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Abstract 

Using four waves of longitudinal data from the China Family Panel Studies (CFPS), 

we examine the effects of income inequality on subjective wellbeing (SWB). We take 

a dual approach in measuring income inequality, and thus, we examine the effects of 

inequality using province-level Gini coefficient as well as between-group inequality or 

identity-related inequality defined as the income gap between migrants without urban 

household registration identity (hukou) and urban residents. We find negative effects of 

both province-level income inequality and between-group income inequality on SWB, 

measured by life satisfaction. Our results also show that the effects of income inequality 

on SWB is stronger for rural hukou residents compared to urban hukou residents. These 

findings are robust to alternative ways of measuring SWB and income inequality. In 

addition, we find evidence suggesting that neighbourhood trust is an important channel 

through which income inequality operates to reduce SWB. We suggest policies that 

promote trust in communities with high inequality with a view of addressing the 

negative effects of inequality on SWB.  
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1. Introduction  

A widening of the income gap reported across the globe (see, e.g., Caminada & Goudswaard, 2001; 

McCall & Percheski, 2010; Xie & Zhou, 2014) has led to a growing interest in understanding the 

implications of income inequality. Further, with the recent popularity of subjective wellbeing (SWB), 

and its proposition as an important metric in devising policy (Fujiwara & Campbell, 2011; Sachs, 

Becchetti, & Annett, 2016), the consequence of income inequality on subjective welfare or wellbeing 

has become of general concern and importance (Schneider, 2016). However, findings on the 

relationship between income inequality and wellbeing remain mixed. Some studies suggest a negative 

association (see, e.g., Hagerty, 2000; Oishi, Kesebir, & Diener, 2011; Oshio & Kobayashi, 2011), 

while others find a positive association (see, e.g., Jiang, Lu, & Sato, 2012; Knight & Gunatilaka, 2010b) 

or even ambiguous patterns between inequality and wellbeing (see, e.g., Blanchflower & Oswald, 2004; 

Helliwell, 2003).  

A recent systematic review on the inequality-wellbeing relationship (Ngamaba, Panagioti, & Armitage, 

2018) argues that the inconsistent or inconclusive findings in the literature can be explained by the fact 

that the strength and direction of the inequality-wellbeing relationship is mediated by several other 

factors. Thus, Ngamaba, et al. (2018) emphasise the importance of examining the factors through 

which inequality influences wellbeing. For instance, social capital and trust is a channel of influence 

that has received much attention in the literature. Here, it is argued that income inequality works 

through social dimensions where it is likely to erode social capital (Graham & Felton, 2006; Kawachi 

& Kennedy, 1999), which is important for promoting wellbeing (Awaworyi Churchill & Mishra, 2017). 

Specifically, if individuals perceive inequality as unfair, it is likely to erode trust, reduce generosity 

and reciprocity, thus undermining SWB (Kawachi & Kennedy, 1999; Wilkinson & Pickett, 2009; 

Wilkinson, 1997). Further, the dislike for inequality which erodes trust tends to engender conflicts, 

high level of violence and crime, which in turn negatively influence wellbeing (Diener et al., 1995; 

Haller & Hadler, 2006).  

Larger income inequalities have therefore been assumed to engender steeper social disparities.  

However, as noted by Schneider (2016), existing research has remained speculative on the validity of 

this assumption, rarely testing the proposed mechanisms with empirical data. To our knowledge, only 

two studies (Delhey & Dragolov, 2013; Oishi, et al., 2011) attempt to examine the validity of this 

assumption. Oishi, et al. (2011) examine how trust and the perceptions of fairness mediate the 

relationship between income inequality and SWB in the United States, while Delhey and Dragolov 

(2013) examine whether social conflict, anxiety and social trust function as mediators in the inequality-

wellbeing relationship in Europe.  

We build on the existing literature by focusing on China. A growing body of literature presents 

empirical evidence on the effects of income inequality on wellbeing in China (Huang, 2019; Jiang, et 

al., 2012; Knight & Gunatilaka, 2010b; Wang, Pan, & Luo, 2015; Wu & Li, 2017). Among other things, 

these studies are distinguished by the data used with the majority using either cross-section data from 

a single year (see, e.g., Jiang, et al., 2012; Knight & Gunatilaka, 2010b; Wang, Pan, & Luo, 2015) or 

repeated cross-section data from multiple years (see, e.g., Wu & Li, 2017).  
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On the use of cross-section data, Knight and Gunatilaka (2010b) use data from the Chinese Household 

Income Project 2002 (CHIP 2002) to examine differences in SWB between rural and urban households 

in China. Their results show higher average wellbeing for rural households compared to urban 

households. The authors argue that wellbeing is sensitive to respondent’s perception of their household 
position in the neighbourhood income distribution, and that for most people in rural areas, their relative 

position is confined to a narrow reference group of others in the same village. Similarly, Jiang, et al. 

(2012) use the CHIP 2002 data to examine the impact of income inequality measured by city-level 

Gini coefficients and between-group inequality on SWB. Between-group inequality is measured as the 

income gap between migrants without urban household registration identity (hukou) and urban 

residents. Their results show that higher levels of between-group inequality is associated with lower 

levels of SWB, however, the opposite is observed for the effects of city-level inequality.  

