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Abstract 

Popular DMSP night lights data are flawed by blurring, top-coding, and lack of 

calibration. Yet newer and better VIIRS data are rarely used in economics. We 

compare these two data sources for predicting Indonesian GDP at the second 

sub-national level. DMSP data are a bad proxy for GDP outside of cities. The 

city lights-GDP relationship is twice as noisy using DMSP as using VIIRS. 

Spatial inequality is considerably understated with DMSP data. A Pareto 

adjustment to correct for top-coding in DMSP data has a modest effect but still 

understates spatial inequality and misses key features of economic activity in 

Jakarta. 
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I. Introduction  

Night lights, as detected by satellites, are increasingly used by economists, especially 

to proxy for economic activity in poor countries. A recent review finds more than 150 studies 

in economics using night lights, almost all of which use the Defense Meteorological Satellite 

Program (DMSP) data even as there is a rapid switch to using newer and better data from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) in other disciplines (Gibson et al, 2019). 

Flaws in DMSP data include blurring, coarse resolution, no calibration, low dynamic range, 

top-coding, and unrecorded variation in sensor amplification that impairs comparability over 

time and space (Elvidge et al, 2013; Abrahams et al, 2018; Bluhm and Krause, 2018). 

Many of these flaws stem from the original purpose of DMSP, which was to detect 

clouds to assist with short-term weather forecasts for the Air Force. In contrast, the VIIRS 

Day-Night Band (DNB) was designed to help researchers consistently measure the radiance 

of light coming from earth, in a wide range of lighting conditions (covering almost seven 

orders of magnitude while DMSP covers less than two), with high spatial accuracy and with 

temporally comparable data. The superiority of VIIRS has resulted in a rapid switch in the 

scientific literature and now almost twice as many articles per year publish using the VIIRS 

night lights data compared to those using the older and less suitable DMSP data, even while 

economists increasingly use DMSP data and largely ignore VIIRS (Gibson et al, 2019).  

The continued use of DMSP data by economists reflects several factors. First, there 

has been a larger scholarly impact, in terms of citations, from Henderson et al (2012) who 

suggest that DMSP lights data can be used successfully in a wide range of circumstances, 

than from Chen and Nordhaus (2011) who are more circumspect in the support they offer for 

using DMSP data.2 Second, the long DMSP time series from 1992 to 2013 is attractive to 

economists. Two caveats to that potential advantage are that night lights are far better at 

predicting GDP and other economic variables cross-sectionally than temporally (Addison and 

Stewart, 2015; Nordhaus and Chen, 2015), and the time series is becoming outdated, with the 

DMSP data stopping in 2013 while the VIIRS data are available monthly with only a slight 

lag.3 Finally, economics may be slower to switch to using VIIRS night lights data, compared 

to other disciplines, because flaws in the DMSP data are rarely highlighted in the economics 

literature. While the remote sensing literature has several comparisons that highlight the 

                                                
2 Specifically, Chen and Nordhaus (2011, p.8594) noted that “luminosity data do not allow reliable estimates of 

low-output-density regions” and that only for countries with the worst statistical systems, accounting for under 

nine percent of world population, are night lights data likely to add value as a proxy for economic output. 
3 At the time of writing (December, 2019) the monthly VIIRS data were available for download from April 2012 

to September 2019 from https://eogdata.mines.edu/download_dnb_composites.html.  
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superiority of VIIRS (e.g. Elvidge et al, 2013) and sometimes even in studies authored by 

economists (e.g. Chen and Nordhaus, 2019), there are no similar studies in economics 

journals. 

In light of the limited comparisons between DMSP and VIIRS within economics, the 

current paper presents a test of these data for estimating regional GDP and inequality for rural 

and urban areas. Specifically, we estimate relationships between night lights and Indonesian 

GDP at the second sub-national level for 497 spatial units. Indonesia is one of few developing 

countries with reliable GDP data at the second sub-national level, and it is for such countries 

that night lights data are potentially the most useful, given more abundant data available for 

richer countries. We find the DMSP data are not a suitable proxy for GDP outside of cities, 

with a negative relationship between real GDP and DMSP lights for non-urban spatial units. 

This echoes a finding of Keola et al (2015), whose cross-country analysis showed that the 

relationship of DMSP night lights to GDP was negative where and when agriculture is a large 

share of GDP, even as it is positive elsewhere. While there is a positive relationship between 

lights and GDP in Indonesia’s urban sector, the lights-GDP relationship is twice as noisy if 

estimated with DMSP data rather than VIIRS. We also find spatial inequality considerably 

understated by the DMSP data, especially in the urban sector. A Pareto-based adjustment 

developed by Bluhm and Krause (2018) to deal with top-coding in DMSP data has a modest 

effect but the adjusted data still greatly understate spatial inequality, and miss much of the 

intra-city heterogeneity in (and key features of) the brightness of lights for Jakarta. 

