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Abstract

In 1995, the Basel Accords introduced an alternative method to compute the mar-

ket risk charge through the use of a risk model developed internally by the financial

institution. These internal models, based on the Value-at-Risk (VaR), follow certain

rules that are defined under the Basel Accords. From this moment on, risk analysts

and financial academics focused their attentions on how to accurately estimate the

VaR in order to reduce the regulatory capital. However, considering the market risk

framework defined in the Basel Accords, the best strategy to optimize the regulatory

capital may not lie in truthfully disclosing an accurate VaR estimation. In this study,

we propose to solve, through dynamic programming, for the optimal policy function

for disclosing the reported VaR based on the estimated value that minimizes the daily

capital charge. This policy function will provide the optimal percentage of the esti-

mated 1-day VaR that should be disclosed, taking into account the impact that this

disclosure decision will have in future capital charges, by managing the rules defined

in the Basel Accords. Our goal is to prove that truthful disclosure of an accurately

estimated VaR is suboptimal. The main results from our investigation show that us-

ing the optimal reporting strategy leads to an average daily reduction in the capital

requirements of 4.32% in a simulated environment, compared with a normal strategy

of always truthfully disclosing the estimated 1-day VaR, and leads to an average daily

saving of 7.22% when applied to our S&P500 test portfolio.
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1 Introduction

In 1995, the Basel Committee on Banking Supervision (BCBS) introduced an internal

model to compute the market risk – Value-at-Risk (VaR) – and define the regulatory capital

charge used to cover future losses related to this type of risk. This model was described as

the estimate for the worst possible loss that a certain portfolio could suffer considering a

predetermined statistical confidence (Basel Committee on Banking Supervison, 1995).

Since then, the Basel Accords, and the VaR method, were adopted by more than 100

countries (Alexander, 2008). Due to this worldwide use, there exists a big literature on

this topic and, in particular, about the methods to estimate the VaR (Angelovska, 2013;

Aussenegg and Miazhynskaia, 2006; Hull and White, 1998; Totić et al., 2011; and Ünal,

2011).

However, as far as we know, there exists few literature on possible strategies to optimize

the daily capital charge based on VaR internal models. Some of these studies focus on the

idea that the best method to optimize the daily capital charge is by accurately estimating

the VaR (McAleer, 2009), while others explored the use of financial options to minimize

VaR and, consequently, the capital charge (Ahn et al., 1999; and Deelstra et al., 2007).

Nevertheless, there is one study that stands out from the others that was introduced

by McAleer et al. (2010). In it, the authors developed a function that minimizes the daily

capital charge through the management of the number of exceedances (i.e. number of days

where the actual loss exceeds the VaR estimate) that a financial institution (FI) is allowed

to have, according to the Basel rules (Basel Committee on Banking Supervison, 1995).

With this model, risk analysts obtain the optimal percentage of the forecasted VaR that

should be reported taking into account two variables: the number of exceedances recorded

since the beginning of the regulatory period; and the number of exceedances recorded in

the last 25 days.

The authors reached the conclusion that using their function together with a VaR model

could reduce the daily capital charges up to 14.3% when compared with the RiskMetrics

Model.1 However, to achieve the perfect model it is necessary to do a calibration test for the

parameters, which is computational intensive and time consuming, and no out-of-sample

tests were performed in order to verify if this would work in a real life context.

Considering this and the small number of studies in this field, we propose to create a

model for the optimization of the regulatory capital charge by choosing the VaR disclosure

based on the estimated VaR and other key variables. This optimal disclosure policy is

solved using dynamic programming methods.

Dynamic programming is a method to solve for optimization problems that can be

stated recursively. The solution that is obtained is a policy function that defines the

optimal course of action in each possible state of nature, taking into consideration the

effect of those choices in the future.
1Method to compute the VaR created by Reuters and JP Morgan that assumes that the portfolio

returns are normally distributed.
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In the case of our model, the policy function represents the percentage of the estimated

1-day VaR that should be disclosed, and this optimal decision will depend on three state

variables which, together, fully describe the state of nature: time remaining for the regu-

lator to do the backtesting and review the multiplier (TtoB); multiplier that is currently

in use (K); and the number of exceedances that were recorded until the moment of the

decision, during the current regulatory period (EC). For each combination of these state

variables, there exists an optimal decision that optimizes today’s capital charge taking into

account the effect that this decision will have in the likelihood of future states of nature

and, as a consequence, in future capital charges. The range of these variables was chosen

according to the rules defined by the Basel Accords for the use of internal models (Basel

Committee on Banking Supervison, 1995).

This problem will be solved as an infinite horizon Markov decision process with the use

of the function iteration algorithm on MATLABTM software.

The advantage of our model is the elimination of any subjective choice or calibration

need for the parameters, defining the optimal policy according to the maximization of

a value function that represents the present value of a FI’s capital charges (that has a

negative sign), which are directly related to the FI’s cost of capital.

In a general way, the results of the optimal policy point out to an aggressive strategy

when exceedances are low, i.e. underreport the estimated VaR, and to a more conservative

strategy when exceedances are high, i.e. overreport the estimated VaR. There are some

deviations from this general strategy that will be analyzed later on in Section 4.

The results from this model will then be tested in a Monte Carlo simulation and

afterwards they will be applied to a real portfolio in order to compare the performance

of the optimal reporting strategy (i.e. reporting the 1-day VaR according to the optimal

policy) with that of a strategy that truthfully reports the estimated VaR. The main results

from these 2 analyses were very promising. In the Monte Carlo simulation, we concluded

that our model performed better in, approximately, 78% of the cases, which translated into

an average relative saving in the daily capital charge of 4.32%. In our S&P500 portfolio

simulation test, the results were even better, pointing out to a better performance of the

optimal strategy model in 82% of the cases and an average relative saving in the daily

capital charge of 7.22%.

This investigation gives four main contributions for the financial literature: defines an

optimal rule to minimize the regulatory capital charge that takes advantage of the Basel

rules; demonstrates that the minimization of the capital requirements goes beyond the

formulation of a good VaR estimation model even though, as we will see, the accurate

estimation of the VaR plays an important role in the effectiveness of the optimal strategy;

gives some insights related with the impact that the state variables may have in the choice

of the disclosed 1-day VaR by risk analysts; and provides an incentive for the development

of more complex studies and models to do this optimization.

The next sections are organized as follows: Section 2 reviews the necessary concepts for

the development of the model; Section 3 analyses the most relevant literature for this work
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as well as the different uses of VaR in the literature; Section 4 introduces our model, the

methodology used to achieve the optimal policy function and analyses the results; Section

5 tests the performance of the optimal policy in the context of a Monte Carlo simulation

while Section 6 does this in a real life context by applying the optimal policy to a real

portfolio; Section 7 concludes by summarizing the main findings and giving suggestions for

future studies.

2 Theoretical Framework

In this section we will review the most important concepts related with this paper. First we

will give a summary about the purpose of the Basel Committee on Banking and Supervision

(BCBS) alongside with the Basel Accords. Afterwards the VaR model will be explained.

Lastly, we will introduce the dynamic programming framework that will be used to attain

the goal of this paper, i.e. the optimization of the capital charge.

2.1 Basel Accords

The Bank for International Settlements (BIS) was established in 1930 with the mission

of promoting the cooperation between central banks, the financial and monetary stability

and to act as a bank for central banks. The BIS has 60 member central banks, including

Portugal’s Central Bank and the European Central Bank (ECB).

In order to promote this cooperation, it hosts independent organizations and commit-

tees that have the purpose of improving financial stability. One of these committees is the

Basel Committee on Banking Supervision (BCBS). The BCBS was created in 1974 by the

central bank governors of the G10 countries as a forum to discuss regulation of banks with

the goal of increasing the efficiency of risk management and banking supervision. From

these forums a report arises with the name of Basel Accords that consists in a number of

suggestions for the improvement of the current risk management framework.

The first Basel Accord of 1988 introduced minimum capital requirements to cover

financial risks (in a standardized approach) and was the main driver for the importance

of this issue in the future. Subsequent to this, in 1995 an amendment, known as Market

Risk Amendment, was released in which it was discussed an internal model to address the

market risk (Value at Risk), that was defined as an estimate of the worst possible loss that

a bank could suffer according to a predetermined statistical confidence.

With the increase of the complexity of the financial products and the need to distin-

guish between the different types of financial risk, it was made a revision to the previous

framework, which resulted in the Basel Accords II, launched in 2004. In this new frame-

work there were defined three pillars: minimum capital requirements, supervisory reviews

(recommendations for supervisors) and market discipline (disclosure requirements in order

to increase transparency). And it was distinguished three types of risk: credit risk, oper-

ational risk and market risk. Since the focus of this paper is in the market risk, we will
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only analyze the impact of the Basel Accords for this type of risk.

Although Basel II has defined some important guidelines about the purpose of the

BCBS and the different types of risk, it did not change the computation process for the

market risk capital requirements – which is what is important for this study – therefore

the following measures result from the analysis of the 1995 Market Risk Amendment.

According to the Basel rules (Basel Committee on Banking Supervision, 1995), the

Market Risk Charge (MRC), i.e. the minimum capital requirement to cover the market

risk, is divided in two types of risk: General Risk Charge (GRC) and Specific Risk Charge

(SRC).

MRC = GRC + SRC (1)

To compute these, two methods are described: the Standardized Method and Internal

Models. The Standardized Method consists in predetermined rules that define the market

risk according to the nature of the assets, e.g. bond or stock (for more information on this

topic refer to Alexander, 2008). The internal model – the focus of this paper – is a model

developed by a bank, which needs to be approved by the regulator, that can accurately

predict the market risk. When an entity chooses the internal model, these models should

be based on the Value-at-Risk (VaR). The value computed with this method is the GRC

while the SRC will depend on the ability of the risk model to capture specific risk.

However, to use the internal model, some rules need to be followed: the model must

estimate the 10-day VaR (2 weeks holding period) at a 1% significance level;2 the VaR

should be estimated on a daily basis; the historical sample used should be at least 1

year of data; and the data must be updated every 3 months or when a sharp change in

prices occurs. Considering these rules, one would assume that the GRC would be equal

to the 10-day VaR at a 1% significance level. However, there are some risks in setting the

GRC as the 10-day VaR at 1% significance level that the BCBS have identified, e.g. past

observations cannot reflect the future behavior, normality assumption may not be verified,

and, in statistical terms, a confidence level of 99% would mean that the bank could go

bankrupt once every 4 years.

Because of this, the Market Risk Amendment (Basel Committee on Banking Supervi-

son, 1995) also stipulates that the 10-day VaR should be multiplied by a factor (k) that is

related to the performance of the FI’s model. This performance is evaluated by producing

a backtesting that evaluates the model’s ability to predict the 1-day VaR in the last 250

business days. This is done by comparing the VaR estimate with the profit/loss on that

day, in order to determine whether an exceedance has occurred (i.e. if the loss was higher

than the one predicted by the VaR).

The factor, commonly known as the multiplier, is then defined according to Table 1.

This allows supervisors to have a higher confidence when approving models and provides an

incentive for risk analysts to create good models in order to reduce the capital requirements

2If the portfolio is linear (i.e. does not have options) the 1-day VaR can be scaled by using the square
root of time.
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Exceedances k factor

≤ 4 3
5 3.4
6 3.5
7 3.65
8 3.75
9 3.85

≥ 10 4

Table 1: Relation between the number of exceedances and the k factor.

(i.e. the capital charge) through lower multipliers.

Lastly, in order to avoid the need of sharp increases in the minimum required capital

related with the high volatility of the market risk, especially when a sharp move in prices

occurs, it is used the average of the last sixty days VaR in the calculation of the GRC.

In short, the previous rules can be translated into the following equation

GRC = max

(

k × 1

60

59
∑

i=0

V aR1,1%,t−i ×
√
10, V aR1,1%,t ×

√
10

)

(2)

In terms of the SRC the BCBS defines that it should be zero when regulators approve

that the VaR model is capturing all the specific risk, otherwise it should be estimated

according to the standardized method.

An important note about the Basel accords is that none of these measures are manda-

tory, these are recommendations that are discussed by the committee, in order to improve

risk management efficiency. The application of these measures depend on their adoption

by the regulators in each country. Nonetheless, the first Basel accord and the 1995 Market

Risk Amendment were adopted by more than 100 countries (Alexander, 2008) – including

the Eurozone countries – which demonstrates the large influence of the BCBS.

Due to the effect of the 2007/2008 financial crisis the BCBS revised Basel II and

published a new report in 2009 entitled “Revisions to the Basel II market risk framework”.

The main reason for this was that the previous measures did not account for some key

risks, e.g. default risk and migration risk.

In this report, some of the rules to use internal models were changed. FIs are now

obliged to update their data once every month and they must compute, on a weekly basis,

a stressed- VaR (sVaR) measure in order to verify how their model would react to a period

of financial stress. This sVaR is also part of the GRC, and it is added to equation 2.