Diverging slightly in terms of the choice of survey, Wang, et al. (2015) use cross-sectional data from 

the 2006 Chinese General Social Survey (CGSS) to examine the relationship between income 

inequality and SWB. They find evidence of an inverted-U shaped relationship between income 

inequality and SWB such that an increase in income inequality is associated with lower levels of SWB 

until a threshold beyond which further increases in inequality is associated with an increase in SWB 

levels. More recently, Yan and Wen (2019) add to the income inequality-wellbeing literature by 

incorporating corruption into the discourse. Using data from 2013 CGSS, Yan and Wen (2019) 

examine the role of corruption in the inequality-wellbeing relationship, and conclude that corruption 

is an important channel through which income inequality influences wellbeing. Other studies that have 

used the CGSS to examine the inequality-wellbeing relationship include Zhao (2012) and Wu and Li 

(2017), although Wu and Li (2017) add on to the literature by providing a perspective that draws on 

repeated cross-sections from the 2003 to 2010 surveys, rather than inferences from a single year.  

Other data sources that have featured in the literature that examines the relationship between income 

inequality and SWB in China include the China Labor-force Dynamics Survey (CLDS) (Huang, 2019), 

single wave from the China Family Panel Studies (CFPS) (Lei et al., 2018), and other surveys (Smyth 

& Qian, 2008). Huang (2019) examines the role of distributive justice beliefs in shaping the inequality-

wellbeing relationship. Using multi-level modelling, they find that lower inequality is associated with 

higher SWB. Lei et al. (2018) use the 2012 wave of the CFPS but focus on the role of expenditure 

inequality on SWB. Smyth and Qian (2008) use cross-section data from 31 cities across China. Their 

study emphasises on the relationship between inequality and SWB in urban China. They report 

heterogeneous effects of inequality across high and low income individuals.  

Our study contributes to this growing but inconclusive literature on the relationship between inequality 

and wellbeing in China. We use four waves of data from the China Family Panel Studies (CFPS) 

survey to examine the relationship between income inequality and SWB, and examine trust and social 

network as important channels through which income inequality influences wellbeing. Following Jiang, 

et al. (2012), we take a dual approach to measure income inequality. We use a general measure of 

income inequality measured by province-level Gini coefficient as well as a between-group measure of 

income inequality or identity-related inequality defined as the income gap between migrants without 

urban household registration identity (hukou) and urban residents. Findings from Knight and 

Gunatilaka (2010b), which suggest that the effects of inequality on wellbeing are influenced by 
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respondent’s reference group or perception of their household position in their neighbourhood, lends 

support to the importance of understanding the role of between-group inequality in promoting or 

hindering SWB. Thus, similar to Jiang, et al. (2012) we distinguish between general inequality and 

between-group inequality, and examine the effects of these distinct types of inequalities on SWB. We 

also examine the role of social network and trust as potential channels through which income inequality 

influences wellbeing.  

Our study differs from the above studies that have focussed on China in several ways. First, unlike 

these studies, we use panel data which allows us to control for unobservable factors. Unless one 

includes time-invariant personality traits as regressors, it is difficult to control for unobservable factors 

using cross-sectional data. Controlling for unobserved factors requires the use of panel data, and this 

makes it possible to eliminate the influence of unobserved time-invariant individual fixed effects. 

Further, the tunnel effect hypothesis lends support to the importance of using panel data to examine 

the effects of income inequality on wellbeing. Using panel data makes it possible to account for the 

effects of inequality across different time periods and thus more likely to capture the potential positive 

effects associated with the tunnel effect as well as the potential negative effects which emerge over 

time after the tunnel effect dies out. Further, the effects of inequality on SWB is determined by two 

competing effects. When the tunnel effect is stronger, positive effects are observed. However, when 

inequality persists overtime and the relative deprivation effect becomes stronger, negative effects are 

observed. This time-varying relationship can only be appropriately studied using panel data. 

Second, our study refines earlier work on China by testing if social capital, particularly trust and social 

networks, are channels through which income inequality influence SWB. As noted earlier, existing 

research has remained speculative on the validity of the assumption that income inequality tends to 

engender lower social capital, rarely testing the proposed mechanisms with empirical data (Schneider, 

2016). We build on the existing literature by examining the validity of this assumption using 

longitudinal data from China. 

Third, while previous studies ignore the endogeneity of income inequality given the inability to find 

valid instruments that meet the exclusion restriction, we adopt different econometric techniques that 

take into account the endogeneity issue. Specifically, we adopt the Lewbel (2012) two-stage least 

square (2SLS) approach, which has been effectively used to address endogeneity in the absence of 

external instruments (see, e.g., Awaworyi Churchill & Farrell, 2017; Awaworyi Churchill and Mishra, 

2017). 

The remainder of the study is structured as follows. The next section provides an overview why income 

inequality might affect SWB while Section 3 describes the data and methodology. Section 4 presents 

and discusses the empirical results. Section 5 concludes with policy suggestions.   