II. Background and Related Literature  

Researchers have used night lights data from the Defense Meteorological Satellite 

Program Operational Linescan System (DMSP for short) for over 40 years, even though these 

satellites were designed to observe clouds for short-term weather forecasts rather than to give 

a consistent long-term record of lights on earth. While a few earlier studies by remote sensing 

researchers had an economics focus, it was not until Henderson et al (2012), and to a lesser 

extent Chen and Nordhaus (2011), developed ways to optimally weight data on night lights 

and reported GDP, in order to predict true GDP, that many economists paid attention to night 

lights data.4 These key studies noted that the night lights data were noisy but concluded that 

in a fairly wide range of contexts (Henderson et al, 2012), or, alternatively, in a narrower set 

                                                
4 While Chen and Nordhaus (2011) is clearly an economics contribution, it is not in an economics journal and 

only one-quarter of the ca. 500 citations (in Google Scholar as of Sept 9, 2019) are from economics journals or 

working papers. In contrast, far more of the ca. 1200 citations to Henderson et al (2012) are from economics, so 

most economists with exposure to night lights data will have gained this through Henderson et al (2012). 
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of contexts (Chen and Nordhaus, 2011), DMSP lights data could add value to conventional 

economic statistics like national and regional GDP. A few subsequent studies in economics 

highlighted noise in DMSP data, with low explanatory power and unstable growth elasticities 

for long differenced economic variables (Addison and Steward, 2015), greater uncertainty in 

lights-based time-series of GDP estimates than for cross-sections of GDP (Nordhaus and 

Chen, 2015), and unstable relationships between DMSP data and regional GDP making the 

DMSP data a poor proxy for regional economic activity (Bickenbach et al, 2016). 

Despite these critical findings, many more studies in applied economics have used the 

DMSP data to study a wide range of topics (see Gibson et al, 2019 for a survey). It was not 

until recently, in Abrahams et al (2018) and Bluhm and Krause (2018), that the measurement 

errors in the DMSP data were more fully linked to some inherent flaws in the sensors and 

data processing, and that possible correction methods were proposed. We briefly summarize 

some of these flaws, and contrast DMSP with features of the Day-Night Band (DNB) of the 

Visible Infrared Imaging Radiometer Suite (VIIRS), which is a far more accurate source of 

night lights data from the Suomi satellite that was launched in 2011.  

The DMSP data lack spatial accuracy because the sensor and data processing attribute 

light to different places than where it was emitted. Some earlier studies suggested this was 

from reflection off water or snow, and so may matter in only a few places, but recent studies 

show that ‘blurring’ is an inherent feature of DMSP data (Abrahams et al, 2018). The DMSP 

satellite orbit altitude is about 800 km, which is just over one-quarter of the 3000 km sweep 

of the sensor, and so except at the nadir the earth is viewed at an acute angle, giving a larger 

field-of-view (four-fold larger at the edge) from which all light is attributed to a smaller pixel 

in the centre. The on-board computers cannot hold the data for the small pixels, so aggregate 

to 5×5 blocks (of size 2.7 km × 2.7 km at the nadir) prior to the data being sent to earth, 

which further spreads light from its point of origin. Random geo-location errors, with a mean 

of about 3 km, further spread apparent sources of light. In contrast, VIIRS has a near-constant 

spatial resolution across the sweep of the sensor, by compensating for the expanded ground 

footprint as the scan goes towards the edge, and handles finer 0.7 km × 0.7 km pixels due to 

abundant data storage. Spatial errors in DMSP data show up as exaggerated estimates of lit 

area for cities; Gibson et al (2019) show a 150% error for Dar es Salaam, and errors of 500% 

or more for smaller towns. Abrahams et al (2018) find that DMSP data overstate city area by 

an average of 77% across 15 big cities. In overstating lit area of towns and cities, DMSP data 

wrongly attribute light to hinterland areas, introducing cross-sectional noise.  
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The lack of temporal consistency of DMSP data, which causes errors in time-series of 

lights-based GDP estimates, is from two main sources. First, there is no on-board calibration, 

with changes in the sensor amplification over the monthly lunar cycle – gain settings – not 

recorded in the data. The signal is amplified going into the dark part of the month to keep the 

brightness of moon-lit cloud tops the same, so lights on earth then appear brighter, with no 

record kept to allow ex post adjustment to restore consistency (Hsu et al, 2015). The number 

of nights whose images meet the quality controls needed to be included in the DMSP annual 

composites varies widely over time and space, due to factors like cloudiness (especially near 

the equator), so convergence to an average amplification level that might provide comparable 

data over time and space is unlikely (Gibson et al, 2019). A lack of temporal consistency in 

DMSP data is exacerbated by the limited on-board data storage, with continuous measures 

converted to 6-bit integers (the Digital Number (DN) that ranges from 0-63, as 26=64), that 

are subject to censoring from the top and the bottom (Abrahams et al, 2018).  

