for ω > 0 follows the same logic: if a small fraction of agents relocate

from region 2 to 1, this induces a relative increase of the payoff in region 1, encouraging further

migration from region 2. If we start from a state where x̄ is stable (ω < 0), the endogenous regional

asymmetry emerges when gains become positive (ω > 0). The monotonic changes of freeness of

interregional access φ can trigger such qualitative transitions, as demonstrated by Krugman (1991b).

Let V ≡ x̄
v̄∇v(x̄) be the matrix of the payoff elasticity, evaluated at x̄, where ∇v(x̄) = [ ∂vi

∂xj
(x̄)]

is the corresponding Jacobian matrix of v(x). Then, ω is an eigenvalue of V with eigenvector

z ≡ (1,−1), because (3) implies that ωz = Vz, which is the definition of an eigenvalue–
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eigenvector pair.6 Since z represents a population increase in one region and a decrease in the other,

it is the migration pattern in the two-region economy. Obviously, z is model independent.

The concrete form of ω is model dependent. We focus on a specific family of models, which we

call canonical models. Canonical models encompass a wide range of extant economic geography

models. In particular, they include models that assume (i) a single type of homogeneous mobile

agents with constant-elasticity-of-substitution preferences and (ii) a single sector that is subject to

iceberg interregional transportation costs.7

Definition 1 (Canonical models). Consider economic geography model v with proximity matrix

D = [φij]. Let D̄ be the row-normalized version of D, whose (i, j)th element is given by
φij

∑k∈N φik
.

Let V = x̄
v̄∇v(x̄) be the payoff elasticity matrix at x̄. The model is canonical if there exists a

rational function G that is continuous over [0, 1] and satisfies

V = G(D̄). (4)

We call G the gain function of the model.

In Definition 1, for a rational function (i.e., the ratio of two polynomials) of form G(t) =

G♯(t)

G♭(t)
with polynomials G♯(t) and G♭(t) 6= 0, we define G(D̄) = G♭(D̄)−1G♯(D̄), where, for a

polynomial G♯(t) = c0 + c1t + c2t2 + · · · , we let

G♯(D̄) = c0I + c1D̄ + c2D̄
2 + · · · , (5)

with I being the identity matrix.8

For a wide range of general equilibrium economic geography models that incorporate gravity-

form interregional trade, there are two matrix polynomials, G♯(D̄) and G♭(D̄) that satisfy V =

6That ωz = Vz follows because the indices of the regions are interchangeable. As V is a 2 × 2 matrix, there

exists another eigenvector, namely 1 = (1, 1). The only relevant eigenvector is z, because 1 corresponds to population

increases in both regions, obviously violating the assumption that the total mass of mobile agents is fixed.

7As noted by Allen et al. (2019); Arkolakis et al. (2012), this class of models includes various important models

in the literature. However, we should also note that the iceberg cost is not an innocuous assumption for modeling a

spatial economy (see, e.g., Hummels and Skiba, 2004; Irarrazabal et al., 2015; Proost and Thisse, 2019, Section 3.5.2),

although it is widely employed in the literature for tractability.

8The assumption that G is rational is not restrictive because any continuous function defined on a closed interval can

be approximated as closely as desired by a polynomial (the Weierstrass approximation theorem).

9



G♭(D̄)−1G♯(D̄); thereby, there is a rational function G that satisfies the hypotheses in Definition 1.

We will see two examples in Section 2.3.9 Definition 1 covers, for example, models of endoge-

nous city center formation (e.g., Beckmann, 1976), single-industry monopolistically competitive

economic geography models (e.g., Krugman, 1991b; Helpman, 1998), and economic geography

variants of the “universal gravity” framework (Allen et al., 2019), which in turn encompasses per-

fectly competitive Armington models with labor mobility (Allen and Arkolakis, 2014). Section 3

provides more examples.10

When we have V = G(D̄) with a rational function G, it is standard in matrix analysis that ω,

the eigenvalue of V with eigenvector z = (1,−1), is given by

ω = G(χ) and χ =
1 − φ

1 + φ
, (6)

where χ is the eigenvalue of D̄ = 1
1+φ D associated with z = (1,−1).11 We see that χ ∈ (0, 1) is a

monotonically decreasing continuous function of φ ∈ (0, 1). If φ is small (large), χ is large (small).

Since G is continuous, ω = G(χ(φ)) smoothly varies with φ.

Gain function G of a model summarizes the endogenous effects under the model. For example,

consider the seminal model of Beckmann (1976) on the formation of an urban center within a city.12

Example 2.1 (The Beckmann model). Numerous variants of the model have been proposed since the

original formulation of Beckmann (e.g., Mossay and Picard, 2011; Blanchet et al., 2016). Consider

the following multiplicative specification:

vi(x) = x
−γ
i Ei(x), (7)

where γ > 0. The first component, x
−γ
i , reflects negative externalities due to congestion and

the second, Ei(x), represents positive externalities arising from agents’ preference for proximity to

9See also Appendix F.1 in Appendix F for a general derivation.

10See Remark C.1 in Appendix C for examples of extant models we do not cover. Canonical models do not include

models based on Ottaviano et al. (2002) which assume quadratic preference and urban models with multiple types of

mobile agents such as in Fujita and Ogawa (1982); Lucas and Rossi-Hansberg (2002). For the Ottaviano et al. (2002)

framework with a single type of mobile agents, the results are similar to canonical models (see Remark C.1).

11See Fact E.1 in Appendix E.

12In this respect, a “region” would best considered an “urban zone” in the model.
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others. A typical specification for Ei(x) is

Ei(x) = ∑
j∈N

e−τℓij xj, (8)

where τ > 0 is the distance-decay parameter and ℓij > 0 is the distance between i and j. The

proximity matrix is expressed as D = [e−τℓij ]. If N = 2, φ = e−τℓ12 = e−τℓ21 ∈ (0, 1) represents

the level of externalities that spill over from one location to the other.

We have V = −γI + D̄ and ω = −γ + χ. The model is therefore a canonical model with gain

function G(χ) = −γ + χ. Negative term −γ in G(χ) corresponds to the congestion effect through

x
−γ
i and positive term χ corresponds to positive externalities Ei(x). The former is the loss from

congestion, whereas the latter represents the gains from the additional proximity to be induced by

migration. Thus, ω is the net gain from migration. When φ is close to 1, so that the relative location

in the economy becomes irrelevant, χ disappears, leaving only congestion effect −γ.

If γ < 1, then x̄ is stable for φ ∈ (φ∗, 1) and unstable for φ ∈ (0, φ∗), where φ∗ ≡ 1−γ
1+γ . There

is some endogenous asymmetry when φ ∈ (0, φ∗). If γ ≥ 1, then x̄ is stable for all φ ∈ (0, 1).

That is, strong congestion effects suppress endogenous agglomeration. �

As per the example, a positive (negative) term in ω = G(χ) represents the agglomeration

(dispersion) force. Therefore, ω is the net agglomeration force. We introduce the following formal

definitions.

Definition 2. A dispersion (agglomeration) force in a canonical model is a negative (positive) term

in its gain function G.

2.3 The reversed scenarios of Krugman and Helpman

Other examples of canonical models are the general equilibrium models of Krugman (1991b) and

Helpman (1998). In the two-region case, proximity matrix D is given by (2), where φ ≡ τ1−σ is

the freeness of trade defined with τ > 1, the “iceberg” transportation cost parameter between the

two regions, and σ > 1, the elasticity of substitution between horizontally differentiated varieties.

On the φ-axis, the models are known to exhibit a sharp contrast regarding when endogenous
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regional asymmetry emerges, that is, the “Krugman’s scenario is reversed” (Fujita and Thisse, 2013,

Chapter 8) in the Helpman model. In the Krugman (Helpman) model, uniform distribution x̄ is

stable when φ is low (high) and asymmetry exists when φ is high (low). The model predictions are

thus “opposites” of each other.

We provide below brief definitions of the many-region extensions for the models.13

Example 2.2 (The Krugman model). The payoff function (the indirect utility of mobile workers) for

the Krugman model is given by

vi(x) = wi(x)Pi(x)−µ, (9)

where wi(x) is the nominal wage of mobile workers for a given spatial distribution of mobile workers

x and Pi(x) is the Dixit–Stiglitz price index in region i:

Pi(x) ≡
(

∑
j∈N

xj

(
wj(x)τji

)1−σ

) 1
1−σ

, (10)

where µ ∈ (0, 1) is the expenditure share of manufactured goods and τij ≥ 1 the iceberg trans-

portation cost parameter. That is, τij units should be shipped from origin i for one unit to arrive at

destination j. Nominal wage w(x) = (wi(x))i∈N is the unique solution for a system of nonlinear

equations that summarizes the market equilibrium conditions under a fixed x (i.e., the gravity flows

of interregional trade, goods and labor market clearing, and the zero-profit condition of firms):

wixi = ∑
j∈N

xi

(
wiτij

)1−σ

∑k∈N xk

(
wkτkj

)1−σ
ej ∀i ∈ N , (11)

where ei ≡ µ (wixi + li) is region i’s expenditure on differentiated goods and li > 0 the region-fixed

immobile demand. The proximity matrix for the model is D = [φij] = [τ1−σ
ij ]. �

Example 2.3 (The Helpman model). Using the same notation as in the Krugman model, the payoff

13See Appendix F for details.
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function of mobile agents in the Helpman model is given by:

vi(x) =

(
xi

ai

)−γ

(wi(x) + r̄)µ Pi(x)−µ, (12)

where ai is the endowment of housing stock in region i, γ ≡ 1− µ ∈ (0, 1) the expenditure share of

housing goods, and r̄ an equal dividend from the total rental revenue from housing in the economy.

The market equilibrium conditions under a given x are summarized by (11) where ei = µ(wi + r̄)xi,

with w(x) being the unique solution. The proximity matrix for the model is the same as in the

Krugman model. �

We now confirm the “reversed scenario” using our notation. Both the Krugman and Helpman

models are canonical models. Appendix F shows that V = x̄
v̄∇v(x̄) is given by

V = G♭(D̄)−1G♯(D̄), (13)

where G♭(χ) ≡ 1 − µ
σ χ − σ−1

σ χ2 and

G♯(χ) = c1χ − c2χ2 (the Krugman model), (14)

G♯(χ) = − γ + c1χ − (c2 − γ)χ2 (the Helpman model), (15)

with c1 ≡ µ
(

1
σ−1 +

1
σ

)

and c2 ≡ µ2

σ−1 +
1
σ . The gain functions for the models are given by:

ω = G(χ) =
G♯(χ)

G♭(χ)
, (16)

where χ = 1−φ
1+φ with φ = τ1−σ, as in (6).14 Figure 2 shows G♯(χ) for the Krugman and Helpman

models, which are both quadratic.15

The stability of x̄ is dictated by the sign of numerator G♯(χ) since G♭(χ) > 0. That is, x̄ is stable

if G♯(χ) < 0. In other words, G♯ summarizes the net relative magnitudes of the agglomeration and

14Fujita et al. (1999a) calls χ “a sort of index of trade cost” (page 57), whereas Baldwin et al. (2003) calls it “a

convenient measure of closed-ness” (page 46).

15Appendix F shows that, for many extant models, V is represented by up to the second-order term of the proximity

matrix.
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0

χ∗
1 χ

G♯(χ)

(a) The Krugman model

0 χ∗ 1
χ

G♯(χ)

(b) The Helpman model

Figure 2: G♯(χ) for the Krugman and Helpman models

0

G♯(1)

ϕ∗ 1 ϕ

(a) The Krugman model

0

G♯(1)

−γ

ϕ∗ 1
ϕ

(b) The Helpman model

Figure 3: ω♯ ≡ G♯(χ(φ)) for the Krugman and Helpman models

dispersion forces in each model.

The “reversed scenario” can be graphically verified using Figure 3. Composite function ω♯ ≡
G♯(χ(φ)) for each model is depicted in the figure. For each (14) and (15), there exists (at most) one

root φ∗ for G♯(χ(φ∗)) = 0 in (0, 1).16 We see

x̄ is stable when







φ ∈ (0, φ∗) (the Krugman model),

φ ∈ (φ∗, 1) (the Helpman model).

As expected, x̄ is stable for low (high) values of φ in the Krugman (Helpman) model and unstable

otherwise. From (6), threshold φ∗ is given by φ∗ ≡ 1−χ∗
1+χ∗ , where χ∗ is the solution for G♯(χ) = 0

(see Figure 2).

16If no such φ∗ exists, there is no switch in the stability of x̄ for φ ∈ (0, 1). If ω♯ = G♯(χ(φ)) > 0 for all φ ∈ (0, 1),
x̄ is unstable for all φ, whereas ω♯ < 0 for all φ ∈ (0, 1) implies the contrary. We preclude these cases to focus on

endogenous agglomeration due to the changes in φ.
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2.4 Spatial scale of dispersion forces

According to Definition 2, the agglomeration force in the Krugman model is captured by the first

term in (14) and the dispersion force by the second term. In the Helpman model, the second term in

(15) reflects the agglomeration force, whereas the first and third terms reflect the dispersion forces.17

The two models have equivalent agglomeration forces. The common agglomeration force, c1χ

in G♯(χ), arises from the price index of the differentiated varieties (10). Since a region with a larger

set of suppliers in the market has a lower price index, mobile workers prefer such a region if the

nominal wage is the same. This force is stronger when φ is low and declines as φ increases.

By elimination, the “reversed scenario” must stem from differences in the dispersion forces. The

dispersion force in the Krugman model is the so-called market-crowding effect between firms (see

Baldwin et al., 2003, Chapter 2). If a firm is geographically close to others, the firm can only pay

a low nominal wage because of competition. Therefore, mobile workers are discouraged to enter

a region in which firms face fierce market competition with other firms in that location as well as

nearby regions thereof. The dispersion force thus depends on proximity structure D and appears

as a negative second-order term, −c2χ2. This force is stronger when χ is large, that is, when φ is

small.

The main dispersion force in the Helpman model, on the other hand, represents a local congestion

effect. The force stems from competition in the housing market of each region.18 The local housing

market does not depend on interregional trade cost structure D but only on the mass of agents within

each region. The dispersion force thus appears in G♯(χ) as negative constant term −γ. Since the

agglomeration force (c1χ) declines as φ increases, the relative strength of the dispersion force rises

with trade freeness φ.

The comparison between the Krugman and Helpman models highlights that the key difference

is whether the dispersion force depends on the interregional transportation cost structure, D. To

denote this distinction, we introduce the formal notion of spatial scale of dispersion forces.

17The Helpman model exhibits endogenous asymmetry if µ > σ−1
σ . This condition implies that c2 − γ > 0 and,

thus, the last term in (15) is negative.

18The market-crowding effect also exists in the Helpman model: −(c2 − γ)χ2 in G♯(χ). However, in contrast to

the Krugman model, it does not have a stabilizing power when φ is small, due to the absence of immobile factors in

production. Technically, G♯(χ(0)) > 0 and x̄ is unstable when φ is small.
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We first define net gain functions to simplify the definition of the spatial scale of dispersion

forces. In essence, we ignore the denominator of G, G♭, which is positive and thus irrelevant for the

stability of x̄.

Definition 3. A net gain function G♯ for a canonical model with gain function G is a polynomial

that satisfies sgn[ω] = sgn[G(χ)] = sgn[G♯(χ)] for all χ ∈ (0, 1).

The net gain functions for the Krugman and Helpman models are, respectively, given by (14)

and (15) because G♭(χ) > 0 for all χ ∈ (0, 1). For the Beckmann model, we see G♯(χ) = G(χ) =

−γ + χ.

We can introduce the spatial scale of dispersion forces, which refines the definition of dispersion

forces (Definition 2).

Definition 4 (Spatial scale of dispersion forces). A negative constant term in net gain function

G♯(χ) is called a local dispersion force. A negative non-constant term in G♯(χ) is called a global

dispersion force.

The main dispersion force in the Krugman (Helpman) model is global (local). A global dispersion

force is triggered when φ is low and a local dispersion force when φ is high due to an increase in its

relative importance. The “reversed scenario” of Krugman model and Helpman model stems from

the differences in the spatial scales of their dispersion forces.

3 Classification of canonical models

We show that there is a major watershed between “Krugman-like” and “Helpman-like” models in

terms of endogenous spatial patterns in many-region economy, and that the spatial scale of the

dispersion force plays the key role. By considering a racetrack economy à la Krugman (1993), this

section presents the main result, Proposition 1. It provides a categorization of endogenous spatial

distributions that can emerge from the spatially uniform distribution in canonical models.

Consider an N-region economy in which regions are symmetrically placed over a circumference

and interactions are possible only through the circular network (Figure 4).
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Figure 4: N-region racetrack economy.

Assumption RE. Proximity matrix D = [φij] is given by φij = φℓij , where φ ∈ (0, 1) is the

freeness of transportation between two consecutive regions and ℓij ≡ min{|i − j|, N − |i − j|} is

the shortest-path distance over the circumference. N is a multiple of four.19

In line with Sections 2, we assume that payoff function v does not introduce any ex-ante

asymmetries across regions. Technically, this can be formalized as:20

Assumption S. For all x ∈ X , payoff function v satisfies v(Px) = Pv(x) for all permutation

matrices P that satisfy PD = DP.

Example 3.1. Suppose N = 4. Then, Assumption RE is that

D =









1 φ φ2 φ

1 φ φ2

1 φ
Sym. 1









. (17)

The shape of the circular economy is invariant even if we swap the indices of regions 1 and 3. The

following permutation matrix represents this re-indexing:

P =









1

1

1

1









, (18)

and P satisfies the hypothesis of Assumption S that PD = DP. Condition PD = DP ensures that

the adjacency relationships between regions remain invariant under the permutation of the indices

19N is a multiple of four only for expositional simplicity. See Appendix A.1.

20Assumption S is called equivariance. See Golubitsky and Stewart (2003) for details.
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represented by P. The re-indexed spatial distribution is x′ = Px, where x is the original one. If

v does not include any exogenous advantages, we must have v1(x′) = v3(x), v2(x′) = v2(x),

v3(x′) = v1(x), and v4(x′) = v4(x), that is, v(x′) = v(Px) = Pv(x) as in Assumption S. �

Uniform pattern x̄ ≡ (x̄, x̄, . . . , x̄) (x̄ ≡ 1
N ) is a spatial equilibrium under Assumptions RE

and S. The question is what are the spatial patterns that can emerge due to the destabilization of x̄

through purely endogenous mechanisms.