2. Why might income inequality affect SWB differently? 

Two different hypotheses – the relative deprivation hypothesis and the tunnel effect hypothesis – 

have been used to explain the conflicting findings in the literature on the relationship between income 

inequality and SWB. The relative deprivation hypothesis posits that the negative effect of inequality 

on wellbeing is explained by the feeling of being deprived when others are better-off (Walker & Smith, 
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2002; Yitzhaki, 1979). Thus, when those in lower income quintiles compare their income to others in 

higher quintiles, it creates a sense of unhappiness and dissatisfaction. This argument has received 

support from the empirical literature (see, e.g., Alesina, Di Tella, & MacCulloch, 2004; Oshio & 

Kobayashi, 2011; Schwarze & Härpfer, 2007). 

The tunnel effect hypothesis, on the other hand, suggests that the poor may not build up a sense of 

dissatisfaction when they compare their income to the rich. However, seeing the disproportionate 

higher income of others in society can inspire optimism and serve as an indication of better prospects 

for those with poor income, thus increasing the level of SWB. Hirschman and Rothschild’s (1973) 

analogy using a traffic jam scenario provides a more vivid exposition into the hypothesis. According 

to Hirschman and Rothschild (1973), when stuck in a traffic jam in a two-lane tunnel with both lanes 

headed in the same direction, the sudden movement of cars in the lane next to yours inspires optimism 

and happiness. Thus, even though you may still be stuck in your lane, you feel better knowing that the 

traffic jam has been broken and it will soon be your turn to move. The tunnel effect, therefore, suggests 

that high inequality associated with rapid economic development may be tolerated by society in the 

onset, and even poor people may exhibit positive attitude towards inequality, which is likely to enhance 

their wellbeing. However, overtime, when these income disparities persist the tunnel effect fails and 

inequality reverses to having a negative effect on wellbeing. 

In the case of China, despite its rapid economic growth in recent years, inequality has been on the rise. 

Xie and Zhou (2014) estimate that China’s Gini coefficient increased from 0.30 in 1980 to 0.55 in 
2002. Moreover, amidst the enormous success in economic performance, evidence suggests that 

happiness has decreased in China (Brockmann et al., 2009). Given China’s institutional framework, 
we ex ante lean more towards the relative deprivation effect, and thus expect a negative effect of 

income inequality on SWB. Particularly, considering how China’s economy has been growing over 

the past few years, one would expect inequality effects consistent with the tunnel effect hypothesis. 

However, as evidence suggests, an overview of inequality over the past few decades suggests higher 

trends of income inequality in China. Accordingly, as predicted by the tunnel effect hypothesis when 

income disparities persist, inequality reverses to having a negative effect on wellbeing. Further, 

existing research has emphasised the strong influence of income comparison on SWB (Senik, 2009). 

Consistent with the relative deprivation hypothesis, Senik (2009) shows that income comparisons 

across different benchmarks and even one’s own past are very powerful in shaping welfare.  

Overall, the preceding discussion advances two main arguments. First, existing evidence which attests 

to the significance of income comparisons lends strong support to the relative deprivation hypothesis 

which suggests a negative effect of income inequality on SWB. Second, the persistence of inequality 

in China despite high economic growth is likely to confirm predictions from the tunnel effect 

hypothesis, which suggest a negative effect on wellbeing if inequality persists. On the basis of these 

arguments, we expect that: 

H1: Income inequality will have a negative influence on subjective wellbeing. 

3. Data and methodology  
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Our analysis draws on data from the China Family Panel Studies (CFPS), a nationally 

representative longitudinal survey of Chinese communities, families and individuals (Xie, 2012; Xie 

& Hu, 2014). The CFPS focuses on both economic and non-economic well-being of the Chinese 

population, covering various economic outcomes, family dynamics and relationships, migration, and 

health, among others. The CFPS, which was launched in 2010, commenced with a total of 14,960 

households from 635 communities, including 33,600 adults and 8,990 youths, located in 25 

provinces/municipalities/autonomouFs regions (Xie, 2012). The CFPS employs a novel rural-urban, 

integrated, multi-stage probability-proportion-to-size (PPS) sampling scheme with implicit 

stratification to ensure the validity and representativeness of its sample.1 Currently, the CFPS has four 

waves with the second, third and fourth waves conducted in 2012, 2014 and 2016, respectively. We 

use all available waves in this study.  

To examine the association between income inequality and SWB, we specify the following empirical 

model:  𝑆𝑊𝑖𝑡 = 𝛽0 + 𝛽1 ∗ 𝐻𝑢𝑘𝑜𝑢𝑖𝑡 + 𝛽2 ∗ 𝐵𝐼𝑗𝑡 + 𝛽3 ∗ 𝐻𝑖𝑡𝐵𝐼𝑗𝑡 + 𝛽4 ∗ 𝐺𝐼𝑁𝐼𝑖𝑡 + 𝛽5 ∗ 𝑋𝑖𝑡 + 𝛽6 ∗ 𝑍𝑗𝑡 + 𝜀𝑖𝑡           (1) 

where 𝑖 , 𝑗 and 𝑡  denotes individual, province and time, respectively and 𝜀𝑖𝑡  is the error term. The 

dependent variable 𝑆𝑊𝑖𝑡  is the SWB score of respondent 𝑖  at time 𝑡 . In each sampled household, 

individuals were asked the same question: “are you satisfied with your life ?” with a five-point scale 