A lack of calibration for DMSP also shows up as inter-satellite differences. For 12 of 

the 22 years (from 1992 to 2013) with annual composites of DMSP lights available, two 

satellites are in orbit providing data, and often report very different values for the same place. 

For example, for a place (Sicily) with little temporal variation, Gibson et al (2019) show that 

satellite F12 gave 29% higher DN values than F14 in the overlapping years, F15 recorded a 

24% decline in the DN value from 2002 to 2003 while F14 showed just a 2% change in the 

same year, and F18 gave a 32% higher DN value in 2010 than was seen with F16 in 2009.5 

Inter-satellite differences and unrecorded changes in sensor amplification (plus variation in 

how many nights contribute to annual composites, which limits convergence to some average 

amplification level) make it doubtful that a DN value from a certain satellite year refers to the 

same brightness as the same DN in another year (Doll, 2008). In contrast to these temporal 

consistency problems with DMSP, the VIIRS sensors are calibrated radiometers, where data 

provided by the instrument are proportional to the intensity of light (in nanoWatts/cm2/sr). 

The VIIRS sensors have in-flight calibration to ensure that data are comparable over time and 

space and the continuous signal is quantized with 14-bit precision (n=16,384 potential values) 

compared to the coarse 6-bit Digital Number for DMSP. 

Further flaws in DMSP data stem from the limited dynamic range of the sensors. The 

brightest lights in the CBD of cities often are given the same digital number (usually DN=63) 

                                                
5 Significantly higher values from F18 than F16, when recording the exact same light source on the same night 

(from an experiment using portable generators to power high-pressure sodium lamps in previously dark areas) is 

also noted by Tuttle et al (2014). 
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as the less brightly-lit suburbs (Bluhm and Krause, 2018). This is because the dynamic range 

of the DMSP sensor is less than two orders of magnitude, and so it cannot simultaneously 

capture light from brightly lit areas and from dimly lit areas. Under usual conditions, when 

the sensor amplification is turned up to view cloud tops, pixels in city centres are saturated 

with light and get the top-coded DN value of 63.6 In contrast, the dynamic range of the 

VIIRS Day-Night Band is about seven orders of magnitude (Lmax/Lmin=6,700,000) and so there 

are no saturation problems with VIIRS data. Bluhm and Krause (2018) suggest that lights 

follow a Pareto distribution, and use this to adjust DMSP data for top-coding; while the 

VIIRS data are not used in their correction method, they use these more accurate data to 

corroborate that the top tail of pixels in the night lights distribution follows a Pareto process.  

 In addition to these flaws in the DMSP data, it is becoming clear that satellite data on 

night lights (including from VIIRS) are poorly suited to the study of areas of low population 

density, which includes most rural places. One reason is that the sort of lights typically used 

in rural villages are not the type easily detectable from space. An experiment on accuracy of 

DMSP data, where researchers lit up previously dark areas, needed 1000-watt high pressure 

sodium lamps (large lamps of about 25 kg each, usually used in big warehouses), modified 

with aluminum shields to help direct light skywards (Tuttle et al, 2014) in order to be seen 

with the DMSP sensors. Such lights are not found in rural villages, but are more like light 

from concentrated street lamps and industrial facilities, which are typically found in urban 

areas. While VIIRS can better detect dimly-lit areas, the overpass time when the satellite 

observes earth is around 1.30am, and lights coming from the household sector in rural areas 

are unlikely to be switched on then (while urban street lights tend to stay on all night). 