Consider an infinitesimally small migration of agents z = (zi)i∈N from x̄ so that the new spatial

distribution becomes x′ ≡ x̄ + z. We require ∑i∈I zi = 0, so that the mass of agents does not

change. Analogous to the two-region case, the marginal gain for agents due to such a deviation can

be evaluated by

ω̄ ≡ x̄

v̄

(

∑
i∈N

vi(x′)x′i − ∑
i∈N

vi(x̄)x̄

)

= z⊤Vz, (19)

where v̄ is the uniform level of payoff at x̄ and V = x̄
v̄∇v(x̄) is the payoff elasticity matrix. If

ω̄ < 0 for any migration pattern z, then x̄ is stable.

Under Assumptions RE and S, there is a model-independent way to conveniently represent all

possible migration patterns:

z = ∑
k

ζkzk, (20)

where {zk} are the eigenvectors of V and {ζk} are their coefficients. We normalize ‖zk‖2 =

z⊤k zk = 1 for all k. Each zk is in itself a migration pattern and is a cosine curve with k equally

spaced peaks. We thus interpret z as the weighted sum of the “basic” migration patterns {zk}.

Basic migration patterns are model-independent in the sense that they are the eigenvectors of V

irrespective of the properties of payoff function v(x).

There are essentially N
2 basic migration patterns, since the concentration of agents in every other

region achieves the maximum number of symmetric cities.21 That is, in contrast to the two-region

21Concretely, {zk} correspond to the real discrete Fourier modes for dimension N. They are of the form zk ∝

(cos(θki)) where θ ≡ 2π
N for k = 1, 2, . . . , N

2 , and zk ∝ (sin(θ(N − k)i)) for k = N
2 + 1, . . . , N. Therefore, the

number of cities (peaks) is the largest when k = N
2 . See Appendix A.1.
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xi

(a) A single megacity (x̄ + ζz1)

Regions

xi

(b) Two major cities (x̄ + ζz2)

Regions

xi

(c) Four small cities (x̄ + ζz4)

Regions

xi

(d) Eight small cities (x̄ + ζz8)

Figure 5: Schematic illustrations of migration patterns (N = 16).

Notes: We rotationally shift the spatial distribution and add the neighboring region of the leftmost region as a

light gray bar, so that it is easier to grasp the overall shapes. For expositional simplicity, we present the cases

when k is a power of 2.

economy where z = (1,−1) is the only possible migration pattern, there are multiple possibilities

in the many-region economy.

Example 3.2. Figure 5 shows spatial patterns x̄ + ζzk (k = 1, 2, 4, 8) for N = 16 with a small

ζ > 0. Basic migration patterns z1, z2, z4, and z8 express, respectively, the formation of a single

megacity (Figure 5a), two major cities (Figure 5b), four small cities (Figure 5c), and eight small

cities (Figure 5d). �

Let ωk be the eigenvalue of V associated with zk (i.e., ωkzk = Vzk). Then, (20) yields

ω̄ = ∑
k

ζ2
kz⊤k Vzk = ∑

k

ζ2
kωk. (21)

Thus, the migration pattern that maximizes ω̄ is the basic migration pattern that has the largest

eigenvalue:

ωmax ≡ max
‖z‖2=1

ω̄ = max
k

ωk, (22)

where we normalize ‖z‖2 = z⊤z = 1 without loss of generality.
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Thus, x̄ is stable when ωmax = maxk ωk < 0. Further, x̄ becomes unstable to form endogenous

regional asymmetry when ωmax become positive. To put it differently, each ωk is the gain from

migration towards zk-direction, and x̄ becomes unstable when migration towards some direction

becomes profitable. This extends the discussion in the two-region case based on ω to our many-

region setting.

We need the concrete formulae for eigenvalues {ωk} of V. Because we consider canonical

models, we have V = G(D̄) where D̄ is row-normalized proximity matrix and G some rational

function. The two-region formula ω = G(χ) can then be generalized as follows:

ωk = G(χk) ∀k ∈ K, (23)

where χk is the eigenvalue of D̄ associated with zk.

Each χk is an index of the average geographical proximity among agents when the k-city pattern

x̄ + ζzk emerges. Further, χk decreases in number of cities k. This is because the average proximity

from one agent to other agents is the largest in a single-city pattern (e.g., Figure 5a), while it decreases

as the number of peaks in the spatial distribution increases. In particular,

max
k

{χk} = χ1 =
1 − φ

1 + φ
and min

k
{χk} = χ N

2
=

(
1 − φ

1 + φ

)2

(24)

for any given value of φ ∈ (0, 1) (Akamatsu et al., 2012). Recall that the maximum possible

number of symmetric cities is N
2 (cf. Example 3.2). Also, each χk takes value on (0, 1) and is a

monotonically decreasing function of φ, reflecting that agents are less sensitive to the proximity to

others when φ is larger (and vice versa).

Note that {zk} and {χk} are model independent. They encapsulate the properties of the

underlying geography (Assumption RE) but not those of the payoff function. The model-dependent

properties are instead represented by gain function G of a model.

That said, ωmax = maxk ωk = maxk G(χk) depends on the properties of G(χ). Section

2.3 demonstrated that the shape of gain function G of a model can crucially affect the resulting

implications, where the most important distinction is in the spatial scale of the dispersion force in
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the model. We introduce a formal categorization of canonical models based on three prototypical

shapes of G.

Definition 5. A canonical model with gain function G is said to be:

(a) Class I, if there is at most one χ∗ ∈ (0, 1) so that G(χ) > 0 for χ ∈ (0, χ∗), G(χ∗) = 0, and

G(χ) < 0 for χ ∈ (χ∗, 1).

(b) Class II, if there is at most one χ∗∗ ∈ (0, 1) so that G(χ) < 0 for χ ∈ (0, χ∗∗), G(χ∗∗) = 0,

and G(χ) > 0 for χ ∈ (χ∗∗, 1).

(c) Class III, if there are at most two χ ∈ (0, 1) so that G(χ) = 0, denoted by χ∗∗ < χ∗, with

G(χ) < 0 for χ ∈ (0, χ∗∗) ∪ (χ∗, 1) and G(χ) > 0 for χ ∈ (χ∗∗, χ∗).

The Krugman and Helpman models are, respectively, Class I and II. The first two model classes

in Definition 5 are, respectively, of “Krugman-type” and “Helpman-type.” Class III features the

combined characteristics of Classes I and II. We provide concrete examples of the three model

classes in the following.

Example 3.3 (Class I). Krugman (1991b), Puga (1999), Forslid and Ottaviano (2003), Pflüger

(2004), and Harris and Wilson (1978). �

Example 3.4 (Class II). Helpman (1998), Murata and Thisse (2005), Redding and Sturm (2008),

Allen and Arkolakis (2014), Redding and Rossi-Hansberg (2017) (§3), and Beckmann (1976). �

Example 3.5 (Class III). Tabuchi (1998), Pflüger and Südekum (2008), as well as Takayama and

Akamatsu (2011). �

As mentioned in the Introduction, Definition 5 classifies canonical models based on the spatial

scale of the working dispersion force(s) (Table 1). Net gain functions G♯ for all models in the above

examples are at most quadratic (see Table F.1 in Appendix F). That is,

G♯(χ) = c0 + c1χ + c2χ2 (25)

with model-dependent coefficients {c0, c1, c2}, as in the Krugman or Helpman models. When G♯

is quadratic and there exists an agglomeration force (a positive term), a model is Class I if and only
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if there is no local dispersion force (c0 ≥ 0) but only a global dispersion force that can stabilize x̄.

A model is Class II if and only if there exists local dispersion force (c0 < 0) but no working global

dispersion force is present (i.e., G♯(1) > 0).22 A model is Class III if and only if there exits both a

local (c0 < 0) and a global dispersion force (c2 < 0), as well as an agglomeration force (c1 > 0).

The following proposition characterizes the endogenous spatial patterns that Class I, II, or III

models engender when x̄ becomes unstable, which is essentially the characterizations based on ωmax

at the point x̄ becomes unstable.

Proposition 1. Suppose Assumptions RE and S. Consider a canonical model of either Class I, II,

or III with gain function G. Assume G(χ) = 0 has one root (two roots) in χ ∈ (0, 1) if the model is

Class I or II (Class III), so that endogenous agglomeration occurs in φ ∈ (0, 1).

(a) If the model is of Class I, there exists φ∗ ∈ (0, 1) so that x̄ is stable for all φ ∈ (0, φ∗) and

unstable for all φ ∈ (φ∗, 1); the instability of x̄ in φ∗ leads to the formation of N
2 small cities.

(b) If the model is of Class II, there exists φ∗∗ ∈ (0, 1) so that x̄ is stable for all φ ∈ (φ∗∗, 1) and

unstable for all φ ∈ (0, φ∗∗); the instability of x̄ in φ∗∗ leads to the formation of a single city.

(c) If the model is of Class III, there exist φ∗, φ∗∗ ∈ (0, 1) with φ∗ < φ∗∗ so that x̄ is stable for all

φ ∈ (0, φ∗) ∪ (φ∗∗, 1); the instabilities of x̄ at φ∗ and φ∗∗ lead to the formation of N
2 cities

and a single city, respectively.

Proof. See Appendix A.1.

Note that (a) and (b) generalizes the “reversed scenarios” of Krugman and Helpman in that x̄ is

stable for the low (high) values of φ in Class I (II) models. On the other hand, model classes differ in

the number of cities they endogenously produce. Class I models engender N
2 small cities, whereas

those of Class II entail a single megacity. Class III is a synthesis of Classes I and II.

Proposition 1 builds on the relationships in (24). This can most clearly be seen in the Beckmann

model.

22Consider G♯ for the Helpman model (15). If µ > σ−1
σ , its second-order term can be negative but it cannot stabilize

x̄. If µ ≤ σ−1
σ , the term can may well be positive.
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Figure 6: Examples of ω♯
k ≡ G♯(χk(φ)) (N = 16).

Example 3.6. The Beckmann model (Example 2.1) is Class II because G(χ) = G♯(χ) = −γ + χ

satisfies Definition 5 (b). Because max{χk} = χ1, we have max{ωk} = max{−γ + χk} =

−γ + χ1 for all φ. Figure 6a shows ωk = ω♯
k ≡ G♯(χk(φ)) for N = 16. When all the curves stay

below the horizontal axis, x̄ is stable (the shaded area). The instability of x̄ occurs at φ∗∗ = φ∗
1 ,

leading to the formation of a single megacity (Figure 5a). The maximality of ω1 can be clearly

interpreted. In the model, the formation of a single large city is the most beneficial outcome for

every agent because agents prefer proximity to others, albeit agents must disperse around the city

center to avoid local congestion effects. �

Representative examples of general equilibrium models from all three classes are also shown in

Figure 6.

Example 3.7. Figure 6b and Figure 6c respectively depict ω♯
k for the Krugman and Helpman models,

as the leading examples of Classes I and II. For all φ so that x̄ is stable, max{ω♯
k} = ω♯

N
2

in the

Krugman model, whereas max{ω♯
k} = ω♯

1 in the Helpman model. When x̄ becomes unstable,

16
2 = 8 cities emerge for the former model, whereas a single city emerges for the latter. Figure 6d
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Figure 7: Four-region racetrack economy.

shows ω♯
k for an instance of Class III, the Pflüger and Südekum (2008) model. Observe there are

two ranges of φ under which x̄ is stable. With both local and global dispersion forces, the model

behaves as a Class I (II) model at a low (high) φ. �

4 Illustration: Beyond the reversed scenarios

As a concrete illustration of Proposition 1, we reconsider the Krugman and Helpman models studied

in Section 2.3. In a many-region world, the “reversed scenario” of the two models is no longer just

a reversal of the binary process between symmetry and asymmetry. The Krugman and Helpman

models provide minimal examples of the difference between Classes I and II. The difference in

the spatial scale of dispersion forces induces an intrinsic contrast not only in timing but also in

endogenous spatial patterns, as shown by Proposition 1.

Suppose Assumptions RE and S and let N = 4 (see Figure 7). This is the simplest setup in

which different regions can have different neighbors. Example 3.1 provides the proximity matrix for

this case.23

Uniform distribution x̄ = (x̄, x̄, x̄, x̄) with x̄ ≡ 1
4 is a spatial equilibrium. As discussed, x̄ is

stable if all the eigenvalues of V = x̄
v̄∇v(x̄) are negative. There are two (= N

2 = 4
2 ) eigenvalues

of interest, which we denote by ω1 and ω2. Associated with them, there are two “basic” migration

23We may assume that the proximity between two regions on the antipodal points is φ′ ∈ (0, 1) (with a natural

restriction φ′ < φ). It is inconsequential.
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Figure 8: Schematic illustrations of spatial patterns

Notes: As region 1 is neighboring region 4 on the circle, we rotationally shift the spatial distributions for

better understandability.

patterns:24

z1 =
1√
2
(1, 0,−1, 0) and z2 =

1

2
(1,−1, 1,−1). (26)

Note that z1 and z2 do not include any parameters and thus are model independent.

Figure 8 shows the schematics of the two possible outcomes from x̄. The two spatial configura-

tions have distinct characteristics: one represents the formation of a single megacity that attracts all

the population in the economy (Figure 8a), whereas the other represents the emergence of two small

cities vying with each other (Figure 8b).

The question is which of the two patterns emerge endogenously in the Krugman and Helpman

models—a single megacity or two small cities? Proposition 1 (a) and (b) respectively show that the

Krugman model produces two small cities and that the Helpman model produces a single city.

To show this, we ask whether ωmax = ω1 or ωmax = ω2 when x̄ becomes unstable, as we recall

each ωk represents the net agglomerative force towards basic migration pattern zk. In fact, by noting

ωkzk = Vzk, we can show that

ω1 = G(χ1) =
x̄

v̄

(
∂v1(x̄)

∂x1
− ∂v3(x̄)

∂x1

)

, (27)

ω2 = G(χ2) =
x̄

v̄

(
∂v1(x̄)

∂x1
− ∂v2(x̄)

∂x1
+

∂v3(x̄)

∂x3
− ∂v4(x̄)

∂x3

)

. (28)

24Since V is 4 × 4, there exist two eigenvectors other than z1 and z2: one is uniform vector 1 = 1
2 (1, 1, 1, 1), in

keeping with N = 2, and the other is 1√
2
(0, 1, 0,−1), which has the same meaning as z1 because of rotational symmetry.

In fact, its associated eigenvalue is ω1.
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Figure 9: ω♯
1 and ω♯

2 for the Krugman and Helpman models.

Similar to (3), (27) indicates that if ω1 > 0, agents have an incentive to form a monocentric spatial

pattern by migrating from region 3 to 1. Similarly, (28) indicates that agents may migrate to form a

two-city pattern if ω2 > 0.

Figure 9 provides the answer to the question. For each model, it depicts ω♯
1 ≡ G♯(χ1(φ)) and

ω♯
2 ≡ G♯(χ2(φ)) on the φ-axis, where G♯(χ) is the same as in the two-region case for each model

in (14) and (15) (Figure 2). As sgn[ωk] = sgn[ω♯
k], x̄ is stable if the two curves stay below the

horizontal axis (the shaded areas). That is,

x̄ is stable when







φ ∈ (0, φ∗
2) (the Krugman model),

φ ∈ (φ∗
1 , 1) (the Helpman model).

There is an analogy with the “reversed scenario” regarding when x̄ is stable.

A sharp contrast is present in the spatial patterns. It is immediate that ωmax = ω2 > ω1 at φ∗
2

for the Krugman model because ω2(φ
∗
2) = 0 and ω1(φ

∗
2) < 0. Similarly, ωmax = ω1 at φ∗

1 for the

Helpman model. Therefore, the spatial pattern that emerges from x̄ is







the two-city pattern (Figure 8b) (the Krugman model),

the single-megacity pattern (Figure 8a) (the Helpman model),

as shown by Proposition 1 (a) and (b).

The difference in the spatial scale of dispersion forces is the source of the contrast in the

engendered spatial patterns. As discussed in Section 2.4, the dispersion force in the Helpman
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model is local and triggered when φ is high. Consider the process of a monotonic increase in trade

freeness φ. When φ is at its lower extreme (φ ≈ 0), agents concentrate in a single region because

the local dispersion force is less important than the benefits of agglomeration when interregional

transportation is prohibitively costly.25 The spatial pattern is close to a completely monopolar

pattern, for example, x ≈ (0, 1, 0, 0). As φ increases, the relative rise in the local dispersion

force induces a crowding-out from the populated region. The spatial pattern become, for example

x = (x′, x, x′, x′′) with x > x′ > x′′, which can also be regarded as a monopolar pattern. As φ

increases, the spatial pattern gradually flattens and, at threshold φ∗
1 , it must connect to uniformity

x̄. If we start from x̄ and gradually decrease φ to determine the dispersion process in a reverse-

reproduced way, at φ∗
1 , the spatial pattern must deviate in the direction of the “formation” of a single

megacity (Figure 8a).

By contrast, the dispersion force in the Krugman model is global and triggered when φ is low.

Recall that the dispersion force stems from firms’ competition over consumers. When φ is low, there

are few incentives for firms to concentrate on a small number of regions because the shipment of

goods incurs large transportation costs. As φ increases, the size of the effective market area of a

firm extends. For each firm, this brings more opportunities to access a wider range of consumers

but also leads to tougher competition with other firms that are geographically close. At some point,

firms are better off forming small cities so that each has its dominant market area but is relatively

remote from other major concentrations of firms, as in the two-city pattern (Figure 8b).

To summarize, Proposition 1 is the consequence of the difference in the spatial scale of dispersion

forces. The global dispersion force represents the repulsive effects across different locations and

supports the formation of multiple cities, whereas the local dispersion force represents the crowding

effects that induce the flattening of each city. In a many-region economy, these forces lead to the

formation of qualitatively different spatial patterns. This is most clearly seen by comparing the

Krugman and Helpman models in the N = 4 case, which are the leading instances of Classes I

and II, respectively. The contrast in spatial patterns is hidden in the two-region setup, as the only

possible migration pattern is z = (1,−1).