Regarding the SRC, for VaR models that have specific risk recognition it should now be

added an IRC (Incremental Risk Charge) to the MRC, which is an estimate of the exposure

to systematic and specific default, credit migration, credit spread and equity price risk in

a period of 1 year and with a confidence level of 99.9%.

These changes will not be considered in this study since the computation of the sVaR

is ambiguous and difficult to implement in an optimization model. Therefore it will only
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be considered the rules reported until the Basel Accords II, meaning that our model will

optimize one part of the GRC (equation 2) and not the full amount as it is defined nowa-

days.

2.2 Value-at-Risk

As it was stated above, the Value-at-Risk represents the loss that will not be exceeded with

a certain confidence level (1−α) over a certain period of time (h) (Alexander, 2008). From

this it is easy to understand that the VaR is a statistic and it is related with a probability:

P (Xh < −V aRh,α) = α (3)

The popular use of this risk measure to address market risk is mainly due to its com-

prehensibility and ability to be disaggregated and aggregated while taking into account

the dependencies between the assets, allowing the determination of the origin of the risks

in a portfolio. In order to estimate VaR it is necessary to define the values for the two pa-

rameters α and h, the distribution of h-day returns (Xh) and the method used to estimate

the VaR.

The first two parameters have to be chosen according to the rules under the Basel II

– α is equal to 1% and h is equal to 10 trading days. The return distribution will depend

on the estimation method used. The choice of this method is the most important step in

the development of the VaR model since it is one of the main drivers for its performance.

In a study made by Beder (1995) the VaR was computed according to eight different

methodologies for three portfolios and the results indicated eight significantly different

values, varying in some cases by more than fourteen times in the same portfolio.

Alexander (2008) explores three main methods for VaR estimation: Parametric VaR,

Historical Simulation and Monte Carlo Simulation. The Parametric VaR model is based

on the assumption that the return distribution follows a certain parametric distribution,

usually the Normal distribution. The historical simulation is a nonparametric method

that uses the empirical distribution of the returns in a given sample. The Monte Carlo

Simulation is a more advanced method that consists in using a statistic model to simulate

the future returns, being at the same time extremely flexible but also more prone to risk

model risk.

According to a survey made by Pérignon and Smith (2010), the most common method

used by FIs is the historical simulation, choice that is not difficult to understand since it

is the one that has the least assumptions and is easier to explain in case of failing.

In this paper the estimation method used is the Parametric Normal – assumes that the

return distribution follows a normal distribution – due to its simplicity and easy compu-

tation. Therefore the focus, from now on, will be on this method.

To derive the formula for the VaR under the parametric normal it is necessary to

assume that the return distribution follows a normal i.i.d. (independent and identically
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distributed) with a certain mean and standard-deviation (i.e. volatility):

Xh ∼ N (µh, σh) (4)

Both parameters are the forecasts of the future expected return and volatility over the

following h-days. From this assumption it is easy to derive the formula for the VaR.

V aRh = Φ−1 (1− α)× σh − µh (5)

where Φ−1 (·) is the quantile function for the standard normal random variable.

Alexander (2008) demonstrates that using an expected value (i.e. mean) equal to zero

makes the computation of VaR easier and only has a big effect in its value when the risk

horizon (h) is higher than one month. Thus, to simplify this equation, we will assume that

the mean is equal to zero.

V aRh = Φ−1 (1− α)× σh (6)

Now that the formula is derived there is one last concept to understand: scalling.

Basel rules define that the 1-day VaR can be scalled in order to obtain the 10-day VaR.

The purpose of this strategy is to avoid the use of a big sample when a 10-day VaR is

estimated, since this would lead to a forecast of the parameters based in a considerable

amount of past data.

This scalling is done by multiplying the 1-day VaR by the square root of time (in our

case, 10 days). However, it is necessary to do an extra assumption to be able to use this

rule: the arithmetic returns are approximately equal to the geometric returns.

When this rule is used it means that we are computing a dynamic VaR. This assumes

that the portfolio is rebalanced every day, i.e. its value has to remain the same in the end

of each trading day over the h-day horizon. This is why the Basel Accords states that the

VaR must be computed on a daily basis.

Lastly, it is necessary to forecast the volatility to compute the VaR. This is another

of the main drivers that are directly related with the performance of the model. Some

of the most common methods, in ascending order of complexity, are the equally weighted

variance, the EWMA (Exponentially Weighted Moving Average) and GARCH (Generalized

Autoregressive Conditional Heteroscedasticity) models.

The difference between the equally weighted variance and the others is that the first is

sensitive to the sample size, while the others are not, because the weight of an observation

in the volatility estimation decays exponentially with the age of that observation. Due to

this, it becomes a better method to estimate future values. For these reasons, the method

that will be used in the empirical tests is the EWMA since it is the simplest method that

gives good forecasts for the future variance.

The recursive equation of this method is the following (Alexander, 2008):

σ̂2
t = (1− λ)X2

1,t−1 + λσ̂2
t−1 (7)
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According to this equation, the variance is computed in a recursive form and this is the

reason for the smaller impact of past observations on the variance, as time passes. This

can be observed in the next equation.

σ̂2
t = (1− λ)

∞
∑

i=1

λi−1X2
1,t−i (8)

To apply this method it is necessary to give a value to the parameter λ, i.e. the

smoothing constant, in order to define the different weights that the most recent and

older observations have in the future variance. In JPMorgan (1996) a calibration for this

parameteris performed using the RMSE (Root Mean Square Error). The values achieved

were 0.94, when considering daily data, and 0.97, for monthly data.

2.3 Dynamic Programming

Dynamic programming (DP) is used to do optimizations when a multi-stage decision prob-

lem is addressed, i.e. the optimal decision depends on the current state.

The base for the DP model is Bellman’s principle of optimality (Bellman, 1954) that

states that an optimal policy should always define the optimal decision to take considering

all the previous decisions in order to maintain the final result in its optimal level.

Dynamic models are categorized depending on whether time, state space (S) and action

space (X) are discrete or continuous (Miranda and Fackler, 2002). As it will be demon-

strated later, the proposed optimization problem has a finite discrete space of states and

an infinite continuous space of actions. However, in order to reduce the complexity of the

problem, we will discretize the action variable, meaning that the correct model to use is

one that is discrete in time, state and actions. The reason for this choice will be explained

in Section 4.

The discrete model that will be used is the discrete Markov Decision Model. Its struc-

ture is: in each period t it is observed the current state st and, according to the character-

istics of that state, an action xt is taken by an agent, resulting in a reward f (xt, st) that

is directly related with the state and the action Miranda and Fackler, 2002). Given the

decision, the agent will pass to the next state st+1 . This transition is deterministic, if the

next state can be determined just from knowing the current state of nature and action,

otherwise it is stochastic. If it is stochastic, it is necessary to define a transition function

g (xt, st) that contains the probabilities of transitioning from one state to another.

Taking all of this into account it is now possible to derive the Value Function according

to Bellman’s principle of optimality (Miranda and Fackler, 2002):

Vt (s) = max
x∈X(s)

f (x, s) + δ
∑

s′∈S

P
(

s′
∣

∣x, s
)

× Vt+1

(

s′
)

, s ∈ S (9)

In the previous equation we have the reward function f (x, s), a discount factor δ, the

probability of transitioning to the next state P (s′|x, s) (which represents g (xt, st)) and
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the value function of the next period Vt+1 (s
′). This equation reflects the maximization

problem that is: take an action x today in order to maximize today’s reward and the

discounted expected future rewards.

To achieve the optimal policy x∗ (s), it is necessary to guarantee that, in each state, the

decision maximizes the present and future rewards. This is achieved by using a recursion

method, starting from the last period T until today. This equation is named Bellman’s

recursion equation (Miranda and Fackler, 2002).

According to the time horizon there are two possible types: finite and infinite horizons.

If the horizon is finite it means that the last decision is taken at time T . On the other hand,

an infinite horizon means that it is necessary to take a decision for an infinite number of

time periods, therefore Bellman’s equation does not depend on time.

V (s) = max
x∈X(s)

f (x, s) + δ
∑

s′∈S

P
(

s′
∣

∣x, s
)

× Vt

(

s′
)

, s ∈ S (10)

In this equation, Vt (s
′) represents the value function considering the optimal results

for X (s) until that moment. The main difference between equations 9 and 10 is the time-

dependence, i.e. while in equation 9 the purpose is to define an optimal decision for each

point in time, in equation 10 the goal is to reach a single optimal policy that can be applied

at every point in time.

The problem that will be presented later on will be solved as an infinite horizon problem

therefore the next step is to describe the method that is commonly used to achieve the

optimal policy in this type of problems.

Miranda and Fackler (2002) give some insight into the algorithms used to solve these

problems using a computer software (e.g. MATLABTM), nevertheless it is first necessary

to transform equation 10 into matrix notation.

V1 = max
x

f (x) + δ × P (x)× V0 (11)

The value functions V (s) and V (s′) are represented, respectively, by the vector V1 ∈ R
n

and V0 ∈ R
n. The reward function is the vector f (x) ∈ R

n and the policy vector, that

contains the optimal actions to be taken at each state, is denoted by x ∈ Xn. Lastly,

P (x) ∈ R
n×n represents the n-by-n probability transition matrix for a certain action.

Finally, n represents the number of possible states of nature.

After this, one can apply the specific algorithm in order to achieve the optimal value and

policy function. In the case of the infinite horizon Markov decision model, the algorithm

used is the Function Iteration Algorithm (Miranda and Fackler, 2002):

1. Define the state variables S, action variable X, reward vector f (x), discount factor

δ, transition matrix P (x), termination condition τ , and an initial value for V0;

2. Compute V1 = maxx f (x) + δ × P (x)× V0;

3. Verify if the termination criterion is satisfied: ‖V1 − V0‖ ≤ τ ;
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4. If the termination criterion is satisfied: x → x∗. Else, update V0 to V1 and return to

step 2.

3 Literature Review

Since the introduction of Value-at-Risk, research has focused on Value-at-Risk potential

uses and on how to accurately estimate it.

Studies have been produced where the VaR measure is used as a substitute for the

variance in portfolio optimization problems. A recent study conducted by Deng et al.

(2013) combines the VaR concept with the Sharpe Ratio – amount of expected return an

investor gains for each aditional unit of risk that it takes – in order to optimize the value

of the portfolio.

Other studies on this subject (e.g. Künzi-Bay and Mayer, 2006; Mansini et al., 2007;

Lim et al., 2010; and Ogryczak and Sliwiński, 2011) used the CVaR (Conditional Value-at-

Risk) – measures the risk of extreme losses calculating a weighted average of the expected

losses that go beyond the VaR estimate – instead of the VaR to optimize the return on

portfolios using Linear Programming models.

However, there are few studies related with the regulatory context of the VaR, namely

optimization strategies for the market risk charge. Ahn et al. (1999) studied a method that

could be used to find a put option that minimizes the VaR, considering a maximum hedging

cost. This was performed by modeling a function that computes the optimal options’ strike

price taking into account the underlying asset’s value, the mean and volatility of its return,

the risk-free rate and the VaR hedging period. One of the main conclusions in this paper is

that this optimal strategy can reduce the VaR by 45% comparing it with a normal strategy

of using at-the-money options, in an equity portfolio, at the same time that it can reduce

the cost of the strategy by up to 80%. Deelstra et al. (2007) studied the optimal risk

management strategy for a portfolio of bonds and consisted in determining the optimal

strike price of a put option that would minimize the VaR for a certain hedging cost.

Although these methods were proved to be good strategies to reduce VaR (hence reduc-

ing the capital charges), they focus in the use of other financial products and in portfolio

management to achieve certain VaR objectives (i.e. its minimization).

What if there exists a method to optimize VaR without the need to incur in addi-

tional costs or in increasing the exposure to financial assets? McAleer (2009) addresses

this question. In this paper, some guidelines are given about the improvements that can

be made in VaR models in order to create better risk monitoring strategies and achieve

superior forecasts for the VaR. The purpose is to manage the excessive risk taking, that is

a characteristic of conservative financial institutions, and achieve an optimal VaR measure

following the Basel rules.

These guidelines, like the title suggests, are ten and are related with, for example, the

choice of the volatility estimation model (conditional, stochastic or realized volatility; using

a symetric, asymetric or leverage model to estimate the volatility) and the method used
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to forecast VaR (parametric, semiparametric and nonparametric models).

Altough the presented methodology is of important use in the creation of a VaR model,

it only gives an optimal strategy for risk monitoring and does not truly explores strategies

to optimize the daily capital charges. Moreover, this study raises one question: Is disclosing

a perfect estimation for the VaR the best strategy to optimize the capital charge?

The first answer to this question came in McAleer et al. (2010). This paper discussed

the hypothesis that FIs could manage the number of exceedances that they are allowed to

have according to the Basel Accords (10 exceedances), in order to optimize the daily capital

charge. To achieve this purpose, they created a function named DYLES (Dynamic Learning

Strategy) that was based in the trade- off between the expected number of exceedances

and the expected capital requirements.