(very unsatisfied=1, very satisfied=5).2 This question or its variants are often used in the literature to 

measure SWB (see, e.g., Appau et al., 2019; Lei et al., 2018).  𝐻𝑢𝑘𝑜𝑢𝑖𝑡 is a measure of identity. We measure an individual’s hukou identity using a dummy variable 

which equals one if the respondent has urban status and zero otherwise. 𝐵𝐼𝑗𝑡 is a measure of between-

group inequality (BI), which we calculate as the ratio between the mean income of urban hukou 

residents and the rural hukou residents within the same province. Following Jiang, et al. (2012), we 

use this variable as a measure of the socioeconomic gap generated by the hukou status and other rural-

urban segmentation policies. We examine the effects of income inequality on each hukou identity 

group by including an interaction term (𝐻𝑖𝑡𝐵𝐼𝑗𝑡) between the hukou identity dummy and BI. Lastly, we 

include the Gini coefficient for each province (𝐺𝐼𝑁𝐼) as a measure of overall inequality, which is 

distinct from the hukou identity-related inequality.  𝑋𝑖𝑡 and 𝑍𝑗𝑡 represent a set of individual-level and province-level control variables, respectively, that are 

consistent with the literature (see, e.g., Awaworyi Churchill & Smyth, 2019; Cheng et al., 2016; Hu, 

2013). For individual-level covariates we include a rural-urban dummy, gender, age, health status (an 

interviewer rated health status score of the respondent), political identity (whether or not a member of 

the China Communist Party), education, marital status, employment status (employed or unemployed) 

and household income per capita.3 Consistent with the literature (see, e.g., Cheng et al., 2016; Hu, 

                                                           

1 Refer to Xie and Hu (2014) for a detailed description about CFPS.  
2 The CFPS collects information on respondent’s happiness in selected waves. However, we did not use it as the measure 
of subjective wellbeing given the scant nature of the available data. In robustness check, we examine the robustness of our 

results to an alternative measure of subjective wellbeing which focuses on respondents’ level of confidence about the future.  
3 Rural-urban dummy variable is not to be confused with hukou dummy variable. Rural-urban dummy variable equals one 

if a respondent lives in an urban area and zero if in a rural area, whereas the hukou dummy variable equals one if a 
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2013), we also include a dummy variable that captures each respondents’ homeownership status. Our 

province-level control variables include GDP per capita and population growth, drawn from the 

National Bureau of Statistics of China. We also control for province fixed effects and province-specific 

time trends to account for the effect of exogenous factors on (changes in) SWB. Table 1 provides a 

summary and descriptive statistics of variables included in the analysis.  

For our baseline, we estimate equation (1) using panel fixed effect estimators (Panel FE).4 However, 

endogeneity is likely to be a problem. In order to correct for endogeneity, we employ the 

heteroscedasticity-based identification strategy developed by Lewbel (2012).  

4. Results 

4.1. Benchmark panel fixed effect results 

Table 2 presents fixed effect results with different combinations of explanatory variables. Columns 

(1) and (2) report results for a model which adds on BI and province-level inequality to the standard 

set of covariates previously discussed. To examine the sensitivity of our results, Column (1) excludes 

province-level characteristics while Column (2) adds on province-level population growth and GDP 

per capita to account for province-level characteristics. Turning to Column (1), we find that the 

coefficient on BI is negative and statistically significant at one per cent level with an effect size of 0.09. 

This implies that a unit increase in between-group inequality is associated with a 0.09 unit decline in 

SWB on a 1-5 point scale. Findings from Column (2) which control for province-level characteristics 

including population and economic performance also confirm this finding. Specifically, the coefficient 

on BI here is also negative and statistically significant at one per cent level with an effect size of 0.12, 

implying a 0.12 decline in SWB on a 1-5 point scale for a unit increase in between-group inequality. 

These results suggest that higher levels of identity-related inequality is associated with lower levels of 

SWB measured by life satisfaction. This finding is also true for overall province-level inequality which 

is negative and statistically significant at one per cent level in both columns. The effect seems to be 

relatively large with effect size in Column (1) being 3.10 which reduces to 2.93 once we control for 

province-level characteristics.  

Given that hukou status is argued to generate discrimination and cause various rural-urban divisions, 

the effects of inequality on SWB might be heterogeneous across rural and urban hukou residents. In 

order to investigate this heterogeneity, we include a dummy variable that captures respondents’ hukou 

status and its interaction term with BI in Columns (3) and (4). Here, Column (3) excludes province-

level characteristics while Column (4) includes them. We find that, across both columns, the effect of 

BI and province-level inequality remain robust with relatively higher effect sizes, compared to effect 

sizes in Columns (1) and (2). Specifically, in Columns (3) and (4), the coefficient on BI is negative 

and statistically significant at one percent level with effect size of 0.12 and 0.15, respectively. While 

                                                           

respondent has an urban hukou and zero if a rural hukou. A respondent who has a rural hukou status may not necessarily 

live in a rural area, and could move to an urban area because there are more opportunities and better infrastructure.  
4 In robustness checks, we examine the robustness of our results to the treatment of life satisfaction as an ordinal variable 

by using ordered probit regressions (Panel A in Table 6). Our results remain consistent.  
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for province-level inequality, the coefficient is -3.14 and -2.98 in Columns (3) and (4) with the same 

significance level.  