25Note that mobile agents prefer concentrating towards a smaller number of regions because of the agglomeration

force. In both models, agents should result in a “black-hole” concentration in a single region if there is no effective

dispersion force.
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There are several remarks on Proposition 1. First, it builds on local analysis around uniform

distribution x̄. It may be of interest whether we can formally prove that the local profitable deviation at

the onset of instability is actually the ultimate spatial equilibrium the agglomeration force converges

towards. The technically accurate answer is: “not always.” To draw stronger conclusions beyond

Proposition 1, we have to either introduce intricate classifications for the properties of the higher-

order differentials of the payoff function v or focus on a specific model.26 However, Proposition 1

provides essential practical insights into the evolution of the spatial pattern in a circular economy.27

To highlight this point, Section 5 will present a series of numerical examples for when N = 8.

Second, Proposition 1 assumes a complete geographical symmetry. Assumptions RE and S ab-

stract away regional heterogeneities and geographical advantages. It is thus of interest to what extent

or in what sense the implications of Proposition 1 generalize to asymmetric cases, given that the

latest quantitative spatial models incorporate flexible structures regarding interregional transporta-

tion costs and differences in local characteristics. To address this issue, Section 6 provides formal

analyses of the effects of heterogeneous local characteristics. We also include in Appendix D discus-

sions on other geographical setups and provides numerical explorations for exogenous geographical

advantages due to the existence of boundaries.

Appendix C also provides a brief discussion on the effects of idiosyncratic payoff shocks (Re-

mark C.2) and on the forward-looking behaviors of agents (Remark C.3).

5 Evolution of spatial structure

We numerically explore an overall evolutionary path of the spatial structure for selected models from

Classes I, II, and III in the N = 8 racetrack economy.28 We will see that Proposition 1 captures the

intrinsic properties of the whole evolutionary process.

26Generally, this line of research converges to bifurcation theory. See Hirsch et al. (2012) and Kuznetsov (2004) for

concise introductions. Additionally, under Assumptions RE and S, equivariant bifurcation theory allows one to draw

various technical conclusions beyond Proposition 1. See Golubitsky and Stewart (2003) for an introduction.

27See, for instance, previous studies by (Akamatsu et al., 2012; Ikeda et al., 2012; Osawa et al., 2017; Ikeda et al.,

2018).

28The formulations of the models and the parameter settings are shown in Appendix F.
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(a) Bifurcation diagram
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(b) Spatial patterns

Figure 10: Class I model (Krugman, 1991a)

Figure 10 reports the evolutionary path of stable equilibrium patterns in the course of increasing

φ for the Krugman model, which is Class I. In Figure 10a, the black solid (dashed) curves depict the

stable (unstable) equilibrium values of xi at each φ. Figure 10b shows the schematic illustration of

the stable spatial pattern on the path. The letters in Figure 10b correspond to those in Figure 10a.

Consider a gradual increase in φ from φ ≈ 0. Uniform distribution x̄ is initially stable until

φ reaches the so-called “break point” φ∗ where a bifurcation from x̄ occurs. At φ∗, the spatial

pattern is pushed towards the formation of 8
2 = 4 cities. This confirms Proposition 1 (a). The

spatial pattern immediately converges towards a four-cities pattern after φ∗ is passed. The number

of populated regions halves from 8 → 4.

A further increase in φ triggers the second and third bifurcations at φ∗∗ and φ∗∗∗, respectively.

These bifurcations sequentially double the spacing between cities, each time halving their number,

4 → 2 → 1, in a close analogy to the first bifurcation at φ∗.29 At the higher extreme of φ, a

complete monopolar pattern emerges. This behavior can be understood as a gradual increase in the

effective market area of each city due to a decline in transportation costs. The spatial extent of each

city is one regional unit at any level of φ because there exists no local dispersion force.

In the model, cities become larger when interregional access improves. However, such an effect

is limited to the “selected” regions. The impact of an improvement in transportation on the size

29This is the “spatial period-doubling cascade” behavior discussed by (Akamatsu et al., 2012; Osawa et al., 2017;

Ikeda et al., 2018).
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of each city can be either positive (for the selected ones) or negative (for the others). This point

is already apparent in the two-region models that explicitly incorporate agglomeration economies

combined with interregional transportation costs.

The many-region setup highlights another phenomenon. As φ increases, once selected regions

can decline to form an agglomeration shadow (Arthur, 1994; Fujita and Krugman, 1995) of other

regions. For example, consider the fifth region from the left in Figure 10b. This region is selected

at the transitions at φ∗ and φ∗∗, that is, the impact of an increase in φ is positive. However, after

φ∗∗∗ is encountered, it immediately loses its population. For the region, a monotonic increase in φ

implies a winning situation followed by a losing one. The global dispersion force in Class I models

is thus related to the rise and fall of major cities. Class I models do not provide robust predictions for

each city, but they do for the overall spatial distribution of cities: the number of cities and spacing

between them monotonically decreases and increases, respectively, with the monotonic reduction in

interregional transportation costs.

Remark 5.1. The empirical evidence on regional agglomeration presented by Duranton and Turner

(2012) and Faber (2014) is related to the theoretical predictions of Class I models. The former study

focused on the growth of large metropolitan areas in the United States, while the latter analyzed

the growth of peripheral counties in China. The former (latter) study revealed a positive (negative)

correlation between the magnitude of growth and the interregional transportation infrastructure level

of a given region. For Class I models, these opposite responses may simply reflect different sides of

the same coin. That is, both results may indicate a tendency of selective concentration towards larger

regions for an improvement in interregional transportation access (as discussed in the Introduction

for Japan). �

Next, Figure 11 shows the results for a Class II model, namely, the Allen and Arkolakis (2014).

This model incorporates a local dispersion force, And, thus, x̄ is stable for higher values of φ. As

in Section 4, we see the evolutionary process in a reverse-reproduced way, that is, in the course of

a monotonic decrease in φ. The bifurcation at φ∗∗ leads to the “emergence” of a unimodal pattern.

This is the bifurcation in the model: when φ decreases further, the spatial pattern monotonically

and smoothly converges to a complete concentration in a single region. We interpret a region that
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(a) Bifurcation diagram
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(b) Spatial patterns

Figure 11: Class II model (Allen and Arkolakis, 2014)

locally maximizes population size (region i such that xi > xi−1 and xi > xi+1 where mod N for

indices) as the location of a city. Then, this model endogenously produces at most one city. Class II

models would be interpreted as expressing the evolution of the spatial extent of a single city, namely

the flattening of a big city during improvement in interregional transportation access.

Remark 5.2. Class II models have an attractive property for quantitative applications. We can ensure

the uniqueness of the spatial equilibrium regardless of the level of interregional transportation costs

by imposing a strong local dispersion force (e.g., Redding and Sturm, 2008; Allen and Arkolakis,

2014). If the equilibrium is unique, then the calibrations and counterfactual analyses have deter-

minate implications. Example 2.1 provides a prototypical situation in which a strong congestion

force suppress the possibility of endogenous asymmetry (i.e., the γ ≥ 1 case). The uniqueness of

the equilibrium implies the stability of x̄ for all φ in a racetrack economy, that is, no endogenous

asymmetry can emerge, since x̄ is always an equilibrium. Figure 12 provides our classification of

possible spatial patterns and their stabilities for the Allen–Arkolakis model in a racetrack economy.

The uniqueness condition for the Allen–Arkolakis model is β ≤ −α (i.e., Range 3 in the figure),

which is a sufficient condition for the stability of x̄. See also Figure I of Allen and Arkolakis (2014)

in comparison with Figure 12. �

Finally, we consider a Class III model. Because both local and global dispersion forces exist,

this class of models exhibits a rich and realistic interplay between the number of cities and spacing
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Figure 12: Uniqueness and stability of equilibria in the Allen–Arkolakis model

between them (as in Class I models) and the spatial extent of each city (as in Class II models).

Figure 13a shows the evolution of the number of cities in the course of increasing φ under the

Pflüger and Südekum (2008)’s model in the N = 8 racetrack economy. The number of cities in a

spatial distribution is defined by that of the local maxima therein. Figure 13a exhibits the mixed

characteristics of Figures 10 and 11, as expected. Uniform distribution x̄ is stable for φ < φ∗ or

φ > φ∗∗. We interpret the number of cities in x̄ as either 8 (for a low φ) or as 1 (for a high φ) to

acknowledge that x̄ at the low and high levels of φ are distinct. When φ gradually increases from

φ ≈ 0, the number of cities reduces from 8 → 4 → 2 → 1 as in the Class I models (Figure 10),

whereas it is always 1 in the latter stage as per the Class II models (Figure 11). The initial stage is

governed by a decline in the global dispersion force, while the later stage is marked by a relative

increase in the local dispersion force.

Figure 13b illustrates the spatial patterns associated with Figure 13a. Uniform pattern x̄ is

initially stable (Pattern A) and the first bifurcation at φ∗ leads to a four-city pattern (B, C), whereas

the second bifurcation to the formation of two cities (D, E). These transitions are in line with

Figure 10 and are governed by the gradual decline in the global dispersion force. Then, the

evolutionary behavior becomes more interesting: the decline in the global dispersion force increases

the relative importance of the local one. As a result, the two cities in Pattern E gradually increase

their spatial extents (F, G) because of the local dispersion effects. A further increase in φ means the

local dispersion force succeeds and the two cities gradually merge (H, I) to form a megalopolis (J,

K). As the relative importance of the local dispersion force further increases, a gradual flattening of

the single megalopolis occurs (L, M), followed by complete dispersion (N) after φ∗∗ is reached.
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Figure 13: Class III model (Pflüger and Südekum, 2008)

Remark 5.3. Regarding the behavior of Class II and III models, there is ample empirical evidence

for the flattening of once established economic clusters (i.e., cities) as a consequence of improved

interregional access. Baum-Snow (2007) and Baum-Snow et al. (2017) presented evidence for US

metro areas during 1950–1990 and Chinese prefectures during 1990–2010, respectively. These

studies addressed the changes in the population or production size of the central area within the

larger region, both reporting a significantly negative effect of improvements in interregional access.

As discussed in these studies, the local flattening of cities can also be interpreted as suburbanization

in response to the improved intra-urban transportation infrastructure in classical urban economic

theory (e.g., Alonso, 1964). �
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6 Exogenous local characteristics

Proposition 1 builds on a complete geographical symmetry. However, exogenous asymmetries are

inherent in real-world geography. As a relaxation of Assumption S, we study the sensitivity of spatial

patterns to regional characteristics, for example, local amenities and productivity differences. This

section shows that the spatial scale of dispersion force(s) in a model tends to determine whether the

effects of any exogenous advantages are amplified (when transportation cost varies).30 Throughout,

we assume Assumption RE.

Let a = (ai)i∈N with ai > 0 indicate some regional characteristic, which may or may not affect

the payoffs in other regions. For instance, ai may be the level of amenities in region i exclusively

enjoyed by the residents therein or the total factor productivity of the region. In the latter case,

interregional trade flows and the resulting payoff levels in other regions can depend on ai.

The regions are symmetric if a = ā ≡ (ā, ā, . . . , ā), for some ā > 0. Therefore, pair (x̄, ā)

is an equilibrium. Consider a variation in the local characteristic so that a = ā + ǫ with small

ǫ = (ǫi)i∈N . Then, there is a new equilibrium, say x(a), which is close to x̄. The “covariance”

between region i’s relative (dis)advantage ǫi = ai − ā and the relative deviation of its population

xi(a)− x̄ is then evaluated by:

ρ ≡ (a − ā)⊤ (x(a)− x̄) = ∑
i∈N

(ai − ā) (xi(a)− x̄) . (29)

We here assume that x̄ is stable, since otherwise considering x(a) is nonsensical.

We expect ρ > 0 if regional characteristic a acts positively in the payoff for agents, that is, if

a is in fact “advantageous.” To formalize this intuition, we focus on a formulation class of local

characteristics, a, which encompass various standard specifications in the literature. Let A ≡ ā
v̄ [

∂vi
∂aj

]

be the elasticity matrix of the payoff regarding a, evaluated at (x̄, ā). Analogous to our definition

of canonical models in Definition 1, we suppose the following.

Assumption A. For the local characteristic a under consideration, there exists a rational function

G♮ that is continuous over (0, 1), positive whenever x̄ is stable, and satisfies A = G♮(D̄).

30Apart from the sensitivity analysis, a general fact is that small perturbations in local factors do not qualitatively alter

the predictions of Proposition 1. See Remark C.7 for a brief discussion.
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For each model in Examples 3.3, 3.4, and 3.5, there exists in fact a function G♮ that satisfies the

hypotheses of Assumption A for each natural choice of a local characteristic vector. The simplest

example is that of heterogeneous local amenity, as considered by Allen and Arkolakis (2014).

Example 6.1. Assume that the payoff function takes the form vi(x, a) = aivi(x), where ai > 0

is the exogenous level of regional amenities and v(x) = (vi(x))i∈N represents the symmetric (or

homogeneous) component of the payoff function that satisfies Assumption S. Then, A = ā
v̄ v̄I = āI

and, thus, G♮(χ) = ā > 0. �

Analogous to gain function G of a model, G♮ encodes the effect of the marginal changes in local

characteristics a on the regional payoffs v. Particularly, condition G♮(χ) > 0 implies ρ > 0. As an

example, consider a symmetric two-region economy as in Section 2.2. Then, we can show that

ρ = cδ(χ) where δ(χ) ≡ −G♮(χ)

G(χ)
(30)

with some c > 0 and χ = 1−φ
1+φ . Recall that G(χ) < 0 if x̄ is stable. Therefore, ρ > 0 if G♮(χ) > 0

for all χ so that G(χ) < 0.

To understand formula (30), in line with ω in Section 2.2, we evaluate the payoff gain due to

exogenous advantage in region 1 by the following elasticity:

α ≡ ā

v̄

(
∂v1(x̄, ā)

∂a1
− ∂v2(x̄, ā)

∂a1

)

. (31)

α is an eigenvalue of A associated with z = (1,−1). Particularly, when A = G♮(D̄), we have

α = G♮(χ), (32)

in close analogy with relationship ω = G(χ). Note that α > 0 by assumption.

Suppose that x̄ = (x̄, x̄) is perturbed to x = (x̄ + ξ, x̄ − ξ) due to an exogenous regional

asymmetry of the form a = (ā + ǫ, ā − ǫ) with some scalars ζ and ǫ. Then, v1(x) = v2(x) must

hold true for x to be an equilibrium. Thus, the pair of deviations ξ and ǫ should cancel out two

forces, namely, gain (or loss, since we assume x̄ is stable) ω < 0 from endogenous migration and
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gain α > 0 from exogenous asymmetry. That is,

ωξ + αǫ = G(χ)ξ + G♮(χ)ǫ = 0. (33)

Then, because ρ = ǫξ + (−ǫ)(−ξ) = 2ǫξ by definition, formula (30) follows with c = 2ǫ2. The

fraction δ(χ) ≡ −G♮(χ)
G(χ)

= G♮(χ)
|G(χ)| = α

|ω| thus compares the magnitudes of gain from marginal

exogenous advantage and of loss from marginal endogenous migration, under the condition that the

economy stays in equilibrium.

An important question from defining ρ is: does ρ increase or decrease when φ increases? In

other words, does improved transportation access strengthen (weaken) the role of local characteristics

and what are the responses of the spatial distribution of economic activities to an improvement in

interregional access if a is fixed? These are the questions asked in counterfactual exercises employing

calibrated quantitative spatial economic models (see, e.g., Redding and Rossi-Hansberg, 2017).

We have a general characterization for the response of ρ when φ varies.

Proposition 2. Suppose Assumption RE. Consider a canonical model with gain function G. Consider

local characteristic a that satisfies Assumption A with some G♮. Assume that x̄ is stable and define

δ(χ) = −G♮(χ)
G(χ)

. Then, the following hold true for ρ in (29):

(a) ρ′(φ) > 0, if δ′(χ) < 0 for all χ ∈ (0, 1) such that G(χ) < 0.

(b) ρ′(φ) < 0, if δ′(χ) > 0 for all χ ∈ (0, 1) such that G(χ) < 0.

Proof. See Appendix A.2.

Thus, the impacts of improved interregional access are inherently model dependent. An impor-

tant observation is that model class matters—the response of ρ to a given model may be inferred by

the spatial scale of the dispersion force in that model.

We provide examples employing common specifications of local characteristics. Below, all

derivations are collected in Appendix F. Consider the simplest specification, that is, heterogeneous

local amenity (Example 6.1). For this case, we observe a clear contrast between the Krugman and

Helpman models, the leading instances of Classes I and II.
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Example 6.2. We continue with Example 6.1, where G♮(χ) = ā > 0. Then, sgn[δ′(χ)] =

sgn[ āG′(χ)
G(χ)2 ] = sgn[G′(χ)]. The Krugman model (Example 2.2) satisfies G′(χ) < 0 and thus

ρ′(φ) > 0. On the other hand, the Helpman model (Example 2.3) satisfies G′(χ) > 0 and thus

ρ′(φ) < 0 whenever the equilibrium is unique (as assumed in quantitative applications). �

To determine why such contrast emerges, consider a two-region setup for which ρ(φ) =

cδ(χ(φ)) from (30). Recall that δ(χ) = G♮(χ)
|G(χ)| is the relative magnitude of the gains from an

exogenous advantage against loss from migration at x̄. Assume that δ′(χ) < 0. Then, either gain

α = G♮(χ) from the exogenous regional asymmetry decreases in χ = 1−φ
1+φ (i.e., increases in φ) or

the magnitude of loss |ω| = |G(χ)| from the endogenous migration increases in χ (i.e., decreases

in φ). Recall that Class I models exhibit endogenous agglomeration due to the decline of the global

dispersion force in the course of increasing φ (see Section 2.4). In other words, in Class I models,

|ω| decreases in φ (i.e., increases in χ) as long as x̄ is stable. Therefore, if G♮(χ) is a constant, as

in Example 6.2, we expect δ′(χ) < 0 in Class I models because δ is inversely proportional to |ω|.
A similar discussion applies to δ′(χ) > 0, and we expect that Class II models satisfy δ′(χ) > 0.