There are several examples of this inability to detect low density areas. Nordhaus and 

Chen (2015) divided the globe into 1°×1° grid cells and about one-third of cells with positive 

population and output are recorded as having zero light in the DMSP data. In a follow-up for 

Africa, they find rising odds of DMSP finding no light as cell population density falls. VIIRS 

has better detection rates but the elasticity of gross cell product with respect to VIIRS lights 

still depends on population density (Chen and Nordhaus, 2015). Even just for cities and 

towns in Africa, the detection rates using the DMSP and VIIRS satellites are only 40-45% 

(Andersson et al, 2019). Other examples from Africa, Asia and the Pacific of low density 

                                                
6 Based on experiments when researchers had the Air Force lower the DMSP sensor amplification on a few 

nights to avoid DN values being top-coded, there are radiance-calibrated lights available for seven years. These 

rely on pre-flight calibrations of the satellites, rather than their degraded (from exposure to dust and radiation) 

actual performance, and require merging with the usual DMSP data so as to create annual composites (Hsu et al, 

2015). This process seems to create some instability between years (Bluhm and Krause, 2018). 
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areas that are home to up to 70% of the population not being detected by either DMSP or 

VIIRS, even when more than half of households in those areas use electric light, are given by 

Gibson et al (2019). A telling example is Vanuatu, where seasonal migration to Australia and 

New Zealand lifted incomes by up to 40%, and promoted use of electric lights (with an 

elasticity of 0.4 in census data). Impacts of this large program are equivalent to one-quarter of 

Vanuatu exports (Gibson and McKenzie, 2014) yet are undetected using either DMSP or 

VIIRS. At a more aggregate level, in a cross-country panel study of relationships between 

night light (annual composites of DMSP lights) and national GDP, Keola et al (2015) find 

positive elasticities of light with respect to GDP for countries where the agricultural share of 

GDP is less than 20% but negative relationships when the agricultural share of GDP exceeds 

20%. The authors note that it is possible for agriculture’s value-added to increase without an 

increase in lights, which is much less true for the urban sector.  

III. Data and Methods 

In light of the above literature, comparing performance of DMSP data and VIIRS data 

in predicting regional GDP is useful. The analysis should consider urban and rural areas 

separately, given sectoral differences in economic and population density and in lighting 

types, that likely affects the detection performance of the satellites. One issue with such a test 

is the limited temporal overlap of the two data sources. The DMSP data are only available 

annually, with the time-series ending in 2013. While VIIRS data are available in a monthly 

time-series from April 2012, there is potential to introduce extraneous elements if monthly 

and annual data are compared. For example, not only are there seasonal differences, the 

annual composites (for both DMSP and VIIRS) undergo further processing by scientists at 

the Earth Observation Group of the National Oceanic and Atmospheric Administration 

(NOAA) to screen out ephemeral lights and background (non-lights). Thus, the average of the 

monthly VIIRS data is not comparable to the annual composite of either VIIRS or DMSP 

data because the monthly data do not undergo this screening process. Therefore, to ensure the 

closest like-with-like comparison, we restrict attention to the annual composites provided by 

NOAA. This limits the length of the time-series and so we chose to work on Indonesia, as a 

developing country that provides a lot of cross-sectional variation and that also has reliable 

regional GDP data that we can use as our benchmark.7 

                                                
7 This research design plays to the strength of night lights, which are far better at predicting GDP in the cross-

section, than at predicting GDP changes in the time-series (Nordhaus and Chen, 2015; Chen and Nordhaus, 

2019). Lack of time-series explanatory power for economic activity changes also affects other remote sensing 

data, such as Landsat (Goldblatt et al, 2019). 
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Our research design relies on the fact that the second sub-national level in Indonesia is 

comprised of two types of spatial units. The first is Kabupaten (regencies), that are mainly 

rural areas and towns, with a mean (median) population density of 280 (83) persons per 

square kilometre. The other type of spatial unit is Kota (cities), which are highly urbanized 

and have a mean (median) population density of 3900 (2200) persons per km2 in the 2010 

census. These are quite populous spatial units, with the average Kota having a population of 

530,000 and the average Kabupaten having 460,00 in 2010; 22% of Indonesia’s population is 

located in Kota (of which there are n=98) and the rest are in the Kabupaten (n=399).8 If we 

cannot detect lights, or if lights poorly predict GDP, for such populous units then we would 

expect at least as poor a performance in settings with less populous units. 

We use three data sources to test the relationship between night lights and Indonesia’s 

second-level sub-national GDP. The first is VIIRS annual composites for 2015 and 2016, that 

are the earliest (and currently only) available annual composites. We use the “vcm-orm-ntl” 

product that, at the pixel level, excludes nights where Day-Night Band images are affected by 

stray light or by clouds. These annual composites also have outliers removed by the NOAA 

scientists, where these outliers may be due to ephemeral sources of light, such as fires or 

fishing boats, and the background (i.e., non-lights) is set to zero. The data are radiance values 

in units of nano Watts per square cm per steradian (nanoWatt/cm2/sr) and range from zero to 

about 1600 for Indonesia. 