This function gives the percentage of the forecasted VaR that should be disclosed,

taking into account the number of exceedances that the FI had since the beginning of

the regulatory period and the number of exceedances recorded in the last 25 days. The

foundations of this function are related with the premise that risk managers are conservative

when the number of exceedances is high and aggressive when this number is small or zero.

This method tries to optimize the capital charges by doing a policy that manages the

Basel rules, taking advantage of them. The authors tested this theory and reached to

the conclusion that using DYLES reduces the daily capital charges by up to 14.3% when

compared with the RiskMetrics Policy.

While this seems to be a great tool to optimize the capital requirements taking into

account the Basel rules, there is still some inconvenients with it. The function has three

parameters for which the value is a subjective choice, meaning that the performance of the

function has some dependence on those parameters’ values.

The authors give some suggestions about the numerical intervals for the parameters,

however to achieve the perfect model it is necessary to do a callibration that consists

in computing the results for DYLES using all the possible parameter combinations and

then choosing the one that has the lowest number of exceedances and average capital

requirements. Thus, this process is time consuming and makes the model less user friendly.

The second incovenient is that it is an ad-hoc strategy, meaning that each strategy

depends on the specific portfolio and does not have a general application. It is also im-

portant to point out that the authors only did an in-sample test, which means that the

effectiveness of this model in a real life situation is unknown.

Following this thought, we propose to present an alternative method to do this opti-

mization. Based in the same principle as DYLES, this paper consists in creating a model

that optimizes the daily capital charge through the use of DP.

The objective is to achieve an optimal policy strategy that gives the percentage of the

forecasted 1-day VaR that should be reported in every state of nature, taking into account

the effects that each decision will have in the future capital charge. For this, we will

consider three state variables: time that remains for the regulator to do the backtesting

(TtoB); number of exceedances that were recorded until the moment of the decision, during
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the current regulatory period (EC); and multiplier that is currently in use (K). The focus

is in the 1-day VaR because the exceedances are defined according to its value, and it is

the only one that is in the control of the risk analyst (see equation 2).

The advantages of this model are: all the parameters are defined; in each state of

nature there is an optimal decision; and the optimal policy strategy can be applied to any

portfolio. The main contribute of this study for the financial literature is to demonstrate

that, taking into account the market risk framework that is associated with the definition

of the capital charge, the best strategy to optimize the regulatory capital may not be

through the disclosure of a precise estimate for the 1-day VaR.

4 Optimization Model

The goal of this paper, as it was mentioned in the previous section, is to create a model

that allows the optimization of the market risk charge when the VaR method is used.

It consists of maximizing a value function, through the use of DP, in order to obtain

an optimal policy function that provides the optimal decision that an agent should take

regarding the reported VaR.

The policy function defines the percentage of the estimated VaR that should be reported

in order to optimize the daily capital charge, taking into account all the future effects of

today’s decision, in particular the likelihood of future exceedances and the future value of

the multiplier K.

The action space (X) corresponds to all percentages of the estimated VaR that can be

reported, which can be any value from 0 to infinity, therefore making the action space con-

tinuous. However, we tested the possibility of solving the dynamic programming problem

with a continuous action space and reached the conclusion that it was computationally

intractable. Therefore we decided to discretize the action space, maintaining a wide range

of possibilities, ranging from 0.001 to 3, in steps of 0.001.

X = {0.001, 0.002, 0.003, . . . , 3} (12)

This means that the lowest value that can be reported is 0.1% and the highest value is

300% of the estimated 1-day VaR.

The choice of the percentage to report will depend on three state variables: time re-

maining for the regulator to do the backtesting and review the multiplier (TtoB); multiplier

that is currently in use (K) and the number of exceedances that were recorded until now

(EC). All these state variables are discrete and the set of possible values are as follows:

TtoB = {1, 2, 3, . . . , 250} (13)

K = {3, 3.4, 3.5, 3.65, 3.75, 3.85, 4, 100000} (14)

EC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (15)
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K EC

3 ≤ 4
3.4 5
3.5 6
3.65 7
3.75 8
3.85 9
4 10

100000 11

Table 2: Relation between the number of exceedances at the end of the year and the
multiplier.

The values of TtoB are derived from the Basel Accords, where it is defined that, to do

the backtesting analysis, the regulator must use data from the last 250 days to evaluate the

performance of the risk model (Basel Committee on Banking Supervison, 1995). In terms

of the EC, the Basel Accords state that, when it is higher than 10, the most probable

consequence is the obligation to use the standardized method instead of using the internal

model. Therefore we restricted the EC variable to a maximum value of 11 since we assume

that the agent pretends, at all costs, to use the internal model for an infinite horizon. The

K variable includes all the multipliers that are in the Basel accords plus an additional

one (100000). The purpose of this multiplier will be explained later. Table 2 relates the

multiplier with the EC at the end of each 250-day period.

For any combination of these three states, the optimal policy function gives the decision

that should be taken in order to minimize the daily capital charge. This type of DP problem

is known as infinite horizon Markov decision model and is solved with the function iteration

algorithm (Miranda and Fackler, 2002) introduced in Subsection 2.3.

4.1 Methodology

In this subsection we are going to follow all the steps mentioned in the Subsection 2.3, in

order to derive the Bellman’s equation and apply the Function Iteration Algorithm.

First, it is necessary to change the notation of K and EC variables. For a better

connection between this explanation and the program code, the state variable K and EC

will be substituted by Kindex and ECindex, respectively, which represent the index of

each variable. For example, Kindex = 2 corresponds to the second smallest value of K,

that is, 3.4, and ECindex = 1 corresponds to the smallest value of EC, that is, 0.

Kindex = {1, 2, 3, 4, 5, 6, 7, 8} (16)

ECindex = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} (17)

The Reward Function f (x, T toB,EC,K) represents the daily capital charge according

to the Basel accords (Basel Committee on Banking Supervison, 1995). However, three

simplifications were made to make the problem computationally tractable: the 60-day
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average will be ignored; it is assumed that the capital charges will always be the 10-day

VaR multiplied by the multiplier K; and the capital charge is equal to the GRC, meaning

that we assume that the risk model as specific risk recognition (SRC=0).

f (x, T toB,EC,K) = −x×K × V aR1,1% ×
√
10 (18)

The Breakdown of this equation is the following: V aR1,1% ×
√
10 – represents the 10-day

VaR that is in compliance with the Basel Accords; K is the multiplier for the current

period; x is the percentage of the VaR to be reported (the action variable).

As one can see, this function has a negative sign because we are maximizing the FI’s

profit, meaning that the capital charge has a negative impact in the function.

Now that this was explained, it is possible to justify the additional multiplier: 100000.

In the definition of the EC variable we limited the number of exceedances up to 11 be-

cause otherwise we would have 251 possible values for the ECindex instead of 12. This

would unnecessarily increase the dimensionality and complexity of the problem, making

it intractable to reach a solution. To prevent this, we created a new multiplier (100000),

associated with an ECindex equal to 12, that represents the transition to a state with a

very high cost (equation 19 below). With this mechanism we assure that the agent will

do whatever it takes to prevent the transition to this state, which will probably result in

disclosing the highest possible percentage of the 1-day VaR (i.e. 300%). Note that the

value of this multiplier is only used to determine when the transition to this state occurs,

meaning that it does not have an application in the general reward function (equation 18)

as it can be seen in equation 19.

f (x, T toB,EC,K) =







−x×K × V aR1,1% ×
√
10 if Kindex ≤ 7

−5000000000 if Kindex = 8
(19)

To be able to apply the Function Iteration algorithm it is essential to translate this

function into matrix notation. This is done by creating a reward vector named RewFun

with 250 × 8 × 12 = 24,000 elements that represent the total number of possible state

combinations (achieved by multiplying the total number of elements of each state variable).

Lastly, it is necessary to construct the Transition Function g (x, T toB,EC,K) that will

define how the transitions occur between states of nature. In this problem, one can see

that the state variables are not independent because the multiplier (K) depends on the

EC when TtoB is equal to 1. The reason for this is that the multiplier must be reviewed

at the end of each 250-day period in accordance with the EC variable. Due to this, it

is necessary to implement a transition function with all the possible state combinations

instead of doing one function for each state variable. Next we discuss the main ideas behind

these transitions.

The transition between TtoB states is deterministic, decreasing from t to t − 1 every

period whenever t > 1. When TtoB = 1 the transition is to TtoB = 250, reflecting the
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fact that at this time the backtesting is performed and the number of periods for the next

backtesting is reset to 250 days.

The transition between Kindex states is, most of the times, deterministic. Whenever

TtoB > 1 no backtesting is performed, which means that the multiplier is not revised.

Hence, the state Kindex remains unchanged. But, at TtoB = 1, on the eve of perform-

ing the next backtest process, the state Kindex is updated, reflecting the results of the

backtesting process and the Basel rules outlined in Table 2. In this scenario, the transition

is stochastic, since it depends on the state ECindex (how many exceedances were accu-

mulated up to TtoB = 1) and whether there was an exceedance in the transition to the

next period, which is a random event. The new state Kindex is determined as follows: for

ECindex < 5 (less than 4 exceedances up to the eve of the backtesting procedure) Kindex

transitions to 1 regardless of whether an exceedance is recorded in the transition to the

next period; for 5 ≤ ECindex < 12, Kindex transitions to the current value of ECindex

− 4 if no exceedance is recorded and, otherwise, to the current value of ECindex − 3;

and for ECindex = 12, Kindex transitions to 8, the catastrophic scenario that the agent

wants to avoid at all costs.

Finally, the transition between ECindex states is, most of the times, stochastic. When-

ever TtoB > 1, there is some probability that an exceedance is recorded (portfolio loss

is higher than the reported VaR), in which case the ECindex state transitions from i to

i+1, and some probability that an exceedance is not recorded, in which case the EC state

remains unchanged. At TtoB = 1 the transition is deterministic, since the exceedance

count is reset when entering the new backtesting. Hence ECindex transitions to 1.

On top of this, there is always a possibility of falling into bankruptcy if the portfolio

loss is larger than the capital charge set based on the reported VaR. This possibility, and

its associated high costs, effectively put a limit to extreme levels of VaR underreporting.

In that case, and regardless of the current state of nature, the transition is made to a state

of nature with TtoB = 250, ECindex = 12 and Kindex = 8 which, according to equation

19, is the state with a very large cost that reflect the bankruptcy cost. Table 3 summarizes

the different transition scenarios and their probabilities.

To compute the probabilities associated with each scenario we assumed that returns

follow a standard normal distribution (mean zero and standard deviation of one). These

probabilities of transition between states are then represented by a 24,000 by 24,000 matrix

named TrMat.

At this point we have all the essential tools to derive the value function that we want

to maximize. This function is equation 11 that was introduced in subsection 2.3 (DP),

with an adjustment for our notation.

V1 = max
x

RewFun (x) + δ × TrMat (x)× V0

To initiate the algorithm it is still necessary to define the value for the parameter

δ, which represents the discount factor and the importance of the future events into the
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State of nature Probability

From TtoB = t > 1;ECindex = i;Kindex = k

To TtoB = t− 1;ECindex = i+ 1;Kindex = k P (Z < V aR× x)

TtoB = t− 1;ECindex = i;Kindex = k 1− P (Z < V aR× x)− P (Z > Capital Charge)

Bankruptcy state P (Z > Capital Charge)

From TtoB = 1;ECindex = i < 5;Kindex = k

To TtoB = 250;ECindex = 1;Kindex = 1 P (Z ≤ Capital Charge)

Bankruptcy state P (Z > Capital Charge)

From TtoB = 1;ECindex = i;Kindex = k

To TtoB = 250;ECindex = i;Kindex = ECindex− 4 P (Z < V aR× x)

TtoB = 250;ECindex = i;Kindex = ECindex− 3 1− P (Z < V aR× x)− P (Z > Capital Charge)

Bankruptcy state P (Z > Capital Charge)

Table 3: Transitions that occur in each scenario and the equations used to compute their
associated probabilities (where Z represents a standard normal random variable and x

represents the action variable).

current decision, the terminal condition τ , and an initial value for the value function, V0.

We defined a yearly discount factor of 0.9, meaning that the daily discount factor is

approximately 0.99957865.3 Regarding the terminal condition, it is decided that the norm

of the difference between V0 and V1 should be close to 0.001 in order to consider the policy

function x as the optimal one (in the case of our model, this value was 0.0013).

Due to the complexity of this problem, it is essential to start with a reasonable guess

for the initial value of V0 in order to reduce the number of iterations necessary to achieve

the terminal condition (and the optimal solution). Thus, the initial value for V0 will be a

24,000 by 1 vector, that was obtained from the solution of a similar optimization problem,

but with a smaller number of possible actions (300 instead of 3,000).

4.2 Model vs Reality

After modeling the problem, it is necessary to understand the differences between our

model and the real life problem. These differences will be important, later on, in the

identification of the limitations of this study.

One of the most important assumptions in the construction of the model is related with

the distribution of returns. To simplify the computations, we assumed that the distribution

and its parameters (expected return and volatility) are known with 100% certain.