The contrast between Classes I and II generalizes to the regional characteristics that affect

interregional trade flows, rather than purely local factors. For such cases, G♮(χ) become non-

constant.

Example 6.3. Redding and Rossi-Hansberg (2017), §3, considered a Class II model, namely the

Helpman model with a modified market equilibrium condition:

wixi = ∑
j∈N

xiaiw
1−σ
i φij

∑k∈N xkakw1−σ
k φkj

ej ∀i ∈ N , (34)

where heterogeneities in a arises from local productivity differences. We can show that G♮(χ) > 0

for all χ ∈ (0, 1). When the equilibrium is unique, δ′(χ) > 0 and thus ρ′(φ) < 0. �

Example 6.4. The Krugman model (Example 2.2) is a Class I model. When one interprets immobile

demand l = (li)i∈N in the Krugman model as regional characteristic, we have G♮(χ) > 0 for all

χ ∈ (0, 1). Further, δ′(χ) < 0, so that ρ′(φ) > 0 whenever x̄ is stable. �

Examples 6.2, 6.3, and 6.4 demonstrate that the class a model belongs to can govern whether

37



(a) The Allen–Arkolakis model (b) The Krugman model

Figure 14: Population share of region 1 and covariance ρ

the endogenous causation of the model boosts the exogenous advantages when interregional trans-

portation costs decrease. When interregional access improves, the endogenous mechanisms of a

model strengthens (weakens) the effects of exogenous local advantages if the model has only a global

(local) dispersion force. If exogenous heterogeneity causes one region to attract more population,

such effects will be magnified (reduced) for Class I (II) models.

The qualitative differences between Classes I and II can be understood from the basic properties

of the local and global dispersion forces in Section 2.4. For a Class I model, a larger φ means

a relatively smaller global dispersion force, which tends to amplify (both the endogenous and

exogenous) location-specific advantages towards the concentration of mobile agents. However, in a

Class II model, a larger φ means a relatively larger local dispersion force, which reduces not only

the benefit from concentration due to endogenous agglomeration externalities but also that due to

location-specific exogenous advantages.

Figure 14 reports numerical examples for the N = 8 case. As in Example 6.1, we multiply

positive term a1 ≥ 1 by the payoff in region 1, whereas we let ai = 1 for all i 6= 1. The curves depicts

region 1’s population share, x1, at stable equilibria against φ. We consider four incremental settings,

a1 ∈ {1.000, 1.001, 1.005, 1.010}, including the baseline case with no location-fixed advantage
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(a1 = 1.000). Figure 14a reports the evolutionary paths of x1 for the Allen–Arkolakis model (Class

II) under the uniqueness of the equilibrium. We have δ′(χ) > 0 for all χ ∈ (0, 1) and see that

x1 − x̄ > 0 when a1 > 1 and x1 − x̄ increases as a1 increases, which are intuitive. Additionally,

x1 − x̄ decreases as φ increases. We confirm that ρ(φ) > 0 and ρ′(φ) < 0 for all φ. Even when the

equilibrium can be nonunique in the Allen–Arkolakis model, we still have ρ(φ) > 0 and ρ′(φ) < 0

for all φ so that x̄ is stable, as Proposition 2 predicts.31 Figure 14b considers the Krugman model

(Class I), where the model parameters are the same as in Figure 10.32 For all a1 > 1, x1 − x̄ > 0.

As Proposition 2 predicts, for all φ so that x̄ is stable, that is, φ ∈ (0, φ∗), we confirm ρ(φ) > 0

and ρ′(φ) > 0. Although Proposition 2 does not cover φ ∈ (φ∗, 1), ρ′(φ) > 0 holds true except

for the transitional phase after φ∗∗.

7 Concluding remarks

In this paper, we introduce the dichotomy between “local” and “global” dispersion forces under

a general framework that encompasses a wide range of extant economic geography models. We

show that the spatial scale of the dispersion force in a model significantly affects the endogenous

spatial patterns and comparative statics of that model. Three prototypical model classes are defined

according to the spatial scale(s) of their dispersion forces (i.e., local, global, and local and global).

Given the knowledge of the spatial scale of dispersion forces, we provide consistent interpretations

to the empirical literature and provide qualitative characterizations of the comparative statics of

structural economic geography models. We also hope our results and methods can be extended to

achieve a unified understanding of the robust properties of a broader class of economic geography

models.

There are two major directions for further research. First, the generalization of the theoretical

results to asymmetric proximity structures is of importance. An efficient strategy would be to fix

a few representative models—instead of geography—as test pilots and identify general insights

31Proposition 2 does not cover the case when x̄ is unstable. Accordingly, ρ′(φ) < 0 does not necessarily holds true

when x̄ is unstable. See Remark C.8 in Appendix C.

32Unlike in the Allen–Arkolakis model, the Krugman model admits multiple equilibria for some φ for any pair of the

structural parameters (µ, σ).
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when proximity matrix D varies systematically, as in Matsuyama (2017).33 The basic implications

of Proposition 1 for the polarity of endogenous spatial patterns—a single megacity or multiple

cities—may well be robust to the generalizations of an assumed geography by incorporating, for

example, the presence of boundaries and/or two-dimensional location spaces (see Appendix D).

Second, apart from exploring exogenous asymmetries, the symmetric racetrack geography can

be used as a standard testbed to investigate the implications of endogenous mechanisms for a given

model. For instance, Dingel et al. (2018) employed a circular geography to theoretically characterize

the welfare effects of exogenous productivity differences under a standard international trade model.

Another important topic is the consideration of multiple types of mobile agents that are subject to

different proximity matrices and/or different degrees of increasing returns.34

33This line of research has already been tackled by the authors, such as in Ikeda et al. (2017b) (line segment); Ikeda

et al. (2014, 2017a, 2018) (two-dimensional regular lattices), confirming that Class I models generally feature stable

many-cities patterns.

34Such a structure is ubiquitous in intra-city models with both firms and households (e.g., urban models of Fujita and

Ogawa, 1982) or in multiple-sector models (Fujita et al., 1999b). A circular geography provides a canonical starting

point for this type of models (Tabuchi and Thisse, 2011; Osawa and Akamatsu, 2019). See Remark C.9 in Appendix C

for detailed discussions.

40



A Proofs

A.1 Proof of Proposition 1

We characterize stability of x̄ = (x̄, x̄, . . . , x̄) and the destabilization of, and bifurcation from, it.

Appendix E collects the technical facts referenced in the following.

Part 1 (Stability of x̄). To define stability of x̄, some myopic dynamics must be assumed4. A

myopic dynamic describes the rate of change in x. Denote the dynamic that adjusts x over X by

ẋ = f (x), where ẋ represents the time derivative. For the majority of myopic dynamics in the

literature, f (x) ≡ f̃ (x, v(x)) where f̃ maps each pair (x, v(x)) of a state and its associated payoff

to a motion vector ẋ. We will focus exclusively on such dynamics. Let restricted equilibrium be

a state x∗ ∈ X such that vj(x∗) = vk(x∗) for all j, k ∈ {i ∈ N | x∗i > 0}, that is, a spatial

distribution in which all populated regions earn the same payoff level. A spatial equilibrium is

always a restricted equilibrium.

We assume that f and f̃ are differentiable and satisfy:

f (x) = 0 if and only if x is a restricted equilibrium, (RS)

if f (x) 6= 0, then v(x)⊤ f (x) > 0, and (PC)

P f̃ (x, v(x)) = f̃ (Px, Pv(x)) for all permutation matrices P such that PD = DP. (Sym)

We call dynamics that satisfy (RS), (PC), and (Sym) admissible dynamics. See Remark C.4 in

Appendix C for examples of admissible dynamics. The conditions (RS) and (PC) ensure that f is

consistent with the underlying economic geography model v. The condition (Sym) ensures that f

is consistent with Assumption S, since it implies that P f (x) = f (Px) for all permutation matrix P

such that PD = DP.

A rest point x∗ of f (i.e., x∗ ∈ X such that f (x∗) = 0) is said to be linearly stable if all the

eigenvalues {ηk} of ∇ f (x∗) = [ ∂ fi
∂xj

(x∗)], the Jacobian matrix of f at x∗, have negative real parts.

A spatial equilibrium x∗ is said to be stable (unstable) if and only if it is linearly stable (unstable)

under admissible dynamics.

Consider x̄. We assume that x̄ is an isolated spatial equilibrium. Then, (PC) implies that there

is a neighborhood O ⊂ X of x̄ such that v(x)⊤ f (x) > 0 for all x ∈ O \ {x̄}. By expanding v and

f about x̄, we see

(v(x̄) +∇v(x̄)z)⊤ ( f (x̄) +∇ f (x̄)z) > 0. (A.1)

Note that v(x̄) = v̄1, ∇v(x̄) = v̄
x̄ V, f (x̄) = 0 by (RS), and 1

⊤∇ f (x̄)z = 0. The last relationship

1
⊤∇ f (x̄)z = 0 follows because ẋ = f (x) ≈ f (x̄) +∇ f (z̄)z = ∇ f (x̄)z and 1

⊤ ẋ = ∑i∈N ẋi =
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0 must hold true for all x, since the total mass of agents is a constant. From (A.1), we then see

v̄
x̄ (Vz)⊤ (∇ f (x̄)z) > 0 (A.2)

for any infinitesimal migration z = x − x̄ from the uniform distribution.

Because we consider canonical models, there is a rational function G(t) = G♯(t)

G♭(t)
such that

V = G(D̄) = G♭(D̄)−1G♯(D̄), where G♯(t) and G♭(t) are some polynomials. We assume

G♭(t) > 0, so that G♯(t) is a net gain function. D̄ is real, symmetric, and circulant matrix under

Assumption RE (see Appendix E). Then, by Fact E.2, V is real, symmetric, and circulant matrix.

Because of (Sym), ∇ f (x̄) is also real, symmetric, and circulant matrix. Then, by Fact E.3, D, V,

and ∇ f (x̄) share the same set of eigenvectors {zk}.

For every eigenvector zk (of D, V, or ∇ f (x̄)), (A.2) implies that

(Vzk)
⊤ (∇ f (x̄)zk) = ωkηk > 0, (A.3)

where ωk and ηk are the (real) eigenvalues of V and ∇ f (x̄) associated with zk. Thus, sgn[ηk] =

sgn[ωk] = sgn[G♯(χk(φ))]. Therefore, x̄ is stable spatial equilibrium if and only if ω♯
k ≡

G♯(χk(φ)) < 0 for all k. Note that ηk and ωk are both real because ∇ f (x̄) and V are both

symmetric.

If the eigenpairs {(χk, zk)} of the row-normalized proximity matrix D̄ are available, then the

eigenpairs of V = G(D̄) are given by {(G(χk), zk)} (see Fact E.1). We have the following lemma:

Lemma A.1. Assume that N is an even and let M ≡ N
2 . Then, D̄ satisfies the following properties:

(a) There are M + 1 distinct eigenvalues. The eigenpairs {(χk, zk)} are

χ0 = 1, z0 ≡ 〈1〉N−1
i=0 , (A.4)

χk,







z+k ≡ 〈cos(θki)〉N−1
i=0 ,

z−k ≡ 〈sin(θki)〉N−1
i=0 ,

k = 1, 2, . . . , M − 1 (A.5)

χM, zM ≡ 〈(−1)i〉N−1
i=0 . (A.6)

where θ = 2π
N , and by 〈zi〉N−1

i=0 ≡ 1
‖z‖ (zi)

N−1
i=0 we denote a normalized vector.

(b) Every χk (k 6= 0) is a differentiable strictly decreasing function of φ with limφ→0 χk = 1 and

limφ→1 χk = 0.

(c) For all φ, {χk} (k = 0, 1, 2, . . . , M) are ordered as







1 = χ0 > χ2 > · · · > χ2k > · · · > χM > 0,

1 > χ1 > χ3 > · · · > χ2k+1 > · · · > χM−1 > 0,
(A.7)
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with χ0 > χ1 > χ2, so that maxk≥1{χk} = χ1.

(d) If N is a multiple of four, mink{χk} = χM =
(

1−φ
1+φ

)2
and χ1 = 1−φ

1+φ .

Proof. See Fact E.3, Remark C.5, and Akamatsu et al. (2012) (Lemma 4.2).

Thus, x̄ is stable if ω♯
k ≡ G♯(χk(φ)) < 0 for all k ∈ K ≡ {1, 2, . . . , M}. We can exclude k = 0

because z0 represents an increase of total population.

Remark A.1. Assumption RE assumes that N is a multiple of four to ensure that mink∈K{χk} =

χM. The essential implication of Proposition 1 on the polarity of spatial patterns does not alter

because mink∈K{χk} = min{χM−1, χM} by Lemma A.1 (c). �

Refer to Figure 15, which shows {ω♯
k}, G♯(χ), and {χk}, to understand the following arguments.

Class I. By assumption, there is χ∗ such that G♯(χ) < 0 for all χ ∈ (χ∗, 1), that G♯(χ∗) = 0,

and that G♯(χ) > 0 for all χ ∈ (0, χ∗). By Lemma C.1, {χk(φ)} are strictly decreasing from 1.

Therefore, x̄ is stable if and only if χk ∈ (χ∗, 1), so that ω♯
k ≡ G♯(χk) < 0, for all k ∈ K, i.e.,

if χ∗ < mink∈K χk = χM. Thus, x̄ is stable for all (0, φ∗
M) where φ∗

M = 1−√
χ∗

1+
√

χ∗ is the unique

solution for χM = χ∗. Because G♯(χ) > 0 for all χ ∈ (0, χ∗) and χM is strictly decreasing, x̄ is

unstable for all (φ∗
M, 1) because ω♯

M > 0 for the range.

Class II. By assumption, there is χ∗∗ such that G♯(χ) < 0 for all χ ∈ (0, χ∗∗), that G♯(χ∗∗) = 0,

and that G♯(χ∗∗) > 0 for all χ ∈ (χ∗∗, 1). Thus, x̄ is stable if and only if χk ∈ (0, χ∗∗), so that

ω♯
k = G♯(χk) < 0, for all k ∈ K, i.e., if χ∗∗ > maxk∈K χk = χ1. Thus, x̄ is stable for all (φ∗

1 , 1)

where φ∗
1 ≡ 1−χ∗∗

1+χ∗∗ is the unique solution for χ1 = χ∗∗. Because G♯(χ) > 0 for all χ ∈ (χ∗∗, 1)

and χ1 is strictly decreasing, x̄ is unstable for all (0, φ∗
1).

Class III. Via a similar logic, we see x̄ is stable if φ ∈ (0, φ∗
M) ∪ (φ∗

1 , 1).

Part 2 (Bifurcation from x̄). Start from a state where x̄ is stable. When one and only one ωk

(k ∈ K) switches its sign from negative to positive at φ∗
k , then, from (A.3), ηk must switch its sign

from negative to positive at φ∗
k . It is a standard fact in bifurcation theory that, at such point, x̄ must

deviate towards the direction of corresponding eigenvector zk. See, e.g., Hirsch et al. (2012) and

Kuznetsov (2004). That is, M = N
2 cities emerge at φ∗

M, whereas a single city emerges at φ∗∗
1 .

Remark A.2. The bifurcation toward the single-city direction (k = 1) is a double bifurcation at

which the relevant eigenvalue, ω1, has multiplicity two, as seen from (A.5). For this case, possible

migration patterns are linear combinations of the form c+z+1 + c−z−1 with c+, c− ∈ R. In fact, we

have (c+, c−) = (c, 0) or (c, c) for some c ∈ R under admissible dynamics along with Assumptions

RE and S. Because any linear combination of z+1 and z−1 is a one-peaked cosine curve, it is still

interpreted as a single-city pattern. �
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c0 φ∗∗ = φ∗
1 φ∗ = φ∗

M

− log(φ)

χk

ω♯
k = G♯(χk)

c0

0

1

0 − log(φ)

G♯(χ)
0

χ

χ∗∗

χ∗ χ1
χ2 χM

ω♯
1

✁✁✕

ω♯
M

✁✁☛

Figure 15: Net gain function G♯(χ) and net agglomeration forces ω♯
k

Notes: Top: Graphs of ω♯
k = G♯(χk). Bottom left: Net gain function G♯ for Class III models with a

quadratic net gain function of the form G♯(χ) = c0 + c1χ + c2χ2. Note that G♯(0) = c0. Bottom right: The

eigenvalues {χk(φ)} of D̄, which are model-independent. x̄ is stable in the shaded regions of φ or χ. For φ,

log scale is used for better readability. Note that max{χk} = χ1 and min{χk} = χM at any given level of

φ.

A.2 Proof of Proposition 2

The equilibrium condition when all regions are populated is given by

v(x, a)− v̄(x, a)1 = 0, (A.8)

where v̄(x, a) ≡ ∑i∈N vi(x, a)xi is the average payoff and 1 is N-dimensional all-one vector. The

pair (x̄, ā) is a solution to (A.8). When a = ā + ǫ with small ǫ = (ǫi)i∈N , there is a spatial

equilibrium nearby x̄ because v is differentiable. Let x(a) denote the perturbed version of the

uniform distribution, which is a function in a. In the following, we consider some level of φ such

that x̄ is stable, because otherwise studying a perturbed version of x̄ is meaningless.

The covariance ρ discussed in Section 6 is evaluated as follows:

ρ ≡ (a − ā)⊤ (x(a)− x̄) = (Ca)⊤Cx(a) = a⊤
Cx(a) (A.9)

where C ≡ I − 1
N 11

⊤ is the N-dimensional centering matrix. Let X ≡ [ ∂xi
∂aj

(ā)] is the Jacobian

matrix of x with respect to a evaluated at (x̄, ā) Then, x(a) ≈ x̄ + X(a − ā) = x̄ + XCa and

ρ = a⊤
CXCa (A.10)
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since Cx̄ = 0. The implicit function theorem regarding (A.8) at (x̄, ā) gives:

X = −
(

Vx − 1x̄⊤Vx − 1v(x̄)⊤
)−1 (

Va − 1x̄⊤Va

)

(A.11)

=
(

v̄
x̄

1
N 11

⊤ −
(

I − 1
N 11

⊤
)

Vx

)−1 (

I − 1
N 11

⊤
)

Va (A.12)

= x̄
v̄

(
(I − C)− C

x̄
v̄ Vx

)−1
C

v̄
ā

ā
v̄ Va (A.13)

= x̄
ā ((I − C)− CV)−1

CA (A.14)

where v̄ is the uniform level of payoff, Vx ≡ [ ∂vi
∂xj

(x̄, ā)], Va ≡ [ ∂vi
∂aj

(x̄, ā)], V ≡ x̄
v̄ Vx, and

A ≡ ā
v̄ Va, and we note x̄ = 1

N . Under Assumptions RE, S, and A, the matrix X is real, symmetric,

and circulant because all its components in (A.14) are.