The second data source is DMSP annual composites for 2011 and 2012, also from 

NOAA (e.g. for 2012 the file is F182012_v4b_stable_lights.avg_vis.tif). The F18 satellite 

providing these images has a 4-year time series starting in 2010. A feature of DMSP data is 

that the first and last year of the time series for each satellite often have fewer nights whose 

images contribute to the annual composite (Gibson et al, 2019), and so we use the middle two 

years to provide the most reliable annual estimates. This also helps maintain comparability 

with the VIIRS data that are also for two years. The DMSP data are digital numbers, ranging 

from 0-63, and have no interpretation in terms of radiance values.  

The third data source is the Indonesian government’s Central Bureau of Statistics 

(BPS) estimates of Gross Regional Domestic Product (GRDP). The BPS calculate and report 

GRDP at both the provincial level, and the next level down (Kabupaten/Kota). For the 

purpose of this paper, we utilize the GRDP data from 2011-2016, that are in spatially and 

                                                
8 We use the administrative geography from 2010, and where spatial units subsequently split we re-aggregate 

them to have a temporally consistent set of 497 spatial units. 
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temporally real terms, and use a 2010 base.  

In preparing the data for econometric analysis, we had to deal with 17 Kabupaten in 

2011, and those same 17 plus three more in 2012, where no light was detected by the DMSP 

sensors. These areas are in sparsely populated eastern provinces of Indonesia. Two of these 

Kabupaten also had no light detected by VIIRS in 2015, with two more undetected in 2016. 

We therefore used the inverse-hyperbolic-sine transformation for the lights data, which is 

identical to using logarithms for the non-zero observations, but also lets us use zeros without 

resorting to transformations like adding one to all values before logging (Gibson et al, 2017). 

We use logs of the real GDP values, so that our regression coefficients can be interpreted as 

elasticities (noting that the units of the DMSP data – DN values – are not comparable to the 

VIIRS radiance units so we need to use unit-free elasticities). 

IV. Results 

There is no statistically significant relationship between DMSP data on night lights 

and real GDP for the 497 regions at Indonesia’s second sub-national level, with an elasticity 

of -0.059 from the pooled regression that is surrounded by a wide standard error (Table 1). 

The same result holds in a purely cross-sectional, year-by-year analysis, where the elasticities 

are -0.081 and -0.039. In contrast, VIIRS data give precisely estimated elasticities of between 

0.17 and 0.18 when using night lights to predict real regional GDP.  

When the regressions are estimated separately for the Kabupaten (which covers the 

rural sector and some towns) and the Kota (which covers cities) it is apparent that the prior 

results aggregate over very different relationships. The lower density regions administered as 

Kabupaten have real GDP negatively (and statistically significantly) related to DMSP night 

lights, with an elasticity of -0.11. In contrast, the elasticity of city GDP with respect to DMSP 

night lights is 0.94 (in the pooled regression or 0.86 and 1.02 in the year-by-year regressions). 

This gap between elasticities of -0.11 and 0.94 reflects sectoral differences in economic and 

population density and in types of lights used. It is also seen in the differences in the degree 

of predictive fit, with the between-R2 values (which greatly exceed the within-R2, supporting 

the idea that lights better proxy for economic activity in the cross-section than for time-series 

changes) being much higher for the urban Kota than for the more rural Kabupaten.  

If the VIIRS data are used to predict the GDP of spatial units, the elasticities are all 

positive, unlike for DMSP. However, for the Kabupaten, the elasticities are only about 0.08 

to 0.09, and are imprecisely estimated. In contrast, for the urban Kota, the elasticities are 

from 0.93 to 0.95, and are very precisely estimated. Thus, satellite observation of night lights 
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does not appear to be a suitable source of data to proxy for GDP in non-urban areas in 

developing countries like Indonesia. Another contrast in Table 1 concerns the noise in the 

lights-GDP relationship for the urban sector. The unexplained share of the variation in real 

GDP is twice as large when using DMSP to predict GDP, at 64%, compared to using VIIRS 

where it is only 32% (for the overall R2 values). Finally, there is more year-by-year variation 

in the regression coefficients when using DMSP data rather than VIIRS data; this time-series 

instability likely reflects lack of calibration in DMSP data which means that DN values in 

one year are not necessarily comparable to DN values in another year. 