We also find that the coefficient on the interaction term in both columns is statistically significant at 

one per cent level, suggesting that the effects of inequality on SWB is heterogeneous across rural and 

urban hukou residents. For example, the coefficient in Column (4) is 0.13, indicating that for urban 

hukou residents (hukou=1), a unit increase in BI is associated with 0.02 (-0.15+0.13) unit decrease in 

SWB, whereas for rural hukou residents (hukou=0), a unit increase in BI is associated with 0.15 unit 

decrease in SWB. This finding indicates that the effects of inequality on SWB is stronger for rural 

hukou residents than urban hukou residents.  

The direction of effects concerning the coefficient of other covariates are consistent with previous 

literature (see, e.g., Jiang, et al., 2012; Knight & Gunatilaka, 2010a; Knight, Lina, & Gunatilaka, 2009). 

Specifically, better health status is associated with higher level of SWB. House ownership also 

influences SWB: compared with individuals who do not own houses, individuals who own houses, on 

average, report higher levels of SWB. Educational attainment and household income per capita have 

a significant and positive effect on SWB.  

4.2. Endogeneity corrected results using heteroskedasticity-based identification 

As noted earlier, endogeneity is likely to be a problem. For instance, BI is likely to be endogenous 

because individuals who exhibit low levels of SWB may be less motivated to work thus giving rise to 

inequality. We resort to the Lewbel (2012) approach to address endogeneity given the inability to find 

appropriate external instruments. The Lewbel (2012) approach exploits heteroscedasticity for 

identification. Identification can be achieved without imposing any exclusion restrictions if there is a 

vector of exogenous variables Z and the errors are heteroskedastic. The Z vector can be a subset of the 

exogenous X vector included in the regression or even Z=X. In the first stage, each endogenous 

variable is regressed on the Z vector, and the vector of residuals 𝜀̂  is retrieved. These estimated 

residuals are then used to construct instruments (Z - �̅�) 𝜀̂, where �̅� is the mean of Z. This approach has 

been used in the SWB literature to address endogeneity (see, e.g., Appau & Awaworyi Churchill, 2018). 

In our case, in the first stage we run regressions of BI on individual and province characteristics 

and then retrieve residuals 𝜀̂. In the second stage, Eq. (1) is estimated by IV with (Z - �̅�) 𝜀̂ as the 

instruments. The results are presented in Column (5) of Table 2.5 The coefficient on BI is -0.26 and is 

statistically significant at one per cent level. The magnitude of this coefficient compared to that from 

the fixed effect model in Column 4 (which uses the same set of controls) suggests that endogeneity 

generates a downward bias in the fixed effect estimate. However, we find that the coefficient on hukou 

status and the interaction term are statistically insignificant.   

4.3.  Potential channel analysis 

As previously discussed, social capital is argued as an important channel through which inequality 

operates to influence wellbeing. Income inequality is likely to hinder social capital. Particularly, social 

                                                           

5
 Although the Hansen J statistic is significant, the p-value of the heteroskedastic-robust Kleibergen-Paap (2006) rk statistic 

and the robust Kleibergen-Paap Wald rk F statistic look good. 
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capital mobility is infrequent and people mostly remain segregated in societies with high inequality. 

This eventually reflects inequalities in other forms of beyond income. Yet, the role of social capital in 

promoting SWB is largely discussed in the literature, and thus, with the expected effects of inequality 

on social capital, we expect that social capital is a channel through which inequality operates to 

influence SWB.    

Our data allows us to examine the potential role of neighbourhood trust, which is an important measure 

of social capital.6 In waves 2 to 4 of the CFPS, survey respondents are asked to rate how much they 

trust their neighbours on a scale of 0-10, where 0 is distrustful and 10 is very trustworthy. For 

neighbourhood trust to qualify as a channel of influence in the inequality-wellbeing relationship, in 

addition to being correlated with income inequality, it should also be correlated with SWB, and the 

inclusion of neighbourhood trust as an additional covariate in the regression linking SWB to income 

inequality should decrease the magnitude of the coefficient on income inequality or render it 

statistically insignificant.  

In Table 3, we estimate alternative models where we examine the effects of between-group inequality 

and province-level inequality on neighbourhood trust. Results from Column (1) of Table 3 show a 

statistically insignificant effect of between-group inequality on neighbourhood trust. However, from 

Column (2), we find that an increase in province-level inequality is associated with a decline in 

neighbourhood trust. Given that only province-level inequality has a significant effect on trust, we 

proceed to include trust as an additional covariate in a model that links SWB to province-level 

inequality.  

We first re-estimate the SWB model with a restricted sample based on waves 2 to 4 given that 

neighbourhood trust is only available in these waves. This will ensure that the same sample size is used 

when we compare the coefficient on province-level inequality. Column (1) of Table 4 reports results 

for the effects of province-level inequality on SWB. Here, we find that the effects of inequality is 

consistent with those reported in our baseline estimates. In Column (2) of Table 4, we add on trust as 

an additional covariate. Consistent with existing literature that has examined the impact of trust on 

SWB in China (see, e.g., Awaworyi Churchill & Mishra, 2017), we find that trust is positively 

associated with SWB. Thus, higher levels of neighbourhood trust is associated with higher levels of 

SWB. Further, we observe that with the inclusion of trust as an additional covariate, the coefficient on 

province-level inequality drops in magnitude, confirming that trust is a channel through which 

province-level inequality influences SWB.   