The set of eigenvectors of CXC can be chosen as the same as in Lemma C.1 (a) because it is

a circulant matrix of the same size as D̄ (see Fact E.3). Let {λk}M
k=0 be the distinct eigenvalues of

CXC. Because CXC is symmetric, CXC admits the following eigenvalue decomposition:

CXC = λ011
⊤ +

M−1

∑
k=1

λk

(

z+k z+k
⊤
+ z−k z−k

⊤)
+ λMzMz⊤M, (A.15)

which yields the following representation of ρ:

ρ = a⊤
CXCa = ∑

k 6=0

ã2
kλk. (A.16)

where ã ≡ (ãk) is the representation of a in the new coordinate system.35 We can omit k = 0 since

λ0 = 0, which reflects that z0 = 1 represents a uniform increase in a and thus is inconsequential. In

concrete terms, as all the component matrices in (A.14) are circulant matrices and hence shares the

same set of eigenvectors, we can translate the matrix relationship (A.14) to the following expression:

λk =
x̄

ā
((1 − κk)− κkωk)

−1 κkαk, (A.17)

where κk, ωk = G(χk), and αk are the kth eigenvalues of C, V, and A, respectively. We have

κ0 = 0 and κk = 1 for all k 6= 0, thereby λk = − x̄
ā

αk
ωk

for all k 6= 0. Also, under the condition that

A = G♮(D̄), we have αk = G♮(χk). Summing up, we have

λk = − x̄

ā

G♮(χk)

G(χk)
=

x̄

ā
δ(χk) ∀k ∈ K, (A.18)

and λ0 = 0 where δ(χ) ≡ −G♮(χ)
G(χ)

, and {χk}k∈K are the eigenvalues of D̄.

Thus, ρ > 0 for all a if all {λk} are positive except for λ0 = 0. The denominator of (A.18),

35Observe that this representation implies upper and lower bounds for ρ when a 6= ā, namely, ‖a − ā‖λmin ≤ ρ ≤
‖a − ā‖λmax where λmin ≡ mink≥1{λk} and λmax ≡ maxk≥1{λk}.
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G(χk), must be negative for all k because x̄ is stable by assumption. Thus, we see that ρ > 0 if

G♮(χ) > 0 for all χ since χk ∈ (0, 1) for all k ∈ K.

Proposition 2 follows by noting that

ρ′(φ) = ∑
k 6=0

ã2
k

dλk

dφ
=

x̄

ā ∑
k 6=0

ã2
kδ′(χk)

dχk

dφ
= − x̄

ā ∑
k 6=0

ã2
kδ′(χk)

∣
∣
∣
∣

dχk

dφ

∣
∣
∣
∣

,

where we recall that {χk}k∈K are strictly decreasing in φ (Lemma A.1). If δ′(χ) < 0 (δ′(χ) > 0)

for all relevant χ, then ρ′(φ) > 0 (ρ′(φ) < 0).
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December 10, 2019

By Takashi Akamatsu, Tomoya Mori, Minoru Osawa, and Yuki Takayama

We collect additional results, technical preliminaries, and various remarks that are referenced

in the main text or proofs. Appendix B provides the summary of the Japan example in Section 1.

Appendix C collects lengthy remarks. Appendix D provides discussions pertaining to the relaxation

of the racetrack assumption (Assumption RE). Appendix E collects relevant facts from matrix

analysis employed in the proofs (Appendix A). Appendix F collects supporting computations for the

example models discussed in the main text.

B Cities in Japan: 1970–2015

Data. Population count data of Japan, obtained from Statistics Bureau, Ministry of Internal Affairs

and Communications of Japan (1970, 2015).

Method. A city is represented by an urban agglomeration (UA), which is the set of contiguous

1 km-by-1 km cells with a population density of at least 1000/km2 and total population of at least

10,000. The basic results below remain the same for alternative threshold densities and populations.

Below, UA i in year s is said to be associated with UA j in year t ( 6= s) if the intersection of the

spatial coverage of i and that of j accounts for the largest population of i among all the UAs in year

t. For years s < t, if i and j are associated with each other, they are considered to be the same UA.

If i is associated with j but not vice versa, then i is considered to have been absorbed into j, while

if j is associated with i but not vice versa, then j is considered to have separated from i. If i is not

associated with any UA in year t, then i is considered to have disappeared by year t, while if j is not

associated with any UA in year s, then j is considered to have newly emerged by year t.

For the part of Japan contiguous by roads to at least one of the four major islands (Hokkaido,

Honshu, Shikoku, and Kyushu), 503 and 450 UAs are identified, as depicted in Panels (a) and (b) of

Figure B.1 for 1970 and 2015, respectively, where the warmer color indicates a larger population.

These together account for 64% and 78% of the total population in 1970 and 2015, respectively.

Thus, there is a substantial 18% increase in the urban share over these 40 years. Of the 503 UAs that

existed in 1970, 302 survived, while 201 either disappeared or integrated with other UAs by 2015.

Of the 450 UAs that existed in 2015, 148 were newly formed after 1970 (including those split from

existing UAs).

Panels (c) and (d) of Figure B.1 show the highway and high-speed railway networks in use

in 1970 and 2015, respectively. The comparison of these panels indicates an obvious substantial

expansion of these networks during these 45 years, as mentioned in the text.

Panels (a), (b), and (c) of Figure B.2 show the distributions of the growth rates of population

share (in the national population), the areal size and population density of individual UAs for the set
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of the 302 UAs that survived throughout the 45-year period. A UA experienced an average growth

rate of 21% (75%) of population share, 94% (105%) of areal size, and −22% (22%) of population

density (per km2), respectively, where the numbers in parentheses are the standard deviations.

As a larger population share was concentrated in a smaller number of UAs in 2015 than in

1970, the spatial size of an individual UA almost doubled on average. However, these spatial

expansions are not simply due to the shortage of available land in UAs. Note that population

density decreased by 22% on average. We take this as evidence of a decline in the number of major

population concentrations combined with local flattening of each concentration in the course of the

improvement in interregional transport access.
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(a) Urban agglomrations in 1970 (b) Urban agglomrations in 2015

(c) Highway and high-speed railway network in 1970 (d) Highway and high-speed railway network in 2015
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Figure B.1: UAs and transport network in Japan

(a) Population share growth (b) Area growth (c) Population density growth

Average = 0.21
Standard deviation= 0.75

Average = 0.94
Standard deviation = 1.05

Average = -0.22
Standard deviation = 0.22

Figure B.2: Growth rates of the sizes of UAs in Japan.
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C Additional remarks

This appendix collects lengthy remarks which may benefit interested readers.

Remark C.1. Section 2.1 and Definition 1 define canonical models. Canonical models do not

include: (i) models with multiple types of mobile agents such as the urban models of Fujita and

Ogawa (1982); Ota and Fujita (1993); Lucas and Rossi-Hansberg (2002) as well as Ahlfeldt et al.

(2015); Owens et al. (forthcoming); (ii) models with sector-wise differentiated spatial frictions such

as Fujita and Krugman (1995) and Mori (1997); (iii) models with multiple types of increasing returns

such as Fujita et al. (1999b); Tabuchi and Thisse (2011), and Hsu (2012); and (iv) dynamic models

such as Desmet and Rossi-Hansberg (2009, 2014, 2015); Desmet et al. (2018). Also, we do not cover

models that build on Ottaviano et al. (2002) (OTT) framework, which assumes a quadratic preference

and linear trade frictions. The OTT framework is not a canonical model as per Definition 1, because

the model induces V of the form

V = c0I + c1D̄ + c2D̄
2 + ĉ1D

[2], (C.1)

where D
[2] ≡ [d2

ij]. That is, there is no rational function G such that V = G(D̄) due to the existence

of the special matrix, D
[2]. We can still show that c2 < 0, thereby the model has a global dispersion

force. Also, under Assumptions RE and S, local stability analysis of x̄ in the OTT framework can be

done analytically. However, since the OTT framework assumes linear transport costs, the analysis

can incorporate tiresome parametric classifications to handle possible corner solutions in market

equilibrium (e.g., the cases where there are no interregional transport for some pairs of regions). �

Remark C.2. On Proposition 1, the payoff function is assumed to be homogeneous across mobile

agents. The effects of considering idiosyncratic payoff shocks are of interest, since it is a standard

recipe in quantitative exercises (Redding and Rossi-Hansberg, 2017). We note that such idiosyncratic

heterogeneity acts as a local dispersion force. It is a well-known fact that random utility models

can be represented on the basis of deterministic utility (Anderson et al., 1992). Suppose that the

idiosyncratic payoff function is defined by v̂ni(x) = ǫniṽi(x) where ǫni is a random payoff shock

for an individual agent n for choosing region i that are independent and identically distributed (i.i.d.)

according to a Frèchet distribution, and ṽi(x) is the homogeneous component; a spatial equilibrium

for this case is defined by xi = Pri(x) where Pri(x) ≡ Pr
(
i = arg maxj∈N v̂nj(x)

)
∈ (0, 1)

denotes the probability for an agent to choose region i when the current spatial distribution is x.

Then, there is a deterministic (or homogeneous) payoff function v(x) = (vi(x))i∈N , associated

with the stochastic (or heterogeneous) payoff function (v̂ni(x)), such that x∗ is a deterministic

spatial equilibrium under v(x) if and only if it satisfies x∗i = Pri(x∗). In this sense, the two

spatial equilibrium concepts are “isomorphic” in terms of equilibrium spatial distribution of agents.

Local stability of equilibria under this kind of perturbed version of equilibrium condition can be

investigated by the associated perturbed best response dynamics. See Sandholm (2010) for a unified
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discussion.

Let Ṽ ≡ ∇ṽ(x̄) be the Jacobian matrix of the homogeneous component of heterogeneous

payoff. Then, Ṽ and the Jacobian matrix of deterministic version of payoff function, V = ∇v(x̄),

are connected via the relationship

V = Ṽ − ηI, (C.2)

where η is a constant which is proportional to the dispersion parameter for the distribution ǫni are

drawn from. The formula implies that η appears as a negative constant term in the net gain function

G♯ for v. That is, idiosyncratic payoff shock acts as a local dispersion force. This is a natural

consequence of assuming that ǫni is i.i.d. over n and i. The idiosyncratic payoff shock acts as some

kind of dispersion force, but it has no connection to the underlying geography. As such, introducing

idiosyncratic payoff shocks to a Class I model can, in effect, change the model to Class III. �

Remark C.3. On Proposition 1, We consider stability under myopic dynamics. An important venue

of extension is to consider the forward-looking behavior of mobile agents in the spirit of Krugman

(1991a). A rigorous theory on this issue can be found in Oyama (2009a,b). The papers explored

an economic geography model subject to a deterministic perfect foresight dynamic, in which agents

have a complete anticipation capability for the future; it is shown that the forward-looking behavior

also drive the spatial distribution towards a state that is also locally stable under myopic dynamics

when the future discount rate is high. That said, employing myopic dynamics for equilibrium

refinement can also be interpreted as an approximation of forward-looking dynamics with a high

discount rate.

Related to this, a recent literature on geography and development features an explicitly dynamic

decision of mobile agents in the (discrete) time axis, with the anticipation capability of agents is

supposed to be limited in favor of tractability (i.e., the discount rate for future utility is high) (Desmet

and Rossi-Hansberg, 2009, 2014; Nagy, 2017; Desmet et al., 2018). One might be interested in

how these dynamic models can be related to deterministic myopic dynamics. In this context, we

note that “myopic” dynamics are interpreted as the average behavior of the behavioral assumptions

imposed on agents’ strategy switching protocol, or “revision protocol” (Sandholm, 2010). The

question is, then, what is the average aggregate behavior induced by a dynamic economic geography

model when we interpret the agent’s dynamic choice in the time axis as the revision protocol of a

hypothetical myopic dynamic. A similar discussion applies to overlapping generation models (e.g.,

Allen and Donaldson, 2018). It requires a model-by-model investigation and calls for another theory

of independent interest. �

Remark C.4. On admissible dynamics defined in Appendix A.1, the conditions (RS) and (PC) are,

respectively, called restricted stationality and positive correlation (Sandholm, 2010), which are the

most minimal assumptions we can impose on a dynamic f to be “consistent” with the underlying

model v. Also, the symmetry assumption (Sym) ensures that the dynamic does not feature ex-ante
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preference over alternatives N . We assume f is defined for all nonnegative orthant R
N
≥0 to avoid

unnecessary technical complication. Also, we suppose f is C1 only because we employ linear

stability as the definition of stability.

Admissible C1 myopic dynamics specified by the conditions (RS), (PC), and (Sym) include, for

instance, the Brown–von Neumann–Nash dynamic (Brown and von Neumann, 1950; Nash, 1951),

the Smith dynamic (Smith, 1984), and Riemannian game dynamics (Mertikopoulos and Sandholm,

2018) that satisfy (Sym), e.g., the Euclidian projection dynamic (Dupuis and Nagurney, 1993) and

the replicator dynamic (Taylor and Jonker, 1978). See Sandholm (2010) for more examples. Also,

we note that Proposition 1 can be extended to include the best response dynamic (Gilboa and

Matsui, 1991), which is generally nondifferentiable. �

Remark C.5. Define D = [φij] by φij = φℓij with ℓij ≡ {|i − j|, N − |i − j|}. The eigenvalues

{χk} of D̄ are given by the following lemma.

Lemma C.1. Assume that N is an even and let M ≡ N
2 . Define

Ψk(φ) ≡
1 − φ2

1 − 2φ cos[θk] + φ2
and Ψ̄(φ) ≡ 1 + φM

1 − φM
(C.3)

with θ = 2π
N . Then,

χk(φ) =







Ψk(φ)ΨM(φ) (k: even)

Ψk(φ)ΨM(φ)Ψ̄(φ) (k: odd)
k = 0, 1, 2, . . . , M. (C.4)

See Lemma 4.2 of Akamatsu et al. (2012). �

Remark C.6. The following lemma is useful for characterizing the stability of x̄. Notations are the

same as Appendix A.1.

Lemma C.2. x̄ is linearly stable under all admissible dynamics if and only if:

z⊤Vz < 0 ∀z ∈ TX \ {0} (CND)

where TX ≡ {z ∈ R
N | 1

⊤z = 0}.

Proof. From Fact E.3, V has N
2 + 1 distinct eigenvalues {ωk}

N
2

k=0. ω0 is associated to 1, which is

orthogonal to TX . Thus, (CND) is equivalent to ωk < 0 for all k 6= 0. Then, from (A.3), ηk < 0

for all k 6= 0, which is the definition of linear stability of x̄. �

Sections 2.2, 2.3, and 4 builds on Lemma C.2. For instance, (CND) is equivalent to ω < 0 in

the two-region setup. �
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Figure C.1: Bifurcation in Class II model with exogenous heterogeneity

Notes: The black solid curves indicate stable equilibria, whereas the dashed curves unstable equilibria. For

the range φ ∈ (φ∗∗, 1) (φ∗∗ ≈ 0.43), there are two large cities due to exogenous advantages. However,

when endogenous agglomeration occurs, the spatial distribution become single-peaked, as Proposition 1 (b)

predicts.

Remark C.7. In Appendix A.2, the expression (A.18) provides an intuition for what pattern can

emerge in the presence of small heterogeneities in local characteristics. Suppose that φ∗
k is a value

of φ at which x̄ changes its stability from stable to unstable under complete symmetry, resulting in a

deviation towards k-cities direction (k = 1 or k = N
2 ). By definition, G(χk(φ

∗
k )) ≈ 0 near such φ∗

k .

Combined with the condition G♮(χk) > 0, it implies that λk become infinitely large as φ approaches

to φ∗
k ; if a = ā1+ ãkzk, then linearization x(a) ∼ x̄+X(a− ā) = x̄+ ãkλkzk predicts that spatial

pattern x(a) almost “kinks” towards k-cities pattern. This is another manifestation of Proposition 1

in that the instability of x̄ at φ∗
k implies the formation of k cities.

That said, small heterogeneities do not affect the predictions of Proposition 1. Figure C.1

illustrates that although local advantage can induce “multipolar” distribution in a Class II model,

such spatial pattern vanish to form a single megacity when endogenous agglomeration force matters.

The topic here is related to the so-called universal unfolding and there is an enormous body of general

theory that justifies and generalizes the casual observation we have drawn here. See Golubitsky and

Stewart (2003), Golubitsky and Schaeffer (2012), and Golubitsky et al. (2012). See also Ikeda and

Murota (2014) for applications. �

Remark C.8. Figure C.2 depicts the population share of region 1 under asymmetry as considered

in Figure 14 in the main text. Basic model parameters are the same as Figure 10 and Figure 11

except that region 1 has exogenous advantage. Figure C.2a is a reproduction of Figure 14b, whereas

Figure C.2b considers the AA model under multiplicity of equilibria. For both figures, we see that

Proposition 2 correctly predicts the sign of ρ′(φ) for the range of φ such that x̄ is stable when

a1 = 1. We have ρ′(φ) > 0 when φ ∈ (0, φ∗) for the Km model, whereas ρ′(φ) < 0 when

φ ∈ (φ∗∗, 1) for the AA model.