The DMSP data considerably understate spatial inequality. In Table 2 we report the 

Gini coefficient and Theil index for spatial inequality in lights, estimated over all 497 spatial 

units, and then separately for Kabupaten and for Kota. Considering first results for the Theil 

index, which is sensitive to inequality at the top of the distribution, inequality according to 

the VIIRS data is 53% higher (with a Theil index of 2.19) than according to the DMSP data 

(with a Thiel index of 1.42). This difference especially comes from the urban areas, where the 

VIIRS data show 64% higher inequality than do the DMSP data. We expand upon this 

comparison in Figure 1, which shows the Lorenz curve for lights in urban areas according to 

the DMSP data and the VIIRS data. Using the DMSP data, the Lorenz curve is significantly 

closer to the line of equality at all points, and yields a Gini coefficient of 0.58 compared to 

the Gini of 0.71 using VIIRS (the difference is statistically significant). 

The inequality estimates are based on two-year sums of lights, so that cross-sectional 

patterns are highlighted, and as these are not for overlapping periods (2011-12 for DMSP and 

2015-16 for VIIRS) it is possible that there was some change in underlying spatial inequality 

for Indonesia, that weakens the comparisons shown in Figure 1 and Table 2. However, the 

GDP data show no evidence of this, with just a two percent change (a slight fall) in spatial 

inequality from 2011-12 to 2015-16 according to the Theil index (and no change in the Gini). 

Thus, even without overlapping data we can conclude that using DMSP data will understate 

spatial inequality, especially for urban areas, and especially at the top of the distribution (the 

understatement of the Gini coefficient is proportionately less than for the Thiel index). 

Several flaws in DMSP could cause spatial inequality to be understated. The blurring 

and spatial errors will tend to spread measured lights, causing a reversion to the mean and 

understating inequality. The top-coding of DN values at 63 will dampen inequality, especially 

at the top of the distribution. To study which source of error may matter most, we use the 

Pareto-adjusted DMSP values for 2011 and 2012 developed by Bluhm and Krause (2018) and 

made available at their website: http://lightinequality.com/top-lights.html. We re-estimate the 
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Table 2 inequality statistics and find the Pareto-adjustment for top-coding closes about one-

fifth of the gap between the results from DMSP and VIIRS, in terms of overall inequality 

(e.g., raising the Theil index from 1.42 to 1.54, compared to the value of 2.19 with VIIRS). 

The Pareto adjustment closes relatively more of the gap in inequality estimates for urban 

areas (for example, closing 45% of the gap in the Gini between the original DMSP estimates 

and the benchmark VIIRS estimates). While this is promising, it remains true that spatial 

inequality is substantially understated, even when using the Pareto-adjusted DMSP data. 

The inequality described in Figure 1 and Table 2 considers the urban sector as a 

whole, but night lights also are used to study intra-city differences (e.g. Kocornik-Mina et al, 

2019). The top-coding and limited dynamic range of DMSP may distort understanding of 

spatial patterns in the development of particular cities by disguising differentiation that 

occurs in certain places. We illustrate this effect in Figure 2, which maps night lights in 

Jakarta (restricting attention to the area within the administrative boundaries of the city). The 

DMSP stable lights for 2012 in panel (a) show very little intra-city heterogeneity; 82% of the 

pixels have a digital number (DN) value of 63 (the highest possible) and 17% have DN=62. 

With such data, one cannot see where within a city the lights are brightest, and by treating all 

areas as roughly equally bright the DN values are almost like a dummy variable for whether a 

pixel is part of the city or not. This limited variation may explain a finding of Gibson et al 

(2017) that decomposing the sum of lights from cities into the extensive margin (the lit area) 

and intensive margin (the brightness of the lit area) shows that only growth on the extensive 

margin predicts their outcome of interest (poverty rates in rural India). With DMSP data not 

giving plausible measures of brightness variations within cities, a more appropriate research 

design for such data may be to rely on simpler indicators, like the 0/1 variable of whether a 

pixel is lit brightly enough to be considered part of the city or not. 

The map in panel (b) of Figure 2 shows the intra-city patterns in the Pareto-adjusted 

DMSP data for 2012. With this adjustment, the most brightly-lit core of the city appears as an 

approximately rectangular area, running about 8 km in a north-south direction and 6 km in an 

east-west direction, located slightly left of center, with a moderately lit area to the northeast 

(going towards Jakarta Bay). The remainder of the city appears as a largely undifferentiated 

area with lower levels of light recorded.  

While the Pareto-adjusted data are able to roughly locate the position of the CBD they 

miss major features of Jakarta, as seen from a comparison with the map in panel (c), that is 

based on the more accurate VIIRS images. First, the most brightly lit pixels form less of a 

block because they are interrupted by Merdeka square (one of the largest public squares in 
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the world, at five times larger than Tiananmen square in Beijing) and surrounding parkland. 