Our findings here are consistent with conclusions from Oishi, et al. (2011) which focuses on the US 

and Delhey and Dragolov (2013) which focuses on Europe. Oishi, et al. (2011) find that the negative 

relationship between income inequality and SWB in the US can be explained by perceived fairness 

and trust. They further report that with higher levels of income inequality, Americans perceive other 

people to be less fair and trust other people less. Similarly, Delhey and Dragolov (2013) find that 

income inequality decreases social trust and this in turn lowers SWB. 

                                                           

6 We also examine the potential role of social networks, measured by membership in trade union, religious group or 

communist party. However, we do not find evidence to support social networks as a channel through which inequality 

operates.  
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4.4. Robustness checks and extensions 

We undertake various analyses to test the robustness of our results. First, we examine the 

robustness of our results to an alternative measure of SWB, which captures respondents’ level of 
confidence about the future. The results reported in Column (1) of Table 5 are consistent with our 

baseline results.  

Second, we examine the robustness of our results to alternative measures of income inequality. We 

construct an alternative measure of between-group inequality (denoted as BI*). We define this measure 

of between-group inequality as the ratio between mean income of urban residents and rural residents. 

Compared with the original BI, this alternative measure captures inequality arising from rural and 

urban divide. The Chinese economy is characterised by a significant rural-urban divide (Knight & 

Song, 1999) that takes the form of disparities in income and in the provision of services such as 

education and health. Accordingly, where an individual lives – rural or urban area – matters in forming 

his/her identity. Our main set of results are based on inequality measures that are constructed using 

information on the provinces in which respondents live. In further checks, we also use an alternative 

measure of inequality that are based on the county in which respondents live, although this construct 

of inequality has significantly lower number of observations due to missing observations. Thus, the 

measure of between-group inequality here (BI+) is calculated as the ratio between the mean income of 

urban hukou residents and the rural hukou residents within the same county. Gini included in BI+ 

models are GINI coefficient for each county. We report the effects of BI* and BI+ on life satisfaction 

and future confidence in alternating models. Results reported in Columns (2) to (5) of Table 5 are 

largely consistent with the baseline results.  

Third, we examine the robustness of our results to alternative estimation methods. We examine the 

sensitivity of our results to the treatment of SWB as an ordinal variable. Given the ordinal nature of 

how SWB is measured, we estimate the SWB regressions using panel ordered probit. The main 

findings, as shown in Panel A of Table 6, are consistent with our baseline estimates which treat SWB 

as cardinal. This finding is consistent with conclusions from Ferrer-i-Carbonell and Frijters (2004), 

which suggest that in the context of SWB research, SWB regressions are not sensitive to whether the 

outcome variable is treated as cardinal or ordinal. As an alternative to addressing endogeneity, we 

adopt the Coarsened Exact Matching (CEM) approach (Iacus et al., 2012). CEM is a matching method 

that allows us to draw causal inferences about the effect of income inequality on SWB. The matching 

method allows us to ex ante choose the balance between the treated and control groups, and is widely 

used in the literature as a method for improving causal inferences (see, e.g., Pierskalla and Hollenbach, 

2013; Singh and Agrawal, 2011). The CEM results reported in Panel B of Table 6 suggest that higher 

BI and Gini are associated with lower SWB. Hence, the CEM results are consistent with our baseline 

findings.  

Lastly, we extend our results to examine if the effect of income inequality is different across different 

groups. Following Smyth and Qian (2008), we interact income inequality with dummy variables for 

the bottom 20 per cent and top 20 per cent of income earners. We also interact income inequality with 

dummy variables for different educational attainment and age groups. Results for this exercise are 

reported in Table 7. From Column 1, we find the interaction with income is statistically insignificant 

for the top 20 per cent of income earners but significant for the bottom 20 per cent of income earners. 
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Taking into account the coefficient on other variables in the model, the coefficient on the interaction 

term suggests that the effects of income inequality on SWB for low income earners (20 per cent of 

income earners) is more pronounced compared to other income groups. This finding is consistent with 

the jealousy effect of income inequality. From Column 2, we find that the effect of income inequality 

is not heterogenous across those with different education status. From Column 3, the results suggest 

that the interaction with age dummy for those 60 years and above is statistically insignificant but 

significant for the interaction with age dummy for those up to 24 years. Taking into account other 

effect sizes, the coefficient on the interaction term suggests that the effects of income inequality for 

younger people is more pronounced compared to other age groups. This finding could be because 

younger people are more likely to have stronger social capital, which when disrupted by inequality, 

causes more dissatisfaction.  

5. Conclusions 

We examined the relationship between income inequality and SWB using a nationally 

representative panel dataset from China. We measure inequality with two indicators that capture 

province-level inequality and between-group inequality or identity-related inequality. We define 

between-group inequality as the income gap between migrants without urban household registration 

identity (hukou) and urban residents. In our baseline results, we find that high levels of province-level 

inequality and identity-related inequality are associated with low level of SWB measured by life 

satisfaction. This general conclusion is robust to a number of sensitivity checks including alternative 

ways of measuring SWB and inequality. When we account for endogeneity using CEM and 

heteroskedasticity-based identification, we consistently find a causal negative relationship between 

inequality and wellbeing.  