For Figure C.2a, we modify the definition of ρ for spatial patterns with unpopulated regions.
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(a) The Krugman model (b) The Allen–Arkolakis model

Figure C.2: Population share of region 1 and covariance ρ

For instance, for the range φ ∈ (φ∗, φ∗∗), we define ρ with respect to the four-centric pattern

(2x̄, 0, 2x̄, 0, 2x̄, 0, 2x̄, 0):

ρ ≡ ∑
i∈I(x)

(xi − 2x̄)(ai − ā(x)), (C.5)

where I(x̄) = {i ∈ I | xi > 0} is the set of populated regions, and ā(x) ≡ 1
|I(x̄)| ∑i∈I(x) ai. We

define ρ for two-centric pattern (4x̄, 0, 0, 0, 4x̄, 0, 0, 0) in a similar way. For the transitional phase

after φ∗∗ we let

ρ ≡ ∑
i∈I(x)

(xi − x∗i )(ai − ā(x)), (C.6)

where x∗i corresponds to the stable solution for a1 = 1. Note that ρ = (x1 − 1)(a1 − a1) = 0 for

the complete monopolar pattern (1, 0, 0, 0, 0, 0, 0, 0). It is natural that we have ρ′(φ) > 0 for the

four- and two-centric patterns because these patterns can be regarded as the uniform distribution on

the four- and two-region cases, respectively.

For Figure C.2b, we employ (C.6) as the definition of ρ for the case φ ∈ (0, φ∗∗), i.e., we

consider the deviation from the baseline equilibrium (a1 = 1). We observe that ρ′(φ) < 0 does

not necessarily hold true for φ ∈ (0, φ∗∗). In particular, ρ′(φ) > 0 when local dispersion force is

relatively weak (when φ is small). �

Remark C.9. Many economic geography models are subject to multiple proximity matrices and/or

different degrees of increasing returns. We here discuss three major categories of economic geog-
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raphy models that can be studied by imposing racetrack assumptions.

One major strand of research in this line aims to explain the formation of the (possibly multiple)

business districts together with residential land use and commuting patterns within a city. These

intra-city models typically distinguish location behavior of firms and households (e.g., Fujita and

Ogawa, 1982; Ota and Fujita, 1993; Lucas and Rossi-Hansberg, 2002; Ahlfeldt et al., 2015; Owens

et al., forthcoming; Heblich et al., 2018; Osawa and Akamatsu, 2019).

Another possibility is to consider different transport cost structures by industry. For example,

Fujita and Krugman (1995) introduced transport costs for land-intensive rural goods along with

those of urban goods. In the presence of rural goods that are costly to transport, the delivered

price for such goods is lower in regions farther away from the agglomerations, which generates a

dispersion force. This is similar to the local dispersion force in that even a small deviation from an

urban agglomeration will decrease the price of rural goods and increase the payoff of the deviant.

However, the advantage of dispersion persists outside the agglomeration, i.e., it depends on the

distance structure of the model. This type of dispersion force is known to result in the formation of

an industrial belt, a continuum of agglomeration associated with multiple atoms of agglomeration as

demonstrated by the simulations in Mori (1997) and Ikeda et al. (2017b). The formal characterization

of industrial belts remains to be carried out.

The last relevant direction of research is the formalization of the classical central place theory of

Christaller (1933) which investigates the diversity in sizes together with the spatial patterns of cities

(e.g., Fujita et al., 1999b; Tabuchi and Thisse, 2011). It is an extension of Class I models by multiple

industries subject to different degrees of increasing returns and/or transport costs.36 As in Class I

models, agglomerations of each industry are spaced apart from one another, but their spacing is larger

for industries with greater increasing returns. The key in these central place models is that industries

tend to co-agglomerate as they share demand externaltities through common consumers. As a

consequence, there is a hierarchical structure in industrial agglomeration pattern: more localized

industries (with greater increasing returns) tend to co-agglomerate with more ubiquitous ones (with

smaller increasing returns). Since larger cities are formed at locations in which a larger number

of industries co-agglomerate, the size diversity and spatial patterns of cities are determined by the

spatial coordination of industries.

Since the endogenous mechanism is the key in both these types of models, a racetrack geography

provides an ideal setup. Initial such explorations are found in Tabuchi and Thisse (2011) and Osawa

and Akamatsu (2019). �

36Hsu (2012) proposes an alternative formalization of central place theory in the context of spatial competition and

firm entry. Davis and Dingel (2019) offer an alternative mechanism of spatial coordination among industries which in

turn results in hierarchy principle and the diversity in city sizes in the context of a systems-of-cities model that abstracts

from inter-city space.
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D On relaxing the racetrack assumption

This section highlights the implications of Proposition 1 qualitatively generalize to various geo-

graphical set-ups (line segment, square and hexagonal lattices with/without boundaries). In particu-

lar, the polarity of endogenous spatial patterns in each model class is unaffected; multiple cities can

endogenously form in Class I, whereas a single city form in Class II, when we relax Assumption RE.

The simplest way to introduce geographical asymmetry into our one-dimensional set-up is to

consider a bounded line segment, which is a standard spatial setting in urban economic theory. For

instance, Ikeda et al. (2017b) considered a Class I model by Forslid and Ottaviano (2003) in a line

segment and showed that multiple cities form in the set-up. It is also shown that the evolution

of spatial structure on such geography follows a “period doubling” behavior, which is formally

discussed for racetrack economy (Akamatsu et al., 2012; Osawa et al., 2017), as in Figure 10. For

Class II and III, Figure D.1 shows endogenous agglomeration patterns in the Hm and PS models.

Observe that for both the models, qualitative properties of the spatial patterns are consistent with

those for circular geography (Section 5).

Also, Mossay and Picard (2011) considered a variant of Beckmann (1976)’s model (Class II)

and showed that the only possible equilibrium is a unimodal distribution, as in Figure 11.37 The

numerical results of Anas and Kim (1996) and Anas et al. (1998) in line segments bear close

resemblance to, respectively, agglomeration behaviors of Class I and II models.

The real-world geography is two-dimensional. The two-dimensional counterpart of the racetrack

economy is a bounded lattices with periodic boundary conditions (i.e., flat torus). Ikeda et al. (2017a)

and Ikeda et al. (2018) respectively considered a Class I model in two-dimensional hexagonal and

square lattices. In both lattices, it is shown that multiple cities form and period-doubling behavior

emerge from the model, as in the racetrack set-up. See, in particular, Ikeda et al. (2018) for detailed

comparison of one-dimensional racetrack economy and two-dimensional square lattice economy.

As concrete examples, Figure D.2 shows endogenous equilibrium spatial patterns over a bounded

square economy with 9 × 9 = 81 regions in the course of increasing φ for the Krugman and Allen–

Arkolakis models. The parameters are the same as Figure 10 and Figure 11. As Proposition 1

and Section 5 predict, the Krugman model (Class I) engender multiple disjointed cities. When φ

increases, the number of cities gradually decreases, while the spacing between them enlarges. For

the AA model (Class II), in contrast, the spatial pattern is initially monopolar, i.e., there is a single

big city. As φ increases, the city gradually flattens due to suburbanization. These behaviors are

qualitatively consistent with Proposition 1 and examples in Section 5.

Also, Blanchet et al. (2016) considered a Class II model over a two-dimensional space and

showed that, for the Bm model, equilibrium spatial pattern is unique and given by a concave regular

paraboloid, i.e., an “unimodal” pattern. Picard and Tabuchi (2013) also considered a Class II

37Mossay and Picard (2011) considered a continuous line segment, in contrast to this paper and Ikeda et al. (2017b).

As shown by Akamatsu et al. (2017a), the model by Mossay and Picard (2011) can be considered as a continuous limit

of an appropriate discrete-space model.

A10



(a) The PS model (b) The Hm model

Figure D.1: Endogenous agglomeration patterns in a line segment with 65 regions

general equilibrium model in a two-dimensional space and showed that spatial distribution become

unimodal.38

38Notably, the implications of Proposition 1 seem to extend to non-iceberg transport costs that are not covered by

the specification of D in Assumption RE. In fact, Mossay and Picard (2011); Picard and Tabuchi (2013); Blanchet et al.

(2016) assume linear transport costs.
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(a) The Krugman model (b) The Allen–Arkolakis model

Figure D.2: Endogenous agglomeration patterns in a bounded square economy
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E Preliminaries from matrix analysis

This section collects the relevant facts from matrix analysis for self-containedness. For a concise

reference, see Horn and Johnson (2012) (henceforth HJ). First, we recall that when we know the

eigenpairs (eigenvalue–eigenvector pairs) of a square matrix A, we know those of matrix polynomials

based on A (see HJ, Section 1.1).

Fact E.1. Let A be a square matrix with eigenpairs {(λk, zk)}k∈K. For a finite-degree polynomial

P(t) = ∑
n
l=0 plt

l, let P(A) be defined by P(A) = ∑
n
l=0 plA

l with A
0 ≡ I. Then, the eigenpairs

of P(A) are given by {(P(λk), zk)}k∈K. Take another finite-degree polynomial Q(t). If Q(A) is

nonsingular, then the eigenpairs of Q(A)−1 are given by {(Q(λk)
−1, zk)}k∈K. Thus, the eigenpairs

of the matrix G(A) ≡ Q(A)−1P(A) is given by {(G(λk), zk)}k∈K with G(t) = P(t)
Q(t)

. ♦

Next, a circulant matrix C of size N generated by c = (ci)
N−1
i=0 is

C = circ[c] ≡












c0 c1 c2 · · · cN−2 cN−1
cN−1 c0 c1 c2 · · · cN−2

cN−2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . c2

c2 · · · cN−2 cN−1 c0 c1
c1 c2 · · · cN−2 cN−1 c0












. (E.1)

Each row of C are identical to the previous row moved one position to the right and wrapped around.

Every row sum equals to c⊤1 by definition. Circulant matrices are known to satisfy the following

properties (see HJ, Section 0.9.6 and Problem 2.2.P10):

Fact E.2. Circulant matrices of size N form a commutative algebra: linear combinations and

products of circulants ar circulants; the inverse of a nonsingular circulant is a circulant; any two

circulants of the same size commute. ♦

Fact E.3. Let C = circ[c] be a real and symmetric circulant matrix of size N. Then, C is

diagonalized by an orthogonal matrix Z: diag[λ] = Z
⊤

CZ. The column vectors of the matrix Z

are the eigenvectors of C. Let θ ≡ 2π
N . Eigenpairs (λk, zk) can be chosen to be

λ0 = c⊤1, z0 ≡ 〈1〉N−1
i=0 , (E.2)

λk,







z+k ≡ 〈cos(θki)〉N−1
i=0 ,

z−k ≡ 〈sin(θki)〉N−1
i=0 ,

k = 1, 2, . . . , ⌊N
2 ⌋ − 1, (E.3)

λ N
2

, z N
2
≡ 〈(−1)i〉N−1

i=0 , if N is an even, (E.4)

where 〈zi〉N−1
i=0 ≡ ‖z‖−1(zi)

N−1
i=0 denotes the normalized version of real vector z. Thus, the distinct

eigenvalues of C are given by λ = {λk}k∈K (k ∈ {0, 1, 2, . . . , ⌊N
2 ⌋}). Those eigenvalues with
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k = 1, 2, . . . , ⌊N
2 ⌋ − 1 are multiplicity two. z0 is a uniform vector and λ0 is the row-sum of C;

the elements of other eigenvectors sum up to zero. If in addition ci > 0 for all i and c⊤1 = 1,

then C = circ[c] is positive and row-stochastic. We have C1 = 1 and thus λ0 = 1; λ0 is the

maximal eigenvalue (or the spectral radius) of C and 1 is the only strictly positive eigenvector (the

Perron–Frobenius theorem). Note that all real symmetric circulant matrices of size N share the

same set of eigenvectors. For general (possibly asymmetric) circulant matrices, discrete Fourier

transformation matix can be employed for diagonalization (see, e.g., Akamatsu et al., 2012, for an

application). ♦

Remark E.1. Under Assumption RE, D is a circulant matrix because φij = φℓij = φℓi+1,j+1 =

φi+1,j+1 for all i, j (mod N for indices). �
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F Supporting computations

F.1 General observations

This section summarizes general relationships between various partial derivatives. Throughout this

section, we let Fx = [ ∂ fi
∂xj

] denote the partial derivative of a vector-valued function f (x) with respect

to the variable x. For instance, Vx ≡ [ ∂vi
∂xj

], Ṽx ≡ [ ∂ṽi
∂xj

], Ṽw ≡ [ ∂ṽi
∂wj

], Sx ≡ [ ∂si
∂xj

], Sw ≡ [ ∂si
∂wj

], and

Wx ≡ [ ∂wi
∂xj

].

The matrix V = x̄
v̄ Vx. The payoff functions for most of the models we referenced in the main

text reduce to the following form:

v(x) = ṽ(x, w), (F.1)

s(x, w) = 0. (F.2)

The condition (F.2) represents the market equilibrium conditions for a given x that defines w as an

implicit function of x. For v(x) to be well-defined, (F.2) must admit a unique solution of w for all

x ∈ X . We assume that (F.2) has a unique solution for all x ∈ X ◦, where X ◦ ≡ {x ∈ X | xi >

0 ∀i ∈ N} denote the interior of X . In general, we have

Vx = Ṽx + ṼwWx, (F.3)

Wx = −S
−1
w Sx, (F.4)

where Wx is obtained by the implicit function theorem regarding (F.2). The inverse S
−1
w exists for

all x ∈ X ◦ under our premise that w(x) exists.

If x = x̄, Vx = S
−1
w (SwṼx − ṼwSx), since all matrices commute because they are real,

symmetric, and circulant at x̄ (Fact E.2). In fact, G♭(D̄) in the Km and Helpman models arises

from Sw and represents general equilibrium effects through (F.2). In this way, for any model whose

payoff function reduces to the equations of the form (F.1) and (F.2), V = Q(D̄)−1P(D̄) where

polynomials P(t) and Q(t) are chosen such that P(D̄) = SwṼx − ṼwSx and Q(D̄) = Sw.

Example F.1. In Examples 2.2 and 2.3, (F.2) is given by

si(x, w) = wixi − ∑
j∈N

mijej = 0, (F.5)

where ei = e(wi, xi) with some nonnegative function e and M = [mij] is defined by

mij =
xiw

1−σ
i φij

∑k∈N xkw1−σ
k φkj

. (F.6)
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In matrix form, we may write (F.5) as y − Me = 0. It gives

Sx = diag[w]−
(

diag[Me]− M diag[e]M⊤
)

diag[x]−1 − MEx, (F.7a)

Sw = diag[x] + (σ − 1)
(

diag[Me]− M diag[e]M⊤
)

diag[w]−1 − MEw. (F.7b)

Suppose Assumptions RE and S. Consider uniform distribution x̄ and let w̄ be the uniform level

of wage at x̄. Note that M = D̄ when x = x̄. Let Ex = ǫxw̄I and Ew = ǫw x̄I at x̄. Let ē = e(w̄, x̄)

and ζ ≡ ē
w̄x̄ . We see that

Sx = −w̄
(

(ζ − 1)I + ǫxD̄ − ζD̄
2
)

, (F.8a)

Sw = x̄
(

(1 + ζ(σ − 1)) I − ǫwD̄ − ζ(σ − 1)D̄2
)

. (F.8b)

For instance, if e(wi, xi) = wixi, we see Wx = w̄
x̄ (σI + (σ − 1)D̄)−1

D̄ at x̄. �

The matrix A = x̄
ā Va. Note that X = [∂xi(ā)/∂ai] = Xa in (A.14) acts essentially as

X̂ ≡ −V
−1
x Va for z such that z⊤1 = 0. Thus, Va is of interest.

For purely local regional characteristics (Example 6.1), since vi(x, a) = aivi(x), it follows that

Va = diag[v(x)]. At x̄, we have Va = v̄I. Thus, X̂ = −v̄V
−1
x .

For regional characteristics that affect trade flows (Examples 6.3 and 6.4), the payoff func-

tion and the market equilibrium condition are respectively modified to v(x, a) = ṽ(x, w, a) and

s(x, w, a) = 0 with some a. Then, by applying the implicit function theorem to the modified

equation, we see Va = Ṽa + ṼwWa = Ṽa − ṼwS
−1
w Sa. Thus, it is equivalent to consider

X̂ = −
(

Ṽx − ṼwS
−1
w Sx

)−1 (

Ṽa − ṼwS
−1
w Sa

)

(F.9)

=
(
SwṼx − ṼwSx

)−1 (
ṼwSa − SwṼa

)
, (F.10)

where we also note that all matrices commute under Assumption RE.

Example F.2. In Example 6.3, we have

si(x, w, a) = wixi − ∑
j∈N

xiaiw
1−σ
i φij

∑k∈N xkakw1−σ
k φkj

ej = 0, (F.11)

which induces Sa = −
(
diag[My]− M diag[y]M⊤)diag[a]−1 or, at the uniformity x = x̄,

Sa = − ē
ā

(
I − D̄

2
)
= − ē

ā (I − D̄) (I + D̄). Section F.2.4 will derive δ(χ) for this case. �

Example F.3. In Example 6.4, we have

si(x, w, a) = wixi − ∑
j∈N

xiw
1−σ
i φij

∑k∈N xkw1−σ
k φkj

e(wj, xj, aj) = 0 (F.12)
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where e maps the tuple (wj, xj, aj) to the regional expenditure. Then, we have Sa = −MEa, or, at

x̄, Sa = −ǫaD̄ where ǫa =
∂e(x̄,w̄,ā)

∂ai
. We will derive δ(χ) for this case in Section F.2.1. �

F.2 Model-by-model analyses

For self-containedness, this section provides omitted derivations of the net gain functions G♯(χ)

for the examples provided in the main text.39 Table F.1 at the end of this appendix summarizes

the exact mappings from each model to the coefficients of a model-dependent net gain function

G♯(χ) = c0 + c1χ + c2χ2. Throughout, v̄, w̄, ē and so on represent that they are the values of vi,

wi, ei evaluated at x = x̄ = x̄1, unless otherwise noted.

F.2.1 Krugman (1991b) model (Examples 2.2 and 6.4)

There are two types of workers, mobile and immobile, with the total endowments of them being 1

and L, respectively, and x ≡ (xi)i∈N denotes the spatial distribution of mobile worker. Each worker

inelastically supplies one unit of labor.

There are two industrial sectors: agriculture (abbreviated as A) and manufacturing (abbreviated

as M). The A-sector is perfectly competitive and a unit input of immobile labor is required to produce

one unit of goods. The M-sector is modeled by Dixit–Stiglitz monopolistic competition. M-sector

goods are horizontally differentiated and produced under increasing returns to scale using mobile

labor as the input. The goods of both sectors are transported. Transportation of A-sector goods is

frictionless, while that of M-sector goods is of an iceberg form. For each unit of M-sector goods

transported from region i to j, only the proportion 1/τij arrives, where τij > 1 for i 6= j and τii = 1.