As mentioned in Subsection 2.2, using a value of zero for the expected return is a good

proxy and does not have a material impact in the results. The biggest problem lies in the

volatility since, in reality, it is unlikely to predict the true value for the future volatility.

Usually one works with estimates that can either under or overestimate the true value of

the volatility. In our case, the scenario of underestimation of the true volatility is the one

3Assuming 250 trading days per year.
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that represents a real danger. In that scenario, the underestimation of the volatility itself

will be enough to generate too many exceedances. If, on top of that, the agent pursues

the optimal VaR disclosing policy that is derived under the assumption that his volatility

estimate is correct, he will tend to underreport and underestimate the VaR. That will

inevitably lead to a fast accumulation of exceedances from which it is impossible to recover

and that, next year, will result in a high multiplier being set by the regulator and thus

high capital charges. The scenario of volatility overestimation is more benign. The agent

will see too few exceedances being generated despite his VaR underreporting, but the only

implication is that we will have more freedom to keep underreporting the VaR. These

scenarios and their consequences for the application of the optimal VaR reporting policy

will be tested later on in a Monte Carlo Simulation in order to investigate the extent to

which the performance of the optimal policy is sensitive to the assumption that the true

volatility is known.

The next assumption is related with the reward function. According to the 1995 Market

Risk Ammendment (Basel Committee on Banking Supervison, 1995), the GRC is defined

as the maximum between (a) the average of the 1-day VaR forecasted for the last sixty

days multiplied by the square root of time and by K and (b) the last forecast for the 1-day

VaR multiplied by the square root of time. However, in the reward function defined in

equation 18 and 19, the maximization and the average are ignored, and it is assumed that

the capital charge is always the reported 1-day VaR multiplied by the square root of time

and by the multiplier K.

Ignoring the maximization does not make any effect in the results since, assuming a

constant portfolio, it is very unlikely to have the last VaR estimate to exceed K times the

average of the last sixty VaR’s because K has a value between 3 and 4. Therefore the most

important difference between the model and the real life problem is the averaging of the

last sixty VaR’s, which is omitted in the model.

This average is important to avoid a manipulation of the reported VaR, however it is

hard to implement in an optimization problem and if implemented it dramatically increases

its complexity, since we would have an additional 59 state variables (the VaR reported in

the previous 59 days), making it intractable.

Considering this, a possible solution is to ignore the average and only consider the last

estimated VaR. We concluded that this does not result in the most optimized strategy

but it gives a quite good approximation for it. The following demonstration proves this.

For simplification, assume that there is no uncertainty, so we can drop expectations. The

dynamic programming problem we solved is equivalent to minimizing the present value of

the capital charges.

PV (GRC) =

∞
∑

t=0

δtGRCt (20)

The formula we consider for the GRC is

GRCmod
t = k

√
10xtV aRt (21)
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In reality, the formula for GRC is (dropping the maximization):

GRCreal
t = k

√
10

1

60

59
∑

i=0

xt−iV aRt−i (22)

If the impact of the choice variable, xt, in PV (GRC) is similar for both formulations of

GRCt (real and modeled), then the approximation has a small impact

∂PV
(

GRCmod
t

)

∂xt
=

∂
∑

∞

t=0 δ
tk
√
10xtV aRt

∂xt

= δtk
√
10V aRt (23)

In turn,

∂PV
(

GRCreal
t

)

∂xt
=

∂
∑

∞

t=0 δ
tk
√
10 1

60

∑59
i=0 xt−iV aRt−i

∂xt

= k
√
10

1

60

59
∑

i=0

V aRtδ
t+i

= δtk
√
10V aRt

1

60

59
∑

i=0

δi

≈ δtk
√
10V aRt (24)

since
1

60

59
∑

i=0

δi ≈ 1 (25)

as long as δ is close to 1. In our case δ = 0.99957865 and so4

1

60

59
∑

i=0

δi = 0.9877 ≈ 1 (26)

The last assumption is related to the Basel Accords. As it was stated in Subsection

2.1, our optimization model is in accordance with the rules introduced until Basel Accords

II, and does not take into account the changes made by the revisions to the market risk

framework published in 2009 (Basel Committee on Banking Supervison, 2009). One of

the impacts that this has in the model is related with the probability of default, which

is overestimated in the model. This happens because with the new standards the GRC

would incorporate a new element – sVaR – meaning that the daily capital charge would

be higher than the value considered by the model. On the other hand, not considering the

sVaR means that our model only optimizes part of the capital charge, i.e. only the one

related with the VaR.

Nevertheless, this does not invalidate the use of our model (to optimize the part related

4Note that this demonstration assumes that the multiplier k is constant over time.
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with VaR) since, in the worst case, the effect of this change in the GRC would probably

be a policy function where extreme underreporting is more likely to occur, especially when

EC is low and in the last days of the 250-day cycle, due to lower probability of default.

4.3 Optimal Policy Function

In this subsection we are going to present the results of the optimization model. These

represent the percentage of the estimated 1-day VaR that should be reported according to

the three state variables: time remaining for backtesting (TtoB), number of exceedances

so far (EC) and multiplier in use (K). This will be referred, from now on, as the optimal

policy.

Figure 1 illustrates the percentage of the estimated 1-day VaR that should be reported

for each point in time when the multiplier variable K is 3, which is divided in two panels

according to the number of the EC variable. Thus, in the vertical axis one can find the

action variable (that can range between 0.01% and 300%) and in the horizontal axis one of

the state variables – TtoB (ranges between 1 and 250). Each line represents the different

decisions that should be taken according to the value of the exceedance count variable

(EC) at that time, e.g. if the current number of exceedances is equal to 5, one should find

the optimal decision in the lighter blue line in panel B. Figure 2 shows all the lines of the

two panels of Figure 1 in one figure.

The careful reader may have noticed that in both Figures 1 and 2 it is not included

the series for the EC equal to 10 and 11. These two will not be presented here because

the optimal decision is always the same: report 300% when the EC is equal to 10 and

report 0.1% when the EC is equal to 11. This happens for a simple reason: if in any day,

during the 250- day period, a portfolio records the 10th exceedance, it means that an extra

exceedance will result in a transition to a state that we considered in the formulation of

the model as a state with big consequences (e.g. the obligation to use the standardized

method instead of the internal models) – referred, from now on, as the worst case scenario.

Assuming that the agent does not want to face these consequences, he will do whatever it

takes to avoid the extra exceedance, and the only decision that has the highest probability

of not having an exceedance is reporting the maximum possible percentage of the VaR,

300%.

In the opposite case, when the EC is equal to 11 it means that this extra exceedance

already occurred, therefore there is nothing that the agent can do to avoid these conse-

quences, and for this reason the percentage to report is the lowest possible (0.01%). In

other words, the damage is done.

Now that this detail was explained, we go on with the analysis of Figure 1. The first

aspect that can be noticed is that until the 3rd exceedance (panel A), in most cases, the

percentage to report, in a given day, increases as the number of exceedances increases (each

line is above the previous), and from the 5th to the 9th exceedance (panel B) the same

happens until the last 50 days. In general, the reason for this different behavior in the last
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Figure 1: Optimal Policy Function for a number of exceedances of 0 to 3 (Panel A) and
4 to 9 (Panel B) when the multiplier K is equal to 3.
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Figure 2: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.

EC 0 1 2 3 4 5 6 7 8 9

Mean 0.7655 0.8118 0.8634 0.9190 0.9771 0.9083 0.9476 0.9930 1.1029 1.3611

Median 0.8305 0.8765 0.9230 0.9410 0.9470 0.9035 0.9435 1.0125 1.1335 1.3965

Table 4: Statistical analysis of the optimal policy.

50 days of the last 5 series is that the agent has more factors to take into account when

choosing the optimal decision to take, since the goal of the 4 exceedances was not attained.

This difference will be analyzed later on.

In the series for the 4th exceedance, the behavior is different because this is the max-

imum number of exceedances that an agent can have in order to maintain the base mul-

tiplier. As one can see, the percentage to disclose increases as the time to backtesting

decreases, being the only series that has an increasing trend, ranging from 94.7% to 110%.

This effort is made in order to avoid another exceedance that would lead to a multiplier

higher than the base value (3) in the future. It is also important to notice that, when the

barrier of the 4 exceedances is exceeded, this effort decreases, mostly due to the conse-

quence of having a multiplier higher than the base value in the future (which translates in

higher capital charges and lower long- term benefits).

In Table 4, one can see the average and median of each series. Both statistics increase

as the number of exceedances increase, except on the transition from the 4th to the 5th

exceedance where the effort to avoid an extra exceedance has a slight decrease. This
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confirms the reasoning used on the previous paragraph related with the series for an EC

equal to 4, by showing that the incentives to avoid an extra exceedance decrease after

overcoming the barrier of 4 exceedances. From the 7th exceedance onwards, this effort is

again high, reaching values higher than 100% when the worst case scenario is approaching.

Looking at the average of the whole series (0.9650), we conclude that, on average, it

is better to disclose a lower 1-day VaR than the estimated one, i.e. to underreport. This

is a natural conclusion because our model is designed in order to achieve 4 exceedances,

objective that is attained through the underreporting of the 1-day VaR. If the estimated

VaR is reported truthfully (i.e. no under nor overreporting), then on average there will be

only 2.5 exceedances in a year. This leaves room to underreport and reap the short term

benefit of lower capital charges without incurring in the cost of larger long term capital

charges due to larger multipliers as consequence of accumulating more than 4 exceedances

in a 250-day period.

Next we go into detail for each series. In the first three series (EC equal to 0, 1 and

2), there is a decreasing trend, i.e. the first percentage to report, when TtoB is equal to

250, is, respectively, 90.4%, 92.2% and 93.3%, and after that, these values decrease until

they both reach 33.6% when TtoB is equal to 1. This behavior was expected since, in

the beginning of the 250-day cycle, the agent is more risk averse due to the possibility of

incurring in early exceedances that may accumulate to more than 4 by the end of the cycle,

and, as time passes, this risk becomes smaller and the percentage to report decrease.

When the EC is equal to 3 (fourth series), the trend is also in general a downward one,

although there is a slight increase between the 249 th and 92nd day to the next backtesting,

going from 0.936 to 0.96. This is explained by the fact that the portfolio is 1 exceedance

away from the 4th, i.e. the maximum value for the EC variable that guarantees the base

multiplier, and it is related with the formulation of the optimization model. Since the goal

is to optimize the present value of the capital charge, there are two factors that drive the

optimal decision: report a lower percentage of the 1-day VaR to reduce the capital charge

in the present (short-term benefits); or report a higher percentage to avoid an increase of

the multiplier and benefit from this saving in the future (long-term benefits). To achieve

an optimal model it is necessary to balance these two factors (referred from now on as

“balancing factors”).

Considering this, in the first 157 days the predominant factor is the long-term benefits

of having the base multiplier in the next regulatory period (hence there is an increase in

the percentage to report), whereas after this, since the end of the period is approaching

and the likelihood of incurring in two more exceedances reduces, the short-term benefits

seem to gain the lead as the predominant factor and the percentage to report decreases.

The next series (EC equal to 4) is the only one with an increasing trend, explained

by the fact that it represents the maximum value that guarantees the base multiplier.

Nevertheless, in the first 86 days the percentage to report marginally decreases from 94.7%

to 93%. This is, again, a result of the balancing factors, explained previously, considering

that in the first 86 days the predominant effect is the short-term benefits of having lower
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capital charges in the present and, following this, it seems to be better to report a higher

percentage of the estimated VaR to benefit from a smaller multiplier in the future (in this

case, the base multiplier).

Another possible explanation for this type of behavior (mix between decreasing and

increasing trend) is related with the value of the EC variable in the early days. If, for

example, an agent records 4 exceedances too quickly, it will be difficult to maintain this

number until the end of the period, thus there is no incentive to be conservative and

disclose an higher percentage of the estimated 1-day VaR (decreasing trend). However, as

time passes, if this extra exceedance does not materialize, the agent will try to avoid it

by increasing the percentage to report, in order to guarantee the smaller multiplier in the

next period (increasing trend). This reasoning applies to all the series that show this type

of behavior.

From the 4th exceedance on, every additional exceedance results in an increase of the

multiplier up to the 11th exceedance, which represents the transition in the future to the

worst case scenario. Hence, the balancing factors will also drive the trend of the next

series.

For an EC equal to 5, 7, 8 and 9, one can notice that the curves have a decreasing

trend and represent a higher risk aversion – the smallest percentage of the 1-day VaR to

report is 83.1%. Also, for most of the time, the curves for the 7th, 8th and 9th exceedance

are above 100%, which is due to the proximity to the worst case scenario (reaching 11

exceedances). Nevertheless, there is a curious observation when comparing the series for

an EC equal to 5 and 7: in the last 30 days the values are higher in the former. The

expectation for this would have been a persistence of higher values for an EC equal to 7.

This different behavior can be explained with the effect of a future higher multiplier in the

scenario where the EC is equal to 7 (3.65) compared with the scenario of an EC equal to

5 (3.4), meaning that the short-term benefits have an higher impact in the agent’s decision

– report a lower percentage to increase current savings, instead of a higher percentage to

reduce future costs (the damage in the future multiplier is already done).