The observed negative effects of inequality across various levels on SWB lends support to the idea 

that redistributing income from the rich to the poor in society will raise average levels of SWB. 

Economic theory demonstrates that as income increases, an individual’s marginal utility diminishes. 
Given that SWB is an important measure of utility, marginal increases in wellbeing will be smaller at 

higher levels of income. Practically, an extra dollar of income has less value, in terms of wellbeing, to 

a rich person than to a poor person (Helliwell, Layard, & Sachs, 2012; Reyes-García et al., 2019). 

Given that majority of populations tend to find themselves within the lower income quintiles, it follows 

from the concept of diminishing marginal return to income that a more equal distribution of income 

will result in higher average wellbeing.  

In the Chinese context, an important policy recommendation stemming from our results is to adopt 

strategies that ensure a more inclusive society devoid of discrimination. The negative effects of 

between-group or identity-related inequality suggests that policies aimed at reducing income inequality 

engendered by rural-urban segmentation are crucial. As a result of the rural-urban segmentation 

induced by the hukou system, rural hukou residents face discrimination in various aspects of their lives. 

This discrimination extends to important areas such as health, education and the use of public goods 
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in general.7 Accordingly, policies aimed at promoting a more inclusive access to infrastructure are 

crucial to narrow the inequality gap.  

Our findings also point to the importance of building trust and strong social capital. We demonstrate 

that trust is a channel through which inequality operates to hinder wellbeing. Thus, in addition to 

policies aimed at reducing discrimination, it is important that social policies aimed at fostering trust 

between rural and urban hukou residents are implemented.    

 

  

                                                           

7 Scholars have conducted many studies that investigate the impact of the discriminatory social and economic policies 

induced by the hukou system (Afridi, Li, & Ren, 2015; Liu, 2005; Song, 2014).   
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Table 1 Descriptive statistics 

Variable Definitions Mean SD Min Max 

Life Life satisfaction, cardinal scores 3.59 1.06 1.00 5.00 

BI Between-group inequality 1.61 0.34 0.61 2.91 

Gini Gini coefficient 0.46 0.05 0.29 0.65 

Hukou Household register, urban hukou=1 0.28 0.45 0.00 1.00 

Urban Urban area=1 0.44 0.50 0.00 1.00 

Age Age (years) 49.73 14.13 16.00 110.00 

Party Communist Party member=1 0.08 0.28 0.00 1.00 

Health Health status, cardinal scores 5.36 1.24 1.00 7.00 

Education Highest education attained, cardinal scores 2.26 1.26 1.00 8.00 

Marry Married=1 0.88 0.32 0.00 1.00 

Employed Employed=1 0.71 0.45 0.00 1.00 

House Owns house(s)=1 0.91 0.29 0.00 1.00 

Income Household income per capita (log) 8.80 1.20 3.00 14.21 

GDP per capita GDP per capita 10.59 0.46 9.48 11.68 

Population growth Population growth (‰) 4.79 2.42 -0.49 10.84 

 

Data sources: GDP per capita and population growth are obtained from the National Bureau of Statistics of China (http://data.stats.gov.cn). Other variables are author’s 
calculation based on the data set from CFPS 2010, 2012, 2014 and 2016 (http://www.isss.pku.edu.cn/cfps).  

Notes: 1. Life is the subjective life satisfaction score of the respondent. Each respondent was asked the same question: “are you satisfied with your life?” with a five-point scale 

(very unsatisfied=1, very satisfied=5). 2. We follow the rural-urban classification from the National Bureau of Statistics China to construct the dummy variable Urban 

(http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2018/index.html). 3. Respondents’ education is measured in an eight-point scale (illiterate=1, primary school=2, junior 

high=3,…, doctorate=8). 4. Health is the interviewer rated health status score of the respondent. It is a seven-point scale (very poor=1, very good=7).
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Table 2 Results from panel FE and IV estimation 

 Dependent variable: Life satisfaction 
 

Panel FE IV 

 (1) (2) (3) (4) (5) 

BI -0.090*** -0.116*** -0.124*** -0.149*** -0.257*** 
 

(0.022) (0.025) (0.025) (0.027) (0.066) 

Hukou   -0.177*** -0.171*** -0.221 
 

  (0.066) (0.066) (0.159) 

Hukou x BI   0.130*** 0.126*** 0.159+ 
 

  (0.037) (0.037) (0.100) 

Gini -3.096*** -2.933*** -3.140*** -2.978*** -2.405*** 
 

(0.133) (0.138) (0.133) (0.139) (0.119) 

Age 0.010 0.012 0.010 0.012 0.081*** 
 

(0.020) (0.021) (0.020) (0.021) (0.007) 

Health 0.050*** 0.052*** 0.050*** 0.052*** 0.051*** 
 

(0.005) (0.005) (0.004) (0.005) (0.004) 