All workers share an identical preference for both M- and A-sector goods. The utility of a worker

in region i is given by a two-tier form. The upper tier is Cobb–Douglas over the consumption of

A-sector goods CA
i and that of M-sector manufacturing constant-elasticity-of-substitution (CES)

aggregate CM
i with σ > 1

CM
i ≡

(

∑
j∈N

∫ nj

0
qji(ξ)

σ−1
σ dξ

) σ
σ−1

, (F.13)

that is, ui = (CA
i )

µ(CA
i )

1−µ where µ ∈ (0, 1) is the constant expenditure of the latter. With free

trade in the A-sector, the wage of the immobile worker is equalized, and we normalize it to unity

by taking A-sector goods as the numéraire. Consequently, region i’s expenditure on the M-sector

goods is given by ei = µ(wixi + li) where li denotes the mass of immobile workers in region i.

In the M-sector, to produce q units of the differentiated product, a firm requires α + βq units of

mobile labor. The profit maximization of firms yields the price of differentiated goods produced in

region i and exported to j as pij =
σβ

σ−1 wiτij, which in turn determines gravity trade flow from j to

39Routin derivations are omitted. For detailed derivations, see Akamatsu et al. (2017b).
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i. That is, when Xij denotes the price of M-sector goods produced in region i and sold in region j,

Xij = mijej where the share mij ∈ (0, 1) is defined by (F.6) with φij ≡ τ1−σ
ij . The proximity matrix

is thus D = [φij] = [τ1−σ
ij ].

Given x, we determine the market wage w ≡ (wi)i∈N by the M-sector product market-clearing

condition, zero-profit condition, and mobile labor market-clearing condition. These conditions are

summarized by the trade balance wixi = ∑j∈N Xij, or (F.5) with e(xi, wi) = µ(wixi + li). By

adding up (F.5) for the Krugman model, we see ∑i∈N wixi =
µ

1−µ L, which constrains the total

income of mobile workers at any configuration x. The existence and uniqueness of the solution

for (F.5) follow from standard arguments (e.g., Facchinei and Pang, 2007). Given the solution

w(x) of (F.5), we have the indirect utility of mobile workes is given by vi = ∆
µ

σ−1

i wi, where

∆i ≡ ∑k∈N xkw1−σ
k dki.

To satisfy Assumption S, let li = l ≡ L
N for all i ∈ N . We have

∇ log v(x̄) =
µ

σ − 1
M

⊤ diag[x]−1

︸ ︷︷ ︸

v̄−1Ṽx

+
(

I − µM
⊤
)

diag[w]−1

︸ ︷︷ ︸

v̄−1Ṽw

Wx (F.14)

=
1

x̄

µ

σ − 1
D̄ +

1

w̄
(I − µD̄)Wx, (F.15)

where Wx is given by (F.4) and (F.8). Plugging δ = µ(w̄x̄+l)
w̄x̄ = 1 (as w̄x̄ = µ

1−µ l) and ǫx = ǫw = µ

to (F.8),

Wx =
w̄

x̄

(

σI − µD̄ − (σ − 1)D̄2
)−1

︸ ︷︷ ︸

x̄S
−1
w

D̄ (µI − D̄)
︸ ︷︷ ︸

w̄−1Sx

. (F.16)

Since circulant matrices commute (Fact E.2), (F.15) and (F.16) together imply V = x̄∇ log v(x̄) =

G♭(D̄)−1G♯(D̄), where we define

G♯(χ) ≡ µ

(
1

σ − 1
+

1

σ

)

χ −
(

µ2

σ − 1
+

1

σ

)

χ2, (F.17)

G♭(χ) ≡ 1 − µ

σ
χ − σ − 1

σ
χ2, (F.18)

as presented in Section 2.2.

Remark F.1. In Figure 10, we set µ = 0.5, σ = 10, and L = 8. �

Remark F.2 (Derivation for Example 6.4). To obtain G♮ with respect to l = (li)i∈N , we need

to evaluate Vl = −ṼwS
−1
w Sl since A = l

v̄ Vl. From Example F.3, we have Sl = −µD̄. Also,

Ṽw = v̄ ∂
∂w log v(x̄) = v̄

w̄ (I − µD̄) and Ṽl = 0. We obtain

G♮(χ) = c
χ(1 − µχ)

G♭(χ)
> 0 (F.19)
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where c = l
w̄

µ
σ = 1−µ

σ x̄ > 0. It then follows that

δ(χ) = − x̄

ā

G♮(χ)

G(χ)
= − cx̄

ā

χ(1 − µχ)

G♯(χ)
. (F.20)

Straightforward algebra veryfies that δ′(χ) < 0 if G♯(χ) > 0. �

F.2.2 Forslid and Ottaviano (2003) (FO) model (Example 3.3)

The FO model is a slightly simplified version the Krugman model. The model is sometimes called

the footloose-entrepreneur model, since a unit of mobile (mobile) labor is required as the fixed input

of a manufacturing firm, thereby xi coincides with the mass of firms. The only difference is that

the variable input of M-sector firms in the Krugman model is now replaced by immobile labor.

Specifically, to produce q units of good, an M-sector firm now requires α units of mobile labor and

βq units of immobile labor. Thus, the total cost of a firm in region i that produces q units of good is

αwi + βq. It implies pij =
σβ

σ−1 τij provided that A-sector goods are produced in every region. The

market equilibrium conditions under a fixed x ∈ X is

wi =
µ

σ ∑
j∈N

φij

∑k∈N φkjxk
(wjxj + lj). (F.21)

This equation is analytically solvable. In vector–matrix form, we have

w =
µ

σ

(

I − µ

σ
M diag[x]

)−1
Ml, (F.22)

where l ≡ (li) and M ≡ [mij] = [φij/∆j] with ∆i = ∑j∈N φjixj. The indirect utility v(x) is

expressed as vi = ∆
µ

σ−1

i wi. At x̄, we compute that V = G♭(D̄)−1G♯(D̄) with

G♯(χ) = µ

(
1

σ − 1
+

1

σ

)

χ −
(

µ

σ − 1

µ

σ
+ 1

)

χ2, (F.23)

G♭(χ) = 1 − µ

σ
χ. (F.24)

F.2.3 Pflüger (2004) (Pf) model (Example 3.3)

The Pf model is a further simplified version of the FO model (and hence the Krugman model)

in which we assume a quasi-linear form for the upper tier. It results in the following analytical

expression for w:

wi =
µ

σ ∑
j∈N

φij

∑k∈N φkjxk
(xj + lj). (F.25)

A19



Indirect utility is then given by vi = log ∆
µ

σ−1

i + wi, where ∆i ≡ ∑j∈N φjixj. At the uniform

distribution, we have

V =
1

v̄

(

µ

(
1

σ − 1
+

1

σ

)

D̄ − µ

σ
(1 + L)D̄2

)

(F.26)

so that we may let G♯(χ) = µ
(

1
σ−1 +

1
σ

)

χ − µ
σ (1 + L)χ2. Observe that the Pf model reveals the

agglomeration force in the Km framework in its simplest form.

F.2.4 Helpman (1998) model (Examples 2.3 and 6.3)

Helpman (1998) removed the A-sector in the Krugman model and assumed that all workers are

mobile. Instead of the A-sector, the model introduces the housing (abbreviated as H) sector. Each

region i is endowed with a fixed stock ai of housing. Workers’ preference is Cobb–Douglas of

M-sector CES aggregate CM
i and H-sector goods CH

i , ui = (CM
i )µ(CH

i )γ, where µ ∈ (0, 1) is the

expenditure share of the former and γ = 1 − µ ∈ (0, 1) is that for the latter. There are two variants

for assumptions on how housing stocks are owned: public landownership (abbreviated as PL) and

local landownership (LL). The original formulation by Helpman (1998) supposes housing stocks

are equally owned by all workers (i.e., PL). The income of a worker in region i is the sum of the

wage and an equal dividend r > 0 of rental revenue over the economy. On the other hand, Ottaviano

et al. (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assumed that housing stocks

are locally owned (i.e., LL). The income of a worker in region i is the sum of the wage and an equal

dividend of rental revenue in each region.

Regarding the market equilibrium conditions, the only difference from the Krugman model is

regional expenditure ei on M-sector goods in each region:

[PL] ei = µ (wi + r) xi, (F.27)

[LL] ei = wixi, (F.28)

and market wage is given as the solution for (F.5). For the LL case, w(x) is uniquely given up to

normalization. The indirect utility function is

[PL] vi =

(
xi

ai

)−γ

(wi + r)µ∆
µ

σ−1

i , (F.29)

[LL] vi =

(
xi

ai

)−γ

w
µ
i ∆

µ
σ−1

i , (F.30)

where ∆i ≡ ∑j∈N xjw
1−σ
j φji and r > 0.
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Let ai = 1 to satisfy Assumption S. We compute that

V = x̄

(
µ

σ − 1
M

⊤ diag[x]−1 + V̂wWx − γ diag[x]−1

)

, (F.31)

where [PL] V̂w ≡ µ
(

diag[w + r1]−1 − M
⊤ diag[w]−1

)

, (F.32)

[LL] V̂w ≡ µ
(

I − M
⊤
)

diag[w]−1, (F.33)

and M is defined by (F.6). From (F.7), V = G♭(D̄)−1G♯(D̄) with

G♯(χ) ≡ −γ + µ

(
1

σ − 1
+

1

σ

)

χ −
((

µ2

σ − 1
+

1

σ

)

− γ

)

χ2, (F.34)

G♭(χ) ≡ 1 − µ

σ
χ − σ − 1

σ
χ2 (F.35)

for the PL case, whereas for the LL case

G♯(χ) ≡ (1 − χ)

(

−γ +

(

µ

(
1

σ − 1
+

1

σ

)

− γ
σ − 1

σ

)

χ

)

, (F.36)

G♭(χ) ≡ (1 − χ)

(

1 +
σ − 1

σ
χ

)

. (F.37)

Remark F.3. The condition for the uniqueness of the equilibrium is γσ = (1 − µ)σ > 1 (Redding

and Sturm, 2008). For both PL and LL, it implies that G♯(χ) < 0 for all χ ∈ (0, 1). �

Remark F.4 (Derivation for Example 6.3). The regional model formulated in §3 of Redding and

Rossi-Hansberg (2017) is an enhanced version of the Helpman model with LL, in which the variable

input of mobile labor is allowed to depend on region i (i.e., productivity differs across regions). That

is, the cost function of firms in region i is given by Ci(q) = wi(α + βiq). The market equilibrium

condition for this case is, with ai ≡ β1−σ
i > 0, given by

si(x, w) = wixi − ∑
j∈N

xiaiw
1−σ
i φij

∑k∈N xkakw1−σ
k φkj

wjxj = 0. (F.38)

The payoff function is given by (F.33) with ∆i = ∑k∈N xkakw1−σ
k φki.

From Example F.2, Sa = − w̄x̄
ā (I − D̄) (I + D̄) as ē = w̄x̄. Also, we have Ṽw = v̄

w̄ µ(I − D̄),

Ṽa = v̄
ā

µ
σ−1D̄, and Sw = σx̄G♭(D̄). Since Va = Ṽa − ṼwS

−1
w Sa and A = ā

v̄ Va = G♮(D̄), we

compute

G♮(χ) = c
(σ − 1) + σχ

G♭(χ)
> 0 (F.39)
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where c ≡ v̄
ā

µ
σ > 0. This in turn implies

δ(χ) = − x̄

ā

G♮(χ)

G(χ)
= − cx̄

ā

(σ − 1) + σχ

G♯(χ)
(F.40)

where G♯(χ) is that for the LL case (F.37). We can show that δ′(χ) > 0 for all χ whenever

(1 − µ)σ > 1 so that equilibrium is unique (Remark F.3). �

F.2.5 Puga (1999) model (Example 3.3)

Puga (1999) generalized the Krugman model in two directions, namely (i) the inter-sector mobility

of workers between the A- and M-sector (without immobile workers but land) and (ii) intermediate

inputs in the M-sector, both as in Krugman and Venables (1995).

There is only a unit mass of mobile workers. Let xM
i and xA

i the masses of workers engaged in

the M- and A-sectors, respectively (xi = xM
i + xA

i ). The homogeneous preference of consumers is

the same as in the Krugman model, with the expenditure share of the M-sector good µ and elasticity

of substitution between M-sector varieties σ. Each region is endowed with ai units of land owned

by immobile landlords that have the same preference as the workers. We assume that if a worker

relocates, then he or she first enters the M-sector of the destination region. The stability of the spatial

pattern x is then reduced to the study of xM ≡ [xM
i ].

The A-sector is perfectly competitive and produces a homogeneous output by using labor and

land under constant returns to scale. A-sector goods are costless to trade and set as the numéraire. Let

XA
i be the gross regional product of the A-sector. In line with the original study, we specify a Cobb–

Douglas production function with labor share µ̄; in concrete terms, we have XA
i = (xA

i )
µ̄a

1−µ̄
i . This

implies that the total labor costs of A-sector firms are given by µ̄XA
i = wix

A
i , while their land costs

(= the total rental revenue of landlords) are (1− µ̄)XA
i = 1−µ̄

µ̄ wix
A
i . In particular, labor demand in

this sector is given by a function of the wage xA
i = ai(wi/µ̄)1/(µ̄−1), because wi = µ̄(xA

i /ai)
µ̄−1.

Let xA
i = ǫix

M
i , meaning that xi = (1 + ǫi)xM

i ; we assume xM
i 6= 0, because we are interested

in the stability of complete dispersion. We also have ǫi ≡ (ai/xM
i )(wi/µ̄)1/(µ̄−1). The regional

rental revenue from land, Ri, in terms of xM
i is

Ri ≡
1 − µ̄

µ̄
ǫiwix

M
i . (F.41)

By employing the above formulae, the elasticity νi of a region’s labor supply to the M-sector with

respect to wage is νi ≡ wi

xM
i

∂xM
i

∂wi
=

xA
i

xM
i

1
1−µ̄ = ǫi

1
1−µ̄ .

By considering the simplest possible model of round-about intermediate inputs as in Krugman

and Venables (1995), the minimized cost in the M-sector is Ci(q) = P
µ̂
i w

1−µ̂
i (α + βq) where Pi is

the price index of M-sector goods in region i and µ̂ the share of intermediates in firms’ costs. The
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(variety-independent) profit-maximizing price is given by

pij =
σβ

σ − 1
P

µ̂
i w

1−µ̂
i τij. (F.42)

Resultingly, P = (Pi)i∈N should satisfy the following equation:

ti(x, w, P) = P1−σ
i − 1

1 − µ̂ ∑
j∈N

xM
j P

−µ̂σ
j w

1−σ+µ̂σ
j φji. (F.43)

Land is locally owned by immobile landlords that share the same preference as mobile workers;

their regional expenditure on M-sector goods is given by µRi. In addition, the regional expenditure

of firms on intermediates is given by µ̂Cini =
µ̂

1−µ̂ wix
M
i . Total expenditure in region i on M-sector

goods is ei = µwixi + µRi + µ̂Cini. By using (F.41) as well as xi = (1 + ǫi)xM
i , this is simplified

to

ei =

(

µ

(

1 +
ǫi

µ̄

)

+
µ̂

1 − µ̂

)

wix
M
i . (F.44)

The market equilibrium condition for the model is given by

si(x, w, P) =
1

1 − µ̂
wix

M
i − ∑

j∈N
mijej = 0 (F.45)

where we define

mij =
xM

i P
−µ̂σ
i w

1−σ+µ̂σ
i φij

∑k∈N xM
k P

−µ̂σ
k w

1−σ+µ̂σ
k φkj

. (F.46)

The market wage w = (wi) and price index P = (Pi) are obtained as the solution for the system

of non-linear equations (F.43) and (F.45). We require µ̂ < σ−1
σ , meaning that P and w are

uniquely determined for any transportation cost. Given P and w, the indirect utility function is

vi = ṽi(x, w, P) = ∆
µ

σ−1

i wi with ∆i = ∑j∈N xM
j P

−µ̂σ
j w

1−σ+µ̂σ
j φji.

Let ai = a for all i to satisfy Assumption S. Note that v(x) is differentiated in xM as Vx =

Ṽx + ṼwWx + ṼPPx, where Wx = [∂wi/∂xM
j ] and Px = [∂Pi/∂xM

j ] are evaluated by applying the

implicit function theorem to (F.43) and (F.45). We must have Txdx + TwWxdw + TPPxdP = 0

and Sxdx + SwWxdw + SPPxdP = 0 for any infinitesimal (dx, dw, dP), thereby

Px = − (TwSP − TPSw)
−1 (TwSx − TxSw) , (F.47)

Wx = (TwSP − TPSw)
−1 (TPSx − TxSP) . (F.48)
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A patient computation yields V = x̄M

v̄ Vx = G♭(D̄)−1G♯(D̄) with

G♯(D̄) ≡
(

µ̌

(
1

σ − 1
+

1

σ

)

D̄ −
(

µ̌2

σ − 1
+

1

σ
+ η

)

D̄
2

)

(F.49)

and G♭(D̄) is a positive definite matrix defined by D̄. We let µ̌ ≡ µ̂ + µ(1 − µ̂), which is loosely

interpreted as the aggregate expenditure in the economy on M-sector goods, and η ≡ µ(1−µ̌)
σ(σ−1)

(1− ν̄)

is a constant that summarizes the effects of labor mobility between the A- and M-sectors at x̄, where

ν̄ ≡ µ̄
1−µ̄

1−µ
µ is the elasticity of labor supply from the A-sector to the M-sector with respect to wage

at x̄.

F.2.6 Tabuchi (1998) model

The Tabuchi model introduces the internal structure of regions to the Krugman model. The main

thrust of this model is that unlike the majority of regional models, the city boundary in each region is

endogenously determined by the full-fledged monocentric city model of Alonso–Muth–Mills. This

produces a rich structure of urban costs, because the trade-off between commuting costs and land

rents is explicit.