Considering the series for an EC equal to 6, one can observe a similar scenario to

the series for an EC of 4: a decreasing trend until the last 48 days, and after that, an

increasing trend. Like in that case, this change in the trend is due to the effect of the

balancing factors because, following the increase of 0.4 in the base multiplier – EC equal

to 5 – the second highest increase in the multiplier (0.15) occurs when the EC, in the end

of the regulatory period, is equal to 7. Therefore in the first 202 days the predominant

effect is the saving in the current capital charges (short-term benefits), while in the last 48

days it is the long-term benefits derived from the 0.15 saving in the future multiplier that

leads to higher percentages to disclose.

An interesting feature from the analysis of Figure 1 and Figure 2 is that a higher

number of exceedances does not always lead to a higher percentage to report, in a given

day. Figure 3 represents the evolution of the optimal decision (vertical axis) depending on

the number of exceedances (horizontal axis) for the same day.
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Figure 3: Evolution of the optimal decision as a function of the number of exceedances
for the same day.

Following the blue line (TtoB equal to 100), one can see that the percentage to report

increases until the 4 th exceedance and then it falls from 0.969 to 0.888, followed by an

increase until the highest possible number of exceedances. This decrease that occurs when

the EC is equal to 5 is due to the increase of 0.4 in the base multiplier (the highest possible

increase, compared with 0.1 and 0.15 for additional exceedances), which translates into

lower future savings and consequently lower long-term benefits. Since this possible saving

in the multiplier was not achieved, the incentives to avoid another exceedance decrease and

the current savings (short-term benefits, benefit today from reporting a lower VaR) seem

to have a higher impact in the optimization strategy. For the curve where TtoB is 170

(red line), this fall occurs in the transition from the 3rd to the 4th exceedance, which is

even more surprising since the change in the multiplier occurs only in the 5th exceedance.

This seems to be an effect from the balance between having current savings in the capital

charge (report smaller percentages of VaR) and benefit from these savings in the future

(report higher percentages to assure a small multiplier in the future).

Finally, it is important to remind that the analysis of the optimal policy function

performed in this subsection was based on the scenario where the multiplier K is equal to 3.

However, all the qualitative results obtained from this analysis stand for different values of

K. In particular, the optimal policies for different values of K are very similar to each other.

The only difference is that, for higher multipliers, the short-term benefit of underreporting

the observed VaR obviously increases. Since the long-term benefit of reporting the VaR
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Figure 4: Optimal policy function for a number of exceedances (EC) of 4 considering
different multipliers (K variable).

more conservatively is independent of the current multiplier (it is only a function of future

multipliers), a higher multiplier will then increase the incentive to underreport the VaR.

This can be clearly seen in Figure 4, which plots the optimal percentage of the observed VaR

to report as a function of TtoB for all different multipliers when EC is 4. For other values

of EC, the conclusion is the same. Notice that the distance between each line is roughly

proportional to the difference in the values of the corresponding multipliers, reflecting

the fact that the more the multiplier increases, the more the incentive to underreport

increases. In Appendix A one can find the figures for the optimal policy considering the

other multipliers.

In general, these results seem to be, more or less, consistent with the principle of

DYLES (McAleer et al., 2010): risk managers are conservative (report higher percentages)

when the number of exceedances is high and aggressive (report lower percentages) when

this number is small.

Since all the important aspects of the results were already explained and analyzed,

the next step is to implement this strategy using simulated/historical data to test if it

can be applied in a real market risk framework. First we will perform this evaluation

withsimulated portfolio by doing a Monte Carlo Simulation, and after that we will apply

the policy to a portfolio composed by the S&P500 index.
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5 Monte Carlo Simulation

In this section, we perform a Monte Carlo simulation in order to obtain simulated portfolio

returns and evaluate the performance of the optimal policy presented in the previous

section.

To do this process, we use MATLABTM’s random number generator (RND) to generate

returns from a normal distribution – using the inverse CDF of the normal – with an

expected return of 0 and a certain standard deviation. Considering this, we will simulate

the returns based on the following equation:

r = Φ−1 (RND) , r ∼ N (0, σ) (27)

The base value for the 1-day standard deviation (σ) is 1.7%, which we considered to

be reasonable for a standard portfolio. To compute the VaR we use the same Parametric

Normal Method that was considered when solving for the optimal strategy.

Two scenarios are going to be simulated. In the first one, labeled Normal Strategy

scenario, it is always reported 100% of the estimated VaR. In the second one, labeled

Optimal Strategy scenario, the percentage to report is defined according to the optimal

policy. To limit the possible number of exceedances to 11 (like in the optimization model),

when the EC is equal to 10 in both scenarios, it is reported 300% of the VaR (i.e. the same

value defined by the optimal strategy). Another way of understanding this assumption is

that, in both cases, going to the 11th exceedance means transitioning to the worst case

scenario (mentioned in the previous section) which is something that the agent wants to

avoid, regardless of the strategy in use. Due to this, the agent will always report a high

value when the number of exceedances is equal to 10, in order to almost surely guarantee

that the 11th exceedance is avoided.

It is also incorporated a mechanism for bankruptcy detection, i.e. if the loss in a certain

day is higher than the daily capital charge it is assumed that the institution defaults, which

brings that specific simulation to an end.

5.1 Normal Simulation

The first simulation that we will perform consists of 100,000 simulations of a period of 30

years, considering that each year has 250 business days. The value defined previously for

the standard deviation will also be used to calculate the daily VaR according to equation

6. The multiplier used in the first year of each simulation is always the base value (3).

We start by analyzing the daily capital charge variable in order to verify if the optimal

strategy delivers lower values than the normal strategy, and then we look closely at the

other variables to confirm whether their behavior is in line with our expectations regarding

the optimization model.

Figure 5 shows a histogram with the distribution of the average of the daily capital

charge across simulations (i.e. in each 30-year period) for the two strategies, and two lines
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Figure 5: Distribution of the average daily capital charge across simulations, and the
respective cumulative frequencies (right axis).

representing the cumulative frequencies.

From the analysis of Figure 5, one can notice that there is a clear separation between

the optimal and the normal strategy. The values for the optimal strategy seem to be

concentrated between 35% and 38% while, in the normal strategy, these are concentrated

around 38% and 39%, clearly pointing out to a better performance of the optimal strategy.

The line for the cumulative frequencies proves this, since with the optimal strategy the

capital charge is below 38% in, approximately, 100% of the simulations, whereas, with the

normal strategy, this only happens in, approximately, 40% of the simulations. Taking this

into account, it is clear that the optimal strategy delivers lower values for the daily capital

charge in almost all simulations.

Table 5 complements Figure 5 by analyzing the annual average of the daily capital

charge with 5 important statistics computed in two different ways: (1) by averaging the

statistics calculated in each simulation (i.e. in each 30-year period); and (2) by computing

the statistic on all the data (i.e. the results of all simulations).

As expected from the analysis of Figure 5, Table 5 confirms the better performance of

the optimal strategy in terms of the capital charge since, with the analysis of the mean, it

is easy to see that this strategy offers a lower capital charge.

Continuing with Table 5, the average of the standard deviation for the optimal strategy

is almost twice the value computed for the normal one. This higher value was expected due
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Capital Charge

Mean Median Max. Min. Std. Dev.

Optimal Strategy

Average of statistic 36.47% 35.45% 43.12% 32.51% 2.94%
Statistic of simulation 36.47% 35.34% 68.54% 31.20% 3.00%

Normal Strategy

Average of statistic 38.12% 37.52% 44.03% 37.52% 1.72%
Statistic of simulation 38.12% 37.52% 70.24% 37.52% 1.82%

Table 5: Average of the statistics computed for the annual average of the daily capital
charge in each simulation (30-year period) and the statistics for the global simulation.

Mean Median Max. Min. Std. Dev.

% Optimal better than Normal 77.81% 76.67% 100.00% 36.67% 8.55%

Table 6: Statistical analysis of the variable: percentage of times, in a 30-year period (each
simulation), where the optimal strategy outperforms the normal strategy.

to the risk associated with the optimal strategy (i.e. the risk to report a higher value than

the estimated 1-day VaR) that is translated in a higher standard deviation. This can be

observed clearly in Figure 5, since the values for the optimal strategy are more dispersed.

In the case of the maximum and minimum (average and global), the results confirm the

outperformance of the optimal strategy as both statistics deliver lower values considering

this strategy.

As the careful reader may have noticed, the value for the global maximum, in both

strategies, is around 70%, which is a value that stands out from the others. The reason

for such a high value is the trigger mechanism related with a number of exceedances of 10

– report 300% of the estimated 1-day VaR in both policies. From this we can conclude

that, when the market conditions are adverse, the disclosure of the estimated 1- day VaR

(normal strategy) does not necessarily lead to better results.

Table 6 shows the analysis of the percentage of times, in each simulation, where the

optimal policy delivers lower values for the capital charge. This table shows that the

optimal strategy outperforms, on average, the normal strategy in 78% of the times, which

is a very good result taking into account the risks associated with this strategy.

Looking at the maximum and minimum, it can be noticed a big range between them.

On one hand, we have simulations where the optimal policy is always better (100%) during

the 30-year period and, on the other hand, simulations where this value goes as low as

36.67%. Once again, this behavior can be explained by the risk associated with the optimal

strategy that is translated in the standard deviation of this variable (8.55%).

To increase the reliability of these results, it was created a confidence interval for the

average of this percentage. Considering a confidence level of 99.99%, there is statistical ev-

idence to believe that the true percentage of times where the optimal strategy outperforms

the normal strategy is between 77.71% and 77.91%.
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Figure 6: Distribution of the EC variable, in the end of the period, across the various
simulations, and the respective cumulative frequencies (right axis).

Next, we move on to the analysis of the number of exceedances (EC) and multiplier

(K) variables. In the formulation of the optimization problem, it was considered that

the objective of the optimal policy would be to take advantage of the Basel rules by

managing the number of exceedances, in order to maintain the base multiplier (maximum

of 4 exceedances). The purpose of the next analysis is to show if this event is true when

this policy is applied.

As one can see in Figure 6, the distribution of the EC variable is significantly differ-

ent for each strategy. In the Normal Strategy, the variable seems to follow a lognormal

distribution with a mode equal to 2, while in the Optimal Strategy the variable is clearly

concentrated in the 4th exceedance – the maximum number of exceedances that does not

result in the increase of the base multiplier. This proves that the optimal policy is taking

advantage of the Basel rules, regarding the exceedances, because there is a big discrepancy

between the numbers of years that end with 4 exceedances (58%) and also because the

minimum relevant number of exceedances, in the optimal strategy, is 3 (vs 0 in the normal

strategy).

Another way of seeing this is by analyzing the exceedance rate in the simulation. For

the normal strategy this value is equal to the significance level used in the estimation of

the 1-day VaR, i.e. 1.0%, while for the optimal strategy this rate is 1.9%, which is, as

expected, higher than the significance level due to the criteria that the optimal strategy

needs to follow (having 4 exceedances).
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Figure 7: Distribution of the multiplier K variable across the various simulations and the
respective cumulative frequencies.

An important detail that one can see in Figure 6 is that all the years that ended with

an EC different than 4, in the optimal strategy, are unsuccessful tries to reach that value.

Two factors justify these failed attempts: the bankruptcy risk/mechanism that prevents

the agent from reporting sufficiently low values that result in an exceedance (EC smaller

than 4), and the risk associated with the use of the optimal policy model (EC higher than

4). This risk is related with the disclosure of a smaller value than the estimated 1-day VaR

and it can be observed in the lines for the cumulative probability because, in the optimal

strategy, it is more likely to have an EC higher than 4 (33%) than in the normal strategy

(11%).

In Figure 7, it is represented the relative frequencies of the multiplier variable. From

its analysis, one can notice that, in both strategies, the base multiplier is used in more

than 65% of the simulated years like it was expected with the analysis of the EC variable

histogram. This result strengthens the hypothesis that the optimal strategy is better than

the normal strategy, because it shows that the different data dispersion in the EC variable

results in a similar multiplier histogram for both strategies.

Considering this, the major difference between the two strategies is that the optimal

strategy optimizes the disclosed 1-day VaR in order to remain with the base multiplier

(3). Sometimes this leads to higher multipliers due to the risk of the strategy (which can

be observed in the lines for the cumulative frequencies since there is a higher probability

associated with the higher multipliers in the case of the optimal strategy) but, overall, the
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EC K

Mean Mode Median Std. Dev. Mean Mode Median Std. Dev.

Optimal Strategy

Average of statistic 4.74 4.00 4.05 1.46 3.18 3.00 3.01 0.28

Statistic of simulation 4.74 4.00 4.00 1.50 3.18 3.00 3.00 0.28

Normal Strategy

Average of statistic 2.50 2.00 2.32 1.56 3.05 3.00 3.00 0.14

Statistic of simulation 2.50 2.00 2.00 1.57 3.05 3.00 3.00 0.15

Table 7: Average of the statistics computed for the EC and K variable in each simulation
(30-year period) and the statistics for the global simulation.