Party 0.040 0.040 0.039 0.039 0.044 
 

(0.041) (0.041) (0.041) (0.041) (0.040) 

Education 0.169*** 0.188*** 0.167*** 0.187*** 0.173*** 
 

(0.012) (0.013) (0.012) (0.013) (0.013) 

Marry 0.051 0.053* 0.052 0.053* 0.050 
 

(0.032) (0.032) (0.032) (0.032) (0.032) 

Employed 0.002 0.008 0.003 0.008 -0.004 
 

(0.014) (0.014) (0.014) (0.014) (0.014) 

Urban -0.096*** -0.091*** -0.094*** -0.090** -0.080** 
 

(0.035) (0.035) (0.035) (0.035) (0.034) 

House 0.048** 0.050** 0.049** 0.050** 0.045** 
 

(0.020) (0.020) (0.020) (0.020) (0.020) 

Income 0.031*** 0.031*** 0.031*** 0.030*** 0.030*** 
 

(0.005) (0.005) (0.005) (0.005) (0.005) 

Province characteristics No Yes No Yes Yes 

Under-id. test     0.000 

F-stat.     63.831 

Over-id. test     0.000 

Observations 56,662 56,662 56,662 56,662 56,662 

 

Notes: ***, **, * represent significance at 1%, 5%, 10% level, respectively. The numbers in brackets are heteroskedasticity-

robust standard errors. ‘IV’ refers to the Lewbel (2012) approach. Under-id. test reports the p-value of the Kleibergen and 

Paap (2006) rk statistic; F-stat. reports the Kleibergen-Paap Wald rk F statistic; Over-id. test reports the p-value of Hansen 

J statistic. +: p-value is 0.112. 
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Table 3 Effects of inequality on trust 

 Dependent variable: Neighbourhood trust 

 Panel FE 

 (1) (2) 

BI 0.140  

 (0.090)  

Gini  -1.736*** 

  (0.462) 

Other control Yes Yes 

Province characteristics Yes Yes 

Observations 41,670 41,670 

 

Notes: *** represent significance at 1% level. The numbers in brackets are heteroskedasticity-robust standard errors. 
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Table 4 Potential channel analysis 

 Dependent variable: Life satisfaction 

 Panel FE 

 (1) (2) 

Gini  -2.080*** -1.992*** 

 (0.226) (0.225) 

Trust  0.051*** 

  (0.003) 

Other control Yes Yes 

Province characteristics Yes Yes 

Observations 41,765 41,765 

 

Notes: *** represent significance at 1% level. The numbers in brackets are heteroskedasticity-robust standard errors. 
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Table 5 Robustness test (alternative measure of inequality and SWB) 

 (1) (2) (3) (4) (5) 

BI -0.137***     

 (0.029)     

BI*  -0.150*** -0.177***    
 (0.027) (0.028)   

BI+    0.012 -0.045*** 

    (0.013) (0.014) 

Gini -2.155*** -2.857*** -2.024*** -0.163 -0.095  
(0.144) (0.141) (0.146) (0.124) (0.131) 

Other controls Yes Yes Yes Yes Yes 

Observations 56,662 56,325 56,325 31,160 31,160 

 

Notes: ***, **, * represent significance at 1%, 5%, 10% level, respectively. Dependent variable in Columns (2) and (4) is 

life satisfaction while in Columns (1), (3) and (5) is confidence in future. BI* and BI+ are alternative measures of BI, see 

text for more details. The numbers in brackets are heteroskedasticity-robust standard errors. 
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Table 6 Robustness test (alternative estimation methods) 

  Dependent variable 

  life satisfaction future confidence 

Panel A: Alternative estimation method using panel ordered probit 

  (1) (2) 

 BI -0.128*** -0.127*** 

  (0.030) (0.031) 

 Gini -3.773*** -2.747*** 

  (0.167) (0.168) 

 Other controls Yes Yes 

 Observations 56,662 56,662 

Panel B: Coarsened Exact Matching 

  (1) (2) 

 BI -0.121*** -0.140*** 

  (0.036) (0.037) 

 Gini -3.253*** -2.198*** 

  (0.212) (0.217) 

 Other controls Yes Yes 

 Observations 42,025 42,025 

 

Notes: ***, **, * represent significance at 1%, 5%, 10% level, respectively. The numbers in brackets are heteroskedasticity-

robust standard errors.   
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Table 7 Income, education and age interactions 

 Dependent variable: Life satisfaction 

 (1) (2) (3) 

BI -0.121*** -0.129*** -0.122***  
(0.025) (0.033) (0.025) 

BI x Income in Top 20% 0.006   

 (0.009)   

BI x Income in Bottom 20% 0.024**   

 (0.011)   

BI x Primary School and Below   0.007   
 (0.026)  

BI x Middle School   0.024  

  (0.021)  

BI x Young (24 and below)    0.098*** 

   (0.023) 

BI x Senior (60 and above)   0.008  
  (0.013) 

Gini -2.927*** -2.929*** -2.933*** 

 (0.139) (0.139) (0.138) 

Other controls Yes Yes Yes 

Observations 56,662 56,662 56,662 

 

Notes: ***, **, * represent significance at 1%, 5%, 10% level, respectively. The numbers in brackets are heteroskedasticity-

robust standard errors. 