There are three sectors, M, H, and A. The internal structure of each region is featureless, except

that it is endowed with a single central business district (CBD) with negligible spatial extent. In

each region, locations are indexed by the distance from the CBD, ℓ ≥ 0. At any point, the land

endowment density is assumed to be unity. The total mass of mobile and immobile workers are

given by 1 and L, respectively. The mass of mobile workers in region i is denoted by xi, whereas the

spatial distribution (density) in that region is, allowing notational abuse, denoted by xi(ℓ). Thus,

we have

∫ ℓi

0
xi(ℓ)dℓ = xi, (F.50)

where ℓi ≥ 0 is the city boundary in region i that is endogenously determined. Immobile workers

are employed by the A-sector and do not commute to the CBD, whereas mobile workers do. A

mobile worker at distance ℓ from the CBD incurs the generalized cost of commuting T(ℓ), which

is measured by the numéraire. For simplify, we assume that the internal structure of each region

is one-dimensional and extends symmetrically around the CBD such that [−ℓi, ℓi] á la Murata and

Thisse (2005).

The utility of a representative worker living in region i and located at ℓ is given by ui =

(CM
i )µ(CH

i )γ(CA
i )

1−µ−γ where µ and γ with µ + γ < 1 are the constant expenditure shares for

M-sector goods and H-sector goods, respectively; CM
i is the CES aggregate of M-sector goods, CH

i

the consumption of housing space (H-sector goods), CA
i the consumption of agricultural products

(A-sector goods) in region i. The M- and A-sectors are the same as in the Krugman model, whereas
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the H-sector is the same as in the Helpman model. By choosing A-sector goods as the numéraire,

the budget constraint of a mobile worker at location ℓ in region i is

CA
i + ri(ℓ)C

H
i (ℓ) + ∑

j∈N

∫ nj

0
pji(ξ)qji(ξ)dξ = yi(ℓ) = yi − T(ℓ), (F.51)

where ri(ℓ) is the land rent prevailing at location ℓ in region i, T(ℓ) the generalized cost of commuting

from location ℓ to the CBD, and yi the income of the worker. We assume that T(ℓ) is differentiable

and increasing in ℓ with T(0) = 0.

Following the tradition of urban economics, the model assumes absentee landowners who keep

the rental revenue of housing, leading to yi = wi for every mobile worker. Immobile workers live

outside the city and do not commute to the CBD. Thus, they face the region-independent agricultural

land rent rA > 0 and zero commuting cost and yi = 1. Intracity transportation of M-sector goods

is costless, so that workers in each region face the same M-sector product price.

As shown in the original paper, the population density in the region for the given ℓi and wi is

given by

xi(ℓ, wi) =
rA

γwi

(

1 − T(ℓi)

wi

)− 1
γ
(

1 − T(ℓ)

wi

) 1
γ−1

(F.52)

We define the total commuting costs in the region by

Ti(ℓi, wi) =
∫ ℓi

0
T(ℓ)xi(ℓ, wi)dℓ. (F.53)

Note that (xi, wi) is uniquely mapped to ℓi due to (F.50) and (F.52), so that Ti is also a function of

(xi, wi).

The market equilibrium condition is given by (F.5), where we let

ei = µ

(∫ ℓi

−ℓi

yi(ℓ)xi(ℓ)dℓ+ li

)

= µ (wixi − Ti + li) . (F.54)

Then, the indirect utility in region i may be given evaluating it at the city boundary ℓ = ℓi, since

utility is equalized in each region: vi(x) = ṽi(x, w) = ∆
µ

σ−1

i yi(ℓi), where ∆i = ∑j∈N xjw
1−σ
j φji

and yi(ℓi) = wi − T(ℓi).

Let li = l for all i ∈ N to impose Assumption S and consider x̄. Let w̄ and T̄ be the uniform

level of the nominal wage rate and total commuting cost in each region, respectively. Note that T̄ is

a function of w̄ and x̄. For normalization, we require

w̄x̄ − T̄(ℓ, w̄) =
µ

1 − µ
l. (F.55)

Then, there must exist a unique positive solution for the location of city boundary and wage rate
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(ℓ̄, w̄) for the system of non-linear equations defined by (F.50) and (F.55). By employing the

solution (ℓ̄, w̄), total expenditure in a region is given by Ȳ = l
1−µ . Define the ratios κ of the regional

disposable income of mobile workers and κ̂ of regional total expenditure to the total nominal wage:

κ ≡ w̄x̄−T̄
w̄x̄ and κ̂ ≡ Ȳ

w̄x̄ . The latter implies that Ȳ
w̄ = κ̂x̄ and Ȳ

x̄ = κ̂w̄. Given (ℓ̄, w̄), we define

positive constants ψ0, ψ1, ρ0, and ρ1 such that Tx = ψ0I, Ty = ψ1I, Ex = ρ0w̄I, and Ey = ρ1x̄I.

Following Tabuchi (1998), we consider the simplest case where the commuting cost function is

linear with respect to distance: T(ℓ) = tℓ. Then,

ℓ̄ =
1

t
(1 − ǫγ)w̄, (F.56)

where ǫ ∈ (0, 1) is defined by ǫ ≡ (1 + t̂x̄)−1. The parameter t̂ ≡ t
2rA is interpreted as a measure

of the relative magnitude of commuting costs to land rents. As expected, ℓ̄ is decreasing in the

generalized commuting cost per distance t. By solving (F.55), we have

w̄ =
1

κ

µ

1 − µ
L and κ =

1

1 + γ

1 − ǫ1+γ

1 − ǫ
(F.57)

as well as ȳ ≡ w̄ − T(ℓ̄) = ǫγw̄, Ȳ = l
1−µ , and κ̂ = κ

µ . Then, we have ψ0 = ȳγ
x̄ (1 − ǫ),

ψ1 = 1 − ǫγ, ρ0 = 1 − γ(1 − ǫ)κ, and ρ1 = κ. Summarizing computations up to here gives:

Vx =
1

x̄

(
µ

σ − 1
D̄ +

x̄

w̄
(I − µD̄)Wx − γ̂I

)

, (F.58)

Wx =
w̄

x̄

(

ĉ0I + ĉ1D̄ + ĉ2D̄
2
)−1 (

c̄0I + c̄1D̄ + c̄2D̄
2
)

(F.59)

with the coefficients being







ĉ0 ≡ 1 + (σ − 1)κ > 0,

ĉ1 ≡ −µκ < 0,

ĉ2 ≡ −(σ − 1)κ < 0,







c̄0 ≡ −(1 − κ) < 0,

c̄1 ≡ µ(1 − γ̂κ) > 0,

c̄2 ≡ −κ < 0

(F.60)

where γ̂ ≡ γ(1− ǫ). Note that κ and γ̂ together summarize the net effects of the two types of urban

costs; κ and γ̂ represent those from commuting and non-tradable land, respectively. Algebra shows

that a net gain function for the model is G♯(χ) = c0 + c1χ + c2χ2 with

c0 = −γ̂

(
1

σ
+

σ − 1

σ
κ

)

< 0, (F.61)

c1 = µ

(
1

σ − 1
+

1

σ

)

> 0, (F.62)

c2 = −
(

µ2

σ − 1
θ +

1

σ
θ̂

)

(F.63)
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where we let θ ≡ κ
σ + σ−1

σ (1 − γ̂κ) and θ̂ ≡ κ (1 − γ̂κ(σ − 1)). For non-extremal cases, c2 < 0

and the Tabuchi model incorporates both local and global dispersion forces.

F.2.7 Pflüger and Südekum (2008) model (Example 3.5)

The Pflüger–Südekum model builds on Pflüger (2004), with the only difference being that it intro-

duces the housing sector (again denoted by H), which produces a local dispersion force. The indirect

utility of a mobile worker in region i is

vi(x) =
µ

σ − 1
ln[∆i]− γ ln

xi + li
ai

+ wi, (F.64)

where ∆i = ∑j∈N φjixj, and li and ai denote the mass of immobile workers and amount of housing

stock in region i, respectively. The nominal wage in region i is given by (F.25). Let li = l and

ai = a for all i to meet Assumption S. Then, we see that V = 1
v̄ G♯(D̄) with

G♯(χ) = − γ

1 + L
+ µ

(
1

σ − 1
+

1

σ

)

χ − µ

σ
(1 + L)χ2. (F.65)

Remark F.5. Figure 13a and Figure 13b assume the Pflüger–Südekum model. We set µ = 0.4,

σ = 2.5, L = 4, γ = 0.5, and a = 1. �

F.2.8 Murata and Thisse (2005) model (Example 3.4)

Similar to the Tabuchi model, Murata and Thisse (2005) studied the interplay between commuting

costs and interregional transport costs by employing a simplified yet reasonable specification. The

internal structure of each region is assumed to be one-dimensional and featureless except that there

is a given CBD; the city expands symmetrically around the origin. There are only mobile and mobile

workers, who choose their own residential region i and location ℓ ≥ 0 in that region, where the

CBD is located at ℓ = 0.

Land endowment equals unity everywhere in a region and workers are assumed to inelastically

consume one unit of land. The opportunity cost of land is normalized to zero in every region. Then,

the city spreads in the interval Xi ≡ [−ℓi, ℓi], where ℓi ≡ xi
2 denotes the city boundary. Commuting

costs take an iceberg form. Specifically, a worker located at ℓ supplies s(ℓ) = 1 − 4θ|ℓ| units of

labor, where we require θ ∈ [0, 1
2) so that we have s(ℓ) ≥ 0 for all x ∈ X and for all region i at any

configuration. Then, total effective labor supply in the CBD of region i is given by

Si =
∫

Xi

s(ℓ)dℓ = xi(1 − θxi). (F.66)

Note that Si = xi when commuting is costless so that θ = 0. Land is locally owned as in the

Helpman model with LL (Section F.2.4).
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The homogeneous preference of mobile workers in region i is ui = ln CM
i where CM

i is the

consumption of the CES aggregate of M-sector goods. Manufacturing firms are assumed to be the

same as in the Krugman model. Specifically, to produce q units of a good, a firm requires α + βq

units of mobile labor. The market equilibrium condition is

wiSi = ∑
j∈N

Siw
1−σ
i φij

∑k∈N Skw1−σ
k φkj

wjSj (F.67)

To normalize w, we assume ∑i∈N wiSi = 1 > 0. Given the solution w to the equation, the indirect

utility of workers in region i is obtained as

vi(x) =
1

σ − 1
ln[∆i] + ln[wi] + ln[1 − θxi], (F.68)

where ∆i ≡ ∑k∈N Skw1−σ
k dki.

We compute as follows:

Vx =
1

σ − 1
M

⊤ diag[S]−1
Sx + (I − M

⊤)diag[w]−1
Wx − θ diag[1 − θx]−1, (F.69)

where Sx = diag[1 − 2θx]. At x̄, we have

Wx =
w̄(1 − 2θx̄)

x̄(1 − θx̄)
(σI + (σ − 1)D̄)

−1
D̄, (F.70)

implying that V = x̄
v̄ Vx = 1−2θx̄

(1−θx̄)v̄
G♭(D̄)−1G♯(D̄) with

G♯(χ) = −θ̂ +

(

(1 − θ̂)

(
1

σ − 1
+

1

σ

)

− θ̂
σ − 1

σ

)

χ, (F.71)

G♭(χ) = 1 +
σ − 1

σ
χ, (F.72)

where we define θ̂ ≡ θx̄
1−2θx̄ .

F.2.9 Harris and Wilson (1978) (Example 3.3)

The Harris–Wilson model is an archetypal economic geography model formulated in the field of

geography well before economists started to emphasize the self-organization of the spatial allocation

of economic activity. A detailed analysis of the model can be found in Osawa et al. (2017).

The city is discretized into N zones and associated centroids. There is a continuum of retailing

firms in each zone that operate a shop. The mass of firms in zone i is denoted by xi ≥ 0; x

denotes the spatial distribution of retailers. A fixed proportion of consumers resides in each zone.

Consumers are assumed to inelastically buy retail goods from some shop located in the city. Total
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per capita consumer demand for a shopping activity in zone i is a constant Oi. Consumers’ shopping

behavior is captured by a set of origin-constrained gravity equations. For any given x, consumer

demand Sij(x) from zone i to j is given by

Sij =
xα

j φij

∑k∈N xα
k φik

Oi, (F.73)

with α > 0. The term xα
i is the “attractiveness” of the retailers in zone i.

The payoff (profit) of a retailer in zone i is defined as follows:

Πi(x) =
∑j∈N Sji

xi
− κi, (F.74)

where κi is the fixed cost of entry.

Harris and Wilson (1978) assumed that the spatial pattern x gradually evolves in proportion to

the profit Π(x) and the state x. Specifically, we let ẋi = Fi(x) ≡ xiΠi(x) = Si − κixi where

Si = ∑j∈N Sji.

To satisfy Assumption S, let Oi = 1 and κi = κ for all i ∈ N . The Harris–Wilson model

is an open-city model. The total mass of retailers at an equilibrium is thus determined from the

following equilibrium condition: xiΠi(x) = 0, xi ≥ 0, Πi(x) ≤ 0. At any equilibrium, we have

∑i∈N κixi = ∑i∈N Oi and thus if Oi = 1 and κi = κ then X ≡ {x ∈ R
K | ∑i∈N xi =

N
κ , xi ≥ 0}

is globally attracting under F. It is immediately clear that

∇F(x̄) = (κα)

(
α − 1

α
I − D̄

2

)

, (F.75)

so that G♯(χ) = α−1
α − χ2 for the model.

F.2.10 Takayama and Akamatsu (2011) (Example 3.5)

Takayama and Akamatsu (2011) is a partial equilibrium model that introduces a spatial competition

effect à la Harris and Wilson (1978) into the Beckmann model. Specifically, in essence, they

introduced firms that sell goods at a fixed price to spatially immobile consumers.

In each area, li immobile consumers with ∑i li = L demand a single unit of goods produced

by firms; immobile consumers are assumed to engage in jobs in other industries. Given the spatial

distribution n = (ni)i∈N of firms, demand from area j to i is given by the following origin-

constrained gravity equation:

qji =
φ̂ji

∑k∈N φ̂jknk
lj (F.76)

with φ̂ij ∈ (0, 1). A manufacturing firm produces a single unit of a manufactured good at a fixed
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price µ, using a single unit of the labor of mobile workers. Thus, we must have ni = xi. The profit

function of the firm at i is given by

Πi(x) = µ ∑
j∈N

φ̂ji

∑k∈N φ̂jkxk
lj − wi. (F.77)

Firms can freely enter and exit the city, thereby drawing zero profit. We abstract from commuting

between different areas. Then, the wage of a mobile worker in area i equals

wi(x) = µ ∑
j∈N

φ̂ji

∑k∈N φ̂jkxk
lj. (F.78)

The indirect utility of the worker is set to be

vi(x) = wi(x) + log[∆i]− γ log[xi]. (F.79)

where ∆i ≡ ∑j∈N φijxj denotes social utility as in the Beckmann model (Example 2.1).

Let li = 1 for all i. Also, assume that φij = φ̂ij for all i and j. Then, we see that V = 1
v̄ G♯(D̄)

with G♯(χ) = −γ + χ − µχ2.

F.2.11 Allen and Arkolakis (2014) (AA) (Example 3.4)

The AA model is a perfectly competitive Armington (1969)-based framework with positive and

negative local externalities. We introduce a discrete-space version of the AA model to fit our

context. We also abstract away all exogenous differences across regions. In the model, productivity

of a location is proportional to xα
i with α > 0, representing positive externalities. The market

equilibrium condition is

si(x, w) = wixi − ∑
j∈N

w1−σ
i x

α(σ−1)
i φij

∑k∈N w1−σ
k x

α(σ−1)
k φkj

wjxj = 0. (F.80)

With market wage w, the payoff function is given by vi(x) = x
β
i wi∆

1
σ−1

i where ∆i ≡ ∑k∈N w1−σ
k x

α(σ−1)
k φki.

The term x
β
i with β < 0 represents negative externalities from congestion, as in the Beckmann model

(Example 2.1). Direct computation gives V = G♭(D̄)−1G♯(D̄) with

G♯(χ) = −(α + β − γ0) + (α + β + γ1)χ, (F.81)

G♭(χ) = (σ + (σ − 1)χ) (1 − χ) , (F.82)

where γ0 ≡ 1+α
σ and γ1 ≡ 1−β

σ .

Remark F.6. In Figure 11, the parameters are set to α = 0.5, β = −0.3, and σ = 6. For Figure 14a,
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we let β = −0.6 so that α + β < 0. �
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Table F.1: Examples of quadratic net gain functions G♯(χ) = c0 + c1χ + c2χ2

Model class Example
Local force Global forces

c0 c1 c2

Class I Krugman (1991b) 0 µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 + 1
σ

)

Puga (1999) 0 µ̌
(

1
σ−1 + 1

σ

)

−
(

µ̌2

σ−1 + 1
σ + η

)

Forslid and Ottaviano (2003) 0 µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ(σ−1)
+ 1
)

Pflüger (2004) 0 µ
(

1
σ−1 + 1

σ

)

− µ
σ (1 + L)

Harris and Wilson (1978) 1 − 1
α 0 −1

Class II Helpman (1998) −γ µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 + 1
σ

)

+ γ

Redding and Sturm (2008) −γ µ
(

1
σ−1 + 1

σ

)

− γ σ−1
σ 0

Murata and Thisse (2005) −θ̂ (1− θ̂)
(

1
σ−1 + 1

σ

)

− θ̂ σ−1
σ 0

Allen and Arkolakis (2014) −(α + β) + 1+α
σ (α + β) + 1−β

σ 0

Beckmann (1976) −γ 1 0

Class III Tabuchi (1998) −γ̂
(

1
σ + σ−1

σ κ
)

µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 θ + 1
σ θ̂
)

Pflüger and Südekum (2008) − γ
1+L µ

(
1

σ−1 + 1
σ

)

− µ
σ (1 + L)

Takayama and Akamatsu (2011) −γ 1 −µ

Notes: The positive (negative) coefficients indicate agglomeration (dispersion) forces. Observe that Classes II and III incorporates negative constant term in

χ. For definitions of parameters, see Appendix F. Although Helpman (1998) can have a global dispersion force, there is no such (µ, σ) that ensures G(1) < 0,

thereby the model is Class II.
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