Second, the brightly lit axis of the CBD is smaller and runs more northeasterly towards the 

port of Tanjung Priok. The third, and most concerning, feature that the Pareto-adjusted data 

miss is the brightness of the port. This is the 22nd busiest in the world (ranked just ahead of 

the port of New York/New Jersey) and handles one-half of Indonesia’s goods trade. Yet 

despite this economic importance, and the fact of the port covering over 900 hectares (9 km2) 

and being very bright lit, it is entirely missed in the Pareto-adjusted DMSP images, which do 

not show any differentiation from the surrounding area. Finally, the Pareto-adjusted DMSP 

data miss spots of brightly lit areas in east Jakarta, and spots near the northwestern edge of 

the city, on the way to the Soekarno-Hatta airport (that is just outside the city administrative 

boundary). Thus, while the Pareto-adjusted images improve upon the usual DMSP data that 

portray most of the city as an undifferentiated blob of light, they still miss much of the detail 

and therefore provide a poor guide to patterns of intra-city spatial heterogeneity. 

In addition to the Pareto-adjusted data missing key spatial features, the values created 

when replacing top-coded DN values of 63 may overstate brightness differences. To allow for 

a quantitative analysis to supplement the visual comparison offered in Figure 2, we laid a grid 

of 590 cells over the maps in Figure 2 and calculated cell-level statistics so that we could 

compare reports of light coming from the same small areas.9 The coefficient of variation 

(CoV) of the Pareto-adjusted DMSP data is 60% above the CoV for VIIRS data, suggesting 

that the adjustment introduces more variability – in the sense of a wider range of values – 

than found in actual measures of radiance. A fairly poor correspondence between the Pareto-

adjusted data and the VIIRS radiance measures also shows up in Figure 3, which provides a 

scatter plot of the radiance for each cell, from the VIIRS data, against the DN values for the 

same cell from the Pareto-adjusted DMSP data.10 The R2 for this relationship is only 0.35 and 

the elasticity of cell radiance with respect to the cell DN value from the Pareto-adjusted data 

is only 0.54. While this is a better fit than using the original top-coded DMSP data to predict 

radiance, which has an elasticity of 0.30 and a R2 of just 0.03, it is still true that there will be 

a lot of error if the Pareto-adjusted DMSP data are used as a proxy for actual radiance (or to 

proxy for the underlying differences in economic density that produce the spatial patterns in 

radiance). 

                                                
9 The grid is 30×30, but 310 of the 900 cells fall outside the boundaries of Jakarta, given that the city does not 

have a perfectly square shape. 
10 We refer to these data as log transformed in the figure, for simplicity, even though strictly speaking they are 

inverse-hyperbolic-sine transformed. 
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V. Conclusions  

In terms of the first question in our title, VIIRS night lights data are a better proxy for 

economic activity than are the more widely used DMSP data. For the second issue, of where 

night lights data should be used, neither DMSP nor VIIRS seem to provide a good proxy for 

rural economic activity. While our results are only for Indonesia, an awareness of the type of 

lights needed to be detected by satellite suggests that these remote sensing data are generally 

not suitable for studying low density, rural, areas in developing countries. Thus, economists 

should look elsewhere for studying rural areas remotely, while also persevering with their 

traditional survey-based methods of measuring living standards. These other remote sensing 

sources may include day-time images, such as Landsat, that seem to be better cross-sectional 

predictors of economic activity than are DMSP data (Goldblatt et al, 2019).11 

There may be some resistance to these conclusions, as much recent applied economics 

research relies upon DMSP night lights data, and also because the newer and better VIIRS 

data have a shorter time-series for relating to economic variables. We believe that this second 

source of resistance to switching to VIIRS data is misplaced because night lights and other 

remote sensing data are poor predictors of time-series changes in economics variables, even 

as they can be good predictors cross-sectionally. Thus, assessing which data source is better 

should be based mainly on their performance in cross-sectional uses, as has been emphasized 

in this study. Moreover, much of the time-series variation in the DMSP data is spurious noise, 

due to the lack of calibration and inter-satellite differences, and these data are becoming old 

due to the 2013 end-date. In contrast, not only does VIIRS provide consistent data over time, 

it does so with a time-series that will only get longer, with launch of the NOAA-20 satellite in 

Nov, 2017 that has the identical measuring instruments as on the Suomi satellite that hosts 

VIIRS. It would therefore be an opportune time for economists to follow the lead of other 

disciplines, and make more use of the VIIRS night lights data. 