Mean Median Max. Min. Std. Dev.

Relative saving 4.32% 4.39% 9.43% -3.36% 1.45%
Relative annual gain 5.20% 5.25% 10.90% -2.29% 1.51%

Table 8: Statistical analysis of the variables: average daily saving, in a 30 year period,
that results from the use of the optimal strategy (“Relative saving”); and average of the
annual relative return in each simulation (“Relative annual gain”).

goal is successfully achieved. To complement Figures 5 and 6, Table 7 summarizes the

statistical analysis of these two variables.5

With the analysis of Table 7 it is easy to understand that in the optimal strategy all

figures point out to a number of exceedances around 4 and a multiplier around 3 (which

is the base value), whereas in the normal strategy the results are around 2 exceedances

and, also, a multiplier of 3. The only significant difference between the strategies is in the

standard deviation that is higher in the optimal strategy for the K variable, as a result of

the higher probability of having higher multipliers with this strategy, as it was mentioned

previously.

Considering all the previous points, it is possible to say that, as expected, the optimal

strategy outperforms the normal strategy given that the different data dispersion in the

exceedances histogram (Figure 6) leads to a similar multiplier histogram (Figure 7).

Table 8 answers the question: Are the savings in the capital charge significant to

compensate the risk of using a policy that, in most cases, discloses a lower 1-day VaR than

the estimated one? From the analysis of Table 8, one can see that the daily average savings

in the capital charge (relative saving), from the use of the optimal strategy relative to the

normal strategy, is 4.32%. This may seem a small saving, however in the case of a portfolio

with a high market value it will make a significant difference, taking into account that it

is a daily saving (we will get back to this below).

The maximum average relative saving achieved in a simulation was 9.34% while the

minimum was -3.36%, reflecting the risk of using this policy. Nonetheless, the possible

positive outcomes seem to outweigh the negative outcomes. To support this conclusion, a

5The method used to calculate the statistics is the same as in Table 5.
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statistical test for the average of the saving was performed with the following hypothesis:

H0 :The average daily saving in a 30-year period is higher than or equal to 4%

H1 :The average daily saving in a 30-year period is lower than 4%

The test used was the z-test because the distribution of the average saving is approximately

normal (central limit theorem). Following this, there is statistical evidence that confirms

that, with a significance level of 5%, the average saving that results from the use of the

optimal strategy is higher than 4%.

Lastly, it is important to understand the meaning of these savings. Considering that

the agent can reduce the capital charge for a certain amount invested in the asset, this

extra amount can be used to increase the exposure to the asset and increase the absolute

accumulated return in the end of the period.

To show this, we are going to perform a simulation where the exposure to the asset is

increased or decreased in order to always have a regulatory capital charge equal to the FI’s

defined capital charge limit, using the following assumptions: (1) the FI’s capital charge

limit is 100,000 monetary units (m.u.); (2) the price of the asset is fixed at 1 m.u./unit of

the asset; (3) the annual return on the asset is fixed at 6%. The objective is to compute the

accumulated return in each simulation and compare the performance of both strategies.

The result of this simulation and the associated statistics computed over the relative

annual gain that an agent has with the use of the optimal strategy can be found in Table

8. By using this strategy, in this scenario, the agent can increase the average of the annual

return up to 10.90% or reduce the gain by a maximum of 2.29%, when compared to the

normal strategy. Looking at the mean, one can conclude that the annual gain is, on average,

5.20% in each simulation (30-year period), which is a considerably high reward taking into

account that the return on the asset is 6%/year.

In a nutshell, all the results indicate that the behavior of the optimal strategy is in

line with our expectations, namely: (1) it is clearly taking advantage of the Basel rules

regarding the exceedances (EC and K variable analysis); (2) it has a better performance

than the normal strategy in most of the times (mean of 77.81%); and (3) the relative

saving from using the optimal strategy is, on average, 4.32%. These conclusions support

our optimization model, meaning that reporting the 1-day VaR according to the optimal

policy leads to positive outcomes when compared to reporting the estimated value.

5.2 Simulation with undervaluation of the volatility

Next it is important to understand the impact of using a poor VaR estimation model with

the optimal strategy. As it was mentioned in Subsection 2.2 (VaR), the method used to

estimate the volatility is one of the main drivers for a good VaR model due to its direct

relation with the formula to compute the VaR (see equation 6).

If the estimated value for the volatility is undervalued, the forecast for the VaR will also

be undervalued, resulting in a higher exceedance rate and, possibly, in the increase of the
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Figure 8: Average daily relative saving and percentage of times where the optimal strategy
is better than the normal strategy considering different levels of under/overvaluation.

probability of ending a certain period in the critical scenario (having 11 exceedances). In

addition, one of the assumptions of the optimization model is that the volatility is always

estimated with precision, which is difficult to hold.

Due to these aspects it is necessary to test the impact of an undervaluation or overval-

uation of the volatility in the results of the simulation, particularly in the capital charge.

Since, in the simulation, we define the real value for the volatility of the return distribution,

in the next simulation we will compute the value for the 1-day VaR considering different

levels of under/overvaluation of the volatility used to generate the returns (1.7%). This

level ranges from 60% to 120% of the base volatility, in steps of 1%. To evaluate the impact

in the optimal strategy we created Figure 8 that indicates the relative saving (left axis)

and the percentage of times where the optimal strategy outperforms the normal strategy

(right axis) for each level of under and over-valuation.

Starting by analyzing the levels of overvaluation, as one can see in Figure 8, the per-

formance of the optimal strategy increases as the level of overvaluation increases, reaching

100% of times where the optimal strategy is better than the normal strategy using 120%

of the volatility. This is easy to understand because an overvaluation of the volatility

means that the estimate for the 1-day VaR will be higher than necessary resulting in a

lower likelihood of having an exceedance. Due to this, there is a higher safety margin to

underreport the 1-day VaR without having an exceedance.

On the opposite case, an undervaluation of the volatility leads to a worst performance
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of the optimal strategy, however this only happens until a certain point. Before digging

into this fact, we are going to analyze the downward part of the series.

Looking at the blue line, one can see that the average of the relative saving (i.e. the

average saving in the simulation that results from the use of the optimal strategy compared

with the normal strategy) decreases until -8%, which represents a level of 77% of the

volatility. The explanation for this is exactly the opposite of the previous one used to

explain the overvaluation: using a value for the volatility lower than the real one leads

to a poor estimate for the 1-day VaR, i.e. a value lower than necessary, which results

in a higher probability of having a negative return higher than the disclosed 1-day VaR

(i.e. leading to an exceedance). Since the optimal strategy normally consists in disclosing

a value for the 1- day VaR lower than the estimated one, in the end, the probability of

having an exceedance would be even higher and the exceedances would occur too quickly

without giving the model the necessary time to adjust to this scenario.

Nonetheless, Figure 8 shows that for small undervaluation levels, i.e. up to 6%, the

optimal strategy continues to be the best one. At this level, the results are a slight relative

saving of 0.14% and a better performance of the optimal strategy in 59% of the times. In

the next subsection we will explore all the results associated with this level.

Despite of this, one can see that the two lines do not have a decreasing trend, as it

would be expected. Instead, the trend of the lines changes when the level of undervaluation

is 77% (blue line) and 84% (red line) of the volatility, with the relative saving reaching

positive values again when this level is at 63% (relative saving of 0.12%). A possible

explanation for this behavior is the ability of the optimal strategy to adapt to different

scenarios (i.e. different values for the number of exceedances result in different percentages

of the estimated 1-day VaR to disclose) while the normal strategy is always static.

In other words, since the normal strategy always reports the estimated VaR and a

higher level of undervaluation leads to a lower estimated 1-day VaR, compared with the

required value, from a certain level of undervaluation the exceedances start to occur quickly,

resulting in a predominance of the critical scenario (having 11 exceedances) and the need

to report substantially high values for the 1-day VaR (due to the trigger mechanism). In

the case of the optimal strategy, its dynamic feature delays this scenario, for a little amount

of time, which allows savings in the capital charge, relative to the normal strategy.

In short, Figure 8 demonstrates that: (1) a small level of undervaluation still results

in a good performance of the optimal strategy (6%); (2) there is a positive correlation

between the overvaluation of the volatility and the performance of the optimal strategy;

and (3) there is a limit to the underperformance of the optimal strategy.

In the next 2 subsections we are going into more detail in two levels of undervaluation:

94% of the volatility (undervaluation of 6%) because it is the level where the optimal

strategy continues to outperform the normal strategy; and 80% of the volatility (20%

undervaluation), in order to do a statistical analysis of a catastrophic situation.
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Figure 9: Distribution of the average daily capital charge across simulations, and the
respective cumulative frequencies (right axis), for a 6% undervaluation level.

5.2.1 Undervaluation of 6%

In Figure 9 one can observe a completely different scenario compared with Figure 5. In the

previous simulation the histogram of the capital charge showed a clear distinction between

both policies, whereas in this simulation the histogram tells a different story, since the

capital charge in both policies is more or less equivalent – the bars overlap. The most

relevant differences between Figure 9 and Figure 5 are the higher dispersion and amplitude

of the values for the normal strategy, which is a result of the undervaluation.

Nonetheless, when analyzing the cumulative frequencies, one can see that the optimal

strategy offers a lower capital charge for more than 50% of the times. This can also be

observed on Tables 9 and 10, since the average of the capital charge with the optimal

strategy is lower than the same value for the normal strategy (36.85% vs 36.96%), and in

58.89% of the times the optimal strategy has a better performance. These points represent

the main reasons that explain the better performance, on average, of the optimal strategy.
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Capital Charge

Mean Median Max. Min. Std. Dev.

Optimal Strategy

Average of statistic 36.85% 37.10% 43.47% 31.54% 3.47%
Statistic of simulation 36.85% 37.31% 93.50% 29.33% 3.53%

Normal Strategy

Average of statistic 36.96% 35.30% 43.97% 35.27% 2.79%
Statistic of simulation 36.96% 35.27% 34.90% 35.27% 2.83%

Table 9: Average of the statistics computed for the annual average of the daily capital
charge in each simulation (30-year period) and the statistics for the global simulation, for
a 6% undervaluation level.

Mean Median Max. Min. Std. Dev.

% Optimal better than Normal 58.89% 60.00% 96.67% 20.00% 9.87%

Table 10: Statistical analysis of the variable: percentage of times, in a 30-year period
(each simulation), where the optimal strategy outperforms the normal strategy, for a 6%
undervaluation level.

Figure 10: Distribution of the EC variable, in the end of the period, across the various
simulations, and the respective cumulative frequencies (right axis), for a 6% undervaluation
level.

In the case of the EC variable (Figure 10), in the optimal strategy there is still predom-

inance of the value 4 and, in the normal strategy, the distribution continues to be similar

to a lognormal distribution but now with a mode of 3 (in the normal simulation the mode
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EC K

Mean Mode Median Std. Dev. Mean Mode Median Std. Dev.

Optimal Strategy

Average of statistic 6.10 4.50 5.83 2.01 3.41 3.05 3.44 0.35

Statistic of simulation 6.10 4.00 6.00 2.04 3.41 3.00 3.50 0.35

Normal Strategy

Average of statistic 3.59 3.07 3.43 1.86 3.14 3.00 3.00 0.24

Statistic of simulation 3.59 3.00 3.00 1.88 3.14 3.00 3.00 0.24

Table 11: Average of the statistics computed for the EC and K variable in each simulation
(30-year period) and the statistics for the global simulation, for a 6% undervaluation level.

Mean Median Max. Min. Std. Dev.

Relative saving 0.14% 0.18% 6.56% -8.15% 1.72%
Relative annual gain 1.00% 1.02% 7.38% -5.77% 1.65%

Table 12: Statistical analysis of the variable: average daily saving, in a 30 year period,
that results from the use of the optimal strategy, for a 6% undervaluation level.

was 2).

The major difference between this simulation and the normal simulation is in the prob-

abilities of each EC value for the optimal strategy. Compared with the normal simulation

results, the probability of having an EC equal to 4 decreased to almost half (34% vs 58%)

while the probability of having an EC higher than 4 increased from 33% to 62%. This

means that the unsuccessful attempts to reach an EC equal to 4 increased, essentially due

to the constant failure in estimating the real value of the volatility that is inherent to this

simulation.

Looking at Table 11, and doing a comparison with Table 7, one can reach the same

conclusion since the average of the EC variable increases from 4.74 to 6.10 and the median,

considering all the simulations, increases from 4 to 6.

Figure 11 leads to the same conclusion as the probability of having the base multi-

plier, in the optimal policy, decreases from 68% to 38%, when compared with the normal

simulation, and the probability of having the higher multipliers (3.75, 3.85 and 4) rises to

31% (vs 9% in the normal simulation). In the normal policy there is also a decrease in the

probability of having the base multiplier (71% vs 89%), however it is not as significant as

in the optimal strategy.

Even with these differences, we can see in Table 12 that the average relative saving that

results from the use of the optimal strategy continues to be a positive number (0.14%),

meaning that this strategy continues to have a slightly better performance even in a scenario

of undervaluation. However, one can see that this saving results in a relatively small gain

(1% return) when compared with the possible gains in the scenarios where the volatility

has an inexistent undervaluation level (Table 8).

It is important to understand that the results of this simulation should be seen as a
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Figure 11: Distribution of the multiplier K variable across the various simulations and
the respective cumulative frequencies, for a 6% undervaluation level.

pessimistic scenario because what normally happens in the estimation of the volatility is

that sometimes the value is underestimated and other times it is overestimated.

In short, this simulation highlights one of the main drawbacks of the optimal strategy

and demonstrates its effect in the capital charge and in the average relative saving. Two

main conclusions are derived from these results: first, it is crucial to have a good estimation

model to forecast the volatility with precision, as this will be critical to define the success

of the optimal strategy; and second, the optimal strategy continues to have positive effects

even when the volatility has a slight undervaluation (more or less up to 6%).

5.2.2 Undervaluation of 20%

Like it was expected, all figures point out to a worst performance of the optimal strategy.

Starting by analyzing the capital charge, in Figure 12 one can see that the normal

strategy seems to offer, on average, lower values than the optimal strategy. Moreover, the

line for the normal strategy cumulative frequencies (blue line) is always one step behind

the red line (optimal strategy cumulative frequencies), meaning that, in every point, it is

more likely to have a lower capital charge when using the normal strategy.

An interesting comparison between the results of this simulation and the normal sim-

ulation is that in Figure 12 the normal strategy has values as low as 35% while in the

normal simulation (Figure 5) this minimum value was around 37.5%. On the other hand,

the maximum value in the case of this simulation increased compared with the normal
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Figure 12: Distribution of the average daily capital charge across simulations, and the
respective cumulative frequencies (right axis), for a 20% undervaluation level.

simulation (39.5% vs 62.5%). This is due to the constant undervaluation in the estimation

of the 1-day VaR.

Like in the previous simulation (6% undervaluation), the capital charge for the normal

strategy seems to follow more closely a normal distribution. From this we may conclude

that as the level of undervaluation increases, the distribution of the normal strategy appears

to be closer to the normal distribution.

Looking at Table 13, one can see that the average of the daily capital charge is in line

with the histogram (Figure 12) because the normal strategy offers, on average, a lower

value, meaning that it has a better performance when compared with the optimal strategy.

This worst performance is confirmed in Table 14, as the normal strategy outperforms the

optimal strategy in 55.73% of the times.
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Capital Charge

Mean Median Max. Min. Std. Dev.

Optimal Strategy

Average of statistic 45.89% 38.68% 122.75% 29.85% 20.30%
Statistic of simulation 45.89% 38.55% 289.40% 25.25% 21.78%

Normal Strategy

Average of statistic 44.46% 38.15% 126.31% 30.09% 21.11%
Statistic of simulation 44.46% 37.74% 289.98% 30.01% 22.85%

Table 13: Average of the statistics computed for the annual average of the daily capital
charge in each simulation (30-year period) and the statistics for the global simulation, for
a 20% undervaluation level.

Mean Median Max. Min. Std. Dev.

% Optimal better than Normal 44.27% 43.33% 83.33% 10.00% 8.70%

Table 14: Statistical analysis of the variable: percentage of times, in a 30-year period
(each simulation), where the optimal strategy outperforms the normal strategy, for a 20%
undervaluation level.

Figure 13: Distribution of the EC variable, in the end of the period, across the various
simulations, and the respective cumulative frequencies (right axis), for a 20% undervalua-
tion level.

Figure 13 shows that the objective of the optimal strategy is not being achieved, since

the number of exceedances with the highest frequencies, in the end of each period, are 9
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Figure 14: Distribution of the multiplier K variable across the various simulations and
the respective cumulative frequencies, for a 20% undervaluation level.

and 10, representing almost 90% of the times. The explanation for this is simple: since

a constant large undervaluation of the volatility (20%) leads to an undervaluation of the

estimated 1- day VaR, the optimal strategy will be constantly failing the objective of

ending each period with 4 exceedances and it will not be able to adapt to this scenario (by

reporting higher values than the estimated one) in order to avoid more exceedances. For

the normal strategy the scenario is quite similar, however in a smaller scale because it is

always reported the estimated 1-day VaR (i.e. there is no underreporting).

Moreover, Figure 14 illustrates the real impact of having high values for the EC vari-

able, as the multipliers for the optimal strategy are, in most of the times, the two highest

ones: 3.85 and 4. The same happens to the normal strategy but the impact is a little

bit less significant as it can be seen on Table 15 (average of 3.65 vs 3.87 in the optimal

strategy).

This constant failure in reaching the 4th exceedance, and assuring the base multiplier,

is the main reason for the failure of the optimal strategy in this undervaluation scenario.

All of this bad performance ends in a negative average relative saving of 11.90% in the

capital charge and an effective average loss (relative annual gain) of 1.19% if the optimal

strategy is used (Table 16).

In a nutshell, this simulation demonstrated the negative impact that a high underval-

uation of the volatility has in the capital charge and in the effectiveness of the optimal

strategy and, once again, strengthens the importance of having a good model to estimate

the volatility.
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EC K

Mean Mode Median Std. Dev. Mean Mode Median Std. Dev.

Optimal Strategy

Average of statistic 9.26 9.64 9.42 0.95 3.87 3.95 3.90 0.21

Statistic of simulation 9.26 10.00 9.00 1.00 3.87 4.00 3.85 0.21

Normal Strategy

Average of statistic 7.47 8.91 7.69 2.16 3.65 3.80 3.71 0.32

Statistic of simulation 7.47 10.00 8.00 2.17 3.65 4.00 3.75 0.32

Table 15: Average of the statistics computed for the EC and K variable in each simulation
(30-year period) and the statistics for the global simulation, for a 20% undervaluation level.

Mean Median Max. Min. Std. Dev.

Relative saving –11.90% -10.97% 6.97% -57.53% 6.85%
Relative annual gain -1.19% -1.28% 11.04% -8.61% 2.07%

Table 16: Statistical analysis of the variable: average daily saving, in a 30 year period,
that results from the use of the optimal strategy, for a 20% undervaluation level.

5.3 Optimal Model Formulation Risk

In Subsection 2.1 we introduced the equation that we would use to compute the GRC

(which is equal to the MRC assuming that the SRC is equal to 0). Equation 28 is a

reproduction of that equation (equation 2).

GRC = max

(

k × 1

60

59
∑

i=0

V aR1,1%,t−i ×
√
10, V aR1,1%,t ×

√
10

)

(28)

However, in Subsection 4.1, where the optimization problem was created, we simplified the

problem by eliminating the maximization and the average of the last sixty 1-day VaRs,

and came up with equation 29 (which is a reproduction of equation 18).

f (x, T toB,EC,K) = −x×K × V aR1,1% ×
√
10 (29)

Regarding this simplification, in Subsection 4.2 we demonstrated that we were still able

to achieve a quite good approximation of the real optimal policy.

In this subsection we are going to test how good this approximation is by performing

a final simulation, referred from now on as the simplified model simulation, where we use

equation 29 to compute the daily capital charge, i.e. we will ignore the average of the last

sixty 1-day VaR in the definition of the daily capital charge.
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Figure 15: Distribution of the average daily capital charge in each simulation and the
respective cumulative frequencies (right axis), for the simplified model simulation (Panel
A) and the normal simulation (Panel B).

In Figure 15 one can see two histograms with the average of the daily capital charge
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Capital Charge

Mean Median Max. Min. Std. Dev.

Optimal Strategy

Average of statistic 36.05% 35.32% 43.00% 31.23% 3.05%
Statistic of simulation 36.05% 35.24% 78.87% 28.72% 3.11%

Normal Strategy

Average of statistic 38.12% 37.52% 44.04% 37.52% 1.72%
Statistic of simulation 38.12% 37.52% 80.28% 37.52% 1.82%

Table 17: Average of the statistics computed for the annual average of the daily capital
charge in each simulation (30-year period) and the statistics for the global simulation,
considering the simplified model simulation.

Mean Median Max. Min. Std. Dev.

% Optimal better than Normal 80.00% 80.00% 100.00% 36.67% 8.24%

Table 18: Statistical analysis of the variable: percentage of times, in a 30-year period
(each simulation), where the optimal strategy outperforms the normal strategy, considering
the simplified model simulation.

for this simulation (panel A) and the normal simulation (panel B), which is a reproduction

of Figure 5. Analyzing both histograms, one can see that there does not seem to be

a significant difference in the normal strategy. However the histogram for the optimal

strategy in panel A suffered a slight move to the left, compared with panel B, which means

that the spread in the daily capital charge between the two strategies increased in the

simplified model simulation.

Table 17 confirms the previous conclusion because, when compared with Table 5 (nor-

mal simulation) we can see that the statistics for the normal strategy are almost equal and

the statistics for the optimal strategy are slightly smaller in this simulation (e.g. average

of 36.05% vs 36.47% in the normal simulation), which explains the increase in the spread

between the two strategies. This increase is also visible in Table 18, which shows a slightly

higher percentage of times where the optimal strategy is better, when compared with Table

6 (80% vs 77.81% in the normal simulation).
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Figure 16: Distribution of the EC variable, in the end of the period, across the various
simulations, and the respective cumulative frequencies (right axis), for the simplified model
simulation (Panel A) and the normal simulation (Panel B).
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Figure 17: Distribution of the multiplier K variable across the various simulations and
the respective cumulative frequencies, for the simplified model simulation (Panel A) and
the normal simulation (Panel B).

Figure 16 compares the histogram of the EC variable in the end of each period for
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EC K

Mean Mode Median Std. Dev. Mean Mode Median Std. Dev.

Optimal Strategy

Average of statistic 4.74 4.00 4.05 1.46 3.18 3.00 3.01 0.28

Statistic of simulation 4.74 4.00 4.00 1.50 3.18 3.00 3.00 0.28

Normal Strategy

Average of statistic 2.50 2.01 2.32 1.56 3.05 3.00 3.00 0.14

Statistic of simulation 2.50 2.00 2.00 1.57 3.05 3.00 3.00 0.15

Table 19: Average of the statistics computed for the EC and K variable in each simulation
(30-year period), considering the simplified model simulation.

Mean Median Max. Min. Std. Dev.

Relative saving 5.41% 5.46% 11.29% -2.26% 1.48%
Relative annual gain 6.98% 7.00% 14.51% -1.13% 1.69%

Table 20: Statistical analysis of the variables: average daily saving, in a 30 year period,
that results from the use of the optimal strategy (“Relative saving”); and average of the
annual relative return in each simulation (“Relative annual gain”, considering the simplified
model simulation.

the normal simulation (Panel B) and this simulation (Panel A). At a naked eye, there

is no difference between the two histograms, which means that the two simulations lead

to the same results in terms of number of exceedances. The same happens in Figure 17

(histograms for the multiplier variable), as the relative and cumulative frequencies are very

similar in the two panels.

In order to do a more detailed analysis, we can compare the values for the statistics,

computed over the two variables (EC and K), that are in Table 19, with the ones in Table

7 (normal simulation). From this analysis one can see that both tables have the exact

same values meaning that both simulations offer the same performance in terms of these

variables.

The higher spread in the capital charge of both strategies that we mentioned earlier is

now reflected in a higher average relative saving of 5.41% presented in Table 20, compared

with 4.32% (Table 8). This superior saving explains the higher relative annual gain pre-

sented also in Table 20, compared with the one obtained in the normal simulation (Table

8).

In brief, these results point out to a slightly better performance of the optimal strategy

in the case where the sixty days average is ignored in the equation for the capital charge,

which ends in an approximately 25% higher average daily relative saving. This means that

our optimization model is a good approximation for the final solution, however there is

some room to improve this model in order to reflect the real equation and have slightly

better results.
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Capital Charge

Mean Median Max. Min. Std. Dev.

Optimal Strategy 24.99% 20.59% 136.16% 9.42% 14.93%
Normal Strategy 26.61% 21.74% 133.77% 10.81% 15.31%
Relative Strategy 7.22% 6.90% 57.13% -19.15% 8.86%

Table 21: Statistics computed over the daily capital charge, for the portfolio simulation.

6 Portfolio Simulation

Until now we have tested the performance of the optimal strategy in a simplified and

controlled world where returns follow a normal distribution with a pre-determined mean

and volatility. From this analysis we concluded that reporting the 1-day VaR according to

the optimal policy can provide savings in the capital charge when compared with a policy

of reporting the estimated 1-day VaR. We also demonstrated that these savings lead to a

relative annual gain when considering different levels of exposure to the asset in order to

achieve always the same value for the market risk charge. However, in a real world, these

assumptions do not hold, meaning that this strategy may have a different performance.

In this section we are going to test the performance of the optimal policy when applied

to a diversified portfolio. This portfolio will be represented by the S&P 500 index.