  

                                                
11 Whether the better predictive performance of Landsat over night lights images would hold if the comparison 

was with the more accurate VIIRS data rather than with the noisy DMSP data is an interesting question for 

future analysis. 
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Table 1: The Predictive Power of Night Lights for Regional GDP is much higher with VIIRS than with DMSP and is much higher for Cities 

 DMSP ‘stable lights’ for 2011 and 2012  VIIRS Annual Composites for 2015 and 2016 

 All spatial units 

(Urban & rural) 

Kabupaten 

(Mainly rural) 

Kota 

(Cities) 

 All spatial units 

(Urban & rural) 

Kabupaten 

(Mainly rural) 

Kota 

(Cities) 
        

Pooled regressions        

Log (sum of lights)it -0.059 -0.107*** 0.939***  0.179*** 0.086 0.936*** 

 (0.041) (0.039) (0.121)  (0.054) (0.056) (0.056) 

Year 2 dummy -0.008 -0.005 -0.123  0.056 0.045 0.056 

 (0.099) (0.109) (0.174)  (0.092) (0.105) (0.119) 

Constant 2.786 3.125 -5.734  1.041 1.704 -5.290 

 (0.367) (0.355) (1.136)  (0.443) (0.444) (0.502) 

R
2 overall 0.01 0.03 0.36  0.05 0.01 0.68 

  R2 within 0.00 0.00 0.00  0.00 0.00 0.00 

  R2 between 0.01 0.03 0.38  0.05 0.01 0.69 

Number of observations 994 798 196  994 798 196 

Year-by-Year Regressions 

Log (sum of lights)it=1 -0.081 -0.130** 0.858***  0.185** 0.093 0.945*** 

 (0.057) (0.054) (0.193)  (0.075) (0.078) (0.076) 

Constant 2.969 3.310 -5.028  0.992 1.658 -5.366 

 (0.504) (0.482) (1.779)  (0.603) (0.617) (0.686) 

R
2 0.01 0.04 0.30  0.05 0.01 0.69 

        

Log (sum of lights)it=2 -0.039 -0.086 1.024***  0.172** 0.080 0.927*** 

 (0.059) (0.057) (0.139)  (0.077) (0.080) (0.082) 

Constant 2.607 2.947 -6.618  1.144 1.794 -5.158 

 (0.525) (0.509) (1.291)  (0.610) (0.623) (0.731) 

R
2 0.00 0.02 0.43  0.05 0.01 0.68 

Number of observations 497 399 98  497 399 98 
        

Notes: The dependent variable is log real GDP for the Kabupaten or Kota (in 2010 prices and using the administrative divisions from 2010 to account for subsequent 

splitting of spatial units). Robust standard errors in ( ), ***, **, and * denote statistical significance at 1%, 5% and 10% levels. 
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Table 2: DMSP Data on Night Lights Considerably Understate Spatial Inequality, Even After Pareto Adjustment for Top-Coding 

 Gini coefficient  Theil Index 

 All spatial units 

(Urban & rural) 

Kabupaten 

(Mainly rural) 

Kota 

(Cities) 

 All spatial units 

(Urban & rural) 

Kabupaten 

(Mainly rural) 

Kota 

(Cities) 
        

        

DMSP (2011-12) 0.798 0.777 0.575  1.424 1.276 0.565 

 (0.017) (0.016) (0.059)  (0.089) (0.076) (0.123) 

DMSP (Pareto-adjusted  0.809 0.781 0.640  1.542 1.305 0.753 

for top-coding) (0.016) (0.015) (0.044)  (0.092) (0.077) (0.120) 

VIIRS (2015-16) 0.860 0.803 0.705  2.185 1.527 0.929 

 (0.014) (0.019) (0.041)  (0.129) (0.127) (0.134) 

Number of observations 497 399 98  497 399 98 
        

Notes: Standard errors in ( ). Inequality statistics based on the share of total lights and of total area from each spatial unit. Real GDP data for the same spatial units show no 

change in spatial inequality from 2011-12 to 2015-16. 
 

  

  



 
 

 

 
 
 



 

Figure 2: Intra-Jakarta Heterogeneity in Night Lights is Obscured When Using DMSP Data, Even With Pareto Adjustment for Top-Coding 

(c) VIIRS Outlier Removed Night Lights, 2015 (b) Pareto-Adjusted DMSP for 2012 (a) DMSP Annual Composite 2012 
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Elasticity = 0.54 (SE=0.03) 

            R
2 = 0.35 