To perform a more relevant simulation, we will use the Historical VaR model, which

is the most worldwide used method. This model consists in using the empirical return

distribution to compute the VaR instead of imposing a parametric distribution to the data.

However, instead of using the plain-vanilla method that would only reflect the previous

years’ market conditions, we will follow Hull and White (1998) and do a refinement that

consists in adjusting all the returns in order to reflect the current market conditions (i.e.

the future volatility). This refinement is known as volatility adjustment.

To do this adjustment we will use equation 35. What this equation does is to compute

the adjusted return by considering the estimate for the future 1-day volatility (σ̂T ).

r̂t =
σ̂T

σ̂t
× rt (30)

To estimate the volatility, we will use the EWMA method (explained in Subsection

2.2), with a parameter lambda of 0.94, since we are considering daily data.

The capital charge will be computed according to equation 2 (using the same method-

ology as previously). We will use the data from 22-04-1986 to 20-01-2016, representing

30 periods of 250 days (the same number of periods that were simulated in the previous

section).

We will start this analysis by observing the time series for the daily capital charge.

In Panel A of Figure 18 one can observe that the optimal strategy (red line) is generally

below the line for the normal strategy (blue line). Panel B of the same figure confirms this

since the relative saving of using the optimal strategy is almost always above 0.
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Figure 18: Time series for the daily capital charge for each strategy (Panel A) and for
the daily saving from using the optimal strategy (Panel B), for the portfolio simulation.

To complement the analysis of the figure we have in Table 21 the statistics computed for

the daily capital charge. As one can see, there is a clear difference between both strategies

that lead to a better performance of the optimal strategy, namely a smaller mean, median

and minimum value. A curious fact is that even the standard deviation of the capital charge

is smaller in the case of the optimal strategy, which is something that did not happen in

the Monte Carlo simulations.

Moreover, in Table 21 we can also see that the optimal strategy offers an average

relative saving of 7.22%, which is a consequence of the better performance of this strategy

in 82.29% of the days (relative to the normal strategy). This result is even higher than the

one achieved in the normal simulation (77.81%). This higher relative saving may be a result

of an overestimation of the volatility by the employed model, which would consequently

mean an overestimation of the VaR. In that case, and under the assumptions of our model,
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Figure 19: Distribution of the EC variable, for the portfolio simulation.

EC K

Mean Mode Median Std. Dev. Mean Mode Median Std. Dev.

Optimal Strategy 4.83 4.00 4.00 1.61 3.25 3.00 3.00 0.29

Normal Strategy 3.30 3.00 3.00 1.93 3.30 3.00 3.00 0.22

Table 22: Statistics computed over the number of exceedances (EC) and multiplier (K),
for the portfolio simulation.

the level of overestimation would be around 8%, according to Figure 8.

Figure 19 shows the distribution of the number of exceedances in the end of each period.

These exceedances, in the optimal strategy, are concentrated around 4 and include some

failed attempts to reach this number (3 and 5 exceedances). These failed attempts do

not represent a big impact in the performance as it can be seen in Table 22, since all

the statistics for the optimal strategy are near 4. Concerning the Normal Strategy, the

distribution is more conservative, because there are years where the number of exceedances

is below 3 (something that does not happen in the optimal strategy), which translates in

a value around 3 for the mean, mode and median.

Finally, Figure 20 demonstrate, as expected, that the different data dispersion in the

EC histogram (Figure 19) leads to a similar histogram for the multiplier in both strategies.

All in all, this section provided the necessary information to complete the evaluation

of the optimal strategy. In the end we conclude that all figures point out to a better per-

formance of the optimal strategy, relative to the normal strategy, going from the capital

charge, which is smaller in the optimal strategy, to the exceedances and multiplier man-
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Figure 20: Distribution of the EC variable, for the portfolio simulation.

agement, meaning that this strategy can deliver positive outcomes when applied to a real

portfolio.

7 Conclusion

In this study, we used dynamic programming to solve a model that would allow a FI to

optimize its capital charges related with the market risk regulation (that is defined in the

Basel Accords), by giving the optimal percentage of the 1-day VaR that should be disclosed

in every state of nature, also named the optimal policy. In this model, we identified the

three state variables that are relevant to choose the VaR disclosure: the time remaining

for the regulator to do the backtesting and review the multiplier (TtoB); the multiplier

for the current regulatory period (K); and the number of exceedances recorded during the

current regulatory period until the moment of the decision (EC).

In the analysis of the results of the optimal policy, we concluded that two combined

factors (the balancing factors) were driving the results: use an aggressive strategy, i.e.

disclose a lower 1-day VaR than estimated in order to save in the current capital charges

and have short-term benefits; or use a conservative strategy, i.e. disclose a higher 1-day

VaR, to avoid more exceedances that would lead to a multiplier higher than the base value

(3) in the future regulatory period, which would reduce the capital charges in the future

(long-term benefits). Moreover, we found that, on average, the model led to a strategy of

underreporting the estimated 1-day VaR.
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These results are in line with the premises that were used by McAleer et al. (2010): risk

managers are conservative (report higher percentages) when the number of exceedances is

high and aggressive (report lower percentages) when this number is small. Nevertheless, in

our study we were able to reduce some of the incovenients of DYLES by creating a model

that does not have unknown parameters, neither is an ad-hoc model.

The optimal policy was then tested in a controled environment (Monte Carlo simula-

tion), where the true value for the volatility was known. Here, we compared the optimal

strategy, i.e. a strategy were the optimal policy was applied, with the normal strategy,

i.e. a stratagy were it is always truthfully reported the estimated 1-day VaR. The main

conclusions were that the optimal strategy outperformed the normal strategy in about

78% of the times, which translated into an average saving in the daily capital charge of

4.32% (relative to the normal strategy). The major explanation for this is that the optimal

strategy is clearly taking advantage of the Basel rules, because in about 66% of the times,

the number of exceedances in the end of the regulatory period is smaller than or equal to 4

(meaning that the multiplier is the base value 3). This extra saving can be translated into

a higher annual gain of 5.20%, due to the possible increase in the exposure to the asset

(considering a fixed value for the maximum market risk charge of a certain portfolio and

a fixed annual return).

Nonetheless, there are three important limitations regarding our investigation. (1)

In the derivation of the optimal policy we assumed that the distribution of returns and

its parameters (mean and volatility) were known with 100% certainty; (2) in the reward

function, which represents the value for the daily capital requirements in the optimization

model, we ignored the average of the last sixty 1-day VaR; (3) and we only considered the

regulatory framework until the Basel accords II.

Concerning the distribution assumption (1), we tested the impact of under/overestimating

the true volatility by performing a simulation where the volatility used to compute the 1-

day VaR was always affected by a level of under/overvaluation. From this, we concluded

that the optimal strategy continues to outperform the normal strategy when there is a

slight undervaluation of the volatility (up to 6%). Moreover, there is a limit to the under-

performance of the optimal strategy, attained when the level of undervaluation is at 37%

(mainly due to the dynamic aspect of the optimal policy which sometimes report values

higher than 100% of the estimated 1-day VaR). In turn, an overvaluation always leads to

an even better performance of the optimal strategy.

In terms of the sixty days average assumption (2), in Subsection 4.3 we demonstrated

that even though our optimization model was not optimizing the real value for the capital

charge, it was a good proxy for the final solutions. This was also tested by performing

a simulation where the daily capital charge was computed with the formula used for the

reward function, i.e. ignoring this average, and the results were only slightly better com-

pared to our first simulation (the optimal strategy was better in 80% instead of 78% of

the times and the daily average relative saving was 5.41% instead of 4.32%). This means

that there is some room to improve this model by considering the real equation defined in
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the Basel accords to compute the daily capital charge, however from these results one can

conclude that our solution is a good approximation for the final result.

The last assumption (3) is related with the complexity of the regulation that was defined

after the Basel accords II, namely the concept of sVaR (stressed VaR). In this study, we

considered that the capital charge is calculated by multiplying the average of the last sixty

1- day VaR by the multiplier factor and the square root of 10 (considering 10 trading

days), without considering sVaR that was added to this formula later on in the revisions

that were made to this regulatory framework. Therefore, in our model we only optimize

one part of the market risk charge and not the full amount.

Considering all of these limitations, we ended this study by analyzing the performance

of our model in a real life context by applying the optimal strategy to the S&P 500 index

(using data from the last 30 years) and compare it to the normal strategy. This analysis

supported the results of the simulation because the optimal strategy outperformed the

normal strategy in 82% of the times and the average daily saving in the capital charge was

around 7.22%, which represent an even better performance than the one achieved in the

simulation. This result may be just luck of the draw, or it may be a consequence of an

overestimation of the VaR by the model employed (which according to Figure 8 would be

consistent with a level of overvaluation of 8%).

All in all, in this study we demonstrated that, contrary to common sense, the best

solution that optimizes the daily capital charge may not be the disclosure of a good estimate

for the 1-day VaR but the management of the rules defined in the market risk framework

in order to benefit from them in the best possible way.

For new studies on this subject, it would be interesting to: compare the performance

of our model against DYLES (McAleer et al., 2010); apply our optimal strategy to a large

amount of financial products and understand if there is a significant difference in the results

between different kinds of portfolios (stock, bond and mix); develop an optimization model

without the limitations that our model have, namely using the real equation for the capital

charge and optimizing the capital charge according to the risk framework defined after the

Basel accords II.

54



References

Ahn, D.-H., Boudoukh, J., Richardson, M., and Whitelaw, R. F. (1999). Optimal risk

management using options. The Journal of Finance, 54:359–375.

Alexander, C. (2008). Market Risk Analysis IV: Value-at-Risk Models. John Wiley & Sons.

Angelovska, J. (2013). Managing market risk with var (value at risk). Journal of Contem-

porary Management Issues, 18(2):81–96.

Aussenegg, W. and Miazhynskaia, T. (2006). Uncertainty in value-at-risk estimates under

parametric and non-parametric modeling. Financial Markets and Portfolio Management,

20(3):243–264.

Basel Committee on Banking Supervison (1995). An internal model-based approach to

market risk capital requirements. Bank for International Settlements.

Basel Committee on Banking Supervison (2009). Revisions to the basel ii market risk

framework. Bank for International Settlements.

Beder, T. (1995). Var: Seductive but dangerous. Financial Analysts Journal, 51(5):12–24.

Bellman, R. (1954). The theory of dynamic programming. Santa Monica, CA: RAND

Corporation.

Deelstra, G., Ezzine, A., Heyman, D., and Vanmaele, M. (2007). Managing value-at-risk

for a bond using bond put options. Computational Economics, 29(2):133–149.

Deng, G., Dulaney, T., McCann, C. J., and Wang, O. Y.-H. (2013). Robust portfolio

optimization with value-at-risk-adjusted sharpe ratios. Journal of Asset Management,

14:293–305.

Hull, J. and White, A. (1998). Value at risk when daily changes in market variables are

not normally distributed. Journal of Derivatives, 5:9–19.

JPMorgan (1996). Riskmetrics technical document. New York: JPMorgan.

Künzi-Bay, A. and Mayer, J. (2006). Computational aspects of minimizing conditional

value-at-risk. Computational Management Science, 3(1):3–27.

Lim, C., Sherali, H. D., and Uryasev, S. (2010). Portfolio optimization by minimizing

conditional value-at-risk via nondifferentiable optimization. Computational Optimization

and Applications, 46(3):391–415.

Mansini, R., Ogryczak, W., and Speranza, M. G. (2007). Conditional value at risk and

related linear programming models for portfolio optimization. Annals of Operations

Research, 152(1):227–256.

55



McAleer, M. (2009). The ten commandments for optimizing value-at-risk and daily capital

charges. Journal of Economic Surveys, 23(5):831–849.

McAleer, M., Jimenez-Martin, J.-A., and Pérez-Amaral, T. (2010). A decision rule to mini-

mize daily capital charges in forecasting value-at-risk. Journal of Forecasting, 29(7):617–

634.

Miranda, M. J. and Fackler, P. L. (2002). Applied Computational Economics and Finance.

The MIT Press.

Ogryczak, W. and Sliwiński, T. (2011). On solving the dual for portfolio selection by

optimizing conditional value at risk. Computational Optimization and Applications,

50(3):591–595.

Pérignon, C. and Smith, D. R. (2010). The level and quality of value-at-risk disclosure by

commercial banks. Journal of Banking & Finance, 34:362–377.

Totić, S., Bulajić, M., and Vlastelica, T. (2011). Empirical comparison of conventional

methods and extreme value theory approach in value-at-risk assessment. African Journal

of Business Management, 5(33):12810–12818.

Ünal, G. (2011). Value-at-risk forecasts: A comparison analysis of extreme-value versus

classical approaches. Journal of Risk Model Validation, 5(3):59–76.

56



A Optimal policy function for different values of the multi-

plier K

Figure 21: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.

Figure 22: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.4.
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Figure 23: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.5.

Figure 24: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.65.
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Figure 25: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.75.

Figure 26: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 3.85.
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Figure 27: Optimal policy function for all the number of exceedances when the multiplier
K is equal to 4.
